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1.  ABBREVIATIONS 

AP-1  activator protein 1 

APC  antigen presenting cell 

Arg1  arginase 1 

AUC  area under the curve 

BMDM  bone marrow-derived macrophages 

BRE  B recognition element 

cDNA  Complementary DNA 

CEBP   CCAAT/enhancer binding protein 

ChIP-seq   chromatin immunoprecipitation sequencing 

CTCF  CCCTC-binding Factor 

CTF  collaborating transcription factor 

DKO  double knock-out 

DMEM  Dulbecco's Modified Eagle's Medium 

DNA  deoxyribonucleic acid 

DPE  downstream promoter element 

EC   enhancer cluster 

EICE  Ets-IRF composite element 

EGR  early growth response protein 

eRNA  enhancer RNA 

ESC  embryonic stem cell 

ETV  E26 transformation-specific 

FAIRE  formaldehyde-assisted isolation of regulatory elements 
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FBS  fetal bovine serum 

FC   fold-change 

FDR  false discovery rate 

FSA  finite state automaton 

GB   gene body 

GRO-seq  global run-on sequencing 

H3K27ac   histone H3 lysine 27 acetylation 

H3K4me1   histone H3 lysine 4 mono-methylation 

Hbegf  heparin-binding EGF-like growth factor  

IGV  integrative genomics viewer 

IL12B  interleukin-12B 

IL1B  interleukin-1B 

IL-4   interleukin-4 

Inr   initiator 

IRF  interferon regulatory factor 

ISRE  interferon stimulated response element  

LDTF  lineage determining transcription factor 

LIF  leukemia inhibitory factor 

lncRNA  long non-coding RNA 

LPS  lipopolysaccharide 

LRE  labelled regulatory element 

M-CSF   macrophage colony-stimulating factor 

miRNA  micro RNA 
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MITF  microphthalmia-associated transcription factor 

MNase  Micrococcal nuclease 

mRNA  messenger RNA 

NF-kB  nuclear factor-kB 

NGS  next generation sequencing 

OCR  open chromatin region 

OCT4  octamer-binding transcription factor 4 

PCR  polymerase chain reaction 

PMEF  primary mouse embryonic fibroblast 

PUER PU.1 dna-binding domain fused with estrogen receptor ligand binding 

domain 

RA   retinoic acid 

RAR  retinoic acid receptor 

RARE  retinoic acid response element 

RD   read distribution 

Retnla  resistin-like alpha 

RNA  ribonucleic acid 

RNAPII-pS2 RNA polymerase II phosphorylated at serine 2. 

RNA-seq  RNA sequencing 

ROC  receiver operating characteristics 

RPKM  reads per kilobase per million mapped reads 

rRNA  ribosomal RNA 

RT-qPCR  reverse transcription-quantitative real-time polymerase chain reaction 
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RUNX   runt-related transcription factor 

RXR  retinoid X receptor 

SDTFs  signal dependent transcription factors 

snRNA  small nuclear RNA 

STAT6  signal transducer and activator of transcription 

TF   transcription factor 

TM   turing machine 

TNF  tumor necrosis factor 

tRNA  transfer RNA 

TRE  12-O-tetradecanoylphorbol-13-acetate (TPA) response element 

TSS   transcription start site 

UTR  untranslated region 

WT  wild type 
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2. INTRODUCTION 

Cells are the basic structural and functional units of life. The human body consists of 

trillions of cells, which can be categorized into around 200 different cell types based on their 

morphological and/or functional characteristics. With a few notable exceptions, the genomic 

DNA sequence is identical in the nuclei of all diploid cells within an organism. Although 

genomic DNA contains all the necessary information for creating any of the organisms’ cell 

types, the fate of an individual cell is defined by the local microenvironment during 

differentiation. The resulting unique gene expression pattern will define the mature cell’s 

function. The genomic determinants of this unique gene expression profile and its functional 

role in the cell’s response to external stimuli are two of the most exciting topics of the post-

genomic era. The cell-type-specific gene expression profile is the result of a series of 

transcriptional regulatory processes, including transcriptional initiation, elongation, transcript 

processing and degradation (Cooper, 2000).  

Transcription regulation in Eukaryotes 

Transcription is the process by which the genetic information stored in the DNA is copied 

into RNAs. Unlike prokaryotes, eukaryotic cells encode for multiple RNA polymerases, 

including Pol I, Pol II and Pol III, which synthesize different types of RNAs. Pol I transcribes 

ribosomal RNAs (rRNAs), Pol III carry out the synthesis of transfer RNAs (tRNAs), small 

RNAs, the 5S rRNA and most long non-coding RNAs (lncRNAs), while Pol II transcribes 

mRNAs, small nuclear RNAs (snRNAs) and micro RNA (miRNA) precursors. The correct 

positioning of Pol II and other proteins, forming the so-called initiation complex, is essential to 

initiate transcription at the start of the gene body (Cooper, 2000). 
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A promoter region is defined as the minimal DNA sequence which is sufficient for 

transcription initiation by an RNA polymerase. One of the best example for promoter-like 

elements is the TATA box, located ~25 base pairs upstream of coding regions for certain 

protein- or non-protein-coding (e.g. lncRNA) genes. Other promoter elements have also been 

discovered: the initiator (Inr), the center of which is located at +1 (one nucleotide downstream 

of the transcription start site), and the downstream promoter element (DPE), which is centered 

at +30. These DNA elements provide binding sites for the transcription initiation complex and 

will direct RNA polymerase where to begin transcription (Butler & Kadonaga, 2002; 

Krishnamurthy & Hampsey, 2009).  

 

 

Figure 1. Various type of promoter elements  

This figure is derived from (Butler & Kadonaga, 2002) 

Tissue-specific gene expression variability in multicellular organisms rely on distal 

regulatory regions. These genomics regions, namely enhancers play a major role in the 

transcriptional initiation process, modulating the timing and rate of transcription of the 

associated genes. 
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The concept of enhancer 

Enhancers are short DNA sequences that can induce the expression level of a gene, upon 

binding one or more regulatory protein(s) called transcription factors (TFs) and looping to the 

promoter of the regulated gene. An enhancer can regulate multiple genes, and one gene can 

have multiple enhancers. It has also been described that the promoters of certain genes can act 

as enhancers of distal genes. In contrast to promoters, enhancers can exert their gene regulatory 

function in a distance- and direction-independent manner; they do not need to be located near 

to the transcription start of the gene. 

Typically, tens of thousands of enhancer regions are engaged in transcriptional regulation 

in a given cell type, at a given time point. Enhancers provide gene regulatory flexibility by being 

able to anchor different sets of transcriptional regulators, which may be present under only 

certain circumstances, such as after the exposure to a certain external stimulus. An enhancer 

can exert its gene regulatory function by making a spatial contact with the initiation complex at 

the promoter region of the regulated gene. In theory, almost any distance in the nucleus can be 

bypassed by this so-called promoter-enhancer looping. However, the spatial organization of the 

chromatin, such as the presence of topologically associated domains (TADs), puts a constraint 

on the possible promoter-enhancer interactions. Moreover, it has been shown that enhancers 

can regulate different stages of the transcription cycle, including RNAPII recruitment, release 

of promoter-proximal pause and transcription elongation. Therefore, the detection and 

characterization of enhancers is critical for understanding how these elements contribute to cell-

type specific functions (W. Li, Notani, & Rosenfeld, 2016). 
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Identification of enhancer regions 

Identification of the enhancers of a certain gene is challenging for multiple reasons. First, 

the regulatory elements can be located at great distances (up to 1 Mb) both upstream or 

downstream the transcription start site (TSS) of the regulated gene. Moreover, studies have 

shown that not only the non-coding genome, but intronic and exonic regions can also contain 

enhancer elements. Surprisingly, gene promoters can also act as distal regulatory elements. 

Genes often have more than one enhancers and one enhancer can regulate multiple genes. 

Finally, unlike promoters, there is no general sequence code for enhancers that could be 

predicted by in silico methods. A widely used strategy for enhancer prediction is to map histone 

modifications and other epigenomic marks using high-throughput sequencing-based techniques 

such as chromatin immunoprecipitation sequencing (ChIP-seq) (Pennacchio, Bickmore, Dean, 

Nobrega, & Bejerano, 2013). 

Histone modifications  

In the eukaryotic nucleus, DNA is packed and ordered by histones in structures called 

nucleosomes. There are five types of histones: H1, which is involved in higher-order structures 

of chromatin (known as linker histones), H2A, H2B, H3 and H4 (core histones constituting the 

so-called histone octamer). Nucleosomes comprise core histones and DNA wrapped around 

them. In human cells, there is about ~2 meters of DNA, but it is about 90 millimeters of 

chromatin in a condensed form (Kimura, 2013). 

Histones can carry various post-translational modifications referred to as histone marks, 

which may regulate gene expression by making DNA less or  more accessible to transcription. 

H3 is one of the most extensively modified protein among the core histones. The modifications 

of H3 can be used to distinguish between hetero or euchromatin states or identify different types 
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of  regulatory elements. Trimethylated H3K4 (H3K4me3, three methyl groups to lysine 4 of 

histone H3) is enriched around transcription start sites (TSSs) of active genes. In contrast, gene 

bodies of actively transcribed genes are associated with trimethylated H3K36 (H3K36me3, 

three methyl groups to lysine 36 of histone H3). Monomethylated H3K4 (H3K4me1, one 

methyl group to lysine 4 of histone H3) has been shown to co-localize on regulatory regions 

with pioneer TFs, characterizing general enhancers (irrespectively to transcriptional activity), 

and it is also enriched at promoter regions, although to a lesser extent. Finally, the histone 

H3K27ac (acetylation at the lysine 27 of histone H3) can be found both at promoters and 

enhancers, and marks active transcription (Calo & Wysocka, 2013). 

Classification of enhancer states based on epigenetic signatures 

In macrophage biology, PU.1 and H3K4me1/2 double-positive regions were considered as 

enhancer-like regulatory regions and active histone marks such as H3K27ac were used to 

distinguish between poised and active enhancers (Figure 2) (Creyghton et al., 2010). This 

classification revealed the existence of latent or de novo enhancers which are not marked either 

by H3K4me1/2 or PU.1 binding prior to stimulus but they get activated by signal-dependent 

transcription factors (SDTFs) (Kaikkonen et al., 2013; Ostuni et al., 2013). Although these 

studies did not characterize the contribution of chromatin openness which might provide a better 

mechanistic insight into the different stages of enhancer formation.  
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Figure 2. Classification of enhancer states in macrophages.  

This figure is derived from (Ostuni et al., 2013). 
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3. LITERATURE REVIEW 

3.1. Computational methods for modeling genomics data 

Introduction to Machine learning methods  

Machine learning methods are applied artificial intelligence algorithms that are able to 

recognize and infer during the so-called learning process. This learning algorithms need input 

data as examples that will be used for pattern recognition during the learning process. Having 

inferred discriminate features, they can make predictions on a previously unknown data set. 

Machine learning methods have become the part of our everyday life; they are used for traffic 

predictions, social media services, email spam filtering, customer support, etc. 

Unsupervised machine learning algorithms are designed to infer similarities or associations 

among the observations without any prior knowledge, therefore they are primarily used for 

clustering data sets. On the contrary, in the case of supervised machine learning methods there 

is one or more labels that categorize the training set into distinct groups. In the latter case, the 

computational task is to find a function of the subset of input variables that discriminate the 

groups provided. 

Random Forest 

Supervised Random Forest is a widely used supervised machine learning method that can 

perform both classification task (the output variable is a finite set of labels) and regression task 

(the output variable is continuous). This algorithm combines multitudes of decision trees that 

are flowchart-like classifiers performing certain tests (logical or numerical) on an attribute at 

each branch. The final decision will be made based the summarization of hundreds of decision 

trees by using some voting scheme such as the majority rule. Random Forest, since it is a linear 

method, can also estimate the relative contribution of the input variables to the classification. 
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Support Vector Regression 

As discussed above, classification algorithms need input data that are categorized into 

groups by which the machine learning methods will find the best matching function of 

discriminative features. However, in real-world applications, the output values to be predicted 

are often continuous. Support Vector Regressor is a special type of Support Vector Machines 

that can perform regression tasks. The basic principle of the algorithm is to map the input 

variables into a high-dimensional feature space by a non-linear (kernel) function and solve the 

tasks there by a linear function. Although SVR gives better performance, it does not provide 

the relative contribution of the input variables due to the its nonlinear nature. 

Network motifs 

Network motifs are stereotypical sub-graphs that are considered to be functionally distinct 

units of the whole network. These topological patterns frequently referred to as “simple building 

blocks of complex networks” are examined in various fields, such as software design pattern 

diagrams, ecological, social and molecular networks. In biology, network motifs have been 

proven excellent tools to describe interactions among cells (e.g. neuronal networks), proteins 

(protein–protein interactions) or genes (transcription or gene regulation networks) (Wong, Baur, 

Quader, & Huang, 2012).  

At the level of transcription, several network motifs have been characterized that perform 

partially independent tasks in the network. The simplest case is when the transcription factor 

TF1 up-regulates or down-regulates the level of TF2 (Figure 3). In the second type of networks, 

the so-called mutual activation/repression network motif, both TF1 and TF2 repress each other’s 

expression level. Thus, these types of networks have only two stable states. In mutual activation 

network, both TFs are turned on or turned off. While in the case of mutual repression, the system 
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can only be in two mutually exclusive states: either TF1 is turned on and Y is turned off, or vice 

versa (Figure 3) (Alon, 2007). 

Another important class of network motifs is feed-forward loops (FFLs), encompassing 

three TFs and three interactions. Consequently, there are eight types of FFLs. Although they 

are all widespread in many cells types and organisms, two types are overrepresented in E. coli 

and yeasts: Coherent Type 1 FFL (C1-FFL) in which TF1 positively regulates the expression 

level of TF1 and TF2, and TF2 activates TF3. In contrast, in the case of Incoherent Type 1 FFL 

(I1-FFL), TF2 represses TF3, meaning that TF1 activates TF3 directly, but down-regulates the 

expression of TF3 indirectly (Mangan & Alon, 2003). 

Finally, we introduce two slightly different signal-integrating elements called gates that 

combine the values of input variables in a conditional manner. We will use AND gate when two 

input signals have to be present to turn on the output signal. This condition represents the 

collaborative binding of the TFs on a certain enhancer region. The special case of the AND gate 

is the so-called DIMER gate by which we can model the hetero- or homodimeric interactions 

of nuclear receptors. 
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Figure 3. Basic types of network motifs 

(1) Simple up/down-regulation motif (2) Mutual activation/repression motif (3) C1 FFLs (4) I1 FFLs (5) DIMER 

gate (6) AND gate   

Turing machine and Finite State Automata 

The scientific community needs tools to conceptualize our current knowledge on complex  

biological processes. Theoretical scientists defined several types of mathematical ‘machines’ to 

precisely describe various biological phenomena (Kleene, 1956; Rozenberg, 1980).  The most 

abstract way of describing processes is Turing machines (Turing, 1936). This type of model is 

considered as the most general and powerful tool to construct algorithms, because a Turing 

machine can carry out every effective computation as stated by the Turing-Church thesis 

(Hopcroft, Motwani, & Ullman, 2007). Formally a Turing machine is a septuple: TM = (Q,  T,  

V,  q0, #,  d,  F) where  
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• Q is the nonempty (finite) set of the inner states of the machine 

• q0 ∈ Q is the initial state  

• V is the nonempty set of tape alphabet symbols 

• T ⊆ V are the input alphabet symbols  

• # ∈ ( V∖T) is the blank symbol 

• F ⊆ Q are the set of finite states 

• d: Q× V → 2Q×V×{L, R, N}  is a partial function and 2Q×V×{L, R, N} denotes all possible 

subsets of Q×V×{L, R, N}, called configuration, where “L” means left shift, “R” 

means right shift. In case of “N” (no shift), the machine does not move the head.  

If the current state of Turing machine (TM) is q ∈ Q and the tape head reads the symbol a ∈ 

V, then, if d(q, a) is defined, the d(q , a) gives the new configuration of the machine including 

the new inner state, the new tape symbol (not necessarily different from the previous one), and 

the moving direction. If d is not defined on the current state and the current tape symbol, then 

the machine halts (Pál Dömösi, János Falucska, Géza Horváth, Zoltán Mecsei, 2002).

 

Figure 4. An artistic Turing machine 

https://www.chemistryworld.com/opinion/turings-machine/4986.article 
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Nonetheless, several other types of automata were elaborated for those problems that have 

specific restrictions for availability and/or accessibility of memory: finite automata or finite 

state machines (FSA) are relatively simple models and they have very pleasant computational 

properties (Rabin & Scott, 1959). Finite-state machines are formally defined as a tuple: A = (Q, 

q0, T, δ), where  

• Q is a finite non-empty set of (inner) states 

• q0 ∈ Q is the initial state  

• T is a finite non-empty set of input symbols 

• δ: Q×T → 2Q is the transition function. 

Note that the main difference between Turing machine and FSA is the former has a ‘scratch’ 

memory (tape) whose content can be read and modified (e.g.: by moving the head left). While 

FSA can neither store nor change the input previous symbols, it can only read the current input 

symbol. Considering these restrictions FSA can recognize a restricted set of languages called 

Regular languages (Kleene, 1956). An example modeling a simple ATM can be seen in Figure 

5. 
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Figure 5. An example FSA modeling an ATM machine 

This examples is derived from the webpage https://people.engr.ncsu.edu/efg/210/s99/Notes/fsm/ 

3.2. Macrophages: as model system for the study of enhancer formation 

Macrophages have an essential role in immunity because they act as professional antigen-

presenting cells (APCs), as phagocytes eliminating certain pathogens, and as immune 

modulators by secreting molecules which instruct other cells affecting their activity, 

proliferation, and migration (Aderem & Underhill, 1999; R. Z. Murray & Stow, 2014). 

Macrophage precursor cells are released into circulation as monocytes, and within a few days 

they seed tissues throughout the body (P. J. Murray & Wynn, 2011). Macrophages are involved 

in inflammatory responses, and contribute to immune tolerance and wound healing, as well as 

to the pathogenesis of inflammatory and degenerative diseases (Mosser & Edwards, 2008). 
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Macrophages are inherently heterogeneous, as they need to respond to a variety of signals 

in different tissue contexts. One level of heterogeneity originates from the anatomical location. 

Specialized tissue-resident macrophages include osteoclasts (bone), alveolar macrophages 

(lung), histiocytes (interstitial connective tissue), Kupffer cells (liver) and microglia (brain). 

The gut is populated with multiple types of macrophages, which have distinct phenotypes and 

functions, but work together with each other and dendritic cells to maintain tolerance to the gut 

flora and food (P. J. Murray & Wynn, 2011). 

Another level of heterogeneity is derived from the capacity of macrophages to respond to 

special environmental cues. This remarkable plasticity enables monocytes and macrophages to 

change their physiology according to the host- and pathogen-derived signals (in situ 

polarization). In other words, the integration of environmental signals largely determines 

whether the macrophages will be involved in homeostatic activities, antimicrobial responses, 

host-defense against helminths, wound healing or immune regulation. 

3.3. PU.1 is a master regulator of macrophages  

Both levels of macrophage heterogeneity are controlled mainly via transcriptional 

regulation. As early and more recent genome-wide studies demonstrated, PU.1 (also known as 

Sfpi1 or Spi1) transcription factor (TF) plays the most complex role in macrophage biology. 

The three most commonly used terms for PU.1, namely “lineage determining” and “pioneer” 

transcription factor, as well as “master regulator”, accurately recapitulate its most important 

features (Sven Heinz et al., 2010; Kaikkonen et al., 2013; Nerlov & Graf, 1998). 

First, PU.1 is a lineage determining transcription factor (LDTF) because it is indispensable 

for the development of macrophages. PU.1 is expressed specifically in myeloid and B-lymphoid 

cells of the hematopoietic system (Nerlov & Graf, 1998). In genetically modified mice, in which 
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the PU.1 gene has been inactivated, these lineages either completely fail to develop (Scott, 

Simon, Anastasi, & Singh, 1994) or the development is delayed and highly aberrant (McKercher 

et al., 1996).  

Second, PU.1 is a pioneer TF because it can initiate events in closed chromatin (Iwafuchi-

Doi & Zaret, 2014). Biochemical and genomic studies have shown that transcription factors 

with the highest reprogramming activity often have the special ability to bind to their target sites 

on DNA wrapped around the histone octamer (i. e., nucleosomal). Other reprogramming factors 

appear to be dependent on pioneer factors for binding nucleosomes and closed chromatin. PU.1 

is most likely able to expand the linker region between nucleosomes, and promote the deposition 

of certain histone modifications on neighboring nucleosomes, likely contributing to its ability 

to enhance the binding of other transcriptional regulatory factors (K S Zaret & Carroll, 2011; 

Kenneth S Zaret & Mango, 2016). 

Third, PU.1 is a global genomic organizer in macrophages, because the majority of the gene 

regulatory events (including the function of enhancers and transcriptional initiation) are actively 

supervised by PU.1. A series of genome-wide studies have demonstrated that PU.1 occupies the 

majority of active and inducible regulatory regions of the macrophage genome (Serena Ghisletti 

et al., 2010; Sven Heinz, Romanoski, Benner, & Glass, 2015; Lara-Astiaso et al., 2014; Lavin 

et al., 2014). These studies indicated that PU.1 is bound to the inducible enhancers of most 

regulated (i.e. not “housekeeping”) genes, including pro-inflammatory cytokines, such as 

IL12B, IL1b, IL6 and TNFs in resting macrophages, keeping these enhancers accessible for 

SDTFs, such as AP-1 dimers or NF-kB subunits. 

Naturally, the three prominent features of PU.1 described above are interrelated. The facts 

that (1) PU.1 is highly expressed in macrophages, (2) it has the capacity to open chromatin (or 
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keep the enhancer accessible), and (3) it has a large number of putative binding sites in the 

macrophage genome make PU.1 eligible to be called as a global genomic organizer of 

macrophages. 

Regulation of macrophage enhancers in the context of polarizations signals 

Cell type-specific functions are governed by lineage-determining transcription factors 

(LDTFs). Several LDTFs are known to act as pioneer factors that are capable of  binding their 

specific DNA sequences and opening up condensed (closed) chromatin for other transcription 

factors (TFs) to bind (K S Zaret & Carroll, 2011). In macrophages, PU.1 is the master regulator 

of myeloid differentiation and a potential pioneer factor (Sven Heinz et al., 2015). It has been a 

longstanding theory that PU.1 alone is sufficient to establish the inducible enhancer repertoire 

in response to external stimuli (Sven Heinz et al., 2010). However, recent works in macrophages 

and B cells propose that PU.1 and other LDTFs need to bind and recruit chromatin remodelling 

factors in a collaborative manner to make these genomic regions available for the signal-

dependent transcription factors (SDTFs), which will regulate their own specific gene sets 

(Mancino et al., 2015; Ostuni et al., 2013).  

Using two mouse strains (C57BL/6J and BALB/cJ) and with a well-designed experimental 

layout in which naturally occurring mutations between the strains were utilized,  it has been 

shown that PU.1 and CEBPA (CCAAT/enhancer-binding protein alpha), another key 

macrophage LDTF, largely affect the binding of each other; mutations in PU.1’s binding motif 

altered the binding of CEBPA, and vice versa. Similarly, the binding of the SDTF nuclear 

factor-κB (NF-κB) largely relied on an intact PU.1 and CEBPA motif. On the contrary, 

mutations in the recognition sequence of NF-κB did not hinder the binding of PU.1 and CEBPA. 

These results demonstrate that PU.1 select regulatory regions via the binding of variably spaced 
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recognitions sequences in collaboration with other macrophage LDTFs (S. Heinz et al., 2013), 

and indicate that there might exist a binding hierarchy among the LDTFs and SDTFs. Moreover, 

SDTFs need open chromatin to be able bind a certain genomic region.  

As we have seen above, the collaborative nature of the key macrophage TFs has been 

studied extensively. However, the association between macrophage-specific TFs and 

nucleosome free regions has remained elusive. It has been documented that the motifs of PU.1, 

CEBP, Interferon regulatory factor (IRF), Runt-related transcription factor (RUNX) and 

Activator protein 1 (AP-1) are enriched at macrophage-specific enhancers (Czimmerer et al., 

2018a; Daniel et al., 2014a; S. Heinz et al., 2013). PU.1 is known to have an essential role in 

myeloid differentiation (Nerlov & Graf, 1998), high expression of CEBPA/B and PU.1 leads to 

the trans-differentiation of fibroblasts into macrophage-like cells from (Feng et al., 2008), 

RUNX1 is essential for the development of the hematopoietic stem cells (Samokhvalov, 

Samokhvalova, & Nishikawa, 2007), IRF8 is indispensable for monocyte differentiation in 

murine cells and is known to control pro-inflammatory genes induced by pro-classical (M1) 

polarization (Mancino et al., 2015; Thomas, Galligan, Newman, Fish, & Vogel, 2006). Finally, 

the AP-1 family member JUNB has a critical role in mediating classical and alternative 

macrophage polarization (Fontana et al., 2015). Consistently, recent studies indicate that 

specific TF combinations provide plasticity to the cells in response to single, synergistic or 

opposing external stimuli (K. Kang et al., 2017; Müller & Corthay, 2017; Piccolo et al., 2017). 

Finally, SDTFs can also form latent or de novo enhancers at regions lacking PU.1 binding, 

participating both in classical and alternative macrophage polarization (Kaikkonen et al., 2013; 

Ostuni et al., 2013). 
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From a computational perspective, the question arises whether chromatin openness and/or 

activity can be predicted using the binding of PU.1 alone or together with other key macrophage 

TFs. Machine learning approaches such as Random Forest or Support Vector Machines have 

been shown to be effective ways to extract and prioritize key features that determine TF binding 

and enhancer activity including histone marks and motif sequences (Chen et al., 2010; Gal et 

al., 2017; Liu, Jin, & Zhou, 2015; Tsai, Shiu, & Tsai, 2015) (Zhu et al., 2013). However, 

deterministic features of chromatin openness have not been evaluated in these works.  Genome-

wide maps of LDTF binding sites, profiling chromatin openness combined with machine 

learning approaches provide an excellent framework for exploring the connection between the 

binding of key TFs and chromatin openness. By using Random Forest and Support Vector 

Regressor methods, we  build and evaluate models to predict chromatin openness from the 

genomic occupancy of key macrophage TFs (PU.1 CEBPA, IRF8, RUNX1 and JUNB). The 

Random Forest method provides not only prediction accuracies but also determines the relative 

contribution of the key TFs in predicting chromatin openness at the genome-wide level. 

Here we demonstrate that Random Forest and Support Vector Regressor methods can 

predict chromatin openness from the occupancy of PU.1 and other key TFs. Using these 

approaches, we could not only assess the accuracy of predictions on chromatin openness, but 

we could reveal a novel type of enhancer class that is widespread in the macrophage genome. 

These genomic regions termed ‘labelled regulatory elements’ (LREs) are associated with low 

accessible or closed chromatin. The majority of key macrophage TFs can form LREs and these 

genomic regions can be transformed into functional enhancers upon polarization signals. In 

summary, these findings extend our understanding of the connection between TF binding and 
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chromatin openness, and points to the existence of LREs, which may represent a dormant state 

of enhancer regions and contribute to gene expression regulation in a stimulus-specific manner.  

The integration of these approaches allowed us to characterize, classify and catalogue the 

activated regulatory elements based on Binding, Openness and Activity information, which led 

to the conceptualization of our understanding about the states and transitions of activated 

regulatory sites by building a Nondeterministic Finite Automaton termed Regulation 

Automaton. 

3.4. Embryonic stem cells: a model system to study developmental enhancers  

Embryonic stem cells (ESCs) are pluripotent stem cells derived from early mammalian 

embryos, namely from the inner cell mass of the blastocyst. Unlike adult multipotent stem cells, 

which can only produce a limited number of cell types, ESCs are capable of differentiating into 

any of the cell types of an organism. The route of differentiation for each cell depends on 

external signals. When the appropriate signals are provided, ESCs can differentiate into all the 

three primary germ layers: ectoderm, endoderm, and mesoderm, which include each of the 

~200 cell types in the adult human body (Thomson, 1998). 

Retinoic acid (RA), the main active vitamin A metabolite, is a well-known regulator of 

embryonic development. RA is a commonly used in vitro model to differentiate ESCs into 

neurons. Moreover, it has been shown that RA deficiency leads to less effective neuronal 

differentiation within the granular cell layer in the dentate gyrus in adult mice, confirming the 

in vivo relevance of this model system. RA contributes to the early steps of neurogenesis, since 

its depletion also causes a decrease in the number of newborn cells that specifically express an 

immature neuronal marker (Jacobs et al., 2006; Simandi, Horvath, et al., 2016). 
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RA is an agonist ligand of the retinoic acid receptor (RAR), which can act as a transcription 

factor. RAR is known to form a non-permissive heterodimer with retinoid X receptor (RXR), 

that is, they can only be activated from the side of RAR. This heterodimer binds to cis-acting 

retinoic acid response elements (RAREs), and can induce or repress transcription of a nearby 

gene. RA is also known as a morphogen regulating homeobox-containing Hox genes such as 

Hoxa1, Hoxb1, Hoxb4 and Hoxd4 via RAREs within the regulatory elements of these genes, 

controlling anterior/posterior patterning in the early stages of developmental processes (Figure 

6). When the ligand is not present, the RAR/RXR dimer binds to RAREs complexed with 

corepressor proteins. In contrast, the binding of RA to RAR results in the replacement of 

corepressors with coactivator proteins, that will induce the transcription of target genes 

(Simandi, Horvath, et al., 2016). 

 

Figure 6. Early stage of RA-induced neurogenesis 

 

3.5. OCT4 as one of the master regulators of pluripotency 

OCT4 (octamer-binding transcription factor 4) is a homeodomain transcription factor 

required for the maintenance of the undifferentiated state of mammalian ESCs. OCT4 has also 
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been shown to play a critical role in reprogramming somatic cells to induced pluripotent stem 

cells. The breakthrough discovery of the Yamanaka group has shown that by adding only four 

defined factors (OCT4, Sox2, c-Myc, and Klf4) to fibroblast cultures leads to the formation of 

pluripotent stem cells. The expression level of OCT4 has a critical role in the cell fate 

determination of ESCs. Low or no expression of OCT4 can trigger the differentiation towards 

trophoblasts, while high dosage of OCT4 leads to the establishment of primitive endodermal 

and mesodermal lineages. The above observations suggest that OCT4 has a fundamental role in 

guiding cell fate decision at the early stages of mammalian development (Radzisheuskaya et 

al., 2013).  

The molecular mechanisms by which OCT4 fulfills its role as a gatekeeper of pluripotency, 

as well as a potential regulator of early cell fate decisions, remain largely uncharacterized. 

OCT4 binds to an octameric DNA motif (consensus: AGTCAAAT) in promoters and distal 

gene regulatory elements, leading to the activation or repression of certain sets of genes. 

Although numerous studies characterized the cistrome and gene regulatory activity of OCT4 is 

ESCs, we still lack a mechanistic insight into how these functions are executed (Frum et al., 

2013; Niwa, Burdon, Chambers, & Smith, 1998; Young, 2011). Growing number of evidence 

suggests that OCT4 binds to some of its target regions together with other transcription factors, 

controlling the gene expression program of ES cells in a collaborative fashion. However, the 

interaction between OCT4 and retinoic acid signaling, which is a key differentiation signal for 

stem cells, has not yet been characterized.  
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4. AIMS AND HYPOTHESES 

Aim 1. Evaluation of the contribution of key macrophage TFs to chromatin 

openness and enhancer formation in steady state and polarized mouse 

macrophages 

In the past decade, the working model of macrophage enhancer formation was that PU.1 

alone is necessary and sufficient to establish and maintain the available enhancer repertoire for 

most SDTFs activated by external stimuli. However, recent works in macrophages and in other 

immune cells indicate that PU.1, and other key TFs need to bind collaboratively to make these 

genomic regions available for SDTFs, which will, in turn, initiate their own genomic programs. 

Using bioinformatics tools combined with computational methods such as machine learning 

approaches promise to make high accuracy predictions and find hidden correlations and features 

in vast data sets. In this work, we aimed to 

• Map the genomic binding sites of key TFs, including PU.1, IRF8, JUNB, RUNX1 

and CEBPA, in order to examine the interrelation and hierarchy among them 

• Apply machine-learning approaches such as Random Forest and Support Vector 

Regression to build predictive models evaluating the contribution of the binding 

pattern of the studied TFs to chromatin openness and enhancer activation 

• Classify the cistromes of the studied TFs based on chromatin openness  and perform 

loss/gain of function experiments to investigate the deterministic role of low 

accessible regions in regulating gene expression in the steady state and/or in 

response to external stimuli 
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• Reveal whether there exist distinct TF modules binding low accessible genomic 

regions that regulate specific gene expression programs triggered by various 

macrophage polarizing stimuli 

• Build a formal model using Automata Theory that describe the possible states of 

enhancer formation and transitions among them 

Aim 2. Examination of the role of OCT4 in the early steps of RA-induced 

neurogenesis  

OCT4 is a homeodomain transcription factor that is essential for the maintenance of the 

pluripotent state in mammalian ESCs. OCT4 also play a critical role in reprogramming somatic 

cells to induced pluripotent stem cells, as revealed by the groundbreaking discovery of the 

Yamanaka-group. It has been shown that a change in the expression level of OCT4 trigger 

differentiation towards trophoblasts (low dosage), or lead to the establishment of primitive 

endodermal and mesodermal lineages (high dosage) suggesting that OCT4 may also have a 

contribution to fate decisions at the early stages of mammalian differentiation. However, the 

molecular mechanisms by which OCT4 acts as a gatekeeper of pluripotency, and as a potential 

regulator of early cell fate decisions remain poorly understood.  

In this work, our purpose is to  

• Map the OCT4 cistrome and investigate its relation to chromatin openness in both 

naïve and ground-state ESCs 

• Characterize the interaction between the low accessible OCT4 binding sites and the 

retinoic acid signaling pathway, which plays a critical role in the early steps of 

neuronal differentiation 
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• Perform loss of function experiments for OCT4 to delineate its deterministic role in 

forming differentiation-related enhancers and regulate retinoic acid target genes 

• Construct a composite network using network motifs to describe the dual role of 

OCT4 in maintaining pluripotency and in the context of early steps of RA-induced 

neurogenesis. 
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5. MATERIALS AND METHODS 

Differentiation of bone marrow derived macrophages  

Bone-marrow was flushed from the femur of wild-type C57BI6/J male animals. Cells were 

purified through a Ficoll-Paque gradient (Amersham Biosciences, Arlington Heights, IL) and 

cultured in DMEM containing 20% endotoxin-reduced fetal bovine serum and 30% L929 

conditioned medium for 5 days. Isolated bone marrow-derived cells were differentiated for 6 

days in the presence of L929 supernatant. At the 6th day of differentiation, cells were exposed 

to IL-4 (20ng/ml) and LPS (100 ng/ml) for the indicated period of time. 

Embryonic stem cell culture  

Mouse E14 embryonic stem cells were cultured on primary mouse embryonic fibroblast 

(PMEF) feeder cells (5% CO2 at 37 °C). ESC medium was prepared by supplementing DMEM 

Glutamax (Gibco) with 15% FBS (Hyclone), 1,000 U of LIF, penicillin/streptomycin, non-

essential amino acids, and 2-mercaptoethanol. 2i ESCs were adapted for a minimum of five 

passages to grow in serum-free N2B27-based medium supplemented with LIF, PD0326901 (1 

mM), and CHIR99021 (3 mM). 

Ligands and Treatment  

ESCs were treated with vehicle (DMSO) or with all-trans RA (Sigma, 1 mM stock in 

DMSO, 1/1,000 dilution). 

siRNA knockdown  

OCT4 and control siRNAs were obtained from Thermo Fisher. Mouse E14 cells were plated 

on gelatinized plates 12 hr before transfection. siRNA transfection was carried out with 

Lipofectamine 3000 (Invitrogen). OCT4 stealth RNAi oligo sequences: siOCT4_A_Fw: 5`-
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AUG CUA GUU CGC UUU CUC UUC CGG G-3`, 5`- 

CCCGGAAGAGAAAGCGAACUAGCAU-3`, siOCT4_A_Rev: 5`-CCC GGA AGA GAA 

AGC GAA CUA GCA U-3`, siOCT4_B_Fw: 5`-ACC UUC UCC AAC UUC ACG GCA UUG 

G-3`, siOCT4_B_Rev: 5`- CCAAUGCCGUGAAGUUGGAGAAGGU-3`. Transfected cells 

were cultured in embryonic stem (ES) medium for 24 hr prior to experiments.  Cells were ligand 

treated for 3-24 hrs before harvesting for eRNA and mRNA experiments, meaning that cells 

were harvested 24+3 or 24+24 hrs following the transfections. Similarly, ChIP experiments 

were performed 24 hrs following the transfection or the latest 48 hrs if ligand treatment was 

applied. 

Microarray analysis  

Control, Nanog RNAi and OCT4 RNAi CEL files of GSE4189 microarray series were 

downloaded from NCBI/GEO database and imported into GeneSpring (version 13.0). Gene 

Level Experiment was carried out using the following parameters: Threshold raw signals to 1.0, 

Normalization algorithm: quantile, Baseline to median of control samples (GSM94856- 

GSM94860), Average over replicates in conditions. Entity lists containing pre-selected RA 

target genes or components of the retinoic acid signaling pathway were used for heatmap 

analysis. 

RT-qPCR  

RNA was isolated with Trizol reagent (Ambion). RNA was reverse transcribed with High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to manufacturer’s 

protocol. Transcript quantification was performed by qPCR reactions using SYBR green master 

mix (BioRad). Transcript levels were normalized to Ppia. 
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ChIP-seq  

ChIP was performed according to (Barish et al., 2010; Daniel et al., 2014b; Siersbaek et al., 

2012), with minor modifications. The following antibodies were used: OCT4 (sc-8628), PU.1 

(sc-352), IRF8 (sc-6058x), JUNB (sc-46x), CEBPA (sc-61x), RUNX1 (sc-8563x), STAT6 (sc-

981x), p65 (sc-372), H4ac (millipore 06-866), H3K4me1 (ab8895), H3K27ac (ab4729), IgG 

(Millipore,12-370), OCT4 (Santa Cruz, sc-8628), RXR (Santa Cruz, sc-774), RAR (Santa Cruz, 

sc-773), P300 (Santa Cruz, sc-585), H3K27me3 (Millipore, 07-449) and RNAPII-pS2 

(ab5095). Libraries preparation was performed by Ovation Ultralow Library Systems (Nugen) 

from two biological replicates according to the manufacturer’s instructions. 

Western blot analysis  

20 µg protein whole cell or nuclear extracts were separated by electrophoresis in 10 or 

12.5% polyacrylamide gels and then transferred to Immobilon-P Transfer Membrane (Millipore 

Crp.,Billerica, Massachusetts). Membranes were probed with anti-Oct3/4 (Santa Cruz;sc-5278), 

anti-RAR (Santa Cruz, sc-773), or anti-GAPDH (Santa Cruz, sc-32233) antibodies according 

to the manufacturer’s recommendations.  

GRO-seq 

Global Run-On sequencing and library preparation was performed as described earlier 

(Core, Waterfall, & Lis, 2008). Libraries were made from two biological replicates of BMDMs. 

Libraries were sequenced with Illumina HiScanSQ sequencer.  

ChIP-seq, GRO-seq and ATAC-seq analyses 

Primary analysis of the ChIP-seq, GRO-seq, and ATAC-seq raw reads was carried out using 

a ChIP-seq analyze command line pipeline (Barta, 2011). Briefly, Burrows-Wheeler Alignment 

Tool (H. Li & Durbin, 2009) was used to align the reads to mm10 genome assembly (GRCm38) 
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with default parameters. MACS2 2.0.10 (Zhang et al., 2008) was used for predicting TF peaks 

(q-value <= 0.01) and findPeaks.pl (with ‘-size 1000’ and ‘-minDist 2500’ options) for histone 

regions with the option ‘-style histone’. Artifacts were removed using the ENCODE blacklist 

(Consortium, 2012). ‘Intergenic’ and ‘Intron’ regions were considered as distal elements from 

HOMER (v4.2) annotation. Reads per kilobase per million mapped reads (RPKM) values of the 

predicted peaks was calculated using BedTools coverageBed and bash scripts. DiffBind v2.8.0 

(Ross-Innes et al., 2012) was used to infer differential binding sites from duplicates of STAT6 

and p65 from CTR, 1h IL-4 and 1h LPS treated cells (p-value < 0.05), respectively, and from 

RNAPII-pS2 ChIP-seq time course experiments (p-value < 0.05 & FC>2) measured on distal 

regions (normalized DiffBind occupancy > 30) and on gene bodies (normalized DiffBind 

occupancy > 50), using untreated samples as controls. K-means clustering of RNAPII-pS2 

regions both on distal elements and gene bodies (mm10 RefSeq) was performed using kmeans() 

function from the R package stats. GO analyses were performed using the clusterProfiler R 

package. Intersections, subtractions, and merging of the predicted peaks were done with 

BedTools (v2.23.0). Regions were considered overlapping if there was at least one common 

nucleotide. Consensus sets were defined by merging overlapping regions (in at least 2 samples). 

Proportional Venn diagrams were generated with VennMaster. Genome coverage files 

(BedGraphs) for visualization purposes were generated by makeUCSCfile.pl, and then 

converted into tdf files using igvtools (IGV2.3, Broad Institute) with the ‘toTDF’ option. 

Genomic distribution was analyzed using HOMER categories provided by annotatePeaks.pl 

(UTR regions were merged). De novo motif discovery was performed in the 150 bp vicinity of 

the peak summits using findMotifsGenome.pl with options ‘-length –len ‘12,14,16,18,20,22’ 

and ‘-size 200’ on the repeat-masked mouse genome (mm10r) from HOMER. Integrative 
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Genomics Viewer (IGV2.3, Broad Institute) was used for data browsing (Thorvaldsdottir, 

Robinson, & Mesirov, 2012) and creating representative snapshots. Normalized tag counts for 

Meta histograms and read distribution heatmaps (RD plots) were generated by annotatePeaks.pl 

with ‘-ghist’ and ‘-hist 25’ options from HOMER on one representative example of duplicates 

and then visualized by R (ggplot2) or Java TreeView. Motif matrices were remapped using 

annotatePeaks,pl with the ‘-mscore’ option. Summits used for centering RD plots and motif 

remapping were identical to the summit of the peak with the highest MACS score from those 

used for deriving the consensus region.  

Machine learning  

Machine learning analyses were performed in R using the packages randomForest, e1071 

and custom scripts. For training sets, 1,000 sites were randomly chosen from both labelled and 

‘HighAcc’ categories (based on the probablity values given by the machine learning methods) 

for Random Forest and Support Vector Machine models (repeat-masked mouse genome 

mm10r). To avoid the well-known issue of ‘overfitting’ in data mining, all models were built 

using a k-fold (k=10) cross validation. In total, 31 Random Forest models were generated from 

all possible TF combination (one TF only, n=5; two TFs, n=10; three TFs, n=10; four TFs, n=5; 

all five TFs - ‘full model’, n=1). For validation sets, another 1,000 sites were randomly chosen 

from both labelled and ‘HighAcc’ categories that were not used for learning processes. 

Contribution scores (MeanDecreaseGini) were calculated using randomForest function with the 

‘importance = T’ option. Sensitivity, Specificity and ROC values were calculated with the caret 

and ROCR packages. Boxplot of the 31 models and the ROC plot were generated using ggplot2 

R package. For SVM model, Pearson correlation coefficient was calculated on an independent 

validation set using stats packages in R. 
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Data Availability 

All data from this study have been submitted to Sequence Read Archive (SRA - NCBI; 

https://www.ncbi.nlm.nih.gov/bioproject) and to NCBI Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) under accession number PRJNA302640 (ESC data sets), 

PRJNA194083, PRJNA318630 and GSE106706 (macrophage data sets), respectively. In-house 

scripts used to generate data and figures can be downloaded from the GitHub repository 

https://github.com/ahorvath/horvath_et_al_2019_labelled_enhancers. 

Author contributions to the wet-lab experiments 

The experiments were carried out by Lajos Széles, Bence Dániel (in macrophages) and 

Zoltán Simándi (in ESCs).  
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6. RESULTS 

6.1. Random Forest classification hints the existence of low accessible TF 

binding sites in macrophages 

In order to examine the interrelationship between the key macrophage TFs and chromatin 

openness, first we thoroughly characterized the open chromatin regions (OCRs) in 

macrophages. Although the cistromes of PU.1 and other key TFs have been extensively 

characterized in mouse macrophages (Czimmerer et al., 2018b; S Ghisletti et al., 2010; Sven 

Heinz et al., 2010; Link et al., 2018; Ostuni et al., 2013), the relationship of PU.1 and other key 

TFs with chromatin openness have remained poorly understood. One intriguing question is 

whether the binding of the key TFs overlap with OCRs or they are associated with low 

accessible regions as well. First, we profiled OCRs by performing Assay for Transposase 

Accessible Chromatin coupled to sequencing (ATAC-seq) in bone marrow-derived 

macrophages (BMDMs) (Figure 7).  

 

Figure 7. BMDM model system 

A scheme showing bone marrow-derived macrophage (BMDM) differentiation. 
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Next, we carried out a de novo motif analysis on the distal OCRs (over 32,000 regions) 

which identified the motif of PU.1 (ETS) (37.5%), TRE (28.4%) known to bound by a subset 

of the AP-1 family (Garces de Los Fayos Alonso et al., 2018), CTCF (6.4%), CEBP (31.9%), 

RUNX (12.4%) and a composite element called EICE (PU.1-IRF) (4.5%) (Figure 8).  

 

Figure 8. De novo motif analysis of distal OCRs in BMDMs 

The highly enriched de novo motifs under the distal OCRs. Motif sequence logos, P-value of enrichment, 

percentage of target sequences with motif (Targets (%)), and percentage of background sequences with motif 

(Bg. (%)) are shown. 

To compare the sensitivity of the ATAC-seq technique to other available methods we 

analyzed two literature BMDM data sets; FAIRE-seq (Ostuni et al., 2013) and DNase-seq 

(Leddin et al., 2011). Based on our comparison, ATAC-seq could detect more than twice as 

many regions than FAIRE-seq or DNase-seq (Figure 9).  
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Figure 9. Comparison of methods profiling open chromatin regions 

Venn diagram showing overlap among the OCRs predicted by the three techniques (ATAC-seq (this study), 

DNase-seq (Leddin et al., 2011); and FAIRE-seq (Ostuni et al., 2013). 

Next, we asked whether PU.1 binding alone is sufficient to determine chromatin openness 

or other key TFs need to be taken into account as well. To answer this question, we used a 

machine learning approach and examined the predictive accuracy and relative contribution of 

the binding pattern of the key macrophage TFs in establishing OCRs. First, we performed ChIP-

seq experiments for the TFs PU.1, IRF8, JUNB, CEBPA and RUNX1, as their motifs were 

highly enriched based on our de novo motif analyses and these TFs were documented as key 

TFs in macrophages. After predicting the genomic binding sites of each TFs, we unified these 

genomic regions. We randomly chose 1,000 regions that did not overlap with OCRs, termed 

‘labelled’ regulatory elements (LREs), and 1,000 regions that overlapped with OCRs which we 

termed ‘HighAcc’ sites (Figure 10). 
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Figure 10. Flow chart of the machine learning approach. 

Labeled regulatory elements (LREs) are defined as one or more transcription factors (TFs) bound to low 

accessible chromatin. Highly accessible sites (HighAcc sites) are bound by one or more TFs and exhibit high 

ATAC-seq signals. 

We systematically assessed all combinations of TFs by using Random Forest method and 

measured their prediction accuracy. Interestingly, the model where only PU.1 binding pattern 

was used showed weak prediction accuracy of openness (64.4%), only marginally higher than 

expected by chance. Interestingly, all the other models which accommodated only one of the 

other key TFs resulted in similarly weak predictive powers, however, slightly better than PU.1. 

Comparison of models revealed that the higher the number of included TFs, the higher the 

accuracy became (Figure 11).  
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Figure 11. Prediction accuracies of the tested models  

Box plots showing the accuracies of models in predicting open chromatin regions built with one TF (n=5), two 

(n=10), three (n=10), four (n=5) or five (n=1, ‘full model’) TF(s). 

The model in which all the TFs were used as input (‘full model’), resulted in a high accuracy 

prediction on an independent validation set (Accuracy = 0.82, Sensitivity = 0.88, Specificity = 

0.77, AUC = 0.90, Table 1 and Figure 12) which were inferred similarly as the training set but 

not used for during the learning process. The applied Random Forest method provides not only 

prediction accuracies but also estimates the contribution of the input variable (TF binding) in 

predicting chromatin openness. This analysis revealed that all the other TFs had higher 

contribution than PU.1 in defining chromatin openness (Figure 12). 

 

Table 1. The results of Random Forest approach on the Training and Validation sets 
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Figure 12. The results of Random Forest approach on the ‘full model’ 

(1) ROC (Receiver Operating Characteristic) curve of ‘full model’ (False Positive Rate and True Positive Rate 

are plotted on the x-axis and y-axis, respectively). AUC (area under the ROC curve) shown was calculated on the 

validation set. (2) Bar plot showing the relative importance of PU.1 and the other four TFs assessed in the ‘full 

model’. 

In addition, using the Support Vector Regressor method, chromatin openness can be 

predicted not only qualitatively (classification task) but also quantitatively with a high 

correlation between the measured vs. predicted ATAC-seq signal (Figure 13). Finally, In 

consistence with our previous finding, we addressed the question whether and how chromatin 

openness and enhancer activation rely on the number of co-bound TFs. After partitioning the 

unified cistromes into disjunct subsets based on the number of co-bound TFs, SVR revealed 

that the more TFs bound to a particular genomic region, the higher chromatin openness (ATAC-

seq), enhancer RNA level (GRO-seq) and chromatin activity (H3K27ac) can be measured 

(Figure 13).  

Collectively, our results demonstrate that 1) using machine learning methods, chromatin 

openness can be predicted with high accuracy, using the binding pattern of all five TFs, 
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confirming that the most important macrophage TFs have been identified and included in the 

model; 2) in the ‘full model’ the contribution of PU.1 binding is the lowest among the studied 

TFs, which indicates that PU.1 binds low accessible genomics regions. 

 

Figure 13. The results of Support Vector Regressor analysis  

(1) Scatter plot showing the Pearson correlation coefficient of predicted and measured openness calculated on the 

validation set. (2) Box plot representation of ATAC-seq, GRO-seq, and H3K27ac signals on TF co-bound 

regions. #1-5 labels indicate the number of co-bound TFs present at the given genomic loci. 

6.2. PU.1-labelled regulatory elements are widespread in the macrophage 

genome 

We examined the relationship between the cistromes of the studied TFs, and their ability to 

bind low accessible sites alone. Our analyses showed that PU.1 possessed the biggest cistrome 

(64,728 sites) and had the highest portion of the cistrome that did not overlap with any other 

TFs’ cistrome (51.8%). On the contrary, lower fractions of IRF8, RUNX1 and CEBPA (17.9%, 

23.8% and 20.3%, respectively) had solo binding. Interestingly, only 4.5% of the total JUNB 

cistrome could be characterized by solo binding, suggesting that JUNB strongly relies on the 

binding of other TFs’. IRF8 had the most highly overlapping cistrome with PU.1 (24,816 sites), 

and RUNX1 and CEBPA also had an extensively shared cistrome with PU.1 (18,810 and 14,710 
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sites, respectively). Notably, PU.1 bound a very high fraction (78%) of the JUNB cistrome 

(2,903) (Figure 14). 

 

Figure 14. Binding hierarchy of PU.1 and other key TFs in macrophages 

Scatter plot showing the total number of binding regions for each transcription factor (TF) cistromes (y-axis), 

and the number of sites where the particular TF does not overlap with any other TF (x-axis). The overlap of the 

PU.1 cistrome with all the presented TF cistromes are represented by the thickness of the connecting lines on 

which the actual numbers of overlapping genomic regions are shown. Dot sizes are proportional to the sizes of 

the TFs’ cistromes. 

Based on these analyses we classified the PU.1-bound sites into three classes: (1) binding 

sites that were not associated with predicted OCRs, termed ‘PU.1-labelled’ regulatory elements 

(PU.1-LREs, 46,280 sites); (2) regions where PU.1 binding overlapped with open chromatin 

regions, termed ‘PU.1 pos. HighAcc’ sites (18,448 sites); and (3) PU.1-negative highly 

accessible regions, termed ‘PU.1 neg. HighAcc’ sites (18,967 sites). Strikingly, only one-third 

of the PU.1-bound genomic regions overlapped with OCRs (Figure 15).  
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Figure 15. Interrelationship of chromatin openness and PU.1 binding in BMDMs 

Read distribution (RD) plots showing PU.1 occupancies, chromatin openness (ATAC-seq) and nascent RNA 

transcription (GRO-seq) in the three groups clustered based on PU.1 occupancy and ATAC-seq signal. The 

following nomenclature was used for the three clusters: PU.1-labelled regulatory elements (PU.1-LREs), PU.1 

positive highly accessible regions (PU.1 (+) HighAcc) and PU.1 negative highly accessible regions (PU.1 (-) 

HighAcc). RD plots show the signals in 2-kb windows around the summit of PU.1 or ATAC peaks. Box plot 

representations of PU.1 occupancy and chromatin accessibility in the three clusters from ChIP-seq and ATAC-

seq experiments are also shown. 

Next, we compared these three categories regarding GRO-seq signal and the level of histone 

marks H3K4me1 (general enhancer) and H3K27ac (active enhancer mark) (Figure 16). Both 

histone marks showed high enrichment on ‘PU.1 pos. HighAcc’ sites, while ‘PU.1 neg. 

HighAcc’ sites were much less enriched, and PU.1-LREs exhibited the lowest signals for these 

features. These results indicate that these classes are indeed functionally distinct, and PU.1-

LREs may represent a context where PU.1 requires other TF(s) that are not present in the 

unstimulated state to maintain or establish open chromatin regions. Next, we re-analyzed a 

publicly available MNase-seq data set (Barozzi et al., 2014), which demonstrated that the 
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surrounding nucleosomes of ‘PU.1 neg. HighAcc’ and ‘PU.1 pos. HighAcc’ sites showed higher 

MNase signal compared to the ‘PU.1-labelled’ sites (Figure 16), confirming low accessible 

(closed) chromatin environment and also suggesting less stable PU.1 binding at labelled sites. 

 

Figure 16. Various epigenomics marks across the three groups 

Meta histograms showing H3K4me1, H3K27ac signals and MNase-seq (Barozzi et al., 2014) signals for the 

three categories. Signals were measured around the summits of PU.1 (PU.1-LREs and PU.1 (+) HighAcc) or 

ATAC-seq signals (PU.1 (-) HighAcc).  

Next, we compared the TFs’ cistromes. This analysis revealed that more than half of the 

TFs’ cistromes were associated with the cistrome of PU.1, and the majority of these sites 

overlapped with ‘PU.1 pos. HighAcc’ sites (Figure 17). Notably, a remarkable portion of sites 

for IRF8, RUNX1 and CEBPA were neither associated with PU.1 nor with open chromatin 

regions (‘PU.1 neg. LowAcc’), suggesting the presence of LREs characterized by the binding 

of these other TFs. This classification also showed a good correlation with our previously 

characterized co-binding events. The fraction of the ‘PU.1 pos. HighAcc’ sites progressively 

increased, while the fraction of  PU.1-LREs and PU.1 neg. LowAcc (labelled by other TFs) 

genomic regions gradually decreased with the number of co-bound TFs.  
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Figure 17. Comparison of the four categories with the number of co-bound TFs 

(1) Stacked bar plots with the number of binding regions from each cistrome using PU.1, RUNX1, CEBPA, 

IRF8 and JUNB ChIP-seq experiments in the context of the identified categories (PU.1-labelled regulatory 

elements (PU.1-LREs), ‘PU.1 (+) HighAcc’, ‘PU.1 (-) LowAcc’ and ‘PU.1 (-) HighAcc’). (2) Stacked bar plot 

showing the percentage of binding sites in each cistromic category presented on panel (1) as a function of the 

number of co-binding factors present at the given genomic loci (#1-5 labeling indicates the number of co-bound 

TFs for each cistrome). 

Finally, we used ChromHMM, a Hidden Markov Model-based method, as an alternative to 

investigate the pervasiveness of LREs (Ernst & Kellis, 2012). Using the studied TFs’ binding, 

ATAC-seq and RNAPII-pS2 ChIP-seq data (elongation-specific polymerase II), as well as 

H3K4me3 (active promoter mark) and H4ac (active histone mark) signals we could confirm our 

finding, as various types of LREs were predicted such as PU.1-LREs, PU.1+IRF8 co-LREs and 

RUNX1-LREs (Figure 18). 
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Figure 18. ChromHMM analysis of the key macrophage TFs and various histone marks 

Heatmaps showing the result of ChromHMM (Ernst & Kellis, 2012) analysis. Genomic regions were clustered 

into 12 clusters from ATAC-seq, H3K4me3, H4ac, RNAPII-pS2, PU.1, IRF8, JUNB, RUNX1 and CEBPA 

ChIP-seq data as input variables (left panel) and the annotation of the inferred clusters according to RefSeq 

annotation (right panel). 

Taken together, these results show that two-thirds of PU.1-bound regions are associated 

with low accessible chromatin and the lack of transcriptional activity; we termed these sites 

LREs. Moreover, both the characterization of ‘PU.1 neg. LowAcc’ sites and the ChromHMM-

based analysis suggest that IRF8, RUNX1 and CEBPA also have labelled fractions and there 

might be unique co-LRE TF modules. 

6.3. Key transcriptional regulators of macrophage form labelled regulatory 

elements 

Next, we asked whether only PU.1 has the ability to form LREs or it is a general 

phenomenon among the macrophage TFs. Therefore we investigated how the promoter-distal 

fractions of the IRF8, CEBPA and RUNX1 cistromes overlap with OCRs. We excluded JUNB 
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from further analyses as it is not eligible to be called LDTF due to its relatively small cistrome 

in the unstimulated state, which has been also pointed out by other groups (Ostuni et al., 2013), 

and its low fraction of LREs (Figure 17). Although IRF8, CEBPA and RUNX1 had cistrome 

sizes comparable to PU.1, nearly ~50% of their cistromes could be associated with low 

accessible chromatin.  Therefore, we categorized these sites has as LREs (Figure 19). Next, we 

analyzed the p-values of the motifs enriched at each type of LRE (Figure 19).  

 

Figure 19. Characterization of LREs on the cistromes of key TFs 

(1) Stacked bar plot showing the distribution of the transcription factor (TF) cistromes (PU.1, IRF8, RUNX1, 

CEBPA) on labelled regulatory elements (LREs) and highly accessible chromatin regions (HighAcc sites). (2) 

Heatmap showing the p-values of motif (PU.1, EICE, CEBP and RUNX) enrichments of the redundant set of the 

different TF-LREs (PU.1, IRF8, RUNX1 and CEBPA) 

As anticipated, the specific motif of the TFs had high p-value in the corresponding TF-LRE 

groups. Interestingly, the PU.1 motif was highly enriched in all the TF-LRE groups,  confirming 

the genome organizing role of PU.1 in macrophages. This result can provide an explanation 

why the labelled IRF8, CEBPA and RUNX1-labelled cistromes overlap with PU.1-labelled 

sites. In contrast, these three TFs were only moderately enriched for the motifs of the other TFs.   
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On the contrary, PU.1-LREs were less enriched for the motifs of the other three TFs, which 

might be due to the higher number of the PU.1 binding sites at genome-wide level. Interestingly, 

the EICE motif were highly enriched at PU.1-LREs, indicating that  IRF8 strongly collaborates 

with PU.1 on PU.1-LREs (Figure 19). Next, we investigated the co-localization of TFs at 

different types of LREs (Figure 20).  

 

Figure 20. The key regulators form Co-LREs are widespread in macrophages 

Bar plot showing the number of different subsets of co-LREs bound by the TFs studied.  

Our results show that PU.1+IRF8 co-LREs were the most frequent (5,901 sites) among the 

groups. In addition, the top six most prevalent combinations contained either PU.1 or IRF8, or 

both. Consistently with this, the highly accessible sites contained a high number of co-bound 

TFs, while we detected a relatively low number of co-LREs that overlapped with three or all 

four TFs. 
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Figure 21. Examples for different co-LREs  

IGV snapshot of Abcg1 locus with representative examples for different type of TF co-LREs. Black arrows 

highlight the different LREs and dashed line with an arrow head represent the transcription start site and the 

direction of the gene. 

In conclusion, LREs are widespread in cistromes of the studied TFs, and  PU.1-labelled sites 

are the most prevalent LREs because PU.1 has the largest cistrome and its ability to bind alone. 

Thus, the labelled portion of IRF8, CEBPA and RUNX1 often overlap with PU.1 and they form 

co-LREs (Figure 21). Finally, among the possible combinations of co-LREs, PU.1+IRF8 co-

LREs are the most abundant, having around three times as many binding sites than the second 

most abundant combination, which also contain the TFs PU.1 and IRF8. 

6.4. The role of PU.1 and IRF8 co-LREs in cellular response to IL-4  

Based on our analyses, there is a high number of PU.1+IRF8 co-LREs in the unstimulated 

state, therefore we investigated the possible function of these genomic regions in IL-4-mediated 

macrophage polarization (alternative macrophage polarization). Signal Transducer and 

Activator of Transcription 6 (STAT6) almost exclusively governs the early steps of the 

polarization process (Gordon & Martinez, 2010), binding to thousands of regions in the genome 
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within minutes of IL-4 treatment, triggering a robust gene expressional program. Therefore we 

treated the macrophages for 1h with IL-4. We were wondering whether there might be 

PU.1+IRF8 co-LREs playing guiding roles in genomic programs at marker genes of the 

polarization process. After mapping the activated distal regulatory regions associated with 

LREs using time-course RNAPII-pS2 ChIP-seq experiments in IL-4-treated BMDMs (1h, 3h, 

6h and 24h), we observed that PU.1+IRF8 co-LREs can often be associated to important IL-4 

regulated genes such as Retnla, Hbegf, and Arg1 (Figure 22).  
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Figure 22. IGV snapshots of alternative macrophage polarization marker genes 

IGV snapshots of three alternative macrophage polarization specific marker gene loci (Retnla, Hbegf and Arg1) 

with PU.1+IRF8 co-labelled regulatory elements (PU.1+IRF8 co-LREs) that bind STAT6 upon IL-4 treatment 

and recruit the elongation-specific form of RNA polymerase II (RNAPII-pS2). Green arrows represent highly 

accessible chromatin regions, while red arrows depict PU.1+IRF8 co-LREs. Dashed lines with arrowheads 

represent the transcription start site and the direction of the gene.  

Our findings highlight that PU.1+IRF8 co-LREs can be transformed into active enhancers 

activated by IL-4 stimulus. Next, we asked whether both PU.1 and IRF8 have essential role at 

these sites in properly mediating the gene expression program of STAT6. Using gain and loss 

of function experimental systems we set out to reveal the possible role of PU.1+IRF8 co-LREs 

in gene regulation. First, we measured the mRNA level of three well-known IL-4 regulated 

genes (Retnla, Hbegf, and Arg1) in PUER cells (Pu.1-/- myeloid progenitor cells containing a 

PU.1-estrogen receptor ligand binding domain fusion protein), whose transcriptional activity 

can be turned on by adding tamoxifen. Our results in the PUER system demonstrated that 

transcriptionally active PU.1 up-regulated the expression of the three IL-4-target genes in the 

unstimulated state providing the context for efficient IL-4-mediated induction as well (Figure 

23). To test the role of IRF8 in IL-4 regulated expression of the same three genes, we used wild 
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type (WT) and Irf8-/-  BMDMs. Our result showed that in the lack of Irf8 the inducibility by IL-

4 treatment was partially (Hbegf, and Arg1) or completely (Retnla) impaired (Figure 23).  

 

 

Figure 23. Loss/gain of function for PU.1 and IRF8 

(1) Gene expression measurements by RT-qPCR at the mRNA level on the three alternative polarization marker 

genes (Rentla, Hbegf and Arg1) from PUER cells. PUER cells were exposed to tamoxifen for 24 hours (PUER 

w/ active PU.1) or left untreated (PUER w/ inactive PU.1) followed by 3 hours of IL-4 stimulation. The 

expression of mRNAs are normalized by the housekeeping gene Ppia. (2) Gene expression measurements of 

alternative polarization marker genes (Rentla, Hbegf and Arg1) by RT-qPCR at the mRNA level from wild type 

bone marrow-derived macrophages (WT BMDM) or Irf8 deficient BMDMs (Irf8-/- BMDM) after exposed to IL-

4 for 3 hours. Expression values are normalized to Ppia. 

Taken together, PU.1+IRF8 co-LREs are present in  the vicinity of alternative polarization 

marker genes that these sites have crucial role in IL-4 mediated gene activation. Both PU.1 and 

IRF8 had significant contribution in IL-4 induced gene expression. Future studies utilizing 
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genome editing techniques need to provide the mechanistic role of these co-LREs in mediating 

gene expression. 

6.5. IRF8 maintains low accessible chromatin structure at a subset of labelled 

regulatory elements 

Our previous results demonstrated that the IRF8 cistrome has a significant fraction of 

binding sites  that bind to low accessible chromatin regions. We have also provided evidence 

on three genes that IRF8 is essential for IL-4-mediated gene regulation, but we had not 

investigated the consequence of its loss on chromatin openness. To answer this question, we 

carried out ATAC-seq experiments in unstimulated Irf8-/- macrophages. Analysis of distal 

IRF8-bound sites identified 3,323 regions with low accessible chromatin, while 2,322 sites 

gained openness in the absence of Irf8 (Figure 24). 

 

Figure 24. Up- and Down-regulated sites ATAC signals 

Pie chart showing the number of IRF8-bound sites that were up- or down-regulated in Irf8-/- cells. DiffBind was 

used to infer differential binding sites (p-value < 0.05) from duplicates using WT samples as control.  

De novo motif analysis of the regions with decreased chromatin openness resulted in the 

emergence of typical macrophage-specific motifs we have seen in the wild type: TRE, PU.1, 

RUNX, CEBP, and a stronger EICE motif. In contrast, at the genomic regions where openness 
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was increased, we neither identified this composite motif nor any other ISRE-like motifs. In 

contrast, CEBP, ETV (ETS variant 3) and NF-kB motifs showed moderate enrichment at these 

sets (typically with much weaker p-values) (Figure 25).  

 

Figure 25. De novo motif analyses of up- and down-regulated sites in Irf8-/- cells 

The most enriched de novo motifs under IRF8-bound sites that were up- or down-regulated in Irf8-/- cells. Motif 

sequence logos, P-value of enrichment, percentage of target sequences with motif (Targets (%)), and percentage 

of background sequences with motif (Bg. (%)) are shown.  

Interestingly, 37% of the sites that gained openness in the absence of Irf8 overlapped with 

IRF8-LREs, suggesting that IRF8 binding is indispensable to prevent chromatin opening at 

these sites. This analysis indicates that IRF8 might have a chromatin compacting effect on a 

subset of loci, potentially through either indirect binding or binding to non-canonical motifs 

(Figure 26). 
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Figure 26. Distribution of up-regulated ATAC signals in Irf8-/- cells 

(1) Pie chart showing the number of IRF8-LREs and HighAcc. sites among IRF8-bound regions gaining 

openness in Irf8-/- cells. DiffBind was used to infer differential binding sites (p-value < 0.05) from duplicates 

using WT samples as control.  (2) Box plot showing chromatin accessibility of IRF8-LREs in WT and Irf8-/- 

cells. 

These findings highlight the importance of IRF8 as a regulator of chromatin and hints the 

existence of PU.1+IRF8-co-LREs and IRF8-LREs, where IRF8 may maintain low accessible 

chromatin, stabilizing the LRE state. Further studies need to investigate whether and how 

SDTFs act at these LREs in the absence of IRF8. 

6.6. Labelled regulatory elements are dynamically utilized by macrophage 

polarization signals 

Finally, we asked whether and how classical and alternative macrophage polarization 

signals utilize LREs. To address this question, we compared the STAT6 (1h IL-4)  and p65 (1h 

LPS) cistromes, the two main SDTFs of the alternative and classical polarization signals, 

respectively. The TF p65, a member of the NF-kB complex, which switches on the pro-
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inflammatory program of macrophages by bacterial (LPS – lipopolysaccharide) stimulation. 

Comparison of STAT6 and p65 cistromes (Figure 27) revealed 10,619 STAT6-specific, 8,466 

p65-specific regions and 3,781 co-bound regulatory elements that are utilized by both TFs upon 

the certain activating signals.  

 

Figure 27. Overlap between STAT6 (1h IL-4) and p65 (1h LPS) binding sites 

Venn diagram showing the overlap between STAT6 and p65 cistromes induced by IL-4 or LPS, respectively. 

DiffBind analysis were performed separately for STAT6 and p65 experiments to infer differential binding sites 

(p-value < 0.05) from duplicates using untreated samples as control. 

Both cistromes of TF had similar fractions of de novo, LRE- and highly accessible regions. 

Co-bound genomic regions showed high overlap with highly accessible sites (2,720), but only 

892 labelled and a very small set of de novo sites (169) were also identified (Figure 28). 
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Figure 28. Characterization of STAT6 and p65 binding sites  

(1) Stacked bar plot showing the distribution of de novo, labelled regulatory elements (LREs) and highly 

accessible chromatin regions (HighAcc) across STAT6-specific, p65-specific and commonly-bound genomic 

regions by the two signal dependent transcription factors (SDTFs). (2) Heatmap showing the p-values of the 

motif (NFKB, STAT6 and PU.1) enrichments for the sets of de novo, LREs and HighAcc chromatin regions.  

Motif analysis of NF-kB (represented by p65), STAT6 and PU.1 highlighted that (Figure 

28): 1) the motif of PU.1 was weaker in almost all the cases at de novo sites and LREs compared 

to highly accessible sites, with no regard as to whether it overlapped by STAT6, p65 or both; 

2) as expected, the p-value of the NF-kB motif was lower at p65-specific sites, and the de novo 

regions had the strongest motifs. Moreover, co-bound sites possessed a much weaker NF-kB 

motif, while this motif was virtually not detected at STAT6-only sites; 3) the STAT6 motif had 

very similar characteristics to the p65 motif, showing specificity to STAT6-bound regions with 

the highest p-values for this motif at the de novo sites.  

LREs harbored similarly strong motifs to the de novo sites. In contrast, highly accessible 

chromatin regions had the least specific motifs. 4) Co-bound genomic regions by STAT6 and 
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p65 showed the weakest motifs, while 72% of these sites were highly accessible and 24% of 

these sites were LREs and only 4% were de novo.  

These findings indicate that the capacity of SDTFs to bind and open chromatin is not 

completely sequence-specific, and high accessibility promotes additional TFs to bind LREs 

when the p-value of the motif is lower. Next we focused our attention to analyzing how LREs 

are utilized by STAT6 and p65. To address this issue, we mapped the binding sites of the two 

SDTFs to the identified TF-LREs (TF-LREs) (Figure 29).  

 

Figure 29. Distribution of co-LREs on STAT6 and p65 binding sites 

Balance bar plot showing the distribution of the STAT6 and p65 cistromes on the different subsets of 

transcription factor co-labelled regulatory element groups. TF combinations that co-label these LREs are 

presented on the y-axis, while the x-axis depicts the percentages of the STAT6 and p65 cistromes that overlap 

with them. 

The cistromes of both p65 and STAT6 highly overlapped with PU.1-, PU.1+IRF8- and 

PU.1+IRF8+CEPBA+RUNX1-LREs (“All” group), although a higher portion of the STAT6 

cistrome overlapped with these groups compared to p65’s. Interestingly, p65 showed higher 

enrichment for IRF8-, RUNX1- and CEBPA-LREs than STAT6, suggesting that in certain 
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cases, SDTFs preferentially use certain LRE groups (without regard to the number of the co-

bound TFs). Collectively, these findings highlight that the SDTFs of the two main polarization 

programs bind LREs, where the SDTFs do not necessarily prefer co-LREs, and show 

preferential binding to certain TF modules (TF combinations) at LREs. 

Our results highlight that LREs have a contribution to short-term polarization programs. To 

address the question whether co-LREs also have any role in intermediate or long-term 

transcriptional responses, we investigated the activated enhancer network of classical and 

alternative macrophage polarization programs using fine resolution, time course RNAPII-pS2 

ChIP-seq experiments: we treated BMDMs with IL-4 and LPS for 1h, 3h, 6h and 24h. (see an 

example for the Ccl12 locus in Figure 30, where an LRE is activated by both IL-4 and LPS.  

 

 

Figure 30. IGV snapshot of Ccl12 locus in the context of 1h IL-4 or LPS treatment  

IGV snapshot of Ccl12 locus with a TF co-labelled regulatory element that can be used by both SDTFs (STAT6 

and p65) and each of these two recruit the elongation-specific form of RNA polymerase II (RNAPII-pS2) with 

different kinetics upon LPS and IL-4 mediated macrophage polarization.  



 65 

At the global scale, we identified 6,356 LREs that were up-regulated upon IL-4 or LPS 

treatment at least at one time point (FC>2 & p-value < 0.05, compared to the steady state 

BMDMs). Next, we clustered the up-regulated LREs into eight enhancer clusters (ECs), all of 

them with different transcriptional kinetics: EC1, EC2 and EC3 were IL4-specific, while 

clusters EC4-EC8 were specific for LPS (Figure 31). Having analyzed the cluster sizes, we 

found that LREs nearly equally contribute to early, intermediate and late induced TF modules. 

 

Figure 31. Clustering of enhancers overlapping with LREs up-regulated by IL-4 or LPS 

Heatmap representation of the transformation of labelled regulatory elements (LREs) to active enhancers based 

on RNAPII-pS2 recruitment upon LPS or IL-4 mediated macrophage polarization on the time course of 1, 3, 6 

and 24 hours. Regulated enhancer clusters (ECs) (FC>2 & p-value < 0.05) and normalized Z-scores of RNAPII-

pS2 signals are shown.  

Next, we were wondering whether there are specific TF motifs that can be associated with 

certain TF modules. De novo motif analysis of the ECs revealed that the PU.1 motif showed 

high enrichment in all clusters. In contrast, the STAT6 motif was overrepresented in EC2 and 

EC3, the early and intermediate IL-4-specific TF modules, and NF-kB for EC4 and EC6, which 

were rapidly up-regulated by LPS at 1h. We also detected motifs of  the EGR family in EC1 
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(late responsive IL-4 clusters) and the Microphthalmia-associated (MAF) TF family in EC2 and 

EC3 (IL-4-specific early and intermediate responsive modules), confirmed by recent works 

(Daniel et al., 2018; K. K. Kang et al., 2017), as well.  We also identified MITF and RUNX 

under the IL-4 specific ECs. On the contrary, the motifs of TRE and CRE bound by certain AP-

1 family members were highly enriched in the LPS intermediate (EC6 and EC7) modules while 

the motif of CEBP showed highly enrichment in the late responsive modules (EC8) as well. 

ISRE and EICE were overrepresented both in EC2 and EC3 (IL-4 specific early and 

intermediate ECs) and in EC5, an intermediate LPS-specific module (Figure 32).  

 

Figure 32. Motif enrichment of the regulated enhancer clusters 

Heatmap showing the p-values of the motifs enriched under at least one of the identified ECs.  

To reveal whether these co-LRE-associated ECs regulate gene expression with similar 

kinetics, we filtered the genes based on two conditions: 1) on the gene body, Pol II S2 signal 

was induced upon IL-4 or LPS compared to the resting BMDM state (1,735, FC>2 & p-value 

< 0.05) and 2) their TSSs was in the 100-kb vicinity of at least one regulated EC. Next, we 

clustered these genes into eight clusters (GBs), and they showed similar transcriptional kinetics 

(Figure 33).  
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Figure 33. Association of regulated enhancers to regulated gene bodies 

(1) Heatmap showing the differentially RNAPII-pS2 enriched gene bodies (GBs) following IL-4 or LPS 

stimulations over the time course presented. DiffBind was used to infer differentially regulated (FC>2 & p-value 

< 0.05) RNAPII-pS2 regions (1h, 3h, 6h, 24h IL4 and 1h, 3h, 6h, 24h LPS treatment) from duplicates using 

untreated samples as control. Normalized Z-scores of RNAPII-pS2 signals are shown.  (2) Sankey plot showing 

the annotated gene-enhancer pairs from the 8 clusters defined for both the enhancers and gene bodies based on 

their different  RNAPII-pS2 recruitment kinetics. The transcription start site of a gene body was associated to the 

regulated enhancer in a 200-kb-wide window. 

Finally we aimed to functionally annotate the regulated GBs using Biological Functions terms 

from the Gene Ontology database. GO analysis of GBs uncovered that IL-4-specific GBs 

showed enrichment for  terms related to immune system modulation, such as ‘regulation of cell 

adhesion’ or ‘leukocyte migration’, more general terms including ‘response to external 

stimulus’ and selectively enriched for terms related to alternative polarization such as ‘CD4-

positive alpha-beta T cell activation’. On the contrary, LPS-specific GBs showed enrichment 

for terms related to classical activation such as ’regulation to interferon beta’ and ‘defense 

response’ (Figure 34).  
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Figure 34. GO analysis of the regulated gene bodies  

Heatmap showing the enriched GO terms (Biological Processes) across GBs. The blue-red scale color contour 

represent p-values of the enrichments and the sizes of proportional to the ratio of the genes enriched for a certain 

term. 

The motif enrichments were in agreement with the binding patterns of the highly enriched 

LREs (at least with 100 overlapping sites with any ECs): PU.1+IRF8+RUNX1 and IL-4 specific 

clusters had more co-bound regions and PU.1+IRF8+CEBPA and extensively overlapped with 

LPS-specific cluster (EC5), while ‘All’ LREs were moderately enriched for both IL-4 and LPS 

ECs. On the contrary, PU.1 and PU.1+IRF8 LREs binding showed high and specific 

enrichments in both IL-4 and LPS early and intermediate modules (EC2,3 and EC4,5,6, 

respectively). Interestingly, IRF8-LREs were highly enriched for EC5 (LPS-specific early 

responsive module). Similarly, CEBPA-LREs were overrepresented in the LPS-specific 

intermediate module (EC6) (Figure 35). 
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Figure 35. Annotation of the regulated enhancers with co-LREs 

Heatmap depicting the highly enriched TF-LREs in the polarization induced enhancer clusters determined on 

panel E. TF-LREs at least with 100 overlapping sites are shown. 

Collectively, our study confirms that LREs are dynamically utilized upon SDTF binding 

and activation both in the classical and alternative polarization programs of macrophages. In 

summary, LREs are widespread both macrophages, extending the working model of enhancer 

formation and providing a novel class of the regulatory elements which contribute to dynamic 

gene expression regulation. 

6.7. Modelling enhancer states using Nondeterministic Finite State Automata  

To provide a formal model to describe the states of the chromatin and the transitions among 

them, we defined a Nondeterministic Finite Automaton. In our case, Q is the set of the possible 

states of chromatin which are determined by three components: The first one is Binding, 

representing whether or not the given region is bound by any transcription factors (’bound’, 

’unbound’), the second component is Openness (‘low’ or ‘high’ accessibility) determined by 

ATAC-seq signal and the third one is Activity that is represented by the change in active histone 

mark signal  (’down-regulated’, ’inactive’, ’up-regulated’), as shown in Figure 36.  

. 
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Figure 36. Regulation Automaton.  

An abstract model of enhancer formation. A Nondeterministic Finite state machine for modeling enhancer 

formation. qi represent the different states and lines represent the possible transitions between them. The possible 

states are determined by three components: Binding (’bound’, ’unbound’), Openness (low or highly accessible 

sites) and Activity (’down-regulated’, ’inactive’, ’up-regulated’). 

In the Regulation Automaton, input symbols represent the possible transcriptional events 

that could be connected to state changes of enhancer regions. Note that as the Binding 

component does not distinguish LDTFs and SDTFs, this automaton allows us to model the 

steady state as well as the IL-4-stimulated state. For instance, q0 represents the potential de novo 

enhancers that can be converted into q1 labelled enhancers upon PU.1 binding. Then, these 

enhancers become labelled sites characterized by low accessible chromatin and TF binding but 

inactive state. This can be further activated by binding collaborating TFs (CTFs), leading to 

recruitment of co-factors, RNA Pol II, etc. Generally, q0 represents the potential enhancers 
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being activated by a certain signal. From this state, TF-binding events can lead to state q1. In 

our case these sites would be called labelled sites. Further binding events of CTFs can convert 

these sites to the state q2, which is still inactive but has the feature of open chromatin. This is 

termed primed or poised state  (Creyghton et al., 2010). Further up-regulation can turn this state 

to q3, which is a fully active binding site characterized by H4ac or other active marks as a result 

of co-activator recruitment. From this state, chromatin can turn to q0 or get down-regulated by 

repressive factors to q4 (Ostuni et al., 2013). This automaton can describe the interactions 

between the LDTF(s) and SDTF(s) in macrophages, and the results could serve as a new-

paradigm which can be tested in other mammalian model systems. 

6.8. OCT4-LREs in the context of RA-induced neurogenesis  

Our previous findings revealed that LREs are widespread in the macrophage genome and 

play an important role in both classical and alternative polarization programs. This finding 

raised the intriguing question whether LREs exist in a different cellular context as well and if 

so, these regulatory elements can also be activated in a signal specific manner. As we have seen 

before, OCT4 is one of the Yamanaka factors responsible for maintaining self-renewal and 

pluripotency in stem cells, similarly to PU.1 which, among others, has an essential role in 

maintaining cell identity in macrophages and in other immune cells. We hypothesized that there 

might exist a fraction of the OCT4 cistrome that is not associated with highly accessible 

chromatin in the undifferentiated state. ESCs can be cultivated in a “ground state” (2 inhibitor 

[2i]) or in a ”naïve state” (serum + leukemia-inhibiting factor [LIF]) (Nichols & Smith, 2009), 

having unique gene expressional programs  (Guo et al., 2016; Kolodziejczyk et al., 2015). 

We sought to investigate this scenario by classifying OCT4 binding sites based on 

chromatin openness both in naïve (“serum”) and ground state (“2i”) ESCs. We identified 
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~21,000 OCT4 binding sites in both systems. Next we re-analyzed publicly available DNase-

seq and ATAC-seq experiments and classified the OCT4 cistrome based on chromatin openness 

predicted by DNase-seq (Figure 37).  Notably, 37% of the OCT4 cistrome in ground state was 

associated to low accessible chromatin (OCT4+/DNase high and OCT4+/DNase low). The 

DNase signal showed good correlation with ATAC-seq signals and this classification was in a 

good agreement in the naïve state as well (Figure 38). 

 

Figure 37. Classification of OCT4 binding sites based on chromatin openness (“2i”) 

Read distribution (RD) plots showing OCT4 occupancies, chromatin openness (DNase-seq, ATAC-seq) in the 

two groups clustered based on OCT4 and DNase-seq signal. The following nomenclature was used for the two 

clusters: OCT4+/DNase low (OCT4-LREs) and OCT4+/DNase high (OCT4 (+) HighAcc). RD plots show the 

signals in 2-kb windows around the summit of OCT4 or DNase peaks. OCT4 binding sites were classified in 

ground state of ESCs. 
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Figure 38. Classification of OCT4 binding sites based on chromatin openness (“serum”) 

Read distribution (RD) plots showing OCT4 occupancies, chromatin openness (DNase-seq) and H3K27ac in the 

two groups clustered based on OCT4 and DNase-seq signal. The following nomenclature was used for the two 

clusters: OCT4+/DNase low (OCT4-LREs) and OCT4+/DNase high (OCT4 (+) HighAcc). RD plots show the 

signals in 2-kb windows around the summit of OCT4 or DNase peaks. OCT4 binding sites were classified in 

naïve state of ESCs. 

To functionally annotate the newly identified OCT4-LREs, we performed a pathway 

analysis on the gene set associated with the OCT4+/DNase low genomic regions and found that 

these sites were enriched for WNT/b-catenin, Axonal Guidance Signaling, Epithelial Adherens 

Junction Signaling, PTEN Signaling, Signaling by Rho Family GTPases and RAR signaling 

pathways including WNT/b-catenin target genes such as Wnt3 and T/Brachyury and RXR:RAR 

including Hoxa1, Prmt8 and Cdx2 were enriched for OCT4 (Table 2).  

Canonical Pathways (OCT4+/DNase Low) p-value 

Wnt/b-catenin Signaling 3.33e-10 
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Axonal Guidance Signaling 1.36e-08 

Epithelial Adherens Junction Signaling 1.36e-08 

PTEN Signaling 3.15e-08 

Signaling by Rho Family GTPases 4.52e-07 

RAR Activation 8.00e-07 

Table 2. Pathway analysis of genes associated to OCT4+/DNase Low regions 

Upstream regulator analysis of genes associated to the OCT4/DNase Low regions. Pathway analysis was 

performed by Ingenuity. 

These regions showed enrichment for the H3K27me3 (repressive mark) while they were 

negative for H3K27ac as shown in Figure 39, indicating that the differentiation-related genes 

are transcriptionally inactive in the unstimulated state. 

 

Figure 39. IGV snapshots of putative OCT4 target genes 

Integrative Genomics Viewer (IGV) snapshot of regulatory regions in the vicinity of pluripotency- and 

differentiation related genes. Distances of the regulatory regions from the TSS of the genes are also indicated. 

Next, we validated the OCT4 binding on the putative “OCT4/DNase Low” regulatory 

regions by ChIP-qPCR both in naïve and ground states. Our measurements confirmed the 
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binding of OCT4 to these regions (Figure 40) and hints the existence of a yet unknown role of 

OCT4 in regulating differentiation-specific pathways such as RAR signaling.  

 

Figure 40. ChIP-qPCR measurements of putative enhancer regions of OCT4 target genes 

To test whether OCT4 is necessary for the proper regulation of these genes, first we 

performed loss of function experiments using small interfering RNA (siRNA) knockdown of 

OCT4. The efficiency of OCT4 knockdown was high and the depletion of OCT4 did not 

substantially affect the mRNA level of NANOG. 

 

Figure 41. Western blot validation of efficiency of OCT4 siRNA experiments 

(1) Western blot assay showing protein expression of OCT4 from untransfected cells (Mock) or transfected cells 

with siNeg (non-specific) or siOCT4 A/B (OCT4-specific siRNAs). (2) Bar plot showing the mRNA level of 

Nanog measured by qPCR 24 hr after RNAi transfection. 

To examine the biological function of OCT4 at the labelled regulatory regions in the vicinity 

of RXR:RAR target genes, we investigated the expression changes of RA target genes upon 

OCT4 depletion. Next, we analyzed publicly available OCT4i and NANOGi microarray data 
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sets. Interestingly, upon the knockdown of OCT4 RA target genes, higher basal mRNA 

expression could be observed (Figure 42). In contrast, the depletion of Nanog did not 

substantially increase the mRNA level of these genes. This result confirms that there exists an 

OCT4-related mechanism by which RA-regulated genes such as Hoxa1 are suppressed, and this 

regulation mechanism is independent from the canonical pluripotency gene expression network. 

 

 

Figure 42. The effect of NANOG or OCT4 depletion on RA target genes  

Heatmap showing the quantile normalized expression values of RA target genes in NANOGi, OCT4i and control 

samples. Average values over replicates are shown. 

qPCR measurements confirmed that OCT4 represses the mRNA level of the Hoxa1 gene 

and the eRNA of a putative enhancer 5 kb upstream of the TSS of Hoxa1 bound by OCT4 in 

the pluripotent state (Figure 43). 
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Figure 43. Regulation of the mRNA level of Hoxa1 gene and its putative enhancer region 

Bar plot showing the mRNA level of Rarg and eRNA lelvel of its putative enhancer region measured by qPCR 

24 hr after RNAi transfection. 

RA signaling is known to regulate the Hox gene cluster, which is involved in the placement 

of hindbrain segments and specify the positional identities on the anterior-posterior axis for the 

cells during differentiation (Mallo, Wellik, & Deschamps, 2010). Due to its important function 

in neurogenesis, we chose Hoxa1 as a model gene for further investigation. 

Next, we aimed to characterize the interaction between OCT4 and the RA pathway 

components. As shown in Figure 44, only Rara and Rarg were down-regulated at the mRNA 

level upon the depletion of OCT4, however the fold change was much higher for Rarg. 
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Figure 44. RA signaling pathway components in WT and OCT4i cells  

Heatmap showing the quantile normalized expression values of RA signaling pathway components in OCT4i and 

control samples. Average values over replicates are shown. 

qPCR measurements of OCT4 binding and the eRNA level at the putative regulatory region 

of Rarg after RNAi transfection revealed that OCT4 regulates Rarg in the pluripotent state via 

direct binding to its putative enhancer region (Figure 45). 

 

 

Figure 45. Regulation of the mRNA level of Rarg gene and its putative enhancer region 
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Bar plot showing the OCT4 binding and the eRNA level of its putative enhancer region measured by qPCR 24 hr 

after RNAi transfection. 

6.9. Modelling OCT4-related transcriptional circuits using network motifs 

As we have seen that OCT4 positively contributes to gene expression in the early steps of 

RA-induced neurogenesis besides its critical role in maintaining the pluripotent state of ESCs. 

Strikingly, the depletion of OCT4 selectively down-regulated the mRNA level of Rarg from the 

RA signaling pathway. RAR forms heterodimers with RXR; having analyzed the mRNA level 

of the possible RXR and RAR isotypes, Rxrb and Rarg were found to be the dominant 

heterodimer partners that most likely mediate the RA signaling in ESCs (Figure 46). 

 

Figure 46. mRNA level of Rxr and Rar isotypes in ESCs 

Moreover, our results show that RA up-regulate the mRNA level of Hoxa1 gene via distal 

regulatory elements in collaboration with OCT4. These enhancer regions are often low 

accessible regions in the pluripotent state and get activated by external stimuli such as RA 

treatment. Some enhancers were enriched for p300 (coactivator with histone acetyl transferase 

activity) prior to stimulus, and the activated RXR:RAR heterodimer further activated them 

(Figure 47).  
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Figure 47. Hoxa1 locus with three RA-sensitive enhancers 

(1) Integrative Genomics Viewer (IGV) snapshot of Hoxa1 locus. Distances of the enhancers from the TSS are 

shown. (2) Bar plot showing the enhancer RNA level of one of its putative enhancer (+51 kb) region measured 

by qPCR 24 hr after RNAi transfection. 

 

Hoxa1-/- ES cells showed a higher level of OCT4 compared to wild-type cells after RA 

treatment for 48 to 96 hrs. This finding implies that the expression level of OCT4 and Hoxa1 

genes are mutually exclusive: either OCT4 is highly expressed in the unstimulated ESCs 

preventing the expression of Hoxa1 or Hoxa1 is turned on suppressing the OCT4 at the mRNA 

level (Martinez-Ceballos, Chambon, & Gudas, 2005).  

This accumulated data led us to conceptualize our knowledge on the role of OCT4 in the 

early steps of RA-induced neurogenesis. We built a composite motif network consisting of  two  

fundamental modules: (1) A C1-FFL in which OCT4 directly up-regulates the expression level 

of Rarg in the ESC state and indirectly up-regulates Hoxa1 up RA treatment via collaborative 

binding of the RXR:RAR heterodimer (2) OCT4 and Hoxa1 implement a mutual repression 

motif where either OCT4 is turned on and Hoxa1 is turned off (ESC state) or vice versa (long 

term RA signaling) (Figure 48). 
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Figure 48. OCT4-related composite network motifs in RA-induced ESCs 

Composite network was recreated based on (Simandi, Horvath, et al., 2016). 
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7. DISCUSSION 

In the post-genomic era, one of the biggest challenge is  to integrate, interpret, and ultimately 

create meaningful models based on accumulating Next Generation Sequencing data  (Koboldt, 

Steinberg, Larson, Wilson, & Mardis, 2013), which require an increasing intellectual 

contribution from the computer science community. Therefore interdisciplinary teams need to 

be set up to understand complex molecular biology processes by building predictive models, 

which seem to be essential for deciphering the processes of cell functions, replication, 

transcription, and translation. 

Machine learning methods such as Random Forest and Support Vector Regression serve as  

novel tools to validate hypotheses by building classifiers and regressive models that can not 

only make predictions, but also determine the relative contribution of the input variables. We 

have demonstrated that chromatin openness profiled by ATAC-seq can be predicted from the 

binding pattern of  key TFs using Random Forest classifier and Support Vector Regressor 

models. These computational approaches revealed that (1) despite the fact that PU.1 is the most 

prominent LDTF of macrophages, neither its solo binding nor the solo binding of other TFs are 

not sufficient to predict OCRs, and (2) the whole TF panel we used in the machine learning 

approach predicted open chromatin with a very high (82%) accuracy, suggesting that the most 

relevant TFs were included in the model. 

This finding led us to the observation that more than half of the PU.1 binding sites do not 

overlap with OCRs. Therefore we examined the potential function of this type of PU.1 binding 

sites in classical and alternative polarization programs induced by LPS and IL-4, respectively. 

Our study revealed that a certain fraction of the ‘labelled’ sites is opened and activated by the 

binding of STAT6 (induced by IL-4 – alternative polarization) or p65 (induced by LPS - 
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classical polarization) in a signal-specific manner. A likely scenario is that in resting 

macrophages, the LDTF(s) attempt to establish open chromatin but no proper TF module is 

available to maintain open chromatin structure permanently (Voss & Hager, 2014). Further 

extension of our model will be possible when binding events can be examined at the single cell 

level (Brazda et al., 2011, 2014) and within the time-frame of milliseconds rather that within 

several minutes and by this way, the biases caused by population-based (bulk) techniques such 

as ChIP-seq can be avoided. Our results add another layer to the working model of enhancer 

activation and underline the importance of chromatin openness in shaping cell-type-specific 

enhancer repertoires and gene regulation. Collectively, our results lend support for a spectrum 

model according to which the transcriptional responses are tailored by the trade-off of the 

SDTFs and the available enhancer repertoire determined by the LDTFs.  

First, on one end of the spectrum there are de novo enhancers strongly dependent on the 

corresponding SDTF in a sequence-specific manner and the LDTFs can neither open nor bind 

these sites in the resting state. Therefore, at these sites certain SDTFs seem to be mandatory 

factors to initiate and maintain any regulatory events. Second, the newly identified, labelled 

enhancers are bound by LDTF(s) in the unstimulated state, but the LDTF(s) do not have the 

ability to maintain open chromatin permanently. The third class of enhancers is the group of 

poised enhancers, which are already open before the stimuli meaning that they are strongly 

supported by the available TFs in the unstimulated state, but they need the SDTF(s) to become 

activated. In former studies, the binding of PU.1 and H3K4me1/2 was used to define enhancers 

and H3K27ac (active histone marks) to discriminate between poised and active enhancers 

(Creyghton et al., 2010; Ostuni et al., 2013). Fourth, the up-regulated, constitutively active 

enhancers can be driven without any stimuli and in some cases the binding of the SDTF(s) can 
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induce further up-regulation. Our results show that this group of enhancers requires a lower 

level of sequence-specificity compared to the de novo or labelled enhancers, and this raises the 

possibility that open chromatin has a distinct role in recruiting SDTFs via less-specific DNA 

binding and/or protein-protein interactions.  

The need for formal models capturing the essence of a complex biological process appeared 

in parallel with the emergence of experimental molecular biology, even before the NGS 

revolution. During the modelling process, the most critical step is abstraction, by which we 

eliminate the unnecessary components and highlight the critical features of the phenomena to 

be modeled. The Operon-model was the first well-characterized regulatory process representing 

a very effective mechanism of prokaryotic gene regulation by which the organism can rapidly 

adapt to environmental stimuli (Jacob & Monod, 1961). Another example, which applied 

Automata Theory approach, is the Chemoton model (Gánti, 1975) proposing an automaton to 

formalize the essential properties of life (self-replication, metabolism and a bilayer membrane). 

In this study, we constructed a Nondeterministic Finite Automaton termed Regulation 

Automaton capturing the essential steps of enhancer formation using only the attributes 

Binding, Openness and Activity.  

Interestingly, we found a similar mechanism in embryonic stem cells. The pluripotency 

factor OCT4 occupies genomic regions associated with the genes of signaling pathways such 

as RA signaling that are inactive in the ESC state. These regions are typically low accessible 

and often positive for the repressive histone mark H3K27me3. Upon certain stimuli, however, 

these regions will be bound by SDTFs which subsequently activate them by recruiting co-

activators, similarly as co-LREs collaborate with STAT6 or p65 upon certain polarization 

signals in macrophages (Simandi, Nagy, et al., 2016). Notably, OCT4 maintains the gene 
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expression of Rarg in the unstimulated state while at low accessible regions it serves as a 

repressor of RA-target genes such as Hoxa1. In this regard, OCT4 is similar to IRF8, which also 

seems to have such a function. However, delineation of the repressive role of IRF8 at low 

accessible regions needs further studies. To formally describe this complex OCT4-related 

regulatory circuit, we built a composite network from the combination of two characteristic 

network motifs; (1) an C1-FFL depicting the direct and positive regulation of Rarg in the 

unstimulated state and the indirect up-regulation of Hoxa1 through by RXR:RAR heterodimer, 

(2) the mutual repression of OCT4 and Hoxa1 genes providing a regulatory switch between one 

of the most prominent pluripotency factor and the key regulator of early steps of neurogenesis 

essential to properly pattern the early mouse hindbrain and the associated neural crest. By using 

such modelling approaches, these studies can serve as building blocks for creating a firmly 

established theory of enhancer formation. 
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8. SUMMARY 

Summary 1. We have determined the contribution of key macrophage TFs to 

chromatin openness and enhancer activation in steady state and polarized 

mouse macrophages.  

Our findings include 

• Chromatin openness can be accurately predicted from the binding pattern of key TFs using 

machine learning methods such Random Forest and Support Vector Regressor both 

qualitatively and quantitatively. 

• The machine learning-based classification has also revealed that more than half of the PU.1 

cistrome is associated to low accessible chromatin regions termed PU-labelled regulatory 

elements (LREs). Moreover our results show that having a remarkable fraction of LREs is a 

general phenomenon among the studied TFs (IRF8, CEBPA and RUNX1). 

• Loss/gain of function experiments for PU.1 (PUER system) and IRF8 (Irf8-/-) has shown 

that PU.1 and IRF8 have an indispensable role in regulating gene expression in the steady 

state and/or in response to IL-4. 

• There are indeed distinct TF modules collaboratively binding labelled regulatory elements 

(co-LREs) that regulate specific gene expression programs with different dynamics initiated 

by various macrophage polarizing stimuli including LPS (classical activation) and IL-4 

(alternative activation). 

• Identification of ~2,300 IRF8-LREs that gained openness in Irf8-/- cells suggesting a 

repressive role for IRF8 at these LREs. 
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• A formal model termed Regulation Automaton describing the possible states of enhancer 

formation and transitions among them. 

Summary 2. We have characterized a novel role of OCT4 in the early steps 

of RA-induced neurogenesis.  

Our findings include: 

• Characterization of the OCT4 cistrome and its relation to chromatin openness has revealed 

that there is a remarkably fraction of OCT4 binding that are not associated to open chromatin 

(OCT4-labelled regulatory elements – OCT4-LREs) both in naïve and ground state. 

• Examination of the interaction between OCT4-LREs and retinoic acid signaling pathway 

has uncovered that OCT4 plays a critical role in not only maintaining pluripotency state but 

also in the early steps of neuronal differentiation. 

• siRNA mediated knockdown of OCT4 has shown that OCT4 is essential to activate 

differentiation-related enhancers of retinoic acid target genes such as Hoxa1. 

• Construction of a composite network built from stereotypical network motifs describing 

the dual role of OCT4; maintaining the expression of Rxrg and repressing Hoxa1 in 

pluripotency state and being essential role in mediating the up-regulation of  Hoxa1 via 

RXR:RAR response elements upon 24h RA treatment. 
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9. ÖSSZEFOGLALÁS 

Összegzés 1. Meghatároztuk a kulcs makrofág transzkripciós faktorok 

hozzájárulását a kromatin nyitottsághoz és enhanszer aktivációhoz mind 

nyugvó mind polarizált egér makrofágokban. 

Eredményeink alapján a következő megállapításokat tettük: 

• A Random Forest és Support Vector Regressor gépi tanuló eljárások alkalmazásával a 

kromatin nyittottsága nagy pontossággal megjósolható a kulcs TF-ok kötési mintázatából 

függetlenül attól, hogy “magas nyitottságú” és “alacsony nyitottságú” csoportokba osztjuk a 

kötőhelyeket (osztályozási feladat) vagy folytonos értékként kezeljük a nyitottságot 

(regressziós feladat). 

• Az osztályozó gépi tanuló eljárás akalmazása arra is rámutatott, hogy a PU.1 kötőhelyek 

több mint fele alacsony nyitottságú genomi régiót köt, amelyeket jelölt szabályozó elemeknek 

neveztünk el. Eredményeink alapján azt is elmondhatjuk, hogy ez általános jelenség a többi 

kulcs TF (IRF8, CEBPA és RUNX1) esetében is. 

• A PUER, valamint az Irf8-/- sejtekben elvégzett kísérletek bebizonyították, hogy mind a 

PU.1-nak, mind az IRF8-nak elengethetetlen szerepe van a nyugvó sejtekben zajló és az IL-

4-függő génexpressziós szabályzásban is. 

• Számos olyan TF modul létezik, amelyek tagjai együtt kötnek jelölt szabályozó elemeket. 

Ezek a modulok különböző módon válaszolnak a klasszikus (LPS) és alternatív (IL-4) 

polarizációs stimulusokra és specifikus géncsoportokat szabályoznak eltérő kinetikával.  

• Az IRF8 hiányos sejtekben nyitottá váló mintegy 2 300 IRF8-Jelölt Szabályozó Elem az 

IRF8 represszor szerepére utal. 
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• Az általunk megkonstruált Szabályozó Automatának elnevezett formális modell 

segítségével leírhatóak a már ismert és az újonnan azonosított enhanszertípusok és a köztük 

előforduló állapotátmenetek.  

Összegzés 2. Feltártuk az OCT4 transzkripciós faktor eddig nem ismert 

szerepét a neuronális differenciáció korai szakaszában 

Eredményeink alapján a következő megállapításokat tettük: 

• Genomskálájú vizsgálataink megmutatták, hogy az OCT4 kötőhelyeinek egy jelentős része 

alacsony nyitottságú genomi régiót köt (OCT4-jelölt szabályozó elemek) mind az ún. 

“naiv” mind az ún. “alapállapotú” embrionális őssejtekben. 

• Az OCT4-jelölt szabályozó elemek és a retinsav útvonal összefüggéseink vizsgálata 

rámutotatott, hogy az OCT4 nemcsak a pluripotens állapot fenntartásában, hanem neuronális 

differenciáció korai szakaszában is jelentős szerepet játszik. 

• Az OCT4 RNS szintű csendesítése megmutatta, hogy az OCT4 hozzájárul fontos gének 

(pl. Hoxa1) differenciációval összefüggő szabályzó elemeinek aktiválásához. 

• Egy összetett motívumhálózat megalkotásával szemléltettük az OCT4 kettős szerepét: 

egyrészt a pluripotens állapotban fenntartja az Rxrg szintjét és represszálja a Hoxa1 gént, 

másrészt 24 órás retínsav stimulus esetén elengethetetlen a Hoxa1 gén expressziós szintjének 

növeléséhez. 
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