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Introduction

Network theory is one of the most current fields of science nowadays. The actual
challenges of our life require the analysis of the dynamics of different relationships.
An appropriate model of such kind of phenomenon can be represented by a random
graph. In this case, the nodes of the network are vertices and the links are edges
of the graph. Therefore the mathematical background of network theory is graph
theory, most of all, it starts from the early works of Erdds and Rényi [1]. In the
original definition of the Erd6és-Rényi graph, the number of vertices is fixed and in
each time step they pair independently uniformly at random. It was shown that
in the early stage of the evolution process, mostly tree components occur in our
random graph, but when the number of edges extends half of the number of ver-
tices a giant component appears. In the Erdés-Rényi-Gilbert graph, the number
of vertices is fixed and they pair independently with some fixed probability. How-
ever, in certain papers it was empirically illustrated that real-life networks work
differently [2]. The book of Barabdsi [3] is a nice summary of these kinds of em-
pirical studies.

In their fundamental paper [2], Barabdsi and Albert proposed the preferential at-
tachment method to describe the evolution of random networks. First, they list
several real-world networks such as the collaboration graph of movie actors, the
WWW, the electric power grid, and the citation patterns of scientific publications
having power-law degree distributions. In their model, every timestep a new ver-
tex with m edges is added to the network so that the probability that the new
vertex is connected to an old vertex is proportional to the degree of the old vertex.
Then they give a short argument and simulation results for the power law degree
distribution. We have to mention that the Barabasi-Albert model is not the only
one with a preferential attachment mechanism, e.g. the Yule model was studied
chronologically the earliest [4]. Such models are summarized in [5].

In [6] a careful study of the preferential attachment graph evolution process is
presented. The authors give detailed mathematical proof for the asymptotic degree
distribution. In [7] the following version of the preferential attachment tree was
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studied. At each step a new vertex is added to the existing tree and the new vertex
is connected to one of the old vertices with a single edge. The other endpoint
of the edge is chosen randomly so that a vertex with degree k is chosen with
probability proportional to k+ 3, with § > —1. The author finds the limiting degree
distribution by martingale methods. In [8] the authors introduce a generalization
of the original preferential attachment model. During the evolution of the graph
either a new vertex is born or two old vertices are connected with a new edge. The
choice of the old vertex can be both uniform and according to the degrees. The
authors obtain the limiting degree distribution.

In [9] and [10] the authors introduce and analyse a random graph evolution model
which describes the interactions of 3 units. So, besides vertices and edges, triangles
also take part in the evolution of the graph. In the model vertices, edges and
triangles have their weights which give the numbers of their interactions. Like in
[8], both preferential attachment rule and uniform choice are applied during the
evolution of the graph. However, instead of the degrees, the weights are considered
at the preferential attachment rule. The asymptotic degree distribution is obtained.
To obtain the results, the authors use martingale methods. In [11] an extension of
the model of [9] and [10] is considered. An interaction of N vertices is described
by an N-clique. The weight of a clique is the number of its interactions. The
evolution is a combination of the preferential attachment and the uniform choice.
The asymptotic behaviour of the graph is studied by martingale methods. Scale-
free properties both for the degrees and the weights of vertices are proved. It is
obtained that any exponent in (2, c0) can be achieved. In [12] further generalization
of the model is studied. In [13] the authors introduce the so-called PA-class which
is a common framework to study several preferential attachment models. They
obtain theorems for the limiting power-law degree distribution and the clustering
coefficient.

We mention that in [14] the Erdés—Rényi graph, the configuration model and the
preferential attachment graph were studied when the population was split into two
types. The mathematical tool of the analysis in [14] is the theory of multi-type
branching processes.

In contrast to discrete-time network evolution models, continuous-time models can
handle overlaps between different generations, making real networks more realis-
tic. However, they can also be seen as a tool for describing discrete-time networks
because of their more tractable, mathematically closed form. There are several
continuous-time network evolution models. Here, we list only some papers using
continuous time branching processes. In [15] the theory of continuous time branch-
ing processes was used to obtain asymptotic results for certain random trees. The
authors consider a tree which grows randomly in discrete time. Their model is a



generalization of the well-known preferential attachment random tree. They intro-
duce a weight function w : N — R,. At each time a new vertex is born and it is
connected to a randomly chosen vertex of the existing tree. The probability that
the vertex x is chosen to this end, is proportional to w(deg(z)). If w is linear, then
the model was formerly analysed carefully by [6] and [7]. In [15] the asymptotic
distribution of the degree sequence and the asymptotic distribution of the subtree
under a randomly selected vertex are obtained. For the proof, an appropriate con-
tinuous time branching process is introduced. If we observe the continuous time
branching process at its jumping times, then we obtain the random tree. Then
known results of the general branching processes (see [16], [17], [18]) imply the
results.

Recently, in [19] multi-type preferential attachment trees were studied. In [19]
the results of [20] on multi-type continuous time branching processes were applied
to describe the evolution of the network.

In this thesis, we study two new network evolution models. Our models are gener-
alizations of the one studied by Méri and Rokob [21]. The structure and the rules
of the evolution of our models were inspired both by some everyday experiences
and deep scientific results on motifs. On the one hand, we had in our mind activi-
ties and structures based on personal connections of the actors and where teams of
some persons are important. Thus, we considered the friendship, the recruitment
of party members and cooperation among party members, the recruitment and co-
operation of volunteers, cooperation among scientists, informal connections among
the employees of a company, etc. In these cases, the network consists of relatively
small teams, a person can be a member of several teams at the same time, new
teams can be born, and they can die, a newcomer can join the network if he/she
joins an existing team.

On the second hand, our models are supported by the theory of motifs and their
applications for real life networks. Here, we list only a few papers on this topic.

In [22] the authors used network motifs: ‘patterns of interconnections occurring in
complex networks at numbers that are significantly higher than those in randomized
networks’. They developed an algorithm for detecting network motifs and found
motifs with three or four vertices in biological and technological networks.

In [23] the authors analyse the local structure of several networks such as pro-
tein signaling, developmental genetic networks, power grids, protein-structure net-
works, World Wide Web links, social networks, and word-adjacency networks. For
the study, they used motifs on three or four vertices. In [24] the authors found
the numbers of all 3- and 4-node subgraphs, in both directed and non-directed
geometric networks. In [25] a method for the identification of all ordered 3-node
substructures and the visualization of their significance profile are offered.
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Therefore, we wanted to study networks that consist of small substructures, a node
can be a member of several substructures at the same time, new substructures can
be born and they can die, a new node can join to the network if it joins to an
existing substructure.

Concerning the mathematical tools, we follow the line of Moéri and Rokob [21],
where connections of two units were described by edges and the evolution of the
edges was governed by a continuous time branching process.

The structure of our thesis is the following. In Chapter 1 we describe a new network
evolution model with 3-interactions. This chapter is based on our papers [26] and
[27]. In Section 1 the precise definition of our model is given. In Section 2 the gen-
eral results on our model are presented. These are the survival function of a triangle
(Theorem 2.1), the mean offspring number of a triangle (Corollary 2.1), the joint
generating function of the birth process and the offspring number (Theorem 2.2)
and the probability of the extinction (Theorem 2.3). In Section 3 asymptotic the-
orems on the number of triangles (Theorem 3.1), the number of vertices (Theorem
3.2) and the number of edges (Theorem 3.3) are proved. All of them have magni-
tude e** on the event of non-extinction, where « is the Malthusian parameter. To
prove Theorems 3.1, 3.2 and 3.3, we used the underlying branching process counted
with certain random characteristics and applied the asymptotic theorems of [17].
We also obtained asymptotic results for the degree of a fixed vertex. To this end
we introduced a new branching process and again used general limit theorems of
[17] to this new branching process counted with certain random characteristics. In
Section 4 we present some simulation results supporting our theorems. The proofs
are based on known general results of continuous-time branching processes. The
main ideas of our proofs are similar to the method used in [21], but the analysis of
our more complex model needed more complicated reasoning.

In Chapter 2 we describe a new network evolution model with 2- and 3-interactions.
This chapter is based on papers [28] and [29]. In Section 6 a detailed description
of our model is given. In Section 7 the general results are presented. These are
the survival functions of an edge and of a triangle (Theorem 7.1), the mean off-
spring number of an edge and of a triangle (Corollary 7.1), the Perron root and
the Malthusian parameter. As usual, we obtain only implicit expression for the
Malthusian parameter, but our expression is simple and numerically tractable. In
Section 8, asymptotic theorems on the number of edges and triangles (Theorem
8.1) are proved. Both of them have magnitude e®* on the event of non-extinction,
where « is the Malthusian parameter. To prove Theorem 8.1, we use the un-
derlying multitype branching process counted with certain random characteristics
and apply the asymptotic theorems of [20]. In Section 9 the generating functions
are calculated. Using the generating functions, the probability of extinction are



studied. In Section 10 the asymptotic behaviour of the degree of a fixed vertex is
considered. Here, we again apply the asymptotic theorems of [20] but with other
characteristics than in Section 8. In Section 11 we present some simulation results
supporting our theorems. Our figures and tables show that the values obtained
by simulation fit well to the theoretical results. The proofs are based on known
general results of multi-type continuous-time branching processes. In Appendix A
we summarize some known facts on branching processes while in Appendix B we
show known results on multitype branching processes which we used during our
proofs.
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Chapter 1

The 3-interaction model

In this chapter we describe our new results on the 3-interaction model. They were
published in papers [26, 27].

1 Model description

We shall study the following evolving random graph model. At the initial time
t = 0 we start with a single triangle. We call it the ancestor triangle. This ancestor
triangle produces offspring triangles. Then these offspring triangles also produce
their offspring triangles, and so on. Every triangle, including the ancestor, has its
own birth process, which is a Poisson process with rate 1. Let II(¢), ¢ > 0, denote
a generic Poisson process with rate 1. We assume that during the evolution of the
model, the reproduction processes of the triangles are independent copies of the
following generic reproduction mechanism.

For any fixed triangle the reproduction is the following. Let us denote the repro-
duction process by £ and the birth times corresponding to the fixed triangle by
T1,T2,.... Here £ is a point process and, as usual, £ (t) denotes the total number
of children triangles of the given triangle up to time ¢, where £ (0) = 0. However,
at a birth time not only new triangles can be created but other ingredients can be
added to the graph. At every birth time 7;, a new vertex is added to the graph
which can be connected to our fixed triangle with j edges (j =0,1,2,3). Let p;
denote the probability that the new vertex will be connected to j vertices of our
fixed triangle. The vertices to be connected to the new vertex are chosen uniformly
at random. It follows from the definition of the above evolution process that at
each birth step we always add 1 new vertex, add 0, 1,2 or 3 new edges to the graph
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and the possible number of the new triangles is 0,1 or 3. Figure 1.1 shows the four
cases of the evolution. The triangle ABC' is the parent triangle and D is the new
vertex. The figure shows that it can join to the parent triangle with 0, 1, 2 or 3
new edges. E.g. the rightmost part of the figure shows the case when there are 3
new edges and there are 3 children triangles: ABD, BCD and CAD.

B D

bo b1 b2 b3

Figure 1.1: The four cases of the evolution

Let us denote by €1,¢€9,... the litter sizes belonging to the birth times 7,7, . ...
That is, the generic triangle bears ¢; children triangles at the ith birth event.
Then £1,€9,... are independent identically distributed discrete random variables
with distribution P (e; = j) = ¢;,j > 0. In our model the distribution of the litter
size g; is given by

P(e; =0)=qo=po+p1, P(ei=1)=q1 =p2, P(; =3) = g3 = p3,

P, =j)=¢q; =0, if j¢{0,1,3}.

Throughout the chapter, we assume that py+p1 < 1, because otherwise there were
no reproduction of the triangles. We assume that the litter sizes e1,e9,... are

independent of the birth times 71, 7o, ..., too.

7

Let the finite, non-negative random variable A be the life-length of the individual
(i.e. of the triangle). We assume that the reproduction terminates at the death of
the individual, therefore £ (t) = £ () for ¢ > A. Then the reproduction process of
a triangle can be given by

§(t) = Z €i = ST(tar) (1.1)

Ti <EAX

where II () is the Poisson process, S, = €1 + -+ + &, gives the total number of
offspring before the (n + 1)th birth event and x Ay denotes the minimum of {xz, y}.

The survival function of a triangle’s life-length. Let L (¢) denote the distri-
bution function of A\. Then the survival function of a triangle’s life-length is

1-L{t)=PA>t]&u),0<u<t)=exp (/0 l(u)du> , (1.2)
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where [ () is the hazard rate of the life-length A\. We assume that the hazard rate
depends on the number of offspring, so that

L(t) = b+ c (1) (1.3)

with non-negative constants b and c.

We have to mention that we do not delete the triangle when it dies, because its
vertices and edges can belong to other triangles, too. So we consider a dead triangle
as an inactive triangle not producing new offspring.

2 General results

In this section the general results on our model are presented. These are the survival
function of a triangle (Theorem 2.1), the mean offspring number of a triangle
(Corollary 2.1), the joint generating function of the birth process and the offspring
number (Theorem 2.2) and the probability of the extinction (Theorem 2.3).

The survival function. First we calculate L(t).

Remark 2.1. Let t > 0 and assume that IT(¢) = k. Then the first & birth events
happened before time ¢. Therefore the birth times 74, ..., 7 and the corresponding
litter sizes e1,¢€2, ...,k are known, and so & (u) is also known for u < t. Therefore,
using (1.3), a simple calculation shows that the survival function of an individual
(i.e. a triangle) is

1= L(t) = exp (—/Otl(u)du) ~exp (— (bt—l—c/otf(u)du)) _

=exp(— (bt +ctSy —cleimi + - +¢epm))) -

Theorem 2.1. The survival function is

1—L(t) = exp (—t (b+1)+ (tqo A Calned ;;qg (=) )) . (20)

Proof. By Remark 2.1, we have

IF’()\>t\H(t) :k,Tl,...,Tk,{:‘l,...,Ek) =
=exp (— (bt + ctSy —c(erm + - +exm))) -

Let (Uf,...,U}) be an ordered sample of size k from uniform distribution on [0, 1].
Then the joint conditional distribution of the birth times 71, ..., 7 given II (¢) = k,
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coincides with the distribution of (tUY,...,tU}). Therefore

]P’()\>t|H(t)—k)—Eexp<—<bt+ctzl_ (1_)>)_
:Eexp( bt+ctzl_ U*—l)

because 7; = tU;. The litter sizes €1, ...,y are independent identically distributed
random variables which are independent of U7, ..., U}, too. Hence

P ()\ > t|H (t) = k‘) = Eexp (—bt +ct Zf:l &; (Uz — 1)) =

R Hjﬂ pctei(Ui=1) _ —bt (E., (Ey (eCtEiUi,) e—ctei))k _

i

ctj _ 1 . k 1 _ ,—cly k
3¢ (1 _ efct) +q3 (1 _ 673@) k
_ e—bt go + ,

3ct

where we applied that U; is uniformly distributed. Using this and the total prob-
ability theorem, we get

P(\>t) :ZZOZO}P’(H(t) =E)PO\>tII(t) = k) =

_Z e—te—bt +3q1(1_66t)+% (1 —e3)
k= ok' & 3ct

o 1] 31 (1—e ct) + Q3 1 — e*SCt
— o~ t(b+1) il
€ Zk:o k! <th + 3c

( 3Q1(1—€Ct)+Q3<1—63Ct)
tqo+ 30
_ e—t(b+1)e

The mean offspring number of a triangle. Let us denote by p (t) = E£ (¢) the
expectation of the number of offspring of a triangle until time ¢.
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Corollary 2.1. For any t > 0 we have
1— —ct
L (t) — q1 + SQ?, / € (1 B u)w%q()fl e%(q3u2—3q3u+3(ql+q:;))du (22)
¢ 0

and

1
E)\ = 1/ (1 - u) btlzag _y 63%(Q3U2—3QSu+3(tI1+tI3))dU_ (2.3)
¢ Jo

0 < EX < o0 because b >0 and qo < 1.
Proof. By (1.1), we have u(t) = ESyan = E (51 +- 4 EH(t/\)\))- Using Wald’s
identity, the average number of children is

1 (t) =EE (1) = ESnan) = E(e1) E(IL(EAN)). (2.4)

Using that II is a Poisson process with rate 1 and ¢t A A is bounded for any ¢, from
(2.4) we obtain that the average number of children is

p(t) =E()EEAN) =

=(q+ 3q3)/0 1—L(s)ds=(q1 + 3q3)/0 P(\ > s)ds. (2.5)

cSs

Applying (2.1) and using the substitution u = 1 — e~“®, we obtain

t t 31 (1—e—¢5)4q3(1—e—3cs
/ IP()\ > S) ds = / es(gofbfl)e 1( )3c 3( )dS _
0 0

1—e~ ¢
— 1 / (1— u)bﬂ%qo—l o (a3u® =3asu3(a1+43)) g, (2.6)
¢ Jo

So we obtained (2.2). Moreover, with ¢ — oo, we have EXA = [[°P (A > s)ds. So

(2.3) follows from (2.6). O

We see that 1(0) =0 < 1 and p(t) < oo for all ¢, so P(y: < oo, Vt) = 1, where y; is
the number of triangles that have been born up to time ¢, see Theorem (6.2.2) of
[16].

The joint generating function of IT (\) and £ ()). Let w; ; =

PII(A\) =14,£(A) =7). We can see that w; ; = P(1; <A< 741,€ (1) =J). So
w;,; is the probability that the ith birth event is the last one which happened
before death and the total number of offspring up to time 7; is equal to j.

Now consider the sequence u; ; =P (1; < A\, € (7;) = j). At each birth step, the total
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number of offspring of an individual can be changed by 0,1 or 3. Let £ (1,_1) = m
and assume for a while that 7, and 7,_; are fixed. Then using (1.2) and (1.3) for
the hazard rate, short calculation gives that for fixed 7; and 7;_; we have

P()\ > T7,|>\ > Ti_1,7'7;_1,7'i) = exp (— (b—|— cm) (Ti — Ti—l)) .

However, the increment (7; — 7;_1) is exponential with parameter 1, therefore

1
P()\ > Ti‘)\ > Tl‘fl) = ]E-,—if-,—iil exp (_ (b + Cm) (Ti - Tifl)) = m (27)

Using these and the total probability theorem, we can give the following recursion
for Ui, j-
L
O v ¢
+P (it <A (mim1) =5 — 1)

ui; =P (ric1 <N E(Tim1) =)
N S
Tt 1)

+P(ric1 SN (1ic1) =5 —3)

+

1
Bl b+c(j-3)

do q1 a3
=Wttt Uiy T Uiclj-3 Ty (2.8
LT g T T T b G Y T b e(j - 3) (2:8)

Now we can see that

wi; =P(r <A< 141, (1) =J) =
b+ cj

=PA < 7| < ANE(T) =) P(n <N E(m) =5) = mui,ja

where, by (2.7), 11‘;7_?@ is the probability that the individual dies before the next

birth event.

Let v; ; = b—f—”c] = 1—}—blf|—cj’ i=1,2,...,5=0,1,...,3i. Then from (2.8), we
can obtain the following recursion for the sequence v; j,

(14b+cj)vij = vio1,jq0 + Vim1j-1q1 + Vi—1,5-3G3, (2.9)
where from 79 = 0 comes that the initial values are

Vo0 = and vg ; = 0 for j # 0. (2.10)

1
1+0b

Now we will determine the generating function G (z,y) of the sequence v; j,
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i=0,1,...,7=0,1,...,3i. We have

0 3% .
Gloy)=> (D vy

First, multiplying with z°y’ and then taking the sum of both sides of (2.9), we
obtain

00 31 . oo 31 .
. oplad ) — . .plald
Zizl Zj:o Vi jTY (1 +o+ C]) = 4o Zizl Zj:() Vi1, Ty +
o] 31 . o) 31 .
+a Zi:l Zj:() vi*l’jflxzy] +a3 Zizl ijo vifl’j*?’xzy%

where vg j,j7 = 0,1,... is given by (2.10) and define v; ; = 0 if j < 0. From this
equation, we get

1 ,
(1+0) <G (z,y) — 1+b) +ycGy (z,y) =
= qoxG (z,y) + qayG (z,y) + 32y°G (z,y) . (2.11)

Let h(t) = G(x,ty). By the recursion (2.9)-(2.10) with j = 0, we get v;o =
%H) (%) , and therefore

1

O =G0 =2, vior' = o

Now, substituting y with ¢ty in (2.11), we can obtain the following first order dif-
ferential equation:

’ 1 1
h (t)+ h(t) p” (1+0) — qoz — qutwy — gst’zy®) = p” (2.12)

with initial value condition

1

h(0) = 1+b—qoz

(2.13)

The solution of the above initial value problem (2.12)-(2.13) is

t azy agzy® 3

—(14b) 4oz aqizy, , azzy® 3 1 1+b—ggz *(7.8+7.5

h(t)=t— -« P A ‘ ’ ds.
¢ Jo
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Substituting t = 1, we obtain that

3
qz qzzx 3
41wy+f13$y3 1 Lt+b—ggz _(1Tys+3376ys )
3c e

G(z,y)=h(l)=¢ = 7/05 c

c

ds.

Moreover, substituting « = 1 — s into the above integral, we get

1 1 1+b—goz qufﬂzszy?’ w— agzy® u2+Q3Iy3 w3
G(r,y) = */ (1—u) = 16( ‘ ‘ . )du. (2.14)
0

C

Theorem 2.2. The joint generating function of TI(A) and £(N) is

gz + qrzy + gzay® — 1 y

gme (z,y) =1+ .

3

1 I+b—gow _ (qlwytq?’zy?) u— q3?’3 u?4 2328 u3>
X (1—u)” = e du, (2.15)
0

where —1 < x,y < 1.

Proof. Using that P(IT(A) = ¢, (X) = j) = w;; = v;; (b+ ¢j), by (2.11) we have

e (r,y) = B (2150 ) =377 ST PO =06 () =)'yl =

D DD TR DD DTt
=bG(z,y) + cyG (x,y) =
=G (,9) (907 + qrey + gzzy® — 1) + 1.
From this and (2.14), we obtain (2.15). 0

The probability of extinction. The reproduction process £ (t) gives the number
of offspring of an individual up to time ¢t. With ¢t — oo, we denote the total number
of offspring of an individual with £ (co0). Therefore, as we have seen it in the proof
of Corollary 2.1, the expected offspring number of a triangle is

pu(00) =E¢ (00) =E(e1) E(AAo0) = (g1 +3g3) E(N) =

(307 [ (-0

S e%(Q3u2—3Q3u+3(Q1+Q3))dU_ (2.16)

To determine the extinction probability of the process, we consider the following
embedded Galton-Watson process. At time t = 0, the Oth generation of the Galton-
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Watson process consists of a single triangle which is our ancestor triangle. The
first generation consists of all offspring triangles of the ancestor triangle. The
offspring of the individuals (triangles) in the nth generation form the (n + 1)th
generation. The extinction of our original process is the same as the extinction of
this embedded Galton-Watson process. Therefore, by Theorems (2.3.1) and (6.5.1)
of [16], if p(00) < 1, then the probability of extinction of the process is equal to
1 (because in our model the case when the offspring number is precisely equal to
1 is not possible). Such basic results on branching processes also can be found in
Chapter 1 of [18].

Consider the following equation:

1

ot +y+1) [ N e e s )
= (1—w) = e du.
¢ 0

(2.17)

Theorem 2.3. If i (00) > 1, then the probability of the extinction of the triangles
is the smallest non-negative solution of equation (2.17).

Proof. By Theorems (2.3.1) and (6.5.1) of [16], if u(c0) > 1, then the extinction
probability is the smallest non-negative root of the equation g¢ (y) = y, where g
is the generating function of & () (= £ (00)).

Using Theorem 2.2, we obtain

Qm+my+@w3—1x
C

3 3 3
1 Liboag (%u_%um_%ﬁ)
X (I—wu) = e du.
0

y=9¢(y) =gme(Ly) =1+

Rearranging the above equation, we see

qdy—U+@My—UQﬂ+y+Ux

.3 3 3
1 Liboay (%u—%u%—%ﬁ)
X (I—wu) = e du.
0

y—1=

Dividing both sides by y — 1, we obtain equation (2.17). O
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3 Asymptotic theorems on the number of trian-
gles, edges, vertices and degrees

In this section asymptotic theorems on the number of triangles (Theorem 3.1),
the number of vertices (Theorem 3.2) and the number of edges (Theorem 3.3) are
proved. All of them have magnitude e®* on the event of non-extinction, where « is
the Malthusian parameter. To prove Theorems 3.1, 3.2 and 3.3, we used the under-
lying branching process counted with certain random characteristics and applied
the asymptotic theorems presented in Appendix A. We also obtained asymptotic
results for the degree of a fixed vertex.

Assume that p(oo0) > 1 that is, the branching process is supercritical. Then the
Malthusian parameter « is the only positive solution of the equation

o0
/ ey (dt) = 1. (3.1)
0
The asymptotic behaviour of the number of triangles. By (2.5) we have

N(t):(CI1+3Q3)/OtIP()\>s)dS.

Therefore, in our model, by (3.1) and using Theorem 2.1 we have

1= / e~ (dt) = (g1 + 3q5) / =P (A > 1) dt =

0 0

ql(l—e_r‘t)+q3(1—e_3r‘t)>
dt.

3
o ¢
=(q + 3q3)/ e_(a+(b+1))te< " ”
0

—ct

(3.2)

Substituting u = 1 — e~ in the above integral, we obtain the following form of

equation (3.1)

1=

3 1 at(b+1) qp Sqlu+q3u(u273u+3)
M/ (1—w) e e, (3.3)
c 0

Lemma 3.1. If u(co0) > 1, then the Malthusian parameter « is the only positive
solution of equation (3.3). The only positive solution o of equation (3.3) satisfies

qu+3gs—b—1<a<q +3q—b. (3.4)
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Proof. Here (3.2) implies that
1 < (q1+3g3) / e~ (@t and 1> (¢ + 3¢s) / e~ (@ b+1))t gy
0 0

Form these inequalities we can obtain (3.4). O

Let us denote by Z (t) the number of triangles alive at time ¢.

Theorem 3.1. Let « be the solution of (3.3). Then we have

lim e™*Z (t) = Yoo Moo (3.5)
t—o0
almost surely and in L', where the random variable Y, is non-negative and it is
positive on the event of non-extinction. Moreover,
1

Moo = ((h + 3(]3)2 fooo te—at (1 _ L(t)) dt (36)

Proof. We check the conditions of Proposition 12.1 in Appendix A. First calculate
the quantity ,&(oc0) from (12.1).

L£(00) = / et (ar), (3.7)

where £ denotes the reproduction process of the ancestor. At each birth-step the
maximal number of new offspring is 3, therefore we have

ab(00) = ZT-<,\ eie” " < 3ZT.<A e " < 3221 e T =3M.

In the Poisson process II(t) the distribution of the interarrival time (7, — 7;—1) is
exponential with rate 1, therefore 7; has I-distribution I" (¢, 1). Using this, we have

1 3

E3M)=3% " E(c ™) =3 " Tra o (3.8)

Let us denote by n; the interarrival time 7; — 7,_1. Let 19 be an exponentially
distributed random variable with rate 1 which is independent of M. Then

e =00 (1 + M) — M0 | gm0 Zool e—a(mt-4ni) _ ZOOO e~ a(motm+-4n:)
i= i=

Therefore the distribution of e~ (1 4+ M) coincides with the distribution of M.
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Therefore, using (3.8), we have

1 2
EM? = (e=°™ (1 4+ M))* = 1+ 2+ EM?).
(@)’ = g (142 vmare)
From this, we get
s a+?2
and o 2)
2 a+
Therefore

E [o£(00) log™ a&(00)] <E(3M)? < 00

holds. So condition (v) of Proposition 12.1 is satisfied. Moreover, with & (t) =
I{0 <t < A} conditions (i) — (4i¢) of Proposition 12.1 are also satisfied. We see
that p is not lattice and the existence of the positive Malthusian parameter is
assumed. So conditions (a) and (b) of the Appendix A are satisfied.

If we show that [ t%e~*'u(dt) < oo, then conditions (c) and (iv) of the Ap-
pendix A will be proved. Now, from equations (2.5) and (2.6)

/Oo 12e=y(dt) = E (1) /OO 2e=ot(1 — L(1))dt =
0 0

(lfeict)#»qg(lfeiSCt

o0 3q1 oo
=E (51)/ t2emotetlao—b=1), 3¢ dt < C/ t2e dt < oo
0 0

because v = a — (go —b—1) > 0.

Applying Proposition 12.1, we have

lim e™*Z (t) = YooMoo

t—o0

almost surely and in L!. Here the random variable Y., > 0 is non-negative and it
positive on the event of non-extinction, it has expectation 1 and it does not depend
on the choice of ®. Moreover

e Joet(1—L(t)dt 1
Moo = My, = C—— = AT — , (3.9
Jo temtu(dt) (g1 +3q3)" fo te* (1= L(t))dt
where we applied (2.5) and the fact that « is the Malthusian parameter. O

Remark 3.1. If we consider the number of all triangles being born until time ¢,
then for this T process we should use function ®7(¢) = I{0 < t}.
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Then lim; o e =T () = Yoom®7 almost surely and in L', where

o _ fooo et dt 7 1

Mo T ematu (dt)  alqn +3as) Jo- tet (1— L (¢)) dt

We also see that

T(t) —m2r _ @ +3gs -

1
Z(t) Moo @

because of (3.4).

The asymptotic behaviour of the number of vertices. Let us denote by
V (t) the total number of vertices being born up to time t.

Theorem 3.2. e~“*V (t) converges almost surely and

V(t) 1

Z(t)ﬁa

as t — oo almost surely on the event of non-extinction.

Proof. At each birth step a new vertex is added to the graph, therefore the total
number of vertices at time ¢ is V () =3+ Z% (¢), where ® (t) = I (t A X). We can
see that conditions (¢) — (i7) of Proposition 12.1 are satisfied. Moreover, as we have
seen it in the proof of Corollary 2.1,

0o 1
Esup ® (t) = EII (A) = E (\) = / (A—L(s)ds<C [ (1—u)"*du < .
t 0 0

Here we applied Corollary 2.1 and § > 0 can be chosen because of the condition
po+p1 < 1. So condition (iii) of Proposition 12.1 is also satisfied. We have already
seen in the proof of Theorem 3.1, that condition (12.2) is satisfied. By Proposition
12.1, we have

lim e Z% (t) = Yoem?,

t—o0
almost surely and in L'. Here the random variable Y., > 0 and the denominator
of m® do not depend on the choice of ®. The numerator of m2 is

oo 0o t
/ e “E® (t) dt = / et / 1—L(s)dsdt =
0 0 0

— /Ooo (1-1L (s))/s e~ dtds = /OOO L (1—L(s)) e *"ds.

«
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From this equality and from (3.9) we obtain

Jo° L(1—L(s))e *°ds
1% (t) et (3 + zZ® (t)) Yoomg)o . S5 te=otpu(dt)

1
Z() " e oZ(t)  Yeme | Joer(-L@i o
To= teatu(d)

as t — oo almost surely on the event of non-extinction. O

The asymptotic behaviour of the number of edges. Let us denote by
W (t) the number of edges being born up to time ¢. Introduce the following ran-
dom variables. Let -; denotes the number of new edges at birth time 7;. Then
Y1,72 - .. are independent identically distributed random variables with distribu-
tion P(y; = j) =p;,5 =0,1,2,3. Then Eyy = ijojpj.

Theorem 3.3. e *'W (t) converges almost surely and

W) , En

Z (1) a

as t — oo almost surely on the event of non-extinction.

Proof. Let ® () =71 + -+ +Y@ax)- Then the number of edges at time ¢ is given
by
W(t)=3+2%(t),

where Z% (t) = > ®. (t — o) and the sum is taken for each individual e, where o
is the birth time of the individual e. Using that the non-negative random variable
A is finite, and using Wald’s identity, we obtain

]Estzpq) ) =E(m+-+vmn) =EnEIA) =EpxEN) =

:]Eyl/ 1—L(s)ds < oo,
0

as in the proof of Theorem 3.2. So we can see that conditions (i) — (i) of Propo-
sition 12.1 are satisfied. We have already seen in the proof of Theorem 3.1 that
condition (12.2) is also satisfied. Therefore, applying Proposition 12.1, we have

lim e Z% (t) = Yoem?,
t—o0

almost surely and in L'. Here the random variable Y., > 0 and the denominator
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of m® do not depend on the choice of ®. The numerator of m& is

o] 00 t o] E
/ e ™ E® (t)dt = / e *Ey, / 1—L(s)dsdt = / n (1—-L(s))e *ds.
0 0 0 0

@
Therefore
e E%(I—L(s))efasds
W) e B+2°(1)  Yem® T jFwet@n  Em
Z(t) e~tZ (t) Yoo  Joo e ot(-L®))dt o
Jo~ tem >t u(dt)
as t — oo almost everywhere on the event of non-extinction. O

Remark 3.2. Theorems 3.2 and 3.3 imply that the ratio of the number of edges
and the number of vertices satisfy

W) _
W =Em

ast — oo almost surely on the event of non-extinction. The meaning of this relation
is obvious, as at one step one vertex is born with v, edges.

The asymptotic behaviour of the degree of a fixed vertex. We can see that
a newly born vertex can have 0, 1, 2 or 3 edges.

First we consider that our newly born vertex has 2 edges. Fix this vertex. Then
precisely one triangle contains this fixed vertex. In this paragraph we shall call it
as the ‘parent’ triangle. Then we distinguish those children triangles of the ‘parent’
triangle, which contribute to the degree of our fixed vertex. That is, we call a child
triangle of the ‘parent’ triangle a “good child” if it contains our fixed vertex. Then
the distribution of the number of “good children” at a reproduction event of the
‘parent’ triangle is

. 1 - 2 .
PE=0)=po+pi+3gp2, PE=1)=3p2, PlE=2)=ps.
Any “good child” contributes to the degree of our fixed vertex in two ways. When
a “good child” is born, then it adds one new edge to our fixed vertex. Moreover, if
at a reproduction time the “good child” produces a vertex with a single edge, then
it is connected to our fixed edge with probability 1/3.

So first we have to consider the reproduction process of the “good child” which is
the following

E(t) =1+ &+ + Enpar),

where £1,€5,... are independent copies of €. The mean offspring number in the
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case of “good children” is

L(t)=FEE@t)=E (&1 +&+ - +énpayy) =EENEII(EAN)) =

- (§<p2 +3p3>) / (- L(s) ds = 2ult)

The reproduction process of the “good children” is supercritical if

1< fi(oo) = 2p(o0).

In the following we assume supercriticality. The Malthusian parameter & of this
process is the only positive solution of the equation

oo 5 2 oo 5
1= / e~ i(dt) = 2 / e~ (d).
0 3 0

Denote by C(t) the number of “good children” at time ¢. To check the conditions
of Proposition 12.1 consider the quantity M = fooo e~ ¢ (dt). Using the same

method as in the proof of Theorem 3.1, we can prove that E []\Zf log™t J\ﬂ < 0o. We

can check condition [ t2e~%/i(dt) < oo similarly as in the proof of Theorem 3.1.

So we can apply Proposition 12.1. Therefore we have almost surely

lim e~ C(t) = % fooo e (1 — L(t))dt _

t—c0 Jo~ te= ot fi(dt)
~ 1
— V. (3.10)

2 ~ )
(2)% (p2 + 3p3)? [ te=4(1 — L(t))dt
where Y is positive on the event of non-extinction of the “good children”.

Now consider the case when the “good child” produces a vertex with a single edge.
Then it is connected to our fixed edge with probability 1/3. So the number of these
single edges is

O(t) = 01+ + ongean)s

where the above random variables are independent with distribution P(g; = 1) =
p1/3 and P(g; = 0) = 1 —p1/3. Now E®(t) = Eo1E(t AA) = p1(1 — L(t)). So this
kind of contribution to the degree is Z® and, by Proposition 12.1, we have almost

surely

lim e~ Z%(t) = V. Jo e g (1 = L(t))dt
i T e ()

(3.11)
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Now denote by F(t) the degree of the fixed vertex at time ¢. Then adding equations
(3.10) and (3.11), we obtain the following. Almost surely

N - 1+ 1
lim e~ ®F(t) = Vi s

232 0o, _ =~ ) (312)
e (2)° (p2 + 3ps)? J° te=at(1 — L(t))dt

where Ya is positive on the event of non-extinction of the degree process.

Above the extinction of the degree process means that the degree of the vertex
does not increase after a certain time, that is, reproduction process of the “good
children” dies out. The probability of this kind of extinction is the smallest non-
negative root of the equation

G(zx) =, (3.13)

where é(x) is the generator function of é()\) As £(t) = &1+ & + -+ Enpan)s

G(x) = hney (he(2)),
where hry(yy is the generator function of II(A) and hg is the generator function of
€. Now

1 2 )
he(x) = po +p1 + 3P2 + P2t + p3w

and, by Theorem 2.2,
hroyy (@) = gne (z,1) =

1

r—1 1tb—(potp)e 4 ((p2tp3)e, Psru2+P3Iu3)

=14 / (1_u) ¢ e( c c 3c du.
c 0

So, if the newly born vertex has 2 edges, then the limit of its degree process is
given by (3.12), and the probability of extinction is the smallest non-negative root
of the equation (3.13).

If the newly born vertex has 0 or one edge, then it will not get any new edge.
If the newly born vertex has 3 edges, then for its degree process 3 (t) we have
1+ ip

2
(2)7 (p2 + 3ps)2 [;” te=91(1 — L(t))dt

lim e % F(t) = (ffm + Yaoo + ?Esoo)

t—o00

almost surely, where )7100, }7200, 17300 are independent copies of 17 In this case the
probability of extinction is x3, where z is the smallest non-negative root of the
equation (3.13).
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4 Numerical and simulation results

To get a closer look on the theoretical results, we made some simulations about
them. We generated our code in Julia language. We chose Julia, because of the
great implementation of priority queues. The simulation time of our code was
significantly faster in Julia than in other programming languages. We handled the
main objects (the triangles) of our model as arrays with 3 elements. The elements
were the indices of the edges that formed an individual for the process. We put
all triangles in a priority queue with the priority of it’s birth time, because we can
pop out the element with the lowest priority. After we’'ve got the triangle with the
lowest birth time, we can handle its birth process with the predefined b, ¢, q1, g3
parameters. In the birth process we generated an exponential time step for the
next birth step of our triangle. After that we checked if the triangle is still alive by
calculating the survival function. If the triangle is dead, we move to the next one.
If it is alive, then we generate 1 or 3 new triangles and put them in the priority
queue with the calculated birth time priorities. After it we moved to the next birth
event. The pseudocode of the birth process is seen at Algorithm 1.

We made several simulation experiments. Here we show only some typical results.
For the above demonstration we used the parameter set b = 0.2, ¢ = 0.2, pg =
0.05, p1 = 0.05, ps = g1 = 0.6, p3 = qg3 = 0.3. On Figure 1.2a, Process 1 shows
the number of triangles. According to Theorem 3.1 it has asymptotic rate e~
Therefore we put logarithmic scale on the vertical axis so the function Z(t) is a
straight line for large values of £. On the figure one can see that the shape of the
curve is close to a straight line, so it supports our Theorem 3.1.

at

Then we checked the value of the Malthusian parameter o. We can find it in two
ways. On the one hand, the slope of the line Process 1 is « for large values of the
time. This slope can be approximated by the differences of the function. So on
Figure 1.2b we present these differences (solid line). On the other hand, a can be
calculated numerically from equation (3.3). This « value is shown of Figure 1.2b
by a horizontal dashed line. The fit of the differences to o can be seen for large
values of ¢.

To get a closer look on the Malthusian parameter o we fixed 5 parameter sets. Then
we calculated « form equation (3.3) for each case. Then for each of the parameter
sets we simulated our process Z(t) five times. Then we calculated the differences
of log Z(t) wich should be good approximations of « according to Theorem 3.1. In
Table 1.1 a7, a3, a3, &4, a5 show the values of these approximations for large t.
One can see that each @; is close to the corresponding a.

We calculated numerically the probability of extinction from equation (2.17). It is
shown in the column 'Numerical’ of Table 1.2. In the column ’'Simulation’ the rela-
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Figure 1.2: Simulation results for b= 0.2, ¢ =0.2, ¢1 = 0.6, g3 =0.3

(bl clafa] o [ o | a | & [ & [ & |
02|04 1| 07]01] 05628 | 0.5651 | 0.5730 | 0.5701 | 0.5611 | 0.5594
02|04 ] 08] 0.1 06531 | 0.6537 | 0.6497 | 0.6570 | 0.6510 | 0.6589
04|04 ] 08] 0.1 04531 | 0.4503 | 0.4519 | 0.4584 | 0.4541 | 0.4524
0.4 |04 | 0.7 ] 02| 06545 | 0.6533 | 0.6517 | 0.6548 | 0.6534 | 0.6574
04|04 ] 06| 03| 08535 | 0.8519 | 0.8489 | 0.8559 | 0.8547 | 0.8566

Table 1.1: « from equation (3.3) and &; from simulations

tive frequency of the extinction is shown using our computer experiment. For each

parameter sets, we simulated 10* processes and counted the number of extinctions

occured. The value of the relative frequency is close to the corresponding value of
the probability in each case. So Table 1.2 supports the result of Theorem 2.3.

’ b ‘ c ‘ q1 ‘ qs3 ‘Simulation Numerical
0002|0404 0.0 0.0
011020404 0.1304 0.1282
011020504 0.1165 0.1158
0.1]102)05|0.5 0.1097 0.1025
021020504 0.2227 0.2180
021020604 0.2038 0.2002
0310305104 0.3231 0.3185
041]04|05|04 0.3966 0.4020

Table 1.2: The relative frequency and the probability of the extinction of

the triangles
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To investigate how our process approximate « for time ¢, we simulated around 500
independent processes with the same b = 0.2, ¢ = 0.2, py = 0.05, p; = 0.05, py =
q1 = 0.6, ps = q3 = 0.3 parameters and same running time. Then we checked the
differences of the last two values in the number of triangles that we simulated and
made a histogram, seen in Figure 1.3. From equation (3.3) we obtained that the
value of « is 0.3365. We see that the values of the differences are close to a.

Figure 1.3: Histogram of differences

To get some information about the random variable Y,,m . represented in Theorem
3.1, we calculated the Z(t)e~* value for 1000 independent processes for the same
t time and same gq; = 0.3, ¢g3 = 0.6, b = 0.2, ¢ = 0.2 parameterset. On Figure
1.4 we represent the histogram and the empirical cumulative distribution function
calculated from the simulation. The Kolmogorov-Smirnov test gave us a p value
0.6713 for the gamma distribution.

04l

0251

(a) Histogram of Z(t)e ! (b) ECDF

—at

Figure 1.4: Simulation results for Z(t)e
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Algorithm 1 Birth process of a triangle

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

procedure BIRTH PROCESS
Y < non-empty Priority Queue
b, c, q1,q3 < parameters of the survival function
x < dequeue Y
if = is a new triangle then
to < the birth time of z in the whole process
t < 0, lifetime of z
[ + 1, life variable
while [ =1 do
t<t+ Exp(l)
p < the calculated survival function
if p > Uni(0,1) then
po < Uni(0,1)
if pp < ¢ then
take a new triangle with ¢y + ¢ birth time to Y
offspring number is 1 at birth time ¢
else if pg > 1 — g3 then
take three new triangles with ¢y 4 ¢ birth times to Y
offspring number is 3 at birth time ¢
else
[0
take t as the death time of = to Y
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Chapter 2

The 2- and 3-interaction
model

In this chapter we describe our new results on our 2- amd 3- intercation model.
They were published in paper [28] and [29].

6 Model description

We study the following network evolution model. At the initial time ¢ = 0 the
network consists of one single object, this object can be either an edge or a trian-
gle. This object is called the ancestor. During the evolution, this ancestor object
produces offspring objects, which can be either edges or triangles. Then, these off-
spring objects produce their offspring objects and so on. The reproduction times
of any fixed object, including the ancestor, are the occurrences in its own Poisson
process with rate 1.

From the theory of branching processes, we apply the following usual assump-
tions. That is we suppose that the reproduction processes of different objects are
independent. Moreover, we assume that the reproduction processes of the edges
are independent copies of the reproduction process of the generic edge. Similarly,
the reproduction processes of the triangles are independent copies of the reproduc-
tion process of the generic triangle.

First, we explain the evolution of the generic edge. A Poisson process Il (t) with
parameter 1 gives its reproduction times. At any jumping time of this Poisson
process, a new vertex appears and it is connected to the generic edge with one or
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two edges. The probability that this new vertex is connected to the generic edge
by one new edge is 71, where 0 < r; < 1. The other end point of this new edge
is chosen from the two vertices of the generic edge uniformly at random. We see
that in this case the generic edge produces always one new edge. The other case
is that when the new vertex is connected to both vertices of the generic edge. Its
probability is 7o = 1 — r1. In this second case the offspring of the generic edge is a
triangle consisting of the generic edge and the two new edges. We emphasize that
in this last case the generic edge itself and the new triangle will produce offspring,
but the two new edges are not substantive parts of the reproduction process, so
they alone will not produce offspring.

The reproduction process of the generic triangle is similar. The Poisson process
with rate 1 corresponding to the generic triangle is denoted by I3 (t),¢ > 0. The
jumping times of II3 (¢) are the birth times of the generic triangle. At every birth
time a new vertex is born and it joins to the existing graph so that it is connected to
our generic triangle with 1, 2 or 3 edges. Denote by p; (j = 1,2, 3) the probability
that the new vertex is connected to j vertices of our generic triangle. The vertices
of the generic triangle to be connected to the new vertex are chosen uniformly at
random.

By the above definition of the evolution process, at each birth step we add precisely
1 new vertex. When the new vertex is connected to one vertex of the generic
triangle, the generic triangle gives birth to one new edge. This event has probability
p1. However, in the remaining two cases we count only the new triangles and not the
new edges. When the new edge is connected to the generic triangle by two edges,
these two edges and one edge of the generic triangle form a new triangle. Therefore,
with probability po, the generic triangle produces one child triangle. When the new
edge is connected to the generic triangle by three edges, these edges and the edges of
the generic triangle form three new triangles. Thus, with probability ps3, the generic
triangle produces three children triangles.

Any edge is called a type 2 object, and any triangle is called a type 3 object. We
use subscript 2 for edges and subscript 3 for triangles. Thus, we denote by &; ;(¢)
the number of type j offspring of the type @ generic object up to time ¢ (4,5 = 2, 3).
Recall that & ;, 4,7 = 2,3, are point processes. Then

§a(t) = Ea2(t) 4 E2,3(t) (6.1)

gives the total number of offspring (that is both edges and triangles) of the generic
edge up to time t. We can also see that

§3(t) = &3.2() + &3.3(1) (6.2)
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is the number of all offspring (edges or triangles) of the generic triangle up to time
t.

We denote by 73(1),73(2),... the birth times of the generic triangle, and we de-
note by e3(1),e3(2),... the corresponding total litter sizes. That is, at the ith
birth event, the generic triangle bears €3(4) children being either triangles or edges.
The discrete random variables e3(1),£3(2), ... are independent and identically dis-
tributed having distribution P (e3(i) = j) = ¢;,j > 1. By the above evolution
process, we have

P(e3(i) = 1) = q1 = p1 +p2, P(e3(i) = 3) = g3 = p3,
P(53(i) :J) =q; =0, if .7% {1’3}'

We assume that the litter sizes are independent of the birth times.

Let A3 be the life-length of the generic triangle. It is a finite, non-negative random
variable. We assume that the reproduction terminates at the death of the indivi-
dual. Therefore, & (t) = &5 (A3) for t > A3. Then, the reproduction process of a
triangle can be formulated as

53 (t) = Z Eg(i) =S5 (Hg (t A )\3)) s (63)

T3 (1) <tAA3

where IT3 (¢) is the Poisson process, S3(n) = e3(1) 4+ --- + £3(n) gives the total
number of offspring of the generic triangle before the (n + 1)th birth event and by
x Ay we denote the minimum of {z,y}.

The survival function of the life-length. Let L3 (t) denote the distribution
function of the triangle’s life-length As. Then, the survival function of Ag is

L= Ly (t) =P (g > ¢ | &(u),0 < u < t) = exp (-/Otlg (u)du) L (64)

where 5 (t) is the hazard rate of the life-length A3. We suppose that the hazard
rate depends on the total number of offspring, so that

with fixed positive constants b and c.

Let Ay be the life-length of the generic edge. Then, & (t) = &3 (Ag) for t > Aa. As
the edge always gives birth to one offspring (which can be an edge or a triangle);
therefore,

& (t) =1l (t A )\2) (66)



32 6. Model description

is the total number of offspring of the generic edge, where II5 (¢) is the Poisson pro-
cess.

We denote by Ls (t) the distribution function of Ay. Then, the survival function of
the life-length of an edge is

1= Ly () =P (e > | £(u),0 < u < 1) = exp <—/0 Iy (u)du) 6T

where [ is the hazard rate of the life-length Ay. We suppose that ls is of the form
o (t) = b+ &2 (t), with the same constants as in (6.5).

We emphasize that we do not delete any edge or any triangle when it dies, because
its ingredients can belong to other triangles or edges, too. Thus, dead triangles
and edges will be considered as inactive objects not producing new offspring.

In Figure 2.1, an example is shown for our graph evolution model. For a clear
view it contains only three birth steps after the initial time ¢ = 0. The nodes of
the ancestor are highlighted by red. The edges are labelled with the birth times
t. The following objects appear in Figure 2.1, which are described by the labels of
their nodes:

e (1-2-3): is a triangle, the ancestor with birth time ¢ = 0,

(1-2-3-4): represents three triangles, i.e., the offspring of (1-2-3) at its first
reproduction time ¢ = 0.571,

e (1-5): an edge, offspring of (1-2-3) with birth time ¢ = 0.847,

e (1-5-6): a triangle, offspring of (1-5) with birth time ¢ = 1.06.

! 0.571ﬁ
0.0
0

0"571 0571

0847

Figure 2.1: Example of the graph evolution model with parameter set:
ry=0.1, pp =04, p=0.2, b=0.1, c=0.1.
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Two more examples are shown in Figure 2.2 with different parameters. In Fig-
ure 2.2a the ancestor is an edge, while in Figure 2.2b the ancestor is a triangle.

. .
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00 0062 0062
00

0.822

0.886 0.019 0019

0.886

1103
1274 145

\@/1.274 %/MS\@L :
(a) 1 =0.8,p1 =0.2, po =0.5, (b) r1 =0.2, p1 =0.3, po = 0.5,
b=102, ¢=0.1 b=102, ¢=0.2

Figure 2.2: Examples of the graph evolution model with two different
parameter sets

7 General results

In this section the general results are presented. These are the survival functions
of an edge and of a triangle (Theorem 7.1), the mean offspring number of an edge
and of a triangle (Corollary 7.1), the Perron root and the Malthusian parameter.
As usual, we obtain only implicit expression for the Malthusian parameter, but our
expression is simple and numerically tractable.

The survival functions.
Theorem 7.1. The survival function for a triangle is

3(P1+P2)(176*Ct)+p3(17673(:1,)

P (A3 >t) = e t0He . (7.1)

The survival function for an edge is

Py >t) = e t0HDe =5, (7.2)

Proof. At the first part of the proof we omit subscripts 2 and 3, because the
calculations are the same for edges and triangles. Let t > 0 and assume that
I (t) = k. Then, the first k birth events happened before time ¢. Thus, the birth
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times 7(1),7(2),...,7(k) and the corresponding litter sizes €(1),e(2),...,e(k) are
known. Therefore, the reproduction process £ (u) is also known for u < ¢t. By (6.5),
a simple calculation shows that the survival function of an object is

1= L(t) = exp <—/Otl(u)du) — exp (— (bt+c/0t§(u)du>) _
(k)

=exp (— (bt + ctS(k) —c(e(V)7(1) + - -+ e(k)T(k)))) .
Then
P> (@) =k, 7(1),...,7(k),e(1),...,e(k)) =
=exp (— (bt + ctS(k) —c(e(V)7(1) + - -+ e(k)T(k)))) .
Let (Uf,...,U}) be an ordered sample of size k from uniform distribution on

[0,1]. Then, the joint conditional distribution of the birth times 7(1),...,7(k)
given II (t) = k, coincides with the distribution of (tUY,...,tU}). Therefore

k .
P(A > I () = k) = Eexp (- <bt+ct25(z’) (- ?))) _

k
= Eexp (—bt + thE(i) (Ur - 1)> ,
i=1

because 7(i) = tU;. The litter sizes £(1),...,e(k) are independent identically
distributed random variables, which are independent also of U7, ...,U}. Hence

.
P (A > t[II(t) = k) = Eexp (—bt +et > eli) (Ui — 1)) -

k
_ e—thHects(i)(Ui—l) bt (Ee(i) (EU (ecte(i)Ui) e_cts(i)»k _
=1

k k
7Ctj

o0
Z q; e~ et ZQJ — s
j=1

where we applied that U; is uniformly distributed. Using this and the total prob-

ctg_]_

ability theorem, we find

POV >6) = S P = k) PO\ > ¢l (1) = k) =
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i % —t bt i% 1— e—m _
k=0

j=1

b1yt Z i 1 —e—cti
=e ¢G— | =

k= 0

—ctj

—e (b+1)t > T 5

Therefore, the survival function for a triangle is

3(P1+p2)(176*6t)+p3(176—3c1,)
P ()\3 > t) = eft(b+1)€ -

Finally, the survival function for an edge is

1—e—ct
c

P(\y > t) = e t0H e

The mean offspring number. Let us denote by m; ; (t) = E¢; ; () the expec-
tation of the number of type j offspring of a type ¢ mother until time ¢.

Corollary 7.1. For anyt > 0, we have

m2,2 (t) = TlF(t), m273 (t) = TQF(t)7 (73)
where
K t cs 1 1—e ct _
F(t) :/ (17L2 (5))d5*/ e (b+1)s ds = 7/ (lfu)btl o2 du
0 0 ¢ Jo
e o
e / (1—wF " etdy (7.4)
¢ Jo

For any t > 0, we have

ma (t) = p1G(1), ma3 (t) = (p2 + 3p3)G(1), (7.5)
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1—e°t
¢ Jo
1 1 b+1_ g l( 2_3 +3)
EAng/ (1 — )1 o (s —psuts) g, (7.6)
cJo

0 < EXy,EA3 < 00 because b > 0.

Proof. We have
mi; (t) =E& ; (1) =E(ei;(1) +€i5(2) + -+ ALEAN))),

where ¢; ;(k) is the number of type j offspring of a type ¢ mother at her kth birth
event. Using Wald’s identity, the average number of children is

miy (1) = E (e (D) E (A N)). (7.7)

Using that II is a Poisson process with rate 1, and ¢ A A is bounded for any ¢, from
(7.7), we obtain that the average number of children is

mij (t) = E(ei;(1)) E(IL{EAN)) = E (£:;(1)) /0 (1= Li(s)) ds. (7.8)

Now, consider mq 5 (t). Applying (7.2) and using the substitution v = 1 — e~ we
obtain

ct

¢ bl 1—e—CS 71 l—e™ bl w
ma, (t) = 7‘1/ e (s (s = —/ (1—wu) = “ecdu. (7.9)
0 ¢ Jo

If we write 7o instead of ry, then we obtain msg 3 (¢). Thus, we obtained (7.3).
Moreover, with ¢ — 0o, we have EXy = [[°P (A2 > s)ds. Thus, (7.4) follows from
(7.9).

cSs

Now, we turn to ms 3 (¢). Applying (7.1), and using the substitution u =1 —e~°,
we obtain ,

! t 3(p1+p2)(1—e =% )4pg(1—e—3cs
0 0

1—e— ¢t
- 1 / (1—u) ! ei(p3u2—3p3u+3(p1+pz+ps))du. (7.10)
cJo

As E (e3,3(1)) = p2+3ps, so from (7.8) we obtain ms 3 (). Using that E (e32(1)) =
p1, we obtain mgo (t). Thus, we obtained (7.5). Moreover, we have EAg =
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ISP (X3 > s)ds. Thus, (7.6) follows from (7.10) with ¢ — oc. O

Let -
mige) = [ e, ig=23,
be the Laplace transform of m, ;.

Proposition 7.1. For any k > 0, we have

m;,z (k) = mMA(k), m§’3 (k) = raA(k), (7.11)
where
. —(b+1)s 1o 1! Atbtl 1w
A(r) = e e feT e ds=—- [ (1—u) - e du. (7.12)
0 ¢ Jo

For any k > 0, we have
m3 5 (k) =piB(k),  mj3 (k) = (p2 + 3p3)B(k), (7.13)

where
3(p1+p2)(1—67”)-Hla(l—e*?’”)

B(k) =/ e ree (e 3c ds =
0

1
- 1/ (1 — ) e 1 3 (pon®—3psut3) gy
¢ Jo

Proof. Apply the definition of mj ;(x), Corollary 7.1 and substitution u =
1—ecs. O

The Perron root and the Malthusian parameter. Let

M(x) = <m272 () mgﬂ (”)> (7.14)

m§’2 (k) m 3 (k)

be the matrix of the Laplace transforms. Direct calculation gives that the charac-
teristic roots of M (k) are

91,2(5) =

(P2 + 3p3) B(r) + 11 A(K) £+ v/ ((p2 + 3p3) B(r) — 11 A(K))? + 4p1 B(k)r2 A(r)
5 .

(7.15)
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The greater of the values g1 (k) and p2(k) is called the Perron root, so

o(k) = o1(k) =
_ (P24 3p3) B(s) + 11A(K) + /(P2 + 3p3) B(k) — 11A(x))* + 4p1 B(k)r2 A (k)
2
(7.16)
is the Perron root.
We assume that our process is supercritical; that is,
0(0) > 1. (7.17)

For supercriticality, condition
max{(pz + 3p3)B(0),r1 A(0)} > 1

is sufficient.

That value of x for which the Perron root is equal to 1 is called the Malthusian
parameter. Thus, using the usual notation in the theory of branching processes, «
is the Malthusian parameter if p(«) = 1. In this chapter, we assume the existence
of the Malthusian parameter. From relation o(a) = 1 and (7.16), we obtain that
the Malthusian « satisfies the equation

r1A(a)(p2 + 3ps) B(a) — (r1A(a) + (p2 + 3p3) B(@)) = roA(a)p1 B(a) — 1. (7.18)

Later, we use the eigenvectors of M(«). To this end, let o be the Malthusian
parameter, and let (vy,v3) be the right eigenvector of M(a) corresponding to
eigenvalue 1 and satisfying condition vy + v3 = 1. Then, direct calculation shows
that

(r1 —1)A(a) r1A(a) —1

(2r —1)A(a) - 1’ v = (2r, — DA(a) — 1" (7.19)

Vg =

Again, let a be the Malthusian parameter and let (u2,u3)" be the left eigenvector
of M(«) satisfying condition ugvg + ugvs = 1. Direct calculation shows that

"y — — PAB(@) (21 — DA(a) — 1)
p1B(a)(r — 1)A(a) — (r1A(e) — 1)
. (1 -rA(a)) ((2r1 — 1DA(a) — 1)
7 piB(a)(r1 — DA(a) — (mA(a) — 1

7 (7.20)
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8 Asymptotic theorems on the number of trian-
gles and edges

In this section asymptotic theorems on the number of edges and triangles (The-

2t on the event of non-

orem 8.1) are proved. Both of them have magnitude e
extinction, where « is the Malthusian parameter. To prove Theorem 8.1, we use
the underlying multitype branching process counted with certain random charac-

teristics and apply the asymptotic theorems of [20].

We use Proposition 13.1 from Appendix B. So we should check the conditions given
in Appendix B. For condition (a) from Appendix B, we should guarantee that not
all measures m; ; are concentrated on a lattice. By Corollary 7.1, these measures
are absolutely continuous, and thus it is satisfied.

Concerning condition (bl), we underline that we suppose the existence of a positive
Malthusian parameter «. To this end, in this section, we assume that (7.18) has
a finite positive solution ce. We can check numerically the existence of this value.
For (b2), we assume (7.17). Condition (c) from Appendix B will be checked later
in the proofs of the results together with other conditions related to it.

Now, we analyse condition (d). We can see from Corollary 7.1 that F(co) and G(c0)
are positive. Thus, we can concentrate on parameters r; and p;. If 1o = p; = 0,
then (d) is not satisfied; however, in this case, one can study separately the process
of edges (it grows at any birth time by 1), and the process of triangles (this is
described in [26]). If 71 = 0 and p2 + p3 = 0, then (d) is not satisfied, and the
evolution process is an alternating one. If either ro = 0 or p; = 0, then (d) is
not satisfied.

To guarantee condition (d), in this section, we assume that 0 <r; < 1,0 < p; <1,
and it is excluded that both r; = 0 and p; = 1 are satisfied at the same time. In
this case, condition (d) from Appendix B is satisfied.

The denominator in the limit theorem. In the following theorem, we need
the next formulae. In Appendix B, we see that the denominator of m® in the
limiting expression is independent of ®, and it is

Z urv; / *tmy, j (dt).
l,j=1
It can be written in the form (and considering our two-dimensional case)

Z’U,ﬂ)j —my ;(a ))/ (8.1)

l,j=2
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Here, u; and v; are from Equations (7.19) and (7.20). Moreover, by Corollary 7.1
or by Proposition 7.1, we have that

(~m3a(@) =r (~Aa),  (~m3a(a)) =r2(~4'(), (8:2)
(—m3a(@) =p1 (=B'(@)),  (=mis(a)" = (p2 +3ps) (-B'(a)), (8:3)
where
> 1—e—Cs 1/t atbtl | u
—A(a) = /0 se e (s gs = —6—2/0 In(1—u)(1—u) ¢ e« du,
(8.4)
o 3(p1+p2)(1—e %% )+pg(1—e73¢8
—B'(a) :/ sesems(bH e ( 3u> < )ds = (8.5)
0
L e (psu®—3psu+3)
=2 In(l—u)(1—u) - e3e\P3 3 du.
0

Now, we turn to the number of edges and triangles. Recall that an edge is a type
2, and a triangle is a type 3 object.

Theorem 8.1. Assume that (7.17) is satisfied and (7.18) has a finite positive
solution a.. Assume that 0 <r; <1, 0< p; <1 and it is excluded that both r1 =0
and p1 = 1 are satisfied at the same time.

Let ;E(t) denote the number of all edges being born up to time t if the ancestor of
the population was a type i object, i = 2,3. Then

VU2

lim e”* E(t) = ;W

Jim Dl (8.6)

~—

almost surely for i =2, 3.

Let ZE’(t) denote the number of all edges present at time t if the ancestor of the
population was a type ¢ object, i = 2,3. Then

lim e~ E(t) = iww

Jim e (8.7)

almost surely for i =2, 3.

Let ;T(t) denote the number of all triangles being born up to time t if the ancestor
of the population was a type i object, i = 2,3. Then

v;u3

lim e~ T(t) = ;W

Jim D (8.8)

almost surely for i =2, 3.
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Let iT(t) denote the number of all triangles present at time t if the ancestor of the
population was a type ¢ object, i = 2,3. Then,

lim efatﬂq(t) = iwiviugB(a)

Jim Ty (8.9)

almost surely for i =2,3.

The quantities 2 W and sW are a.s. non-negative, E(eW) =E(3W) =1, oW and
sW are a.s. positive on the event of survival.

Proof. We apply Proposition 13.1. To obtain condition (13.8), it is enough to show
that

E [4&i(00) logt o&i(00)] < o0, i=2,3, (8.10)
where -
o&i(00) = / e ¢ (dt), i=2,3, (8.11)
0
and
§i(t) = &ia(t) + &i3(2), 1=2,3. (8.12)

If i = 2, then &(¢) is the birth process of an edge, and the children can be both
edges and triangles. Therefore, at each birth, there is one child. Therefore,

saloe) = [ e etin = 3 1e—m<><zle—m<z _
0

7(1)<A2

where 7(1),7(2), ... are the jumps of the Poisson process II5. In the Poisson process
I, (t) the distribution of the interarrival time (7(:i) — 7(i — 1)) is exponential with
rate 1. Therefore, 7(i) has I'-distribution I" (4,1). Using this, we have

o0

M) = iﬂ«: (e—‘”(“) _— (8.13)

et 1+a

Let us denote by 7; the interarrival time 7(i) — 7(¢ — 1). Let 19 be an exponentially
distributed random variable with rate 1 that is independent of M. Then,

o0 o0
e (1 4+ M) = e~ M0 4 ¢=M0 Ze—a(ﬁl+"'+m) — Ze—a(no+n1+m+m)_
=1 =0

Therefore, the distribution of e~ (1 4+ M) coincides with the distribution of M.
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Therefore, using (8.13), we have

1 2
EM2 =E (e (1 + M))* = 1+ 2 4+ EM?).
=
From this, we find
2_a+2

Thus, (8.10) is true for ¢ = 2.

If ¢ = 3, then &3(t) is the birth process of a triangle and the children can be
both edges and triangles. Therefore, at each birth there are at most three children.
Therefore,

a€s(00) = /OOO e~ (dt) = Z e(i)em™® < 32 le=7() = 3M/,

7(i)<As i=1
where 7(1),7(2),... are the jumps of the Poisson process II3. By the above calcu-
lation EM? < oo, so (8.10) is true for i = 3.

If we show that [ t%e~m; ;(dt) < oo, for i,j = 2,3, then conditions (c) and
(iv) of Section 13 will be proved. Now, for i = 2 and j = 2,3, we have from
Corollary 2.1

ct

o0 o0 _
/ t2e"my ;(dt) Smax{rl,rg}/ 2o~ ate—t(b+1) 2 =— dt <
0 0
o0
S/ 2e—tlatbti=1) g ~ oo
0

because o + b > 0.

For i = 3 and j = 2,3, we have from Corollary 7.1

oo
/ t2e"*mg ;(dt) <
0

1_e—ct 1_e—3ct

oo
§max{p1,p2+3p3}/ 12—t g=t(0+1) o (Pr+p2) =—+ps *=— gt <
0

o0
</ 2o tlatbt1=1) gy o
0

Thus, conditions (c¢) and (iv) of Section 13 are proved.
Now, turn to the number of edges.

To obtain (8.6), let ®,(¢t) = 1 if = is an edge, and ®,(¢) = 0 if x is a triangle.
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Therefore, E®5(t) = 1 and E®5(¢t) = 0. Conditions (i) — (3) — (¢9¢) and (v) of
Section 13 are satisfied. Thus, (13.6) and (13.7) imply (8.6).

To obtain (8.7), let ®,(t) = 1 if x is an edge and it is present at ¢, and @, (t) =0
if z is a triangle. Therefore, E®5(t) = 1 — Lo(t) and E®3(t) = 0. Conditions
(1) — (41) — (4i7) and (v) of Section 13 are satisfied. Now,

/OO e “Ed, (t) dt = /Oo e (1 — Lo(t))dt = A(a).
0 0

Thus, (13.6) and (13.7) imply (8.7).
Now, we turn to the number of triangles.

To obtain (8.8), let ®,(t) = 0 if = is an edge, and D, (¢
Therefore, E®o(t) = 0 and E®5(¢t) = 1. Conditions (i) —
Section 13 are satisfied. Thus, (13.6) and (13.7) imply (8.8).
(¢
)

)

)

= 1 if x is a triangle.
(#4) — (4i¢) and (v) of

To obtain (8.9), let ®,(t) = 0 if = is an edge, and @,
and it is present at t. Therefore, E®,(t) = 0 and E®3(¢
(i) — (ét) — (4i7) and (v) of Section 13 are satisfied. Now,

= 1 if z is a triangle,
1 Ls(t). Conditions

/oo e “'Ed; (t) dt = /Oo e (1= Ls(t))dt = B(a).
0 0

Thus, (13.6) and (13.7) imply (8.9). O

Remark 8.1. If we let 71 = 1, we get back the asymptotic results of the trianlges
in the 3-interaction model, presented in Section 3.

9 Generating functions and the probability of ex-
tinction

In this section the generating functions are calculated. Using the generating func-
tions, the probability of extinction are studied.

The joint generating function of Ils (\2), &2 (A2) and &3 (A2). Recall that
II5 is the Poisson process describing the reproduction times of the generic edge and
Ao is its life length. Thus,

wi gk =Py (X2) = 1,822 (A2) = J, 623 (N2) = k)

is the joint distribution of the offspring size of the generic edge during its whole
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life and its last reproduction time. We have
wijr =P (1i < Ao < Tig1,820 (i) = J, §23 (1) = k),

where 7; is the ¢th jumping time of the Poisson process IIs. Thus, it again shows
that w; ;  is the probability that the ¢th birth event is the last one that occurred
before death, and the total numbers of the two types of offspring up to time 7; are
equal to j and k, respectively.

Now, consider the sequence
wi k=P (1 < A2, 822 (i) = 7,623 (i) = k).

Let & (7;—1) = m and assume for a while that 7; and 7;,_; are fixed. Then, using
(6.4) and (6.5) for the hazard rate, we can calculate that, for fixed 7; and 7;_1,

I[D()\Q Z Ti|)‘2 Z Ti—17Ti—17T’L) = exp (7 (b+ cm) (Ti — Ti—l)) .

We know that the increment (7; — 7;_1) is exponential with parameter 1; therefore,

1

P(A2 2 7ild2 2 7io1) = Er—r_y exp (= (b em) (1 — 1)) = 7o

(9.1)

At each birth step, the new individual can be either an edge or a triangle. Therefore,
using the above calculations, the total probability theorem, and the independence of
the type of the newly born individual and (I3, A2), we have the following recursion
for w; ; k.

1 ]
- + Ui—1 5 k— - .
T+b+c(j+k—1) YR T b (G + k- 1)

(9.2)

Uj, g,k = WUi—1,5—1,k

Now, by the definition of w; ; , we can see that

wi gk =P (1 < Ao < Tig1, &2 (1) = J, €23 (1) = k)
P (Ao < Tig1|m < A2, &2 (13) = J6o3 (1) = k)P (13 < Ao, o2 (T3) = 4,03 (1) = k)

b+c(j+ k)
= T o g ik
1+b+c(j+k)
where by (9.1), % is the probability that the generic individual dies before
the next birth event.
Let v; jp = Wej ke — Wi gk . Then, from (9.2), we obtain the

b+c(j+k) 1+b+c(j+k)
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following recursion for the sequence v; ;
(L+b+c(j+k)vijre=vio1j-1,"1 +Vie1 k172, (9.3)
where the initial values are

V0,0,0 = and v, =0 for j # 0 or k # 0. (9.4)

140

Now, we calculate the generating function G (x,y, z) of the sequence v; j ;. We have

First, multiplying with x'y/2* and then taking the sum of both sides of (9.3),
we obtain

oo o X0

Z Vit Y 2P (1 + b+ cj +ck) =

i=1 j=0 k=0
oo oo oo oo oo oo
i—1, -1k i1, 5 k-1
:Tlxyg E E Vic1,j—1,kT YT 2 dronz E E E Vi1, k—12" Y 2T,
i=1 j=0 k=0 i=1 j=0 k=0

where vo jx,7 =0,1,...,k =0,1,... is given by (9.4), and we define v; j 1 = 0 if
j < 0ork < 0. From this equation, we find

1 ’ /
(1 + b) <G (CE,y,Z) - 1—|—b> + yCGy (IL’,y,Z) + ZCGZ (I,y,Z) -

=ri2yG (z,y, 2) + roxzG (z,y,2) . (9.5)

Let h(t) = G (x,ty,tz). Now, substituting y with ty, z with ¢tz in (9.5), we can
obtain the following linear differential equation.

, 140 rmaoy+rxz 1
h (t)+h(t - = — 9.6
0+ (7 ) (9.6)
with the initial value condition
h(0) = —— (9.7)
140 '

Now, we can use the well-known method for linear differential equations. We obtain
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that the solution of the initial value problem (9.6) and (9.7) is

t

_14b mymytrozz 1 1+4b—c _ rjzytrozz

h(t)=t""<e = tf/s < e e« 9ds.
¢Jo

With ¢t = 1, we obtain that

1+b—c T1xTY+roT2

1
G(z,y,2) =h(1) = 7/ s e o (s,
0

We need the generating function of w; jr = v; j k(b +c(j + k)). It is

oo o0 X

(,9,2) = D 3> viklb+c(j + k))a'yl 2 =
1=0 j=0 k=0
=bG (z,y,2) + cyG), (z,y,2) + G, (z,y,2) . (9.8)
From here, we obtain

Proposition 9.1. The joint generating function of Ila(Az2), E22(A2) and Ea3(A2) is

H(z,y,2) =

17 ToITZ 1 1 1 —C Tl T TQILZ
o 7/ g g s [b+ (rizy + roxz)(1 — s)]ds, (9.9)
¢Jo

where —1 < x,y,z < 1.

Corollary 9.1. The generating function of the total offspring distribution of the
generic edge is

riytroz | 1 —c Ty
fay,2) = H (Ly,2) = ™5 ;/ e T bt (ry +22)(1— 9)) s,
0
(9.10)

The joint generating function of II3 (A3), &32 (A3) and £33 (A3). Here, we study
the offspring of a triangle. To distinguish the notation of this subsection and the
previous subsection, but avoid too many subscripts, we use bar. Thus, here w; ; 1,
Wik, Vijk, G(,y,2) and H(z,y,z) denote quantities relating offspring of the
generic triangle. Recall that II3 is the Poisson process describing the reproduction
times of the generic triangle and A3 is the life length of the triangle. Thus,

Wi gk =P (I3 (X3) = 4,832 (A3) = 7,833 (A3) = k)

is the joint distribution of the offspring size of the generic triangle during its whole
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life and its last reproduction time. We have
Wik =P (1 < A3 < 7ig1, 832 (1) = §,833 (10) = k),

where 7; is the ith jumping time of the Poisson process II3. Thus, we again show
that w; ; r is the probability that the ith birth event is the last one that happened
before death, and the total numbers of the two types of offspring up to time 7; are
equal to j and k, respectively.

Let
Ui gk =P (1 < X3,832 (13) = J, €33 (1) = k).

Let & (1;—1) = m, and assume for a while that 7; and 7;_; are fixed. Then, using
(6.4) and (6.5) for the hazard rate, we can calculate that, for fixed 7; and 7;_1,

P(A3>T7i|As > 7i1) =exp(— (b+cm) (1 —Tii1)) .

We know that the increment (7; — 7;_1) is exponential with parameter 1; therefore,

PAs>milAs >7ic1) =By ry,_,exp (= (b+cem) (1 — 7i-1)) = ﬁ
(9.11)
At each birth step, the new individual can be either an edge or a triangle. Therefore,
using the above calculations, the total probability theorem, and the independence of
the type of the newly born individual and (II3, A3), we have the following recursion

for Uq, j,k-

P1 n
[

p% +Ui—1,5,k-3 p?’. .
1+b+c(j+k—1) TP+ b+ c(j+k—3)

Ui gk = Ui—1,5-1k

+ Ui—1,5, k-1 (9.12)

Now, by the definition of w; ; 1, we can see that

Wik =P (15 < A3 < Tig1, 832 (1) = J, &3 (13) = k)
P(As < Tig1|mi < A3,832 (1) = 5,833 (1) = k)P (13 < A3, €30 (13) = J, €33 (1) = k)

b+e(j+k) _
= 5 7 Uik,
1+b+c(j+k)
where by (9.11), % is the probability that the generic individual dies before
the next birth event.
Now, let 7; ;1 = ik = ik . Then, from (9.12), we obtain

b+c(j+k) 1+b+c(fj+k)
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the following recursion for the sequence ; ; 1
(L+b+c(j+k))Uijk = Vim1,j—1,kP1 + Vim1,j,k—1P2 + Vi—1,j,k—3D3, (9.13)
where the initial values are

1
00,0,0 = T3 and g jr = 0 for j #0 or k # 0. (9.14)

Now, we calculate the generating function G (z,y, z) of the sequence Vs 5.k We have

oo o XX

(z,y,2 ZZZULj,kxiyjzk.

i=0 j=0 k=0

First, multiplying with xiy’/z¥ and then taking the sum of both sides of (9.13),
we obtain

oo oo oo
B o _ B i
viyj,kxzyjzk (1+b+c¢j+ck)=pay E E E Tim1j—1,kx Yy 2k
i=1 j=0 k=0 i=1 j=0 k=0
oo o0 o o0 oo oo
— i—1, j _k—1 3 i—1 j _k—3
+p2xz E E E Vi—1,j k-1 Y 2" " +paxz E E E i—1,4,k—32" Y 2T,
i=1 j=0 k=0 i=1 j=0 k=0

where Tg ;5,7 =0,1,... and k = 0,1,... is given by (9.14) and we define T, ; , = 0
if 7 <0 or k < 0. From this equation, we find

_ 1 7 7
(1 + b) (G (ac,y,z) - ].+b> + yCGy (307:%2) + ZCGz (a?,y,z) =

= p12yG (2,9, 2) + p222G (2,y, 2) + p322°G (2,y,2) . (9.15)

Let h(t) = G (x,ty,tz). Now, substituting y with ty, z with ¢tz in (9.15), we can
obtain the following linear differential equation.

B () +R0) ( 1 (9.16)

ct

1+b  pray+ pozz + parzit?
ct c

with the initial value condition

h(0) = —. (9.17)
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One can see that the solution of the initial value problem (9.16) and (9.17) is

hit)y=t sc ° ds.

t
— _14b p1my+p2zzt+p3zz3 +3 1 1tb—c _ P12y+poxz p3zz> 3
c e c 3c — S c e c ©
¢ Jo

With ¢t = 1, we obtain that

- - ]. 1 —c plTytpoTz D z23
G(w,y,z) = h(l) = E/ 81+Z e%(l_s)"" 33C (1—83)d8.
0

Therefore, the generating function of @, ; x = v; k(b + c(j + k)) is

oo o0 oo

H(z,y.2) =Y Y3 Tijnlb+c(f+k)a'y'zh =

1=0 j=0 k=0

=bG (z,y,2) + cyé; (z,y,2) + czélz (,y,2). (9.18)

From here, we obtain

Proposition 9.2. The joint generating function of lIs(As3), £32(A3) and E33(As3) is

H(z,y,2) = 1 /1 S#ew(l_sﬂpgﬁ:& (1—s%)
¢Jo
[+ (rzy + pae) (1= ) +pa® (1= 5)] ds, (9:19)

where —1 < x,y,z < 1.

Corollary 9.2. The generating function of the total offspring distribution of the
generic triangle is

1 3
_— pP1y+poz p323 1 1+b—c _ P1y+p2z . p32° 3
fg(y,Z):H(Ly,Z):B ¢ s 7/ s ¢ € ¢ e
¢ Jo

[b+ (p1y + p22)(1 — s) + p32® (1 — s%)] ds. (9.20)

The probability of extinction. In Theorem 9.1, we give the probability of
extinction. To determine the extinction probability of the process, we consider the
well-known embedded multi type Galton—Watson process. At time ¢t = 0, the Oth
generation of the Galton—Watson process consists of a single individual, i.e., the
ancestor. The first generation consists of all offspring of the ancestor. The offspring
of the individuals of the nth generation form the (n + 1)th generation. Under some
assumptions, the extinction of our original process has the same probability as the
extinction of this embedded Galton—Watson process. The reproduction process
&i,; (t) gives the number of type j offspring of an ancestor of type ¢ up to time t.
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With ¢ — oo, we obtain that the total number of offspring is &; ; (c0). Therefore,
Corollary 7.1 gives us the 2 x 2 matrix of the expected total offspring number as

3
M = (mZaJ(OO))i,]ZQ :

Actually, m; j(oc0) is the expected offspring number of the embedded Galton-
Watson process.

Let so and s3 denote the probability of extinction of our process when the ancestor
is an edge, resp. triangle.

Theorem 9.1. Assume that 0 < ry <1, 0 < p; <1 and it is excluded that both
ry = 0 and p1 = 1 are satisfied at the same time. Let o be the Perron—Frobenius
root of Ml. If o <1, then sg = s3=1. If o > 1, then s5 <1 and s3 < 1. In any
case, (S2,83) is the smallest non-negative solution of the vector equation

(52,83) = (f2(s2,53), f3(s2,53)),

such that, for any other non-negative solution (s%,s3), we have that s; < s,
1 =2,3. The functions fo and f3 are given in Corollaries 9.1 and 9.2.

Proof. We apply Theorem 7.1 in Chapter 1 of [30]. By Corollary 7.1, m; ;(0) =0
and m;_;(t) is finite for any 4, j. Therefore, by Theorem 7.1 in Chapter 3 of [30],
the extinction of our original process has the same probability as the extinction
of the embedded Galton-Watson process. Thus, we can apply Theorem 7.1 in
Chapter 1 of [30]. Here, M is the matrix of the expected offspring numbers of
the embedded Galton—Watson process. Now, M is positively regular because we
assume that 0 < ry < 1, 0 < p; < 1 and it is excluded, that both vy = 0 and
p1 = 1 are satisfied at the same time. Thus, our result follows from Theorem 7.1
in Chapter 1 of [30]. O

10 The asymptotic behaviour of the degree of a
fixed vertex

In this section the asymptotic behaviour of the degree of a fixed vertex is considered.
Here, we again apply the asymptotic theorems of [20] but with other characteristics
than in Section 8.

The process of the ‘good children’. To describe the degree of a fixed vertex,
we introduce a new branching process that we call the process of ‘good children’.
This process contains those objects that contribute to the degree of the fixed vertex.
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We can see that a newly born vertex can have 1 or 2 edges if its parent is an edge
object and 1, 2 or 3 edges if its parent is a triangle object.

First, we consider the case when the newly born vertex has one edge, and thus, at
the beginning, it belongs to an edge object. In this paragraph, we call this edge the
‘parent’ edge. We fix the newly born vertex. Then, we distinguish those children
objects of the ‘parent’ edge, which contribute to the degree of our fixed vertex. We
call a child object of the ‘parent’ edge a ‘good child’ if it contains our fixed vertex.
We can see that only the ‘good children’ and their ‘good children’ offspring can
contribute to the degree of the fixed vertex. Then, the distribution of the number
of ‘good children’ at a reproduction event of the ‘parent’ edge is

. 1 - 1 - -
P(EQQ = 0) = 1—57"17 IP(€22 = 1) = 57‘17 P(Egg = 0) = ].—7"2, ]P)(Egg, = 1) = T2,
where €95 denotes the number of edge type ‘good children’ and €23 denotes the
triangle type ‘good children’. We have to consider the reproduction process of the
‘good child’, which is the following

E0.9(t) = Ea(1) + E2a(2) + - - - + Exa(TI(t A \2)), (10.1)

§2,3(t) = E23(1) + €23(2) + - - - + Ex3(II(t A A2)), (10.2)

where &;5(t) denotes the number of all edge type ‘good children’, and & 3(t) de-
notes the number of all triangle type ‘good children’ born by the ‘parent’ edge,
€92(1),€22(2),... are i.i.d. copies of €25 and &a3(1),£23(2),... are i.i.d. copies of
€23. Using Corollary 7.1, we see that the mean values of the number of edge type
and triangle type ‘good children’ are

1

’ﬁlgg(t) = Eég)g(t) = E(égg)E(H(t A\ )\2)) = %’I‘lF(ﬂ = §m2,2(t)7

’ﬁlg}g(t) = Eé&g(t) = E(égg)E(H(t A\ )\2)) = TQF(t) = m273(t).

Now, consider the second case where the newly born vertex has two edges, and
thus the ‘parent’ object is a single triangle. Let €35 and £33 denote the number of
edge, resp. triangle type ‘good children’ of the ‘parent’ triangle. The distribution
of the number of ‘good children’ will be the following

- 1 B 1
P(é3 =0)=1— 3PL P(ése =1) = 3P

N 2 5 2 5
P(és3 =0)=1- 3P2 ~ P, P(éss =1) = 3P2) P(E33 = 2) = ps.
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Let 5372(t) denote the number of all edge type ‘good children’, and é&g(t) denote
the number of all triangle type ‘good children’ born by the ‘parent’ triangle. We
obtain from Corollary 7.1 that

1

ma2(t) = E& o (t) = E(Es2)E(II(E A N3)) = %mG(t) = §m372(t)7

(1) = Eds(t) = BlEs E(I(E A X)) = 3 (b2 + 3p)G(0) = 3maa(t).

Therefore, from Proposition 7.1, it is easily seen that the Laplace transforms of the
average number of offspring are

s 1 o x 1
m272(/<;) = 57”114(/‘5)7 mz,:a(“) =r2A(k), m372(/<;) = gplB(’f),

m3 3(k) = %(pz + 3p3) B(k).

M (k) = (m22 (k) s (@)

m3 o (k) M35 (k)
be the matrix of the previous Laplace transforms. The Perron root that is the
largest eigenvalue of M (k) is

Let

o(k) =

3(p2 + 3p3) B(k) + 51 A(r) + \/(%(pz +3p3) B(k) — $r1A(K))” + 4p1 B(s)r2A(r)
5 .

(10.3)

In the following, we assume supercriticality of the ‘good children’ process; that is,
we suppose that 9(0) > 1. We can see that the reproduction process of the ‘good
children’ is supercritical if

max {;7“114(0), %(pz + 3p3)B(0)} > 1.

We assume the existence of finite and positive Malthusian parameter of the ‘good
children’ process. Thus, let & be the Malthusian parameter; it satisfies equation
0(&) = 1. From this equation and from (10.3), we see that & is the solution of

5 (ri(p2 -+ 303) — rap1) AQ)B(@) — 571 A@) — 2 (02 -+ 3p5) B(@) + 1= 0. (10.)
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Let (2, 73) " denote the right eigenvector of M (@) corresponding to the eigenvalue
1, and let (@ip,3)" be the left eigenvector with the conditions @y 4+ 93 = 1 and
Vollg + U3t = 1. Direct calculations show that

e 3r2A(@)p1B(&) + (3mA(@) — >27

(B —1)A@ - 1) (ArA@) - 1)

uz = 2
1rA(@)p1B(@) + (3rA@) — 1)

Limit results for the degree. @ We have already mentioned that the ‘good
children’ and only they can contribute to the degree of the fixed vertex. Thus, its
degree is equal to the initial degree plus the number of ‘good children’. Let oC(t)
be the degree of a fixed vertex at time ¢ after its birth in the case when the vertex
belongs to an edge at its birth. Similarly, 3é(t) is its degree in the case when the
vertex belongs to triangle at its birth. Up to an additive constant, ié’(t) is the
number of ‘good children’ offspring of an ¢ type ‘parent’ object at time t. It is
the sum of the number of edge type ‘good children’ ; E(t) and the triangle type
‘good children’ ZT(t) To apply Proposition 13.1, we can use the same method as
in Theorem 8.1. Thus, for the edges, we can again use the random characteristic
. (t) = 1if z is an edge and @,,(¢t) = 0 if z is a triangle, but the underlying process
is the process of ‘good children’. This is similar for triangles.

Therefore, we have almost surely

lim e~%,C(t) = lim e~ (ZE(t) + 1T(t)) = ZWM7

t—00 t—00 & D(d)
for i = 2,3, where oW and 3W are positive on the event of non-extinction of the
‘good children’.

The last case is when the newly born vertex has three edges. Then, three triangles
contribute to the degree of that vertex. Let 3C~'(t) be the degree of this vertex.
Then, 5C(t) is the sum if ‘good’ offspring of three triangles. Thus, almost surely,

. _at £ 5 = <\ 03(Ua + U3)
lim e~ ¥3C(t) = (3W1 + 3Wa + s W- 1}3(“%7,
A 3C(t) = (3Wh + 3Wa + 3W3) aD(@)

where 3W1, 3W2, 3Ws are independent copies of SW.

Checking the conditions of Proposition 13.1 for the ‘good children’ pro-
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cess. To complete the previous reasoning, we should check the conditions of Propo-
sition 13.1. First, we find the the denominator in the limit theorem that is we
calculate D. By Section 13, we see that

Zulvj —my ; (& ))/ (10.5)

l,j=2

Here, u; and v; are the eigenvectors. Moreover,

(~m3a(@) =5 (~A@), (i)

(—m32(@) =B (=B'(@), (-54(@) = 2(p2 +3ps) (~B'(@)), (10.7)

=ry (—A'(Q)), (10.6)

where & is the Malthusian parameter in the process of ‘good children’ and A’, B’
denotes the derivatives given in (8.4) and (8.5).

Condition (a) of Proposition 13.1 is true because the measures 1, ; are non-lattice
as they are absolutely continuous. For condition (bl), we assume the existence
of a positive Malthusian parameter. That is, we assume that (10.4) has a finite
and positive solution &. Condition (b2) is true, because we assume that g(0) > 1.
Condition (c) is a consequence of Section 8, because m; ;(t) has shape cm; ;, where
¢ is positive number.

To guarantee condition (d), in this section, we assume that 0 <r; < 1,0 <p; <1,
and it is excluded that both 71 = 0 and p; = 1 are satisfied at the same time.
Conditions (i)-(ii)-(iii) and (v) are true because of the shape of ®. Conditions
(iv) and (vi) are consequences of & ;(t) < & j(t) as one can see from the proof of
Theorem 8.1.

The extinction of the degree process. The extinction of the degree process
means that the degree of the vertex does not increase after a certain time, that is,
the reproduction process of the ‘good children’ dies out. The probability of this
kind of extinction is the smallest non-negative root (32, §3) of the equation

(32,83) = (f2(§27§3),f3(§27§3)) ;

where fg and fg are the generating functions of the total ‘good children’ distribution
of an edge, resp. a triangle. Now, by (10.1) and (10.2),

f~2(y7 Z) = hH2(x\2) (h52,2752,3 (yv Z)) y

where hi,(»,) is the generating function of IIz()2), and he, , ¢, , is the joint gener-
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ating function of &5 5 and &, 3. Here, by (9.9),

1 [t b—c (ritro)e o
hn2()\2)($) = H(xvlv 1) = E~/O Sl+c € —a S)[b+ (7"1 +7"2)1’(1 — s)}ds

By direct calculation,

1 1
h6~2,2,52,3 (y7 Z) = §T1 + §T1y + raz.

Similarly,
f3(ya Z) = hHs(/\g) (h53,2753.3(y7 Z)) )
where by (9.19), the generating function of II3(\3) is
hHs()\a)(x) = F(l‘, 1, 1) =
1

1 g x
7/ g ee IR (1) + B2 (1-5%) [b+ (P17 + p2x)(1 — ) + paz(1 — )] ds.
¢ Jo

Moreover, the joint generating function of €55 and €33 is

2 1 1 2 9
h53,27§3,3(y7 Z) = gpl + §p2 + gply + §p22 + p3z”.

11 Simulations

In this section, we provide some empirical results for our asymptotic theorems. We
generated our process in the programming language Julia. We needed an environ-
ment, where the priority queues were highly applicable. Using this structure, the
running time was reasonable. A more detailed explanation of the algorithm can be
found in [27].

According to Theorem 8.1, for large ¢, the graphs of the numbers of edges and trian-
gles are approximately straight lines on the logarithmic scale. To obtain empirical
evidence of our Theorem 8.1, we investigated the slope of the simulated number of
edges and triangles being born and being present up to time ¢ on the logarithmic
scale. The initial instability of the single processes (Figure 2.3) motivated us to
exclude the first few observations from the calculations, but the lack of them was
not relevant, because the asymptotic properties can be observed in the later stage
of the processes.

For each parameter set, we stored the mentioned measurements only in integer
time steps, and then we took the average of 100 simulated processes. In Figure 2.4,
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Number of edges being alive (log)

Time Time

(a) Number of edges present (b) Number of triangles present

orn (log)

Number of edges being born (Iog)
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Time Time

(c) Number of edges being born  (d) Number of triangles being born

Figure 2.3: Measurements of a single process on a logarithmic scale.

an example is shown for a specific parameter set (r; = 0.1, p; = 0.2, p3 = 0.6,
b =0.25, ¢ = 0.25). The values of the averages are plotted by dots. In each case,
we fitted a regression line (plotted by continuous red line) to the last 9 values. We
can see that the fit is perfect, thus, supporting our theorem.

Our main goal was to obtain a 95% confidence interval for the slope of the linear
regression line, as that was our simulated approximation of the Malthusian param-
eter . Table 2.1 contains the boundaries of the 95% confidence intervals for .
The columns labelled with 2.5% and 97.5% refer to the lower and the upper bounds
obtained from simulations, while the column of & refers to the numerical solution
of Equation (7.18).

For each fixed parameter set {r1, p1, p2, b, ¢}, we present the confidence intervals
calculated from the number of edges being born (E) resp. being present (E) and
from the number of triangles being born (T') resp. being present (T') up to time
t = 14. The confidence intervals containing the numerical Malthusian parameter &
are highlighted with the * symbol. We see that any confidence interval is narrow,
and it either contains &, or & is very close to the interval. These results show that
the approximation is good for moderate values of t.
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Number of edges being alive (log)
Number of triangles being alive (log)

o

Time Time

(a) Number of edges that exist (b) Number of triangles that exist

Number of triangles being born (log)

Number of edges being born (log)

o
Time Time

(c) Number of edges being born  (d) Number of triangles being born

Figure 2.4: The average of 100 processes generated by the same parameter
set and the regression line.

Finally, we present some simulation results for Theorem 9.1, that is, for the prob-
ability of extinction of the evolution process. We made the following computer
experiment for any fixed parameter set {r1, p1, p2, b, ¢} and for type 2 and type
3 ancestors. We started to generate the process. If this process reached 2'° birth
steps, then we stopped it and considered it as a non-extinct process. Otherwise,
when the process did not reach 2'° birth steps, then the process died out. Applying
the above method, we generated 10° processes for each parameter sets and counted
the relative frequencies of the processes being extinct.

In Table 2.2, we show some of the results. Column Ancestor contains the type of
the ancestor. In the column Numeric we show the numeric solution of the non-
linear equation in Theorem 9.1. We used Julia’s trust region method. Column
Simulation contains the relative frequencies extracted from the simulations. The
simulation results slightly underestimate the numeric values. This is reasonable
because we stopped all processes at a fixed time.
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Table 2.1: The 95% confidence intervals for a.

r1L | P1 | P2 b c & 2.5% 97.5%
0.1 05|05 ]| 0.2 0.4 | 0.5394 | 0.5393 * | 0.5443 *
0.5390 * | 0.5440 *
0.5410 0.5453
0.5395 0.5444
0.1 102106025 0.25]| 0.9133 | 0.9130 * | 0.9141 *
0.9134 0.9142
0.9133 * | 0.9141
0.9133 * | 0.9148
0.1 102106045 0.35| 0.6622 | 0.6585 * | 0.6659
0.6606 * | 0.6648
0.6608 * | 0.6647
0.6597 * | 0.6638

* ¥ ¥k k| ¥ ¥

NN IS SN

Table 2.2: Comparison of the numeric values of the extinction probabilities
and their relative frequencies from 10° repetitions.

™ | P1 | P2 b ¢ | Ancestor | Numeric | Simulation
01]02]06]|08]0.8 2 0.9095 0.9053

3 0.8855 0.8805
0.2]103]06]|07]|0.7 2 0.9247 0.9184

3 0.9141 0.9070
0.3]103]05]|06]| 0.6 2 0.7371 0.7207

3 0.6896 0.6834
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Summary

In this PhD thesis, we described the mathematical construction of two new net-
work evolution models. The dynamic of the evolutions was provided by branching
processes, where the units of the evolution were certain substructures of the graph,
namely the different types of cliques.

In the Introduction, we mentioned the background literature for our models. From
the discrete case results, we drove through the continuous case models, then we
considered the possible applications.

Chapter 1 was based on the new results of our articles [26, 27]. Here we defined a
new continuous-time network evolution model, where the interactions were based
on the 3-cliques, i.e. the triangles. In the initial time only one triangle, the ancestor
is given. This ancestor attracts new incomers, where these objects can join by 0,
1, 2, or 3 new edges. The connections with 2 and 3 edges form 1 and 3 triangles
with probabilities q; and ¢3 respectively. In the other two cases the offspring is not
capable of reproduction, with go probability in total. An arbitrary triangle, just like
the ancestor tringle has its own reproduction process. An object’s mean offspring
number was defined by the wu(t) quantity at time ¢. The death of a triangle, i.e.
the end of their reproduction phase is given by the I(t) = b + c¢£(¢) hazard rate,
where b, ¢ are non-negative constants and £(t) is the number of offspring at time
t. In the asymptotic results the Malthusian parameter a determines the increment
of the number of triangles Z (¢), the number of vertices V (¢) and the number of
edges W (1).

After describing the mathematical construction, our main results were the follow-
ing:

Let p(00) > 1.
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1. The probability of the extinction of the triangles is the smallest non-negative
solution of equation

+ 2 y41) ft 14b-gq (M _aa? 2 aa? 3)
o telity )/ T e S Y
0

c

. —at _
tlirgo e~ "Z (t) = YooMeo

almost surely and in L', where the random variable Y, is non-negative and
it is positive on the event of non-extinction, it has expectation 1. Moreover,
1
(g1 +3q3)? [ te=ot (1 — L (1)) dt

3. e~V (t) converges almost surely and

V(t) 1

%
Z({t)  «
as t — oo almost surely on the event of non-extinction.
4. e~ “'W(t) converges almost surely and

w (t) E’yl

Z (1) @

as t — oo almost surely on the event of non-extinction.

The results assume that our graph evolution model is super-critical, so we investi-
gate the non-trivial case when the probability of extinction is less than 1. In this
case we gave a formula for the probability of extinction that can be approximated
numerically. The further results are on the asymptotical behavior of number of
triangles, number of vertices and number of edges. Similar results are applied on
the degree of a fixed vertex. To give an empirical evidence of our theorems, we
presented some simulation results according to them.

Chapter 2 was based on the new results of our articles [28, 29]. Here we generalized
our previously presented model for 2 types of objects. A new vertex can join to an
old edge either with one or with two edges. Similarly, a new vertex can join to a
triangle with 1, 2 or 3 edges. Therefore unlike in the previous model, here not only
the triangles are capable for reproduction, but also the edges and both of them can
reproduce the other. An edge can give birth to an edge with r; and a triangle with
ro probabilities, while a triangle can give birth to an edge with p;, a triangle with
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p2 and three triangles with p3 probabilities. The hazard rate is the linear function
of the number of offspring with constants b, ¢, just like in our previous model. Let
m;;(t) be the expected number of j type offspring of an ¢ type ancestor. Let M
denote the matrix of the m};(t) Laplace transforms of m;;(t) functions.

5. Denote by ss the probability of the extinctions if the ancestor is an edge, and
by s3 if the ancestor is a triangle. Assume that 0 <r; < 1,0 <p; <1 and it
is excluded that both 1 = 0 and p; = 1 are satisfied at the same time. Let
o be the Perron—Frobenius root of M. If p < 1, then so = s3=1. If p > 1,
then so < 1 and s3 < 1. In any case, (S2,s3) is the smallest non-negative
solution of the vector equation

(s2,83) = (f2(s2, 83), f3(52,53))

where f5 and f3 are the generating functions of the offspring distributions of
an edge, resp. a triangle.

Assume that our process is super-critical and « is the Malthusian parameter. As-
sume that 0 < r; < 1,0 < p; <1 and it is excluded that both r1 =0 and p; =1
are satisfied at the same time. In the following results the quantities ;W and W
are a.s. non-negative, E(;W) = E(3W) =1, 3W and 3W are a.s. positive on the
event of survival. A(a) and B(a) are given by the Laplace transforms, v and u
denote the right and left eigenvectors of M, and

Zul% -mj ;(a ))/

l,j=2

6. Let ;E(t) denote the number of all edges being born up to time ¢ if the
ancestor of the population was a type i object, i = 2,3. Then
V; U2

: —at .
tl;rgoe E(t) = zWaD(a)

almost surely for i = 2, 3.

7. Let ;E(t) denote the number of all edges present at time ¢ if the ancestor of
the population was a type ¢ object, « = 2,3. Then

. —at _ 'U»L‘UQA(Oé)
tlggoe iB(t) =W D(a)

almost surely for i = 2, 3.
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. Let ;T(t) denote the number of all triangles being born up to time ¢ if the

ancestor of the population was a type ¢ object, ¢ = 2,3. Then

. —at . Viu3
Jm e iT(t) = ZWO[D(CV)

almost surely for i = 2, 3.

. Let ;7'(t) denote the number of all triangles present at time ¢ if the ancestor

of the population was a type i object, ¢ = 2,3. Then,

. —at _ viu;),B(oz)
tligloe T(t) = ZW*D(O[)

almost surely for ¢ = 2, 3.

The fifth result reflects on the extinction of the edges and triangles. The further
results describe the asymptotic behavior of the edges and triangles being born and
being alive at time ¢. Similar results are applied on the degree of a fixed vertex.
To give an empirical evidence of our theorems some simulation results were shown

related to them.
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(")sszefoglalc')

A doktori értekezésben két 1j tipust hélézatfejlddési modell matematikai konstruk-
ciéjat ismertettiik. A modellek dinamikai alapjat a folytonos idejii eldgazé folyama-
tok szolgaltattak, melyekben a fejlédésben résztvevo egységek a graf alegységei,
amik a mi esetiinkben a kiilonb6z6 klikkek. A Bevezetésben felsoroltuk azokat az
irodalmi el6zményeket, amelyek a mi modelliink alapjaul szolgéltak. A klasszikus
diszkrét idejii eredményektol eljutottunk a folytonos idejii modellekig, majd felmér-
tiik a lehetséges alkalmazasi teriileteket.

Az 1. Fejezet a [26, 27] cikkek alapjan frédott. Ebben definidltunk egy ujfajta
folytonos idejii graffejlodési modellt, amelyben a 3-klikkek, azaz a haromszogek
az alapegységek. Fzek mindegyike 3 egyed egyiittmiikodését jelenti. A kezdeti
idépontban csak egyetlen haromszogink, az 6s az ami adott. Az 6s képes 1j
csucsokat bevonzani a halézatba, amelyek 0, 1, 2 vagy 3 éllel tudnak csatlakozni
hozza. A 2 és 3 éllel val6 csatlakozas esetén 1, illetve 3 1) szaporoddképes haromszog
sziiletik, mindez ¢, illetve ¢3 valészintiségekkel. A maradék két esetben az utédok
nem lesznek szaporoddképesek, Osszesen qg valoszintiséggel. Az utédharomszogek
az 0s haromszoghtz hasonléan rendelkeznek a sajat sziiletési folyamataikkal. Egy
szaporoddképes egyed &dtlagos sziiletéseinek a szdmat p(t) jeldli a ¢ idGpillanatban.
A héromszogek haldluk, azaz a szaporoddképes fdzisuk végét a I(t) = b+ c£(t)
kockézati réta hatdrozza meg, ahol b, ¢ nem-negativ konstansok, illetve £(t) a ¢
id6pillanatig megsziiletett utédoknak a szama. A halézat aszimptotikdjara nézve
az a Malthusi paraméter hatérozta meg mind a hdromszogek Z (t) szdménak, a
csicsok V (t) szdmdnak és az élek W (t) szdménak a névekményét.

A matematikai konstrukcié megadésa utéan a legf6bb eredményeink a kovetkezoek
voltak:

Legyen p (00) > 1.
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1. A haromszogek kihaldsanak a valészintisége a legkisebb nem-negativ megoldédsa
a kovetkez6 egyenletnek:

1

@+ g3 (y2 +y+ 1) 1 1tb-ag (1113/-%—0(131;3 —— q3£/3 “2+Q%Z3 u3>
= (I—w) = e du.
¢ 0

2. Legyen « a Malthusi paraméter. Ekkor

lim e~ Z (t) = Yoomoo
t—o0

majdnem biztosan és L'-ben, ahol az Y, valészintiségi véltozé nem-negativ
és pozitiv a nem-kihalds eseménye felett, 1 varhato értékii. Tovabba,

1
(g1 +3q3)? [ te=ot (1 — L (1)) dt

Mo =

3. e 'V (t) majdnem biztosan konvergdl és

V(t) 1

H
Z(t) «
t — 0o esetén majdnem biztosan a nem-kihalds eseménye felett.
4. e~ (t) majdnem biztosan konvergil és

W) | En

Z)  a

t — oo esetén majdnem biztosan a nem-kihalds eseménye felett.

A eredményeink feltételezik, hogy a graffejlédési modelliink szuperkritikus, azaz azt
a nem-trivialis esetet vizsgalja, amikor a folyamat kihaldsanak valésziniisége kisebb
mint 1. Ekkor a paraméterektodl fliggen megadtunk egy numerikusan kezelhetd
alakot a kihalds valészintliségére. A tovabbi eredmények rendre a hiaromszogek, a
csucsok és az élek aszimptotikus viselkedésére adnak eredményt. Hasonl6 eredmé-
nyek megadhatdak egy adott csics fokszaméra. A tételek empirikus szemléltetésé-
hez néhany hozzajuk kapcsoldodd szimulacids eredményt prezentaltunk.

"

A 2. Fejezet a [28, 29] cikkek alapjan frédott, amelyekben az eléz8 fejezetben
prezentalt modellt dltalanositottuk két tipusra. Az el6zével ellentétben itt mar nem
csak a haromszogek képesek szaporodni, hanem az élek is, és mindkét tipusi objek-
tum képes a masikat is produkalni. Egy él minden egyes reprodukciés idépontjaban
egy 1j csuics csatlakozik az élhez 1 vagy 2 éllel. Egy haromszog egy reprodukcios
idépontjaban egy 1j csucs csatlakozik a hdromszoghoz 1, 2 vagy 3 éllel. Ezek
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alapjan egy él ry valdsziniiséggel él, ro valdszintiséggel pedig haromszog utdédot tud
sziilni, mig egy haromszog p; valdszintiséggel élt, ps valdsziniiséggel egy haromszoget
és p3 valészintiséggel harom haromszoget képes sziilni. A kockédzati rata az utédok
szamanak linedris transzformaltja b és ¢ nem-negativ konstansokkal, ugyanugy mint
az el6z6 modelliinkben. Legyen m;;(t) az ¢ tipust &s j tipusu utddai dtlagos szdma
a t ideig. Legyen M ezek mj;(¢) Laplace-transzformaltjainak matrixa.

5. Jelolje a kihalds valdszintiségét so, ha az 0s egy él, és s3, ha az 6s egy
héromszog. Tegyik fel, hogy 0 < r; < 1,0<p; <1lésar; =0,p; =1
feltételek koziil legfeljebb az egyik teljesiil. Legyen o a Perron—Frobenius
gyoke M-nek. Ha o < 1, akkor s = s3 = 1. Ha p > 1, akkor so < 1
és s3 < 1. Bdrmely esetben (s3,s3) a legkisebb nem-negativ megolddsa az
aldbbi vektor-egyenletnek:

(52,53) = (f2(s2,83), f3(s2,53)) ,

ahol f5 és f3 az élek, illetve a haromszogek utddeloszlasainak generatorfliggvé-
nye.

Tegytik fel, hogy a folyamat szuperkritikus és a a Malthusi paraméter. Tegyiik fel,
hogy 0<r; <1,0<p; <1lésary =0, p =1 feltételek kozil legfeljebb az egyik
teljestil. A kovetkezd eredményekben oW és 3WW mennyiségek m.m. nem-negativak,
E(eW) =E(W) =1, oW és sW m.m. pozitivak a tilélés eseménye mellett. A(x)
és B(«) a Laplace-transzformaltak dltal meghatdrozottak, v és u jelolik M jobb és
bal oldali sajatvektorait, és

3
D(a) =Y wv; (~mj ;@)

1,j=2
6. Jelolje ;E(t) a t ideig megsziiletett élek szamét, azon esetben mikor az &s
i-tipusu, i = 2, 3. Ekkor

i et () — gy i
tlggloe lE(t)izWaD(a)

majdnem biztosan i = 2,3 esetén.

7. Jelolje ;E(t) a t idépillanatban életben 16v6 élek szdmaét, azon esetben mikor
az 6s i-tipusu, ¢ = 2,3. Ekkor

. —at _ 'U»L‘UQA(Oé)
tlggoe B(t) =W D(a)

majdnem biztosan i = 2,3 esetén.
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8. Jelolje ;T(t) a t ideig megsziiletett haromszogek szdmét, azon esetben mikor

az 6s i-tipusy, ¢ = 2,3. Ekkor

. —at . Viu3
Jm e iT(t) = ZWO[D(CV)

majdnem biztosan ¢ = 2, 3 esetén.

. Jelolje ;T'(t) a t idépillanatban életben 1év8 haromszogek szamét, azon eset-

ben mikor az Gs i-tipusu, ¢ = 2, 3.

. —at _ viu;),B(oz)
tligloe T(t) = ZW*D(O[)

majdnem biztosan ¢ = 2, 3 esetén.

Az 6todik eredmény az élek, illetve haromszogek kihalasanak valésziniiségét adja
meg. A tovdbbi eredmények az élek és haromszogek aszimptotikus viselkedését
irjak le az Osszesen megsziiletett egyedszam, illetve az éppen életben 1évo egyedek
szamara tekintettel. Hasonl6 eredmények megadhatoak egy adott cstcs fokszamara.
A tételek empirikus vizsgalatdhoz néhdny hozzdjuk kapcsolédéd szimuldcids ered-

ményt mutattunk.
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Appendices

In this thesis, we use known results of the theory of continuous-time branching
processes. The single type general Crump—Mode—Jagers branching processes have
been described e.g., in [16, 31, 17]. The general multi-type branching processes
have been studied, e.g., in [30, 32, 20]. Here we present some of these results.

12 Appendix A

Consider the following general Crump-Mode-Jagers process. This process is de-
termined by the reproduction process £ (t), t > 0, and the life-time distribution
L (t) =P (A < t). The random point process £ (¢) is determined by the birth events
and the numbers of offspring whilst the life-time A is a non-negative random vari-
able which is not necessarily independent from the reproduction. Let us denote
by 71, 72,... the time points of the birth events and by £1,¢9,... the correspond-
ing litter sizes. Then the reproduction point process of the generic individual is
&) = Zﬂq g; giving the number of offspring up to time ¢. The process starts at
time ¢ = 0 with one individual called the ancestor. When a child is born, then it
starts its own reproduction process, and so on. The birth time of the individual e
is denoted by o..

Let us denote by 1 (t) the expected reproduction which can be described using the
reproduction function by u (t) = EE (¢).

Let ®(t) be a random function which describes a certain aspect of the life history
of the individual. It is usually assumed that ®(¢) = 0 for ¢ < 0. Then ®(t) is
called a random characteristic. The behaviour of the individual e is described by
(£e, Ae, @e). These triplets are independent copies of the generic triplet (€, ), ®).
Let us define the branching process Z®(t) counted by the characteristic ® as

Z(I)(t) = Zeq)e (t _Ue>7
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where we summarize for all individuals e.

The following facts are well-known, see [16], [31] or [17]. We assume the following
basic conditions.

(a) p as a measure is not concentrated on any lattice.

(b) There exists a positive Malthusian parameter «, that is, a finite positive solution

/ e (dt) = 1.
0

(c) The first moment of e~ (dt) is finite, that is,

of the equation

/ te” " (dt) < oo.
0

Let ~
o£(00) = / et (dt) (12.1)

Proposition 12.1. Let « be the Malthusian parameter. Assume that the random
characteristic ® satisfies the following conditions:

(i) ®(t) =0,

(ii) the trajectories of ® belong to the Skorohod space D, i.e. they do not have
discontinuities of the second kind,

(iii) E (sup @ (1)) < oo.
Assume also

(iv) for some e >0
/ t(log® t) e (dt) < o0,
0

(v) suppose that

E [4&(00)log™ 4&(00)] < oo. (12.2)
Then
tli)m e 7% (t) = YoemZ, (12.3)

almost surely and in L', where

o _ J e ™ E® (t) dt

Moo T S et )
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Y. is an a.s. non-negative random variable, which is a.s. positive on the event of
non-extinction, EY,, = 1, and it does not depend on the choice of ®.

In particular, for the number Z (t) of individuals alive at time t we have

Cemet (1—L(t)dt
lim e0'7 (1) = yo Jo ¢ (L~ L(0)
t—o0 Jo te=tu(dt)

(12.4)

almost surely and in L', where L (t) = P (X < t) is the distribution function of the
life length.

Concerning the proof we just remark, that Theorem 5.4 of [17] implies the almost
sure convergence because Condition 5.1 of [17] follows from our condition (iv) and
Condition 5.2 of [17] follows from our condition (éiz). Because of Corollary 3.3 of
[17], our condition (v) implies convergence in L' and that EY,, = 1. Corollary
2.5 of [17] shows that Y., is an a.s. non-negative random variable. To obtain that
Y, is a.s. positive on the event of non-extinction, we can apply Proposition 1.1
of [17] and the fact that the event of non-extinction is a.s. the same as the event
{Z(t) — oo}. This later fact follows from Theorem (6.5.2) of [16] which can be
applied because we assume the existence of a positive Malthusian parameter.



74 APPENDICES

13 Appendix B

Here, we give a short description of the general multi-type branching processes
based on [20]. The individuals of this process can be of p different types, which
we denote by 1,2,...,p. Any individual x is described by the quantities A;, &;, Po,
W,,.... The quantities Az, &z, Py, Vs, ... are independent copies of the quanti-
ties A\, &, P, U, .... Thus, we should give the definition of \,&, ®, ¥, ..., which we
consider as the quantities corresponding to the generic individual.

The lifetime A is a non-negative random variable which is not necessarily inde-
pendent from the reproduction. The lifetime distribution is L (t) = P (A < t). The
reproduction process is &; (t) = (&1 (t),...,&p (t)), t > 0. Here, the random point
process &; ; describes the births of type j offspring of a type ¢ mother. &; ; () gives
the number of type j offspring of a type ¢ mother up to time ¢. &; ; is determined
by the birth events and the numbers of offspring. The process starts at time ¢t = 0
with one individual called the ancestor and denoted by xy. When a child is born,
it starts its own reproduction process and so on. The birth time of the individual
x is denoted by o.

Let ®(t) be a non-negative random function that describes a certain aspect of the
life history of the individual. It is usually assumed that ®(¢) = 0 for ¢ < 0. Then,
®(¢) is called a random characteristic. Let W(t) be another random characteristic.
Thus, the behaviour of the individual z is described by &, Ay, o, Vo, .. ..

Let us define the branching process ., Z?(t) counted by the characteristic ® as

IOZ(I)(t) = Z(I)E (t - Ioam)a

where we summarize for all individuals x. Here, the left subscript xy of Z and
of the birth time o, is important, because it denotes that the process starts with
ancestor xg and the type of x¢ has influence for the evolution of the population.

Let us denote by m; ; (t) the reproduction function, which is the expected repro-
duction number m; ; (t) = E¢; ; ().

The following facts are well-known (see [20] or [32]).
We assume the following basic conditions in this section.
(a) Not all of the measures m; ; are concentrated on a lattice.

Let

o
m? () = / iy (dl), Gj=1,....p,
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be the Laplace transform of m; ;. Let M (k) be the matrix

M (k) = (m; ;(x));

1,3 ij=1"

(b1) There exists a positive Malthusian parameter « that is a finite positive value so
that M () has finite entries only, and the Perron—Frobenius root of M («) is equal
to 1. Here, the Perron—Frobenius root is the largest eigenvalue of the matrix. Let
(v1,...,vp) " be the right positive eigenvector and (u1,...,u,)" the left positive
eigenvector of M («) corresponding to the Perron—Frobenius root. We normalize
them as >0, v; =1 and > b, uv; = 1.

(b2) The matrix (mw»(oo))]i)’j:1 has an infinite entry, or all of them are finite, and

its Perron—Frobenius root is greater than 1.

(¢) The first moment of e~*"m, ; (dt) is finite and positive; that is,
oo
0< / tefatmm- (dt) < 00, i,j=1,...,p.
0

(d) There exists a finite positive integer K so that all elements of the Kth power
of the matrix (m; ; (oo))fj:1 are positive.

Let .
a&i,j(00) = / e 5 (dt) . (13.5)
0

Proposition 13.1. Let « be the Malthusian parameter. Assume that the random
characteristic ® satisfies the following conditions:

(i) ®(t) =0,

(i) The trajectories of ® belong to the Skorohod space D, i.e., they do not have
discontinuities of the second kind,

(iii) E (sup, @ (t)) < co.

Assume also
(iv) for somee >0

/ t(log(1 + 1)) e my ; (df) < 00, dyj=1,....p
0

and
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(v) for some e >0

IE§1>110) {max {t(log(1 +t))'™¢,1} e~ '@ ()} < o0

for any ancestor.

Then,
lim e, Z% (t) = 4, Yoovim® (13.6)

t—o0

18 likely, where i is the type of xg,

& Z?:l Uj fooo e“”E(I)j (t) dt

o Zf,j:l ww; [y te= ¥ my j (dt)’

(13.7)

20 Yoo 18 N a.S. mon-negative random variable depending on the type of the ancestor
xo but not depending on the choice of ®.

If, in addition, we assume that

(vi)
E [a&i,j(oo) 10g+ a&'J(OO)] < 09, 7’3.] = 13 By 2 (138)

then E (4, Yoo) = 1, 2,Yoo 18 positive with positive probability, and ,,Ys is a.s.
positive on the survival set.

The proof is a simple consequence of Theorem 2.4 and Proposition 4.1 of [20].
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