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Introduction

Jean Baptiste Joseph Fourier began to work on the theory of heat and how

it flows have.in 1822, he published book with tittle of Théorie Analytic de la

Chaleur (The Analytic Theory of Heat).

A great deal of effort has been expended after that work, one of the most

influential forms of mathematical ideas has been developed and developed,

including Fourier theory and the so-called field of harmonic analysis. Since

then, this subject has gained exceptional importance in both theoretical con-

tent and its enormous scope and great relevance everywhere in mathematics,

science and engineering.Where an increasing number of mathematicians have

adopted the point of view that the most appropriate setting for the develop-

ment of the theory of Fourier analysis is furnished by the class of all locally

compact groups.

On the theoretical side, Fourier series theory has gained a leading force in

developing and improving mathematical analysis and studying the functions of

real variables. Where one can also argue that set theory, inclusive the construc-

tion of the real numbers and the ideas notification of cardinality and account-

ability, it was developed because of Fourier theory. In the application segment,

all signal processing processes today are based on Fourier’s theory. Everything

in mobile technology, including the principle and method of storing and trans-

mitting images, depends on the Fourier series theory. In 1926 Kolmogoroff

[5] gave the construction of an integrable function with everywhere divergent

trigonometric Fourier series. That is, if we want to have some pointwise con-

vergence result for each function belonging to the Lebesgue space L1 then it is

needed to use some summation method. The invention of Fejér [11] was to use

the arithmetical means of the partial sums. Among others, he proved for con-

tinuous functions that these means converge to the function in the supreumum

norm. One year later, Lebesgue proved the almost everywhere convergence

1



2 Chapter 0. Introduction

of these so-called Fejér means to the function for each integrable function.

That is, the behavior of the Fejér (or also called (C, 1)) means is better than

the behavior of the partial sums in this point of view. This fact also justifies

the investigation of various summation methods of Fourier series. Later on,

we write about the (C,α) summation - which is a generalization of the Fejér

summation - of Fourier series. The result of Lebesgue above for the (C,α)
case (α > 0) is due to M. Riesz [33]. For example, the dyadic group is the

simplest but nontrivial model of the complete product of finite groups. Rep-

resenting the characters of the dyadic group ordered in the Paley’s sense, we

obtain the Walsh system.

A new things of the generalization on the Walsh-Paley system is the

Vilenkin system introduced by Vilenkin [37] in 1947. He used the set of all

characters of the complete product of arbitrary cyclic groups to obtain the

commutative case.

In Hungary a dyadic analysis team works leaded by Schipp having several

results in this theory. For instance, they proved that the Paley theorem is true

for an arbitrary Vilenkin group, i.e. the partial sums of the Vilenkin-Fourier

series of a function in Lp(G) (1 < p < 1) converge in the appropriate norm

to the function (Schipp [29], Simon [34]). And so from Canada Young [41].

The example above is not true for all cases if we take the complete product

of arbitrary finite group (not necessarily commutative). These studies were

appeared in [14] by Gát and Toledo first and they obtained not only negative

results for this groups, because they also proved the convergence in Lp-norm

of the Fejér means of Fourier series when p ≥ 1 in the bounded case.

This thesis comes to study in the Dyadic harmonic analysis. Moreover,

I would also like to mention paper [18], in which Gát and Toledo discussed

the norm convergence of Fejér means of integrable functions on noncommu-

tative bounded Vilenkin groups. This area, which have roots lie in the physics

of vibration, uses integration to decompose (integrable) functions into piece-

wise constant components by generating numbers (called Walsh-Fourier coef-

ficients) and infinite series (Walsh-Fourier series). These numbers and series

can be used to approximate and to characterize the original function. We are

particularly interested and in problems of the convergence of Cesàro means

(under varying parameters and two variable Walsh-Fourier series) and growth

(how fast the partial sums or the Cesàro means of a Walsh- Fourier series

grow?). Specific results can be obtained.

Dyadic Harmonic analysis has many applications. Using Walsh-Fourier

series to approximate a given function makes it possible to transmit data effi-
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ciently (e.g. multiplexing), to filter data (e.g. remove noise from weak video

signals), and for data compression (e.g. transmit hundreds of signals through

a single fiber optic cable). Using Walsh-Fourier coefficients to characterize

functions makes it possible to recognize patterns (e.g. read handwritten zip-

codes). Walsh functions have also been used to design genetic algorithms,

methods to optimize non-differentiable problems for which the standard ap-

proach via calculus will not work.

The thesis is organized as follows:

In Chapter one, we follow the standard notions of dyadic analysis intro-

duced by the mathematicians F. Schipp, P. Simon, W. R. Wade (see e.g. [32])

and others. The notion of the Hardy space H(I) is introduced in the follow-

ing way [32]. Set the definition of the nth (n ∈ N) Walsh-Paley function at

point x ∈ I , the Fourier coefficients, the Dirichlet and the Fejér or (C, 1) ker-

nels, respectively and so for the Fejér or (C, 1) means of f . The kernel of

the (C,αn) summability method will simple be called (C,αn) kernel or the

Cesàro kernel for αn ∈ R \ {−1,−2, . . . }. Finally, we give an introduction

to the two-dimensional Fourier coefficients, the rectangular partial sums of

the two-dimensional Fourier series, the rectangular Dirichlet kernels and the

(C,αn) Cesàro-Marcinkiewicz means of integrable function f for two vari-

ables.

In Chapter two, a new result about almost everywhere convergence of

Cesàro means with varying parameters of Walsh-Fourier series is given we

prove the almost everywhere convergence of a subsequnce of the Cesàro

(C,αn) means of integrable functions σα2n

2n f → f for f ∈ L1(I), where

I is the unit interval for every sequence α = (αn), 0 < αn < 1.

In Chapter three, a new result about almost everywhere convergence of

Cesàro means with varying parameters of Walsh-Fourier series is given We

prove the almost everywhere convergence of the the Cesàro (C,αn) means of

integrable functions σαn
n f → f , where Nα,K � n → ∞ for f ∈ L1(I), where

I is the unit interval for every sequence α = (αn), 0 < αn < 1.

In Chapter four, i talk about a new result of almost everywhere conver-

gence of Cesàro means of two variable Walsh-Fourier series with varying pa-

rameteres. We prove that the maximal operator of some (C, βn) means of
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cubical partial sums of two variable Walsh-Fourier series of integrable func-

tions is of weak type (L1, L1). Everywhere write in the dissertation L1 or L1

if you wish, but please only one them should occur. Moreover, the (C, βn)-

means σβn
2n f of the function f ∈ L1 converge a.e. to f for f ∈ L1(I2), where

I is the unit interval for some sequences 1 > βn ↘ 0.

It should finally be noted that most of the results obtained in this the-

sis have been published (or accepted for publication) in a series of articles:

[6],[7]. This dissertation is based on the results of a two recently published

papers in peer reviewed journals. It is worth mentioning that our paper enti-

tled convergence of Cesàro means with varying parameters of Walsh-Fourier

series which was published in Miskolc Mathematical Notes Journal has been

cited twice by other researchers in the field. For instance, G. Gát and U. Gogi-

nava have cited it in their article entitled Maximal operators of Cesàro means

with varying parameters of Walsh–Fourier series [20] and F. Weisz have cited

it in their article entitled Cesàro and Riesz summability with varying parame-

ters of multi-dimensional Walsh–Fourier series [40]. We expect this work to

receive more attention by other researchers in the future.

Finally, the author would like to thank for all Professors who worked and

made every efforts for this valuable ideas and Professor Dr. György Gát for

this work and for his several advices and remarks to improve this work.



Chapter 1

Preliminaries

In this chapter, We follow the standard notions of dyadic analysis intro-

duced by the mathematicians F. Schipp, P. Simon, W. R. Wade (see e.g. [32])

and others. The notion of the Hardy space H(I) is introduced in the fol-

lowing way [32]. Set the definition of the nth (n ∈ N) Walsh-Paley func-

tion at point x ∈ I . the Fourier coefficients, the Dirichlet and the Fejér or

(C, 1) kernels, respectively and so for the Fejér or (C, 1) means of f . the ker-

nel of the summability method (C,αn) and call it the (C,αn) kernel or the

Cesàro kernel for αn ∈ R \ {−1,−2, . . . }. Finally, an introduction to the

two-dimensional Fourier coefficients, the rectangular partial sums of the two-

dimensional Fourier series, the rectangular Dirichlet kernels and the (C,αa)
Cesàro-Marcinkiewicz means of integrable function f for two variables.

1.1 The Standard Notions Of Dyadic Analysis

In this section, we follow the standard notions of dyadic analysis intro-

duced by the mathematicians F. Schipp, P. Simon, W. R. Wade (see e.g. [32])

and others. Denote by N := {0, 1, ...},P := N \ {0}, the set of natural num-

bers, the set of positive integers and I := [0, 1) the unit interval. Denote by

λ(B) = |B| the Lebesgue measure of the set B(B ⊂ I).

Denote by Lp(I) the usual Lebesgue spaces and ‖.‖p the corresponding

5



6 Chapter 1. Preliminaries

norms (1 ≤ p ≤ ∞). Set

J :=

{[
p

2n
,
p+ 1

2n

)
: p, n ∈ N

}

the set of dyadic intervals and for given x ∈ I and let In(x) denote the

interval In(x) ∈ J of length 2−n which contains x (n ∈ N). Also use the

notation In := In(0) (n ∈ N). Let

x =

∞∑
n=0

xn2
−(n+1)

be the dyadic expansion of x ∈ I , where xn = 0 or 1 and if x is a dyadic

rational number (x ∈ { p
2n : p, n ∈ N}) we choose the expansion which

terminates in 0’s.

The notion of the Hardy space H(I) is introduced in the following way

[32]. A function a ∈ L∞(I) is called an atom, if either a = 1 or a has

the following properties: supp a ⊆ Ia, ‖a‖∞ ≤ |Ia|−1,
∫
I a = 0, for some

Ia ∈ J . We say that the function f belongs to H , if f can be represented

as f =
∑∞

i=0 λiai, where ai’s are atoms and for the coefficients (λi) the

inequality
∑∞

i=0 |λi| < ∞ is true. It is known that H is a Banach space with

respect to the norm

‖f‖H := inf

∞∑
i=0

|λi|,

where the infimum is taken over all decompositions f =
∑∞

i=0 λiai ∈ H .

Definition 1.1. The nth (n ∈ N) Walsh-Paley function at point x ∈ I is:

ωn(x) :=

∞∏
j=0

(−1)xjnj ,

where N � n =
∑∞

n=0 nj2
j (nj ∈ {0, 1} (j ∈ N)). It is known (see [23]

or [36]) that for the elements of the system (ωn, n ∈ N) we have the almost

everywhere equality

ωn(x+ y) = ωn(x)ωn(y),
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where the operation + is the so-called logical addition on I . That is, for any

x, y ∈ I

x+ y :=
∞∑
n=0

|xn − yn|2−(n+1).

Definition 1.2. The Fourier coefficients, the Dirichlet and the Fejér or (C, 1)
kernels

Denote by

f̂(n) :=

∫
I
fωndλ, Dn :=

n−1∑
k=0

ωk, K1
n :=

1

n+ 1

n∑
k=0

Dk.

Definition 1.3. The Fejér or (C, 1) means of f

It is also known that the Fejér or (C, 1) means of f is

σ1
nf(y) :=

1

n+ 1

n∑
k=0

Skf(y) =

∫
I
f(x)K1

n(y + x)dλ(x)

=
1

n+ 1

n∑
k=0

∫
I
f(x)Dk(y + x)dλ(x), (n ∈ N, y ∈ I).

It is known [32] that for n ∈ N, x ∈ I it holds

D2n(x) =

{
2n , if x ∈ In

0 , if x /∈ In

and also that

Dn(x) = ωn(x)

∞∑
k=1

D2k(x)nk(−1)xk ,

where n =
∑∞

i=1 ni2
i, ni = {0, 1} (i ∈ N).
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Definition 1.4. The (C,αn) kernel or the Cesàro kernel for αn ∈ R \
{−1,−2, . . . }

Denote by Kαn
n the kernel of the summability method (C,αn) and call it

the (C,αn) kernel or the Cesàro kernel for αn ∈ R \ {−1,−2, . . . }

Kαn
n =

1

Aαn
n

n∑
k=0

Aαn−1
n−k Dk,

where

Aαn
k =

(αn + 1)(αn + 2)...(αn + n)

k!
.

It is known [44] that Aαn
n =

∑n
k=0A

αn−1
k , Aαn

k −Aαn
k+1 = −αnA

αn
k

k+1 .

Definition 1.5. Cesàro means of integrable function f

The (C,αn) Cesàro means of integrable function f is

σαn
n f(y) :=

1

Aαn
n

n∑
k=0

Aαn−1
n−k Skf(y) =

∫
I
f(x)Kαn

n (y + x)dλ(x).

Definition 1.6. The two-dimensional Fourier coefficients

Now, for the two variable case we have for x =
(
x1, x2

)
, y =

(
y1, y2

) ∈
I2, n = (n1, n2) ∈ N

2 the two-dimensional Fourier coefficients

f̂(n1, n2) :=

∫
I×I

f(x1, x2)ωn1(x
1)ωn2(x

2)dλ(x1, x2).

Definition 1.7. Rectangular partial sums of the two-dimensional Fourier series

The rectangular partial sums of the two-dimensional Fourier are

Sn1,n2f(y
1, y2) :=

n1−1∑
k1=0

n2−1∑
k2=0

f̂(k1, k2)ωk1(y
1)ωk2(y

2).



1.1. The Standard Notions Of Dyadic Analysis 9

Definition 1.8. Rectangular Dirichlet kernels.

The rectangular Dirichlet kernels are

Dn1,n2(z) := Dn1(z
1)Dn2(z

2) =

n1−1∑
k1=0

n2−1∑
k2=0

ωk1(z
1)ωk2(z

2),

where (z = (z1, z2) ∈ I2).

Definition 1.9. Marcinkiewicz mean and kernel.

We have the nth Marcinkiewicz mean and kernel

σ1
nf(y) :=

1

n+ 1

n∑
k=0

Sj,jf(y), K1
n(z) =

1

n+ 1

n∑
j=0

Dj,j(z).

Thus, we get

σ1
nf(y

1, y2) =

∫
I×I

f(x1, x2)K1
n(y

1 + x1, y2 + x2)dλ(x1, x2).

Definition 1.10. The (C,αn) kernel or the Cesàro-Marcinkiewicz kernel for

αn ∈ R \ {−1,−2, . . . }

Denote by Kαn
n the kernel of the summability method (C,αn)-

Marcinkiewicz and call it the (C,αa) kernel or the Cesàro-Marcinkiewicz ker-

nel for αn ∈ R \ {−1,−2, . . . }

Kαn
n (x1, x2) =

1

Aαn
n

n∑
k=0

Aαn−1
n−k Dj,j(x1, x2)

where

Aαn
k =

(αn + 1)(αn + 2)...(αn + k)

k!
.
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Definition 1.11. The (C,αn) Cesàro-Marcinkiewicz means of integrable

function f for two variables

The (C,αn) Cesàro-Marcinkiewicz means of integrable function f for two

variables are

σαn
n f(y1, y2) =

1

Aαn
n

n∑
k=0

Aαn−1
n−k Sk,kf(y

1, y2)(x)

=

∫
I×I

f(x1, x2)Kαn
n (y1 + x1, y2 + x2)dλ(x1, x2).

=
1

Aαn
n

n∑
k=0

∫
I×I

Aαn−1
n−k f(x1, x2)Dk(y

1 + x1)Dk(y
2 + x2)dλ(x1, x2).

Over all of the chapter discussing the generalized Marcinkiewicz-Cesàro

means we suppose that monotone decreasing sequences (αn) and (βn) satisfy

βn = α2n ,
αN

AαN
N

logδ
(
1 +

N

n

)
≤ C

αn

Aαn
n

(N ≥ n, n,N ∈ P) (1.1)

for some δ > 1 and for some positive constant C. We remark that from

condition (1.1) it follows that sequence ( αn

Aαn
n

) is quasi monotone decreasing.

That is, for some C > 0 we have αN

A
αN
N

≤ C αn

Aαn
n

(N ≥ n, n,N ∈ P).



Chapter 2

ALMOST EVERYWHERE
CONVERGENCE OF
CESÀRO MEANS WITH
VARYING PARAMETERS
(C, α2n)

2.1 Cesàro means of Fourier series with variable pa-
rameters (C, α2n)

In this chapter, we introduced the notion of Cesàro means of Fourier series

with variable parameters. We prove the almost everywhere convergence of a

subsequnce of the Cesàro (C,αn) means of integrable functions σα2n

2n f → f
for f ∈ L1(I), for every sequence α = (αn), 0 < αn < 1. This theorem for

the case of α ≡ 1 and for the whole sequence σαn
n was proved by Fine [9]. For

the case of the (C, 1) or Fejér means there are several generalizations known

with respect to some orthonormal systems. One could mention the papers [13],

[16], [45].

In [9] Fine proved the almost everywhere convergence σαn
n f −→ f for

all integrable function f with constant sequence αn = α > 0. With respect

11
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Chapter 2. ALMOST EVERYWHERE CONVERGENCE OF CESÀRO

MEANS WITH VARYING PARAMETERS (C,α2n)

to it was a question of Taibleson [36] open for a long time, that does the

Fejér-Lebesgue theorem, that is the a.e. convergence σ1
nf −→ f hold for

all integrable function f with respect to the character system of the group of

2-adic integers. In 1997 Gát answered [16] this question in the affirmative.

Zheng and Gát generalized this result [13], [45] for more general orthonormal

systems. Thus, in the future these system could also be investigated in the

point of view of varying parameter summability. In this chapter C denotes

an absolute constant which may depend only on α. The introduction of

(C,αn) means due to Akhobadze investigated [1] the L1-norm convergence

of σαn
n f → f for the trigonometric system. In this chapter it is also supposed

that 1 > αn > 0 for all n.

The main aim of this chapter is to prove:

Theorem 2.1. (Abu Joudeh and Gát [6]) Suppose that 1 > αn > 0. Let
f ∈ L1(I). Then we have the a.e convergence σα2n

2n f −→ f.

The method we use to prove Theorem 2.1 is to investigate the maximal

operator σα∗ f := supn∈N |σα2n

2n f |. We also prove that this operator is of type

(H,L) and of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

Theorem 2.2. (Abu Joudeh and Gát [6]) Suppose that 1 > αn > 0. Let
f ∈ H(I). Then we have

‖σα
∗ f‖1 ≤ C‖f‖H .

Moreover, the operator σα∗ is of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

‖σα
∗ f‖p ≤ Cp‖f‖p for all 1 < p ≤ ∞.

Basically, in order to prove Theorem 2.1 we verify that the maximal

operator σα∗ f (α = (αn)) is of weak type (L1, L1). The way we get this,

the investigation of kernel functions, and its maximal function on the unit

interval I by making a hole around zero. To have the proof of Theorem 2.2 is

the standard way after having the fact that σα∗ f is of weak type (L1, L1). We

need several Lemmas in the next section.
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2.2 Proofs

Lemma 2.3. ([24]) For j, n ∈ N, j < 2n we have

D2n−j(x) = D2n(x)− ω2n−1(x)Dj(x).

Lemma 2.3 can be found in [24] in a more genearal situation and so it is

not a new one. In spite of this fact, in order to help to understand the behavior

of the Walsh functions I decided to put here the proof of it.

Proof.

D2n(x) =

2n−1∑
k=0

ωk(x) =

2n−j−1∑
k=0

ωk(x) +
2n−1∑

k=2n−j

ωk(x)

= D2n−j +

2n−1∑
k=2n−j

ωk(x).

We have to prove :

2n−1∑
k=2n−j

ωk(x) = ω2n−1(x)Dj(x).

For k < j, k = kn−12
n−1 + ...+ k12

1 + k0 we have

ω2n−1(x)ωk

= ω2n−1+...+21+20(x)ωkn−12n−1+...+k0(x)

= ω(1+kn−1(mod 2))2n−1+...+(1+k0(mod 2))20(x)

= ω(1−kn−1)2n−1+...+(1−k0)20(x)

= ω2n−1+2n−2+...+20−(kn−12n−1+...+k0)(x) = ω2n−1−k(x).

Thus,

ω2n−1(x)Dj(x) = ω2n−1(x)

j−1∑
k=0

ωk(x) =

j−1∑
k=0

ω2n−1−k(x) =
2n−1∑

k=2n−j

ωk(x).

This completes the proof of Lemma 2.3.
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Introduce the following notations: for n, j ∈ N let n(j) :=
∑j−1

i=0 ni2
i, that

is, n(0) = 0, n(1) = n0 and for 2B ≤ n < 2B+1, let |n| := B, n = n(B+1).

Moreover, introduce the following functions and operators for n, a ∈ N and

1 > αa > 0

Tαa
n :=

1

Aαa
n

2|n|−1∑
j=0

Aαa−1
n−j Dj ,

tαa
n f(y) :=

∫
I
f(x)Tαa

n (y + x)dλ(x).

Now, we need to prove the next Lemma which means that maximal oper-

ator supn,a |tαa
n | is quasi-local. In this chapter it would have been possible to

define operator tαa
n (n, a ∈ N) only for n = a, that is, tαn

n . Because the main

aim of this chapter is to discuss the behavior of σαn
n where n is a power of

two. But, in chapter 3 it will be needed to have Lemma 2.4. or more precisely

method of its proof. That is, a result for operator tαa
n , where both a and n are

natural numbers but not necessarily the same.

Lemma 2.4. (Abu Joudeh and Gát [6]) Let 1 > αa > 0, f ∈ L1(I) such
that supp f ⊂ Ik(u),

∫
Ik(u)

fdλ = 0 for some dyadic interval Ik(u) (a, k ∈
N, u ∈ I). Then we have

∫
I\Ik(u)

sup
n,a∈N

|tαa
n f |dλ ≤ C‖f‖1.

.

Proof. It is easy to have that for n < 2k and x ∈ Ik(u) we have Tαa
n (y+x) =

Tαa
n (y + u) and

∫
Ik(u)

f(x)Tαa
n (y + x)dλ(x) = Tαa

n (y + u)

∫
Ik(u)

f(x)dλ(x) = 0.

Therefore,

∫
I\Ik(u)

sup
n∈N

|tαa
n f |dλ =

∫
I\Ik(u)

sup
n≥2k

|tαa
n f |dλ.



2.2. Proofs 15

Recall that B = |n|. Then

Aαa
n Tαa

n

=

2B∑
j=0

Aαa−1
2B+n(B)−j

Dj

=

2B∑
j=0

Aαa−1
n(B)+jD2B−j

By Lemma 2.3 we have

Aαa
n Tαa

n

= D2B

2B−1∑
j=0

Aαa−1
n(B)+j − ω2B−1

2B−1∑
j=0

Aαa−1
n(B)+jDj .

It is easy to have that 1
Aαa

n
D2B (z)

∑2B−1
j=0 Aαa−1

n(B)+j = 0 , for any z ∈ I\Ik.

This holds because D2B (z) = 0 for B = |n| ≥ k and z ∈ I \ Ik. By the help

of the Abel transform we get:

2B−1∑
j=0

Aαa−1
n(B)+jDj

=

2B−1∑
j=0

(Aαa−1
n(B)+j −Aαa−1

n(B)+j+1)

j∑
i=0

Di +Aαa−1
n(B)+2B

2B−1∑
i=0

Di

= (1− αa)

2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j +Aαa−1
n 2BK1

2B−1

= (1− αa)
2k−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j

+ (1− αa)

2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j +Aαa−1
n 2BK1

2B−1

=: I + II + III.

Since for any j < 2k we have that the Fejér kernel K1
j (y + x) depends (with



16

Chapter 2. ALMOST EVERYWHERE CONVERGENCE OF CESÀRO
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respect to x) only on coordinates x0, . . . , xk−1, then∫
Ik(u)

f(x)K1
j (y + x)dλ(x) = K1

j (y + u)

∫
Ik(u)

f(x)dλ(x) = 0

gives
∫
Ik(u)

f(x)I(y + x)dλ(x) = 0. On the other hand,

|II| ≤ (1− αa)

2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
|K1

j |

≤ sup
j≥2k

|K1
j |(1− αa)

n∑
j=0

Aαa−1
j = Aαa

n (1− αa) sup
j≥2k

|K1
j |.

This by Lemma 3 in [13] gives∫
I\Ik

sup
n≥2k,a∈N

1

Aαa
n

|II|dλ ≤
∫
I\Ik

sup
j≥2k

|K1
j |dλ ≤ C.

The situation with III is similar. Namely,

Aαa−1
n n

Aαa
n

=
αa · n

(αa + n)
≤ αa < 1.

So, just as in the case of II we apply Lemma 3 in [13]∫
I\Ik

sup
n≥2k,a∈N

1

Aαa
n

|III|dλ ≤
∫
I\Ik

sup
n≥2k

|K1
2|n|−1

|dλ ≤ C.

Therefore, substituting z = x+y ∈ I \Ik (since x ∈ Ik(u) and y ∈ I \Ik(u))∫
I\Ik(u)

sup
n≥2k,a∈N

|tαa
n f |dλ

=

∫
I\Ik(u)

sup
n≥2k,a∈N

∣∣∣∣∣
∫
Ik(u)

f(x)Tαa
n (y + x)dλ(x)

∣∣∣∣∣ dλ(y)
≤

∫
I\Ik(u)

∫
Ik(u)

|f(x)| sup
n≥2k,a∈N

(|II(y + x)|+ |III(y + x)|) dλ(x)

=

∫
Ik(u)

|f(x)|
∫
I\Ik

sup
n≥2k,a∈N

(|II(z)|+ |III(z)|) dλ(z)dλ(x)

≤ C

∫
Ik(u)

|f(x)|dλ(x).
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So, just as in the case of II we apply Lemma 3 in [13]

∫
I\Ik

sup
n≥2k,a∈N

1

Aαa
n

IIIdλ

≤
∫
I\Ik

sup
n≥2k,a∈N

|K1
2|n|−1

|dλ

≤ C.

Therefore, substituting z = x+y ∈ I \Ik (since x ∈ Ik(u) and y ∈ I \Ik(u))
This completes the proof of Lemma 2.4.

A straightforward corollary of this lemma is:

Corollary 2.5. (Abu Joudeh and Gát [6]) Let 1 > αn > 0. Then we have
‖Tαn

n ‖1 ≤ C for all natural number n, where C is some absolute constant.

Proof. The proof is a straightforward consequence of some steps of the proof

of Lemma 2.4. Let B = |n|.

‖Aαn
n Tαn

n ‖1 ≤ ‖D2B‖1
2B−1∑
j=0

Aαn−1
n(B)+j

+ (1− αn)

2B−1∑
j=0

Aαn−1
n(B)+j

j + 1

n(B) + j + 1
‖K1

j ‖1 +Aαn−1
n 2B‖K1

2B−1‖1.

Then by ‖D2B‖ = 1, ‖K1
j ‖1 ≤ C we complete the proof of Corollary 2.5.

If n is a power of two, say n = 2B then it is easy to see that tαn
n f =

σ
α
2B

2B
f . Also recall that σα∗ f := supB |tα2B

2B
f | = supB |σα

2B

2B
f |. That is,

σα∗ f ≤ supn |tαn
n f |.

Lemma 2.6. (Abu Joudeh and Gát [6]) The operator σα∗ is of type (L∞, L∞).

Proof. if f ∈ L∞ we need to prove ‖tα∗ f‖∞ ≤ C‖f‖∞. By Corollary 2.5 we
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have

‖σα
∗ f‖∞ = ess sup

y∈I
( sup

n
|
∫
I
f(x)Tαn

n (y + x)dλx|)

= ess sup
y∈I

( sup
n

|
∫
I
f(y + x)Tαn

n (x)dλx|)

≤ ess sup
y∈I

( sup
n

∫
I
‖f‖∞|Tαn

n (x)dλx|)

≤ ess sup
y∈I

( sup
n

∫
I
‖f‖∞|Tαn

n (x)dλx|)

= ‖f‖∞ess sup
y∈I

( sup
n

∫
I
|Tαn

n (x)|dλx) ≤ C‖f‖∞.

Hence σα∗ is of type (L∞, L∞) type. This completes the proof of Lemma

2.6.

Now, we can prove the main tool in order to have Theorem 2.1.

Lemma 2.7. (Abu Joudeh and Gát [6]) Let 1 > αn > 0. The operator σα∗ is
of weak type (L1, L1) (σα∗ f := supn |σα2n

2n f | ).

Proof. We apply the Calderon-Zygmund decomposition lemma [45]. That is,

let f ∈ L1 and ‖f‖1 < λ then there is a decomposition:

f = f0 +

∞∑
j=1

fj

such that

‖f0‖∞ ≤ Cλ, ‖f0‖1 ≤ C‖f‖1
and Ij = Ikj (u

j) are disjoint dyadic intervals for which

supp fj ⊂ Ij ,

∫
Ij
fjdλ = 0 , |F | ≤ C‖f1‖

λ

(uj ∈ I , kj ∈ N , j ∈ P ), where F = ∪∞
i=1I

j . By the σ-sublinearity of the

maximal operator we have

μ(σα
∗ f > 2Cλ) ≤ μ(σα

∗ f0 > Cλ) + μ(σα
∗ (

∞∑
i=1

fi) > Cλ) := I + II .
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Since ‖σα∗ f0‖∞ ≤ ‖f0‖∞ ≤ Cλ then we have I = 0. So,

μ(σα
∗ (

∞∑
i=1

fi) > Cλ) ≤ |F |+ μ(F̄ ∩ {σα
∗ (

∞∑
i=1

fi) > Cλ})

≤ C‖f‖1
λ

+
C

λ

∞∑
i=1

∫
Īj
σα
∗ fjdλ =:

C‖f‖1
λ

+
C

λ

∞∑
i=1

IIIj

IIIj :=

∫
Īj

σα
∗ fjdλ ≤

∫
Īkj (u

j)
sup
n∈N

∣∣∣∣∣
∫
Ikj (u

j)
fj(x)T

αn
n (y + x)dλ(x)

∣∣∣∣∣ dλ(y).
We investigate IIIj by the help Lemma 2.4 : IIIj ≤ C‖fj‖1. This com-

pletes the proof of Lemma 2.7.

Proof of Theorem 2.1. (Abu Joudeh and Gát [6]) let P be a Walsh

polynomial, where P (x) =
∑2k−1

i=0 ciωi. Then for all natural number n ≥ 2k

we have that SnP ≡ P . Consequently, the relation σα2n

2n P −→ P holds

everywhere.

Now Let ε, δ > 0 , f ∈ L1 Let P be a polynomial such that ‖f − P‖L1 < δ
Then

λ(lim
n
|σα2n

2n f − f | > ε)

≤ λ(lim
n
|σα2n

2n (f−P )| > ε

3
)+λ(lim

n
|σα2n

2n P−P | > ε

3
)+λ(lim

n
|P−f | > ε

3
)

≤ λ(sup
n

|σα2n

2n (f − P )| > ε

3
) + 0 +

3

ε
‖P − f‖1 ≤ C‖P − f‖1 3

ε
≤ C

ε
δ.

Because σα∗ is of weak type (L1, L1). So for all δ > 0 and consequently for

arbitrary ε > 0 we have

λ(lim
n
|σα2n

2n f − f | > ε) = 0.

By the set inclusion

{lim
n
|σα2n

2n f − f | > 0} ⊂
∞⋃
k=1

{lim
n
|σα2n

2n f − f | > 1

k
}



20

Chapter 2. ALMOST EVERYWHERE CONVERGENCE OF CESÀRO
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and by the fact that the union of each member on the right side is a 0 measure

set we have that the left side is also a 0 measure set. Thus,

μ{lim
n
|σα2n

2n f − f | > 0} = 0

lim
n
|σα2n

2n f − f | = 0 a. e

lim
n

|σα2n

2n f − f | = 0 a. e

lim
n
(σα2n

2n f − f) = 0 a. e

σα2n

2n f −→ f a. e

That is, the proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. (Abu Joudeh and Gát [6]) Lemma 2.6. and Lemma

2.7 by the interpolation theorem of Marcinkiewicz [45] gives that the operator

σα∗ is of type (Lp, Lp) for all 1 < p ≤ ∞. Let a be an atom ( a �= 1 can be

supposed ), supp a ⊂ Ik(x),
∫
I adλ = 0 and ‖a‖∞ ≤ 2k for some k ∈ N and

x ∈ I . Then , n < 2k implies Sna = 0 because
∫
Ik(x)

a(t)dλ(t) = 0 That is,

σα
∗ a = sup

2n≥2k
|σα2n

2n f |.

By the help Lemma 2.4 it gives∫
I\Ik(x)

σα
∗ a dλ ≤

∫
I\Ik(x)

sup
n≥2k

∣∣∣∣∣
∫
Ik(x)

a(y)Tαn
n (z + y)dλ(y)

∣∣∣∣∣ dλ(z)
≤ C‖a‖1 ≤ C.

Since the operator σα∗ is of type (L2, L2) (i.e ‖σα∗ f‖2 ≤ C‖f‖2 for all f ∈
L2(I)), then we have

‖σα
∗ a‖1 =

∫
I\Ia

σα
∗ a +

∫
Ik(x)

σα
∗ a

≤ C + |Ik(x)|
1
2 ‖σα

∗ a‖2 ≤ C + C2
−k
2 ‖a‖2 ≤ C + C2

−k
2 2

k
2 ≤ C.

That is, ‖σα∗ a‖1 ≤ C and consequently the σ-sublinearity of σα∗ gives

‖σα
∗ f‖1 ≤

∞∑
i=0

|λi|‖σα
∗ ai‖1 ≤ C

∞∑
i=0

|λi| ≤ C‖f‖H

for all
∑∞

i=0 λiai ∈ H . That is , the operator σα∗ is of type (H,L). That is, the

proof of Theorem 2.2 is complete.



Chapter 3

ALMOST EVERYWHERE
CONVERGENCE OF
CESÀRO MEANS WITH
VARYING PARAMETERS
(C, αn)

3.1 Cesàro means of Fourier series with variable pa-
rameters (C, αn).

In this chapter, we introduced the notion of Cesàro means of Fourier series

with variable parameters. We prove the almost everywhere convergence of the

Cesàro (C,αn) means of integrable functions σαn
n f → f , where Nα,K � n →

∞ for f ∈ L1(I), where I is the unit interval for every sequence α = (αn),
0 < αn < 1. This theorem for constant sequences α that is, α ≡ α1 was

proved by Fine [9].

In [9] Fine proved the almost everywhere convergence σαn
n f −→ f for all

integrable function f with constant sequence αn = α1 > 0. On the rate of

convergence of Cesàro means in this constant case see the paper of Fridli [10].

For the two-dimensional situation see the paper of Goginava [19].

21
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Set two variable function P (n, α) :=
∑∞

i=0 ni2
iα for n ∈ N, α ∈ R. For

instance P (n, 1) = n. Also set for sequences α = (αn) and positive reals K
the subset of natural numbers

Nα,K :=

{
n ∈ N :

P (n, αn)

nαn
≤ K

}
.

We can easily remark that for a sequence α such that 1 > αn ≥ α0 > 0
we have Nα,K = N for some K depending only on α0. We also remark that

2n ∈ Nα,K for every α = (αn), 0 < αn < 1 and K ≥ 1.

In this chapter C denotes an absolute constant and CK another one which

may depend only on K. The introduction of (C,αn) means due to Akhobadze

investigated [1] the behavior of the L1-norm convergence of σαn
n f → f for

the trigonometric system. In this chapter it is also supposed that 1 > αn > 0
for all n.

The main aim of this chapter is to prove:

Theorem 3.1. (Abu Joudeh and Gát [6]) Suppose that 1 > αn > 0. Let
f ∈ L1(I). Then we have the almost everywhere convergence σαn

n f → f
provided that Nα,K � n → ∞. for any fixed K > 0

The method we use to prove Theorem 3.1 is to investigate the maximal

operator σα∗ f := supn∈Nα,K
|σαn

n f |. We also prove that this operator is a kind

of type (H,L) and of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

Theorem 3.2. (Abu Joudeh and Gát [6]) Suppose that 1 > αn > 0. Let
|f | ∈ H(I). Then we have

‖σα
∗ f‖1 ≤ CK‖|f |‖H .

Moreover, the operator σα∗ is of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

‖σα
∗ f‖p ≤ CK,p‖f‖p

for all 1 < p ≤ ∞.

For the sequence αn = 1 Theorem 3.2 is due to Fujii [12]. For the more

general but constant sequence αn = α1 see Weisz [38].

Basically, in order to prove Theorem 3.1 we verify that the maximal op-

erator σα∗ f (α = (αn)) is of weak type (L1, L1). The way we get this, the

investigation of kernel functions, and its maximal function on the unit interval

I by making a hole around zero and some quasi locality issues (for the notion

of quasi-locality see [32]). To have the proof of Theorem 3.2 is the standard

way. We need several Lemmas in the next section.
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3.2 Proofs

Recall Lemma 2.3. [24] That is,

For j, n ∈ N, j < 2nwehaveD2n−j(x) = D2n(x)− ω2n−1(x)Dj(x).

Introduce the following notations: for a, n, j ∈ N let n(j) :=
∑j−1

i=0 ni2
i,

that is, n(0) = 0, n(1) = n0 and for 2B ≤ n < 2B+1, let |n| := B,

n = n(B+1). Moreover, introduce (and recall from Chapter 2) the following

functions and operators for n, a ∈ N and 1 > αa > 0

Tαa
n :=

1

Aαa
n

2|n|−1∑
j=0

Aαa−1
n−j Dj ,

T̃αa
n :=

1

Aαa
n

D2B

2B−1∑
j=0

Aαa−1
n(B)+j + (1− αa)

2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1

∣∣K1
j

∣∣
+Aαa−1

n 2B
∣∣K1

2B−1

∣∣ ,
tαa
n f(y) :=

∫
I
f(x)Tαa

n (y + x)dλ(x),

t̃αa
n f(y) :=

∫
I
f(x)T̃αa

n (y + x)dλ(x).

Now, we need to prove the next Lemma which means that maximal oper-

ator supn,a |t̃αa
n | is quasi-local. This lemma together with the next one are the

most important tools in the proof of the main results of this chapter.

Lemma 3.3. (Abu Joudeh and Gát [6]) Let 1 > αa > 0, f ∈ L1(I) such
that supp f ⊂ Ik(u),

∫
Ik(u)

fdλ = 0 for some dyadic interval Ik(u). Then we
have ∫

I\Ik(u)
sup
n,a∈N

|t̃αa
n f |dλ ≤ C‖f‖1.

Moreover, |Tαa
n | ≤ T̃αa

n .

Proof. It is easy to have that for n < 2k and x ∈ Ik(u) we have T̃αa
n (y+x) =

T̃αa
n (y + u) and∫

Ik(u)
f(x)T̃αa

n (y + x)dλ(x) = T̃αa
n (y + u)

∫
Ik(u)

f(x)dλ(x) = 0.
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Therefore, ∫
I\Ik(u)

sup
n,a∈N

t̃αa
n fdλ =

∫
I\Ik(u)

sup
n≥2k,a∈N

t̃αa
n fdλ.

Recall that B = |n|. Then

Aαa
n Tαa

n =

2B−1∑
j=0

Aαa−1
2B+n(B)−j

Dj =

2B−1∑
j=0

Aαa−1
n(B)+jD2B−j

By Lemma 2.3 and also on page 15, in the proof of Lemma 2.4 we have

Aαa
n Tαa

n = D2B

2B−1∑
j=0

Aαa−1
n(B)+j − ω2B−1

2B−1∑
j=0

Aαa−1
n(B)+jDj .

It is easy to have that 1
Aαa

n
D2B (z)

∑2B−1
j=0 Aαa−1

n(B)+j = 0, for any z ∈ I \ Ik.

This holds because D2B (z) = 0 for B = |n| ≥ k and z ∈ I \ Ik. By the help

of the Abel transform and by the steps of the proof of Lemma 2.4 (on page 15)

we get:

=

∣∣∣∣∣∣(1− αa)

2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j +Aαa−1
n 2BK1

2B−1

∣∣∣∣∣∣
=

∣∣∣∣∣(1− αa)

2k−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j

+ (1− αa)
2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j +Aαa−1
n 2BK1

2B−1

∣∣∣∣∣
≤ (1− αa)

2k−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1

∣∣K1
j

∣∣

+ (1− αa)
2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1

∣∣K1
j

∣∣+Aαa−1
n 2B

∣∣K1
2B−1

∣∣
=: I + II + III.

These equalities above immediately proves inequality |Tαa
n | ≤ T̃αa

n .
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Since for any j < 2k we have that the Fejér kernel K1
j (y + x) depends

(with respect to x) only on coordinates x0, . . . , xk−1, then
∫
Ik(u)

f(x)|K1
j (y+

x)|dλ(x) = |K1
j (y + u)| ∫Ik(u) f(x)dλ(x) = 0 gives

∫
Ik(u)

f(x)I(y +

x)dλ(x) = 0.

On the other hand,

II = (1− αa)

2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
|K1

j |

≤ sup
j≥2k

|K1
j |(1− αa)

n∑
j=0

Aαa−1
j = Aαa

n (1− αa) sup
j≥2k

|K1
j |.

This by Lemma 3 in [13] just as in the proof of Lemma 2.4 gives∫
I\Ik

sup
n≥2k,a∈N

1

Aαa
n

IIdλ ≤
∫
I\Ik

sup
j≥2k

|K1
j |dλ ≤ C.

The situation with III is similar. Namely, reciting the proof of Lemma 2.4

again we have
Aαa−1

n n

Aαa
n

< 1.

So, just as in the case of II recall the corresponding part of the proof of

Lemma 2.4 ∫
I\Ik

sup
n≥2k,a∈N

1

Aαa
n

IIIdλ ≤ C.

Therefore, substituting z = x+y ∈ I \Ik (since x ∈ Ik(u) and y ∈ I \Ik(u))∫
I\Ik(u)

sup
n≥2k,a∈N

t̃αa
n fdλ

=

∫
I\Ik(u)

sup
n≥2k,a∈N

∣∣∣∣∣
∫
Ik(u)

f(x)T̃αa
n (y + x)dλ(x)

∣∣∣∣∣ dλ(y)
≤

∫
I\Ik(u)

∫
Ik(u)

|f(x)| sup
n≥2k,a∈N

1

Aαa
n

(II(y + x) + III(y + x)) dλ(x)

=

∫
Ik(u)

|f(x)|
∫
I\Ik

sup
n≥2k,a∈N

1

Aαa
n

(II(z) + III(z)) dλ(z)dλ(x)

≤ C

∫
Ik(u)

|f(x)|dλ(x).

This completes the proof of Lemma 3.3.
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A straightforward corollary of this lemma is:

Corollary 3.4. (Abu Joudeh and Gát [6]) Let 1 > αa > 0. Then
we have ‖Tαa

n ‖1 ≤ ‖T̃αa
n ‖1 ≤ C, ‖tαa

n f‖1, ‖t̃αa
n f‖1 ≤ C‖f‖1 and

‖tαa
n g‖∞, ‖t̃αa

n g‖∞ ≤ C‖g‖∞ for all natural numbers a, n, where C is some
absolute constant and f ∈ L1, g ∈ L∞. That is, operators t̃αa

n , tαa
n are of type

(L1, L1) and (L∞, L∞) (uniformly in n).

Proof. The proof is a straightforward consequence of Lemma 3.3 and an easy

estimation below. Let B = |n|. Then

∥∥∥Aαa
n T̃αa

n

∥∥∥
1
≤ ‖D2B‖1

2B−1∑
j=0

Aαa−1
n(B)+j

+ (1− αa)
2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
‖K1

j ‖1 +Aαa−1
n 2B‖K1

2B−1‖1.

Then by ‖D2B‖1 = 1, ‖K1
j ‖1 ≤ C we complete the proof of Corollary 3.4.

Lemma 3.5. (Abu Joudeh and Gát [6]) Let n,N be any natural numbers and
0 < α < 1. Then we have

Aα
n

Aα
N

≤ 2

(
n+ 1

N

)α

.

Proof. By definition we have

Aα
n

Aα
N

=(
1− α

n+ 1 + α

)
· · ·

(
1− α

N + α

)
≤

(
1− α

n+ 2

)
· · ·

(
1− α

N + 1

)
.

It is well-known that(
1− α

i(n+ 1) + 1

)
· · ·

(
1− α

(i+ 1)(n+ 1)

)

≤
(
1− α

(i+ 1)(n+ 1)

)n+1

≤ (
e−1

) α
i+1 .
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for every n ∈ N. This gives

(
1− α

n+ 2

)
· · ·

(
1− α

N + 1

)
≤ (

e−1
)α∑� N

n+1�
i=2

1
i

≤ (
e−1

)α loge� N
n+1�−1+c

≤ 2
(
e−1

)α loge( N
n+1) = 2

(
n+ 1

N

)α

.

where c ≈ 0.5772 is the Euler-Mascheroni constant. This completes the proof

of Lemma 3.5.

Recall that the two variable function P (n, α) =
∑∞

i=0 ni2
iα for n ∈

N, α ∈ R and K ∈ R determines the set of natural numbers

Nα,K =

{
n ∈ N :

P (n, αn)

nαn
≤ K

}
.

Let n = 2hs + · · · + 2h0 , where hs > · · · > h0 ≥ 0 are integers. That is,

|n| = hs. Let n(j) := 2hj + · · · + 2h0 . This means n = n(s). Define the

following kernel function and operators

K̃αn
n := T̃αn

n(s) +

s∑
l=0

(
Aαn

n(l−1)

Aαn

n(s)

D2hl +
Aαn

n(l−1)

Aαn

n(s)

T̃αn

nl−1

)

and

σ̃αn
n f := f ∗ K̃αn

n , σ̃α
∗ f := sup

n∈Nα,K

|f ∗ K̃α
n |.

In the sequel we prove that maximal operator σ̃α∗ f is quasi-local. This is

the very base of the proof of the main results of this chapter. That is, Theorem

3.1 and Theorem 3.2.

Lemma 3.6. (Abu Joudeh and Gát [6]) Let 1 > αn > 0, f ∈ L1(I) such
that supp f ⊂ Ik(u),

∫
Ik(u)

fdλ = 0 for some dyadic interval Ik(u). Then we
have ∫

I\Ik(u)
σ̃α
∗ fdλ ≤ CK‖f‖1,

where constant CK can depend only on K.
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Proof. Recall that n = 2hs+ · · ·+2h0 , where hs > · · · > h0 ≥ 0 are integers.

That is, |n| = hs. Let n(j) := 2hj + · · · + 2h0 . this can be found a couple of

lines above. Use also the notation

K̃αn

n(s)

= T̃αn

n(s) +

s∑
l=0

(
Aαn

n(l−1)

Aαn

n(s)

D2hl +
Aαn

n(l−1)

Aαn

n(s)

T̃αn

nl−1

)

=: G1 +G2 +G3.

Since n(l−1) < 2h(l−1)+1, then by Lemma 3.5 we have

Aαn

n(l−1)

Aαn

n(s)

≤ 2

(
n(l−1) + 1

n(s)

)αn

≤ 2
2αn(hl−1+1)

2αnhs
≤ C

2hl−1αn

nαn
.

That is, by the above written we also have

∫
I\Ik(u)

sup
n∈N

∣∣∣∣∣
∫
Ik(u)

f(x)G2(y + x)dλ(x)

∣∣∣∣∣ dλ(y)∫
I\Ik(u)

sup
n∈N

s∑
l=0

2hl−1αn

nαn

∣∣∣∣∣
∫
Ik(u)

f(x)D2hl (y + x)dλ(x)

∣∣∣∣∣ dλ(y) = 0

since f ∗ D2h = 0 for h ≤ k because of the Ak measurability of D2h and∫
f = 0. Besides, for h > k D2h(y + x) = 0 (y + x /∈ Ik).

As a result of these estimations above and by the help of Lemma 3.3, that

is the quasi-locality of operator t̃α∗ = supn,a∈N |t̃αa
n | we conclude

∫
I\Ik(u)

sup
n∈N

∣∣∣∣∣
∫
Ik(u)

f(x)(G1(y + x) +G3(y + x))dλ(x)

∣∣∣∣∣ dλ(y)
≤ CK

∫
I\Ik(u)

sup
n,a∈N

∣∣∣∣∣
∫
Ik(u)

f(x)T̃αa
n (y + x)dλ(x)

∣∣∣∣∣ dλ(y)
≤ CK‖f‖1.

This completes the proof of Lemma 3.6.

Lemma 3.7. (Abu Joudeh and Gát [6]) The operator σ̃α∗ is of type (L∞, L∞)
(σ̃α∗ f := supn∈Nα,K

|σ̃αn
n f |).
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Proof. By the help of the method of Lemma 3.6 and by Corollary 3.4 we have

∥∥∥K̃αn
n

∥∥∥
1
=

∥∥∥K̃αn

n(s)

∥∥∥
1

≤
∥∥∥T̃αn

n(s)

∥∥∥
1
+

s∑
l=0

(
Aαn

n(l−1)

Aαn

n(s)

‖D2hl‖1 +
Aαn

n(l−1)

Aαn

n(s)

‖T̃αn

nl−1‖1
)

≤ C + C

s∑
l=0

Aαn

n(l−1)

Aαn

n(s)

≤ CK

because n ∈ Nα,K . Hence σ̃α∗ is of type (L∞, L∞) (with constant CK). This

completes the proof of Lemma 3.7.

Now, we can prove the main tool in order to have Theorem 3.1 for operator

σα∗ f := supn∈Nα,K
|σαn

n f | .

Lemma 3.8. (Abu Joudeh and Gát [6]) The operators σ̃α∗ and σα∗ are of weak
type (L1, L1).

Proof. The steps of the first part of the proof are similar to those int the quite

proof of Lemma 2.7. First, we prove Lemma 3.8 for operator σ̃α∗ . We apply

the Calderon-Zygmund decomposition lemma [32]. That is, let f ∈ L1 and

‖f‖1 < δ. Then there is a decomposition:

f = f0 +

∞∑
j=1

fj

such that ‖f0‖∞ ≤ Cδ , ‖f0‖1 ≤ C‖f‖1 and Ij = Ikj (u
j) are disjoint dyadic

intervals for which

fj ⊂ Ij ,

∫
Ij
fjdλ = 0 , |F | ≤ C‖f1‖

δ

(uj ∈ I , kj ∈ N , j ∈ P ), where F = ∪∞
i=1I

j . By the σ-sublinearity of the

maximal operator with an appropriate constant CK we have

λ(σ̃α
∗ f > 2CKδ) ≤ λ(σ̃α

∗ f0 > CKδ) + λ(σ̃α
∗ (

∞∑
i=1

fi) > CKδ) := I + II .
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Since by Lemma 3.7 ‖σ̃α∗ f0‖∞ ≤ CK‖f0‖∞ ≤ CKδ then we have I = 0. So,

λ(σ̃α
∗ (

∞∑
i=1

fi) > CKδ) ≤ |F |+ λ(F̄ ∩ {σ̃α
∗ (

∞∑
i=1

fi) > CKδ})

≤ CK‖f‖1
δ

+
CK

δ

∞∑
i=1

∫
I\Ij

σ̃α
∗ fjdλ =:

CK‖f‖1
δ

+
CK

δ

∞∑
i=1

IIIj ,

where

IIIj :=∫
I\Ij

σ̃α
∗ fjdλ ≤

∫
I\Ikj (uj)

sup
n∈Nα,K

∣∣∣∣∣
∫
Ikj (u

j)
fj(x)K̃

αn
n (y + x)dλ(x)

∣∣∣∣∣ dλ(y).
The forthcoming estimation of IIIj is given by the help Lemma 3.6

IIIj ≤ CK‖fj‖1.

That is, operator σ̃α∗ is of weak type (L1, L1). Next, we prove the estima-

tion

|Kαn
n | ≤ K̃αn

n . (3.1)

To prove (3.1) recall again that n = 2hs + · · ·+2h0 , where hs > · · · > h0 ≥ 0
are integers. Since n = 2hs + n(s−1), then we have

2hs+n(s−1)∑
j=2hs

Aαn−1
n(s−1)+2hs−j

Dj =

n(s−1)∑
k=0

Aαn−1
n(s−1)−k

D2hs+k

= D2hs

n(s−1)∑
k=0

Aαn−1
n(s−1)−k

+ ω2hs

n(s−1)∑
k=0

Aαn−1
n(s−1)−k

Dk

= D2hsA
αn

n(s−1) + ω2hsA
αn

n(s−1)K
αn

n(s−1) .

So, by the help of the equalities above we get

Kαn

n(s) = Tαn

n(s) +
Aαn

n(s−1)

Aαn

n(s)

(
D2hs + ω2hsK

αn

n(s−1)

)
.

Apply this last formula recursively and Lemma 3.3. (Note that n(−1) =
0, Tαn

0 = Kαn
0 = 0, Aαn

0 = 1.)
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|Kαn
n | = |Kαn

n(s) | ≤ |Tαn

n(s) |+
s∑

l=0

⎛
⎝ s∏

j=l

Aαn

n(j−1)

Aαn

n(j)

D2hl +

s∏
j=l

Aαn

n(j−1)

Aαn

n(j)

|Tαn

nl−1 |
⎞
⎠

= |Tαn

n(s) |+
s∑

l=0

(
Aαn

n(l−1)

Aαn

n(s)

D2hl +
Aαn

n(l−1)

Aαn

n(s)

|Tαn

nl−1 |
)

≤ K̃αn

n(s) = K̃αn
n .

This completes the proof of inequality (3.1). This inequality gives that the

operator σα∗ is also of weak type (L1, L1) since

λ(σα
∗ f > 2CKδ) ≤ λ(σ̃α

∗ |f | > 2CKδ) ≤ CK
‖|f |‖1

δ
= CK

‖f‖1
δ

.

This completes the proof of Lemma 3.8.

Proof of Theorem 3.1. (Abu Joudeh and Gát [6]) The proof is quite sim-

ilar to the proof of Theorem 2.1 and that is why afew steps are omitted. Let

P ∈ P be a polynomial where P (x) =
∑2k−1

i=0 ciωi. Then for all natural num-

ber n ≥ 2k, n ∈ Nα,K we have that SnP ≡ P . Consequently, the statement

σαn
n P −→ P holds everywhere (of course not only for restricted n ∈ Nα,K).

Now, let ε, δ > 0, f ∈ L1. Let P ∈ P be a polynomial such that ‖f−P‖1 < δ.

Then

λ( lim
n∈Nα,K

|σαn
n f − f | > ε)

≤ λ( lim
n∈Nα,K

|σαn
n (f − P )| > ε

3
) + λ( lim

n∈Nα,K

|σαn
n P − P | > ε

3
)

+ λ( lim
n∈Nα,K

|P − f | > ε

3
)

≤ CK‖P − f‖1 3
ε

≤ CK

ε
δ

because σα∗ is of weak type (L1, L1) (with any fixed K > 0). This holds for

all δ > 0. That is, for an arbitrary ε > 0 we have

λ( lim
n∈Nα,K

|σαn
n f − f | > ε) = 0
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and consequently we also have

λ( lim
n∈Nα,K

|σαn
n f − f | > 0) = 0.

This finally gives

σαn
n f −→ f a.e. (n ∈ Nα,K).

This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. (Abu Joudeh and Gát [6]) The proof of this theo-

rem are similar to those in the proof of Theorem 2.2 and we skip some steps.

Inequality (3.1), Lemma 3.7 and Lemma 3.8 by the interpolation theorem

of Marcinkiewicz [32] give that the operator σα∗ is of type (Lp, Lp) for all

1 < p ≤ ∞. In the sequel we prove that operator σ̃α∗ f = supn∈Nα,K
|f ∗ K̃α

n |
is of type (H,L).

Let a be an atom (a �= 1 can be supposed ), a ⊂ Ik(x) , ‖a‖∞ ≤ 2k for

some k ∈ N and x ∈ I . Then, n < 2k, n ∈ Nα,K implies a∗K̃α
n = 0 because

K̃α
n is Ak measurable for n < 2k and

∫
Ik(x)

a(t)dλ(t) = 0. That is,

σ̃α
∗ a = sup

Nα,K�n≥2k
|σ̃αn

n f |.

By the help Lemma 3.6 we have

∫
I\Ik(x)

σ̃α
∗ a dλ =

∫
I\Ik(x)

sup
Nα,K�n≥2k

∣∣∣∣∣
∫
Ik(x)

a(y)K̃αn
n (z + y)dλ(y)

∣∣∣∣∣ dλ(z)
≤ CK

∫
Ik(x)

|a(y)|dλ(y) ≤ CK‖a‖1 ≤ CK .

Since the operator σ̃α∗ is of type (L2, L2) (i.e ‖σ̃α∗ f‖2 ≤ CK‖f‖2 for all f ∈
L2(I)), then we have

‖σ̃α
∗ a‖1 =

∫
I\Ik(x)

σ̃α
∗ a +

∫
Ik(x)

σ̃α
∗ a ≤ CK .

That is ‖σ̃α∗ a‖1 ≤ CK and consequently the σ-sublinearity of σ̃α∗ gives

‖σ̃α
∗ f‖1 ≤

∞∑
i=0

|λi|‖σ̃α
∗ ai‖1 ≤ CK

∞∑
i=0

|λi| ≤ CK‖f‖H

for all
∑∞

i=0 λiai ∈ H . That is, the operator σ̃α∗ is of type (H,L). This by

inequality (3.1) and then by ‖σα∗ f‖1 ≤ ‖σ̃α∗ |f |‖1 ≤ CK‖|f |‖H completes the

proof of Theorem 3.2.



Chapter 4

ALMOST EVERYWHERE
CONVERGENCE OF
CESÀRO MEANS OF TWO
VARIABLE (C, βn)

4.1 Cesàro means of two variable Walsh-Fourier series
(C, βn)

In this chapter, we formulate and prove that the maximal operator of some

(C, βn) means of cubical partial sums of two variable Walsh-Fourier series of

integrable functions is of weak type (L1, L1). Moreover, the (C, βn)-means

σβn
2n f of the function f ∈ L1 converge a.e. to f for f ∈ L1(I2), where I is the

unit interval for some sequences 1 > βn ↘ 0.

In 1939, for the two-dimensional trigonometric Fourier partial sums Sj,jf
Marcinkiewicz [26] proved that for all f ∈ L log L ([0, 2π]2) the relation

σ1
nf =

1

n+ 1

n∑
j=0

Sj,jf → f

holds a.e. as n → ∞. Zhizhiashvili [42] improved this result and showed that

33
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for f ∈ L([0, 2π]2) the (C,α) means

σα
nf =

1

Aα
n

n∑
j=0

Aα−1
n−jSj,jf

converge to f a.e. for any α > 0. Dyachenko [8] proved this result for dimen-

sions greater than 2. In papers [22],[39] by Goginava and Weisz one can find

that the (C, 1) means σ1
nf of the double Walsh-Fourier series of a function

f ∈ L1([0, 1]2) converges to f a.e. Recently, Gát [13] proved this result with

respect to two-dimensional bounded Vilenkin systems. The d-dimensional

Walsh-Fourier case is discussed in [21].

For the one dimensional trigonometric system it can be found in Zygmund

[44] (Vol. I, p.94) that the Cesàro means or (C,α)(α > 0) means σα
nf of the

Fourier series of a function f ∈ L1([−π, π]) converge a.e. to f as n → ∞.

Moreover, it is known that the maximal operator of the (C,α) means σα∗ :=
supn∈N |σα

n | is of weak type (L1, L1), i.e.

sup
γ>0

γλ(σα
∗ f > γ) ≤ C‖f‖1 (f ∈ L1([−π, π])).

This result can be found implicitly in Zygmund [44] (Vol. I, pp. 154-156).

The idea of Cesàro means with variable parameters of numerical se-

quences is due to Kaplan [27] and the introduction of these (C,αn) means

of Fourier series is due to Akhobadze ([3], [4]) who investigated the behavior

of the L1-norm convergence of σαn
n (f) → f for the trigonometric system.

The a. e. divergence of Cesàro means with varying parameters of Walsh-

Fourier series was investigated by Tetunashvili [43].

In 2007 Akhobadze [1] (see also [2]) introduced the notion of Cesàro

means of Fourier series with variable parameters for one-dimensional func-

tions. In the recent paper [6] we proved the almost everywhere convergence

of the the Cesàro (C,αn) means of integrable functions σαn
n f → f , where

N ⊃ Nα,K � n → ∞ for f ∈ L1(I), where I is the unit interval for every se-

quence α = (αn), 0 < αn < 1. The main aim of this chapter is to investigate

to two-dimensional version of this issue.

Now, for the two variable case we have for x =
(
x1, x2

)
, y =

(
y1, y2

) ∈
I2, n = (n1, n2) ∈ N

2 the two-dimensional Fourier coefficients

f̂(n1, n2) :=

∫
I×I

f(x1, x2)ωn1(x
1)ωn2(x

2)dλ(x1, x2),
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the rectangular partial sums of the two-dimensional Fourier series

Sn1,n2f(y
1, y2) :=

n1−1∑
k1=0

n2−1∑
k2=0

f̂(k1, k2)ωk1(y
1)ωk2(y

2)

and the rectangular Dirichlet kernels

Dn1,n2(z) := Dn1(z
1)Dn2(z

2) =

nk−1∑
k1=0

nk−1∑
k2=0

ωk1(z
1)ωk2(z

2)

(z = (z1, z2) ∈ I2).

We have the nth Marcinkiewicz mean and kernel

σ1
nf(y) :=

1

n+ 1

n∑
k=0

Sj,jf(y), K1
n(z) =

1

n+ 1

n∑
j=0

Dj,j(z)

and so we get

σ1
nf(y

1, y2) =

∫
I×I

f(x1, x2)K1
n(y

1 + x1, y2 + x2)dλ(x1, x2).

Denote by Kαn
n the kernel of the summability method (C,αn)-Marcinkiewicz

and call it the (C,αn) kernel or the Cesàro-Marcinkiewicz kernel for αn ∈
R \ {−1,−2, . . . }

Kαn
n (x1, x2) =

1

Aαn
n

n∑
k=0

Aαn−1
n−k Dj,j(x1, x2)

where

Aαn
k =

(αn + 1)(αn + 2)...(αn + k)

k!
.

The (C,αn) Cesàro-Marcinkiewicz means of integrable function f for two

variables are

σαn
n f(y1, y2)

=
1

Aαn
n

n∑
k=0

Aαn−1
n−k Sk,kf(y

1, y2)
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=

∫
I×I

f(x1, x2)Kαn
n (y1 + x1, y2 + x2)dλ(x1, x2).

σαn
n f(y1, y2)

=
1

Aαn
n

n∑
k=0

∫
I×I

Aαn−1
n−k f(x1, x2)Dk(y

1 + x1)Dk(y
2 + x2)dλ(x1, x2).

Over all of this chapter we suppose that monotone decreasing sequences

(αn) and (βn) satisfy

βn = α2n ,
αN

AαN
N

logδ
(
1 +

N

n

)
≤ C

αn

Aαn
n

(N ≥ n, n,N ∈ P) (4.1)

for some δ > 1 and for some positive constant C. We remark that from

condition (4.1) it follows that sequence ( αn

Aαn
n

) is quasi monotone decreasing.

That is, for some C > 0 we have αN

A
αN
N

≤ C αn

Aαn
n

(N ≥ n, n,N ∈ P).

The main aim of this chapter is to prove

Theorem 4.1. (Abu Joudeh and Gát [7]) Suppose that monotone decreasing

sequence 1 > βn > 0 satisfies the condition Aβn
2n

βn

βN

A
βN
2N

(N + 1 − n)δ ≤ C for

every N � N ≥ n ≥ 1 and for some δ > 1. Let f ∈ L1(I2). Then we have
the almost everywhere convergence

σβn
2n f → f.

Remark 4.2. (Abu Joudeh and Gát [7]) In the proof of Theorem 4.1 we define

the sequence (αn) in a way that α2k = βk and for any 2k ≤ n < 2k+1 let

αn = α2k = βk. Then the sequence (αn) satisfies that it is decreasing and
Aαn

n
αn

αN

A
αN
N

logδ
(
1 + N

n

) ≤ C for every N � N ≥ n ≥ 1. That is, condition

(4.1) is fulfilled.

• We give two examples for sequences (βn) like above. Example one:

βk = α2k = αn = α ∈ (0, 1) for every natural number k, n.

• Example two: Let αn = 1/n. Then it is not difficult to have that Aαn
n →

1 and it should be fulfilled for sequence (αn) that CN/n ≥ logδ(1 +
N/n) for some δ > 1 and it trivially holds.
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Introduce the following notations: for a, n, j ∈ N let n(j) :=
∑j−1

i=0 ni2
i,

that is, n(0) = 0, n(1) = n0 and for 2B ≤ n < 2B+1, let |n| := B, n =
n(B+1). Moreover, introduce the following functions and operators for n ∈ N

and 1 > αa > 0 (a ∈ N) where (x1, x2) , (y1, y2) ∈ I2 (Here we remark, that

just for the proof of Theorem 4.1 a = n could have been supposed, but in the

future it will probably much more useful in the case when n is not a power of

two.)

Tαa
n (x1, x2) :=

1

Aαa
n

2B−1∑
j=0

Aαa−1
n−j Dj,j(x

1, x2),

T̄αa
n (x1, x2) := D2B (x

1)
1

Aαa
n

∣∣∣∣∣∣
2B−1∑
j=0

Aαn−1
n(B)+jDj(x

2)

∣∣∣∣∣∣ ,
¯̄Tαa
n (x1, x2) := T̄αa

n (x2, x1),

T̃αa
n (x1, x2) :=

1

Aαa
n

D2B ,2B (x
1, x2)

2B−1∑
j=0

Aαa−1
n(B)+j

+
(1− αa)

Aαa
n

2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1

∣∣K1
j (x

1, x2)
∣∣

+Aαa−1
n 2B

∣∣K1
2B−1(x

1, x2)
∣∣ ,

tαa
n f(y1, y2) :=

∫
I×I

f(x1, x2)Tαa
n (y1 + x1, y2 + x2)dλ(x1, x2),

t̃αa
n f(y1, y2) :=

∫
I×I

f(x1, x2)T̃αa
n (y1 + x1, y2 + x2)dλ(x1, x2).

We remark that is, in these definitions natural numbers a and n can vary inde-

pendently. Now we need several Lemmas in the next section.

4.2 Proofs

Lemma 4.3. (Abu Joudeh and Gát [7]) Let 1 > αa > 0, (a ∈ N) f ∈
L1(I × I) such that supp f ⊂ Ik(u

1) × Ik(u
2),

∫
Ik(u1)×Ik(u2)

fdλ = 0 for
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some dyadic rectangle, where (u1, u2) ∈ I2. Then we have

∫
Ik(u1)×Ik(u2)

sup
n,a∈N

|t̃αa
n f |dλ ≤ C‖f‖1. (4.2)

We also prove

|Tαa
n (x1, x2)| ≤ T̃αa

n (x1, x2) + T̄αa
n (x1, x2) + ¯̄Tαa

n (x1, x2). (4.3)

Proof. First, we start with the proof of the inequality

|Tαa
n | ≤ T̃αa

n + T̄αa
n + ¯̄Tαa

n .

Recall that B = |n|. Then by equality D2B−j = D2B −ω2B−1Dj and n(B) =∑B−1
j=0 nj2

j , n(B) + 2B = n we have:

Aαa
n Tαa

n (x) =
2B−1∑
j=0

Aαa−1
2B+n(B)−j

Dj,j(x) =
2B−1∑
j=0

Aαa−1
n(B)+jD2B−j,2B−j(x)

= D2B (x
1)D2B (x

2)

2B−1∑
j=0

Aαa−1
n(B)+j

− ω2B−1(x
1)D2B (x

2)

2B−1∑
j=0

Aαa−1
n(B)+jDj(x

1)

− ω2B−1(x
2)D2B (x

1)
2B−1∑
j=0

Aαa−1
n(B)+jDj(x

2)

+ ω2B−1(x
1)ω2B−1(x

2)
2B−1∑
j=0

Aαa−1
n(B)+jDj,j(x

1, x2)

=: (1)− (2)− (3) + (4).
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So by the help of the Abel transform we get:

|(4)| =
∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj,j(x

1, x2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2B−1∑
j=0

(Aαa−1
n(B)+j −Aαa−1

n(B)+j+1)

j∑
i=0

Di,i(x
1, x2) +Aαa−1

n(B)+2B

2B−1∑
i=0

Di,i(x
1, x2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1− αa)

2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j (x
1, x2) +Aαa−1

n 2BK1
2B−1(x

1, x2)

∣∣∣∣∣∣
≤ (1− αa)

2k−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1

∣∣K1
j (x

1, x2)
∣∣

+ (1− αa)

2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1

∣∣K1
j (x

1, x2)
∣∣

+Aαa−1
n 2B

∣∣K1
2B−1(x

1, x2)
∣∣ =: I + II + III.

By the above written we have

Aαa
n

∣∣Tαa
n (x1, x2)

∣∣
≤ D2B ,2B (x

1, x2)
2B−1∑
j=0

Aαa−1
n(B)+j +D2B (x

1)

∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj(x

2)

∣∣∣∣∣∣
+D2B (x

2)

∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj(x

1)

∣∣∣∣∣∣+
∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj,j(x

1, x2)

∣∣∣∣∣∣ .
Thus,

∣∣Tαa
n (x1, x2)

∣∣ ≤ T̃αa
n (x1, x2) +D2B (x

1)
1

Aαa
n

∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj(x

2)

∣∣∣∣∣∣
+D2B (x

2)
1

Aαa
n

∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj(x

1)

∣∣∣∣∣∣
= T̃αa

n (x1, x2) + T̄αa
n (x1, x2) + ¯̄Tαa

n (x1, x2).
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For n < 2k and (x1, x2) ∈ Ik(u
1) × Ik(u

2) we have that T̃αa
n (y + x) de-

pends (with respect to x) only on coordinates x10, . . . , x
1
k−1, x

2
0, . . . , x

2
k−1, thus

T̃αa
n (y + x) = T̃αa

n (y + u) and consequently∫
Ik(u1)×Ik(u2)

f(x1, x2)T̃αa
n (y1 + x1, y2 + x2)dλ(x1, x2)

= T̃αa
n (y1 + u1, y2 + u2)

∫
Ik(u1)×Ik(u2)

f(x1, x2)dλ(x1, x2) = 0.

Observe that

Ik(u1)× Ik(u2) = Ik(u1)× Ik(u2) ∪ Ik(u
1)× Ik(u2) ∪ Ik(u1)× Ik(u

2).

Since for any j < 2k we have that the kernel K1
j (y+x) depends (with respect

to x) only on coordinates x10, . . . , x
1
k−1, x

2
0, . . . , x

2
k−1, then∫

Ik(u1)×Ik(u2)
f(x)|K1

j (y + x)|dλ(x)

= |K1
j (y + u)|

∫
Ik(u1)×Ik(u2)

f(x)dλ(x) = 0.

gives
∫
Ik(u1)×Ik(u2) f(x)I(y + x)dλ(x) = 0. On the other hand,

II = (1− αa)

2B−1∑
j=2k

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
|K1

j (y
1 + x1, y2 + x2)|

≤ sup
j≥2k

|K1
j (x

1, x2)|(1− αa)

n∑
j=0

Aαa−1
j = Aαa

n (1− αa) sup
j≥2k

|K1
j (x

1, x2)|.

This by Lemma 3 in [13] gives∫
Ik×Ik

sup
n≥2k,a∈N

1

Aαa
n

IIdλ ≤
∫

Ik×Ik

sup
j≥2k

|K1
j (x

1, x2)|dλ ≤ C.

The situation with III is similar. So, just as in the case of II we apply Lemma

3 in [13]: ∫
Ik×Ik

sup
n≥2k,a∈N

1

Aαa
n

IIIdλ ≤
∫

Ik×Ik

sup
n≥2k

|K1
2|n|−1

|dλ ≤ C.
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Therefore, substituting z1 = (x1 + y1), z2 = (x2 + y2), where z ∈ Ik × Ik
and consequently D2B ,2B (z

1, z2) = 0 then

∫
Ik×Ik

sup
n≥2k,a∈N

t̃αa
n fdλ

=

∫
Ik×Ik

sup
n≥2k,a∈N

∣∣∣∣∣∣∣
∫

Ik×Ik

f(x1, x2)T̃αa
n (y1 + x1, y2 + x2)dλ(x1, x2)

∣∣∣∣∣∣∣ dλ(y
1, y2)

≤
∫

Ik×Ik

∫
Ik×Ik

|f(x1, x2)| sup
n≥2k,a∈N

1

Aαa
n

[II(y1 + x1, y2 + x2)

+ III(y1 + x1, y2 + x2)]dλ(x1, x2)dλ(y1, y2)

=

∫
Ik×Ik

|f(x1, x2)|
∫

Ik×Ik

sup
n≥2k,a∈N

1

Aαa
n

II(z1, z2)

+ III(z1, z2)dλ(z1, z2)dλ(x1, x2)

≤ C

∫
Ik×Ik

|f(x1, x2)|dλ(x1, x2).

This gives

∫
Ik×Ik

sup
n,a∈N

∣∣t̃αa
n f

∣∣ dλ ≤ C‖f‖1.

This completes the proof of Lemma 4.3.

Now, we just proved the Lemma which means that maximal

operator supn,a |t̃αa
n | is quasi-local. The following lemma shows

that the one-dimensional operator which maps f ∈ L1(I) to

supn

∣∣∣f ∗ 1
Aαn

n

∑n
j=0A

αn−1
j |Kj |

∣∣∣ is quasi-local. This lemma is inter-

esting itself if one investigates Cesàro means with variable parameters and in

the proof we introduce methods which will also be used later.

Lemma 4.4. (Abu Joudeh and Gát [7]) Let (αn) be a monotone decreasing
sequence and

(
αn
nαn

)
be a quasi decreasing sequences with 1 > αn > 0 (n ∈
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N). Then

∫
Ik

sup
n≥2k

1

Aαn
n

n∑
j=0

Aαn−1
j |Kj | ≤ C.

Proof. Recall that Kn denotes the one-dimensional Fejér kernel. That is,

Kn = K1
n. By [14]

∫
Ik

sup
n≥2k

1

Aαn
n

n∑
j=2k

Aαn−1
j |Kj(x)| dx

≤
∫
Ik

sup
j≥2k

|Kj(x)| sup
n

1

Aαn
n

n∑
l=2k

Aαn−1
l dx

≤
∫
Ik

sup
j≥2k

|Kj(x)| dx

≤ C.

On the other hand, if j < 2k by Īk =
⋃k−1

a=0 (Ia\Ia+1) we have

∫
Ik

sup
n≥2k

1

Aαn
n

2k−1∑
j=0

Aαn−1
j |Kj |

≤
k−1∑
a=0

∫
Ia\Ia+1

sup
n≥2k

1

Aαn
n

2k−1∑
j=2a

Aαn−1
j |Kj |

+

k−1∑
a=0

∫
Ia\Ia+1

sup
n≥2k

1

Aαn
n

2a−1∑
j=0

Aαn−1
j |Kj |

=: I + II.
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For I we have

I ≤
k−1∑
a=0

∫
Ia\Ia+1

sup
n≥2k

1

Aαn
n

k−1∑
b=a

2b+1−1∑
j=2b

Aαn−1
j |Kj |

≤
k−1∑
a=0

k−1∑
b=a

∫
Ia\Ia+1

sup
j≥2b

|Kj | sup
n≥2k

1

Aαn
n

2b+1−1∑
l=2b

Aαn−1
l ,

where

sup
n≥2k

1

Aαn
n

2b+1−1∑
l=2b

Aαn−1
l ≤ sup

n≥2k

Aαn

2b+1−1
−Aαn

2b−1

Aαn
n

= sup
n≥2k

Aαn

2b−1

Aαn
n

[
(2b + αn)...(2

b+1 − 1 + αn)

2b(2b + 1)...(2b+1 − 1)
− 1

]

= sup
n≥2k

Aαn

2b−1

Aαn
n

[(
1 +

αn

2b

)(
1 +

αn

2b + 1

)
...

(
1 +

αn

2b + 2b − 1

)
− 1

]

≤ sup
n≥2k

Aαn

2b

Aαn
n

[(
1 +

αn

2b

)2b − 1

]

≤ C sup
n≥2k

Aαn

2b

Aαn
n

αn ≤ C sup
n≥2k

(
2b

n

)αn

αn

≤ C sup
n≥2k

(
2b
)α

2k
( αn

nαn

)

≤ C
(
2b
)α

2k
(

α2k

(2k)
α
2k

)
,

where the inequality
Aαn

2b

Aαn
n

≤ C
(
2b

n

)αn

is given from [6, Lemma 2.4]. Besides,

since (αn) is a monotone decreasing sequences then (2b)
αn ≤ (2b)

α
2k . Be-

sides, sequence
(

αn
nαn

)
is quasi decreasing. Moreover,

(
1 + αn

2b

)2b−1 ≤ Cαn,

for any 0 < αn < 1, b ∈ N.

Thus, by (3) ([22])

I ≤ C
k−1∑
a=0

k−1∑
b=a

2a

2b
(b− a)α2k

(
2b

2k

)α
2k

= C
k−1∑
b=0

b∑
a=0

2a

2b
(b− a)α2k

(
2b

2k

)α
2k

≤ C

k−1∑
b=0

α2k

(
2b

2k

)α
2k

≤ Cα2k

∞∑
l=0

1

2lαk
≤ Cα2k

1

1− 2α2k
≤ C.
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We have to discuss II in the case when j < 2a and thus |Kj(x)| ≤ j. Besides,

Aαn−1
j j = αnA

αn
j−1 and this follows

2a−1∑
j=0

Aαn−1
j |Kj(x)| ≤ αn

2a−1∑
j=0

Aαn
j ≤ αnA

αn+1
2a = αnA

αn
2a+1

(
2a + 1

αn + 1

)
.

Besides, by [6, Lemma 2.4] and by the fact that the sequence (αn/n
αn) is

quasi decreasing we have

sup
n≥2k

αnA
αn
2a+1

Aαn
n

.
2a + 1

αn + 1
≤ C2a sup

n≥2k
αn

(
2a + 1

n

)αn

≤ C2aα2k

(
2a

2k

)α
2k

.

Then

II ≤ C

k−1∑
a=0

1

2a
2aα2k

(
2a

2k

)α
2k

≤ C sup
k

α2k

∞∑
l=0

1

2lα2k
≤ C.

This completes the proof of Lemma 4.4.

Next we prove the following lemma,

Lemma 4.5. (Abu Joudeh and Gát [7]) Suppose that for the monotone de-
creasing sequence (αn) the condition (4.1) is fulfilled. Let a : I \ {0} �−→ N

be defined as a(x) = a for x ∈ (Ia\Ia+1). Then the inequality

∫
Ik×Ik

sup
n≥2k

1

Aαn
n

|n|∑
s=k

2a(x
2)∑

j=0

Aαn−1
j

∣∣Kj(x
2)
∣∣D2s(x

1)d(x1, x2) ≤ C

holds.

Proof. Since
∫

Ik×Ik

=
∑k−1

a=0

∫
Ik×(Ia\Ia+1)

then we have to check the values of

the integrand on Ik × (Ia\Ia+1). That is, x2 ∈ Ia\Ia+1. Thus,
∣∣Kj(x

2)
∣∣ ≤

Cj gives

Aαn−1
j .j =

αn...(αn + j − 1)

j!
j = αn

(1 + αn)...(j − 1 + αn)

(j − 1)!
= αnA

αn
j−1.
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This gives

2a∑
j=0

Aαn−1
j

∣∣Kj(x
2)
∣∣ ≤ C

2a∑
j=1

αnA
αn
j−1 = CαnA

αn+1
2a−1

= Cαn
(2 + αn)...(2

a + αn)

(2a − 1)!
= Cαn

(
2a

1 + αn

)
Aαn

2a ≤ Cαn2
aAαn

2a .

That is, we have to investigate

k−1∑
a=0

∫
Ik

sup
n≥2k

αn

Aαn
n

Aαn
2a

|n|∑
s=k

D2s(x
1)d(x1).

Recall that
∫

Ia\Ia+1

2a ≤ 1, Aαn
2a ≤ A

α
2k

2a since αn ↘ and n ≥ 2k. Also recall

that
αn

Aαn
n

≤ C

logδ
(
1 + n

2k

) α2k

A
α
2k

2k

.

Which gives

αn

Aαn
n

Aαn
2a ≤ Cα2k

A
α
2k

2a

A
α
2k

2k

1

logδ
(
1 + n

2k

) .
That is, we have to investigate :

k−1∑
a=0

α2k
A

α
2k

2a

A
α
2k

2k

∫
Ik

sup
n≥2k

1

logδ
(
1 + n

2k

) |n|∑
s=k

D2s(x
1)d(x1).

Check the integral above :
∫
Ik

=
∑∞

t=k

∫
It\It+1

and the integral on It \ It+1 can

be estimated by∫
It\It+1

sup
n≥2k

C

(1 + |n| − k)δ

min(t,|n|)∑
s=k

2sd(x1) ≤ C

(t+ 1− k)δ

and henceforth by δ > 1,
∑∞

t=k
1

(1+t−k)δ
≤ C. We have by Lemma 2.4 in [6]

k−1∑
a=0

α2k
A

α
2k

2a

A
α
2k

2k

≤ 2
k−1∑
a=0

α2k

(
2a + 1

2k

)α
2k

≤ C
k−1∑
a=0

α2k

(
2a

2k

)α
2k

≤ Cα2k

∞∑
j=0

(
1

2α2k

)j

=
Cα2k

1− (
1
2

)α
2k

≤ C.
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This completes the proof of Lemma 4.5.

Let (αn) be a monotone decreasing sequences such that 0 < αn < 1 with

property (4.1). That is, for some δ > 1, C > 0 and

Aαn
n

αn

αN

AαN
N

logδ
(
1 +

N

n

)
≤ C

for every N � N ≥ n ≥ 1. We prove

Lemma 4.6. (Abu Joudeh and Gát [7])

k−1∑
a=0

∫
Ik×(Ia\Ia+1)

sup
n>2k

1

Aαn
n

|n|∑
s=k

k−1∑
b=a

2b+1∑
j=2b+1

Aαn−1
j

∣∣Kj(x
2)
∣∣D2s(x

1)d(x1, x2) ≤ C.

Proof. By the result of Goginava [22], that is by

∫
Ia\Ia+1

sup
n≥2b

∣∣Kj(x
2)
∣∣ d(x2) ≤ C

(
b− a

2b−a

)
(4.4)

we have to investigate

B1 :=
∑
a<k

∫
Ik

sup
n>2k

1

Aαn
n

|n|∑
s=k

k−1∑
b=a

b− a

2b−a

2b+1∑
j=2b+1

Aαn−1
j D2s(x

1)d(x1).

So we have

2b+1∑
j=2b+1

Aαn−1
j = Aαn

2b+1 −Aαn

2b
= Aαn

2b

[
(2b + 1 + αn)...(2

b+1 + αn)

(2b + 1)...(2b+1)
− 1

]

= Aαn

2b

[(
1 +

αn

2b + 1

)
...

(
1 +

αn

2b+1

)
− 1

]

≤ Aαn

2b

[
0
(
1 +

αn

2b

)2b − 1

]
≤ CαnA

αn

2b
.
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On the other hand, by
∫
Ik

=
∑∞

t=k

∫
It\It+1

it follows

∫
Ik

sup
n>2k

1

(|n|+ 1− k)δ

|n|∑
s=k

D2s(x
1)d(x1)

=
∞∑
t=k

∫
It\It+1

sup
n>2k

1

(|n|+ 1− k)δ

min(t,|n|)∑
s=k+1

2s

≤
∞∑
t=k

⎛
⎜⎝ ∫
It\It+1

sup
t≥|n|>k

1

(|n|+ 1− k)δ
2|n| +

∫
It\It+1

sup
|n|>t

1

(|n|+ 1− k)δ
2t

⎞
⎟⎠

=:
∞∑
t=k

(B2,1 +B2,2) .

Now we have :

∞∑
t=k

(B2,2) ≤
∞∑
t=k

1

(t+ 1− k)δ
≤ C,

∞∑
t=k

(B2,1) ≤
∞∑
t=k

sup
t≥|n|>k

2|n|+1−t

(|n| − k)δ
≤

∞∑
t=k+1

1

(t− k)δ
≤ C.

That is, for B1 we get

B1

≤ C
∑
a<k

sup
n>2k

1

Aαn
n

k−1∑
b=a

αnA
αn

2b
b− a

2b−a
logδ

(
1 +

n

2k

)

×
∞∑
t=k

∫
It\It+1

sup
n>2k

1

(|n|+ 1− k)δ

min(t,|n|)∑
s=k

D2s(x
1)dx1

≤ C
∑
a<k

sup
n>2k

αn

Aαn
n

logδ
(
1 +

n

2k

) k−1∑
b=a

Aαn

2b
b− a

2b−a

≤ C
∑
a<k

k−1∑
b=a

A
α
2k

2b
b− a

2b−a
sup
n>2k

αn

Aαn
n

logδ
(
1 +

n

2k

)
=: B3.
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Recall that Aαn

2b
≤ A

α
2k

2b
Since n > 2k and (αn) is a monotone decreasing

sequence. By the properties of (αn) we have αn

Aαn
n

logδ
(
1 + n

2k

) ≤ C
α
2k

A
α
2k

2k

and then by Lemma 2.4 for the Cesàro numbers in [6]

B3 ≤ C
α2k

A
α
2k

2k

∑
a<k

k−1∑
b=a

A
α
2k

2b
b− a

2b−a
= C

α2k

A
α
2k

2k

k−1∑
b=0

A
α
2k

2b

b∑
a=0

b− a

2b−a

≤ C
α2k

A
α
2k

2k

k−1∑
b=0

A
α
2k

2b
≤ C

k−1∑
b=0

α2k

(
2b + 1

2k

)α
2k

≤ C

k−1∑
b=0

α2k

(
2b

2k

)α
2k

≤ C

again just as at the end of the proof of Lemma 4.5. This completes the proof

of Lemma 4.6.

Corollary 4.7. (Abu Joudeh and Gát [7]) Let 1 > αn > 0 fulfill property
(4.1). Then by Lemmas 4.5 and 4.6 - as a direct consequence- we have

∫
Ik×Ik

sup
n>2k

1

Aαn
n

|n|∑
s=k

2k∑
j=0

Aαn−1
j

∣∣Kj(x
2)
∣∣D2s(x

1)d(x1, x2) ≤ C.

Moreover, we prove

Lemma 4.8. (Abu Joudeh and Gát [7])

∫
Ik×Ik

sup
n>2k

1

Aαn
n

|n|∑
s=k

2|n|∑
j=2k+1

Aαn−1
j

∣∣Kj(x
2)
∣∣D2s(x

1)d(x1, x2) ≤ C,

where 1 > αn > 0 is a decreasing sequence with property (4.1).

Proof. By the result of Goginava [22] (see at (4.4)) we have∫
I\Ik

supj≥2b
∣∣Kj(x

1)
∣∣ d(x1) ≤ C b−k+1

2b−k for any b ≥ k. That is the

integral in Lemma 4.8 is bounded by

C

∫
Ik

sup
n>2k

1

Aαn
n

|n|∑
s=k

|n|−1∑
b=k

b− k + 1

2b−k

2b+1∑
j=2b+1

Aαn−1
j D2s(x

1)d(x1) =: B4.
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As in the proof of lemma 4.6 we have
∑2b+1

j=2b+1A
αn−1
j ≤ CαnA

αn

2b
. In the

proof of lemma 4.6 we can find inequality:

∫
Ik

sup
n>2k

1

(|n|+ 1− k)δ

|n|∑
s=k

D2s(x
1)d(x1) ≤ C

and henceforth

B4 ≤
∫
Ik

sup
n>2k

1

Aαn
n

|n|−1∑
b=k

b− k + 1

2b−k
αnA

αn

2b
(|n|+ 1− k)δ

× 1

(|n|+ 1− k)δ

|n|∑
s=k

D2s(x
1)d(x1)

≤ C sup
n>2k

1

Aαn
n

|n|∑
b=k

b− k + 1

2b−k
αnA

αn

2b
logδ

(
1 +

n

2k

)

×
∫
Ik

sup
n>2k

1

(|n|+ 1− k)δ

|n|∑
s=k

D2s(x
1)d(x1)

≤ C sup
n>2k

αn

Aαn
n

|n|∑
b=k

b− k + 1

2b−k
Aαn

2b
logδ

(
1 +

n

2k

)
=: B5.

So by αn

Aαn
n

logδ
(
1 + n

2k

) ≤ C
α
2k

A
α
2k

2k

we have

B5 ≤ C
α2k

A
α
2k

2k

sup
n>2k

|n|∑
b=k

b− k + 1

2b−k
Aαn

2b
.

Since (αn) is a monotone decreasing, then Aαn

2b
≤ A

α
2k

2b
.
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Thus, by [6, Lemma 2.4] (second inequality below)

B5 ≤ C
α2k

A
α
2k

2k

[
A

α
2k

2k
+

2

2
A

α
2k

2k+1 +
3

22
A

α
2k

2k+2 ++
4

23
A

α
2k

2k+3 + ...

]

≤ Cα2k

∞∑
j=0

(
2k+j + 1

2k

)α
2k j

2j

≤ Cα2k

∞∑
j=0

j

2j(1−α
2k

)

≤ C.

as it holds 0 < α2k ≤ 1 − α2 < 1. That is, the of proof Lemma 4.8 is

complete.

Corollary 4.7 and Lemma 4.8 give the following consequence :

Corollary 4.9. (Abu Joudeh and Gát [7]) Let 0 < αn < 1 be a monotone
decreasing sequence and

αN

AαN
N

Aαn
n

αn
logδ

(
1 +

N

n

)
≤ C

for every N ≥ n ≥ 1. Then

∫
Ik×Ik

sup
n>2k

1

Aαn
n

|n|∑
s=k+1

2|n|∑
j=0

Aαn−1
j

∣∣Kj(x
2)
∣∣D2s(x

1)d(x1, x2) ≤ C.

By the help of Corollary 4.9 and Lemma 4.3 we prove that operator

t∗f(y) := sup
n

|t∗,αn
n f(y)| := sup

n

∣∣∣∣
∫
I×I

f(x)|Tαn
n (x+ y)|dλ(x)

∣∣∣∣
is quasilocal. That is,

Lemma 4.10. (Abu Joudeh and Gát [7]) Suppose that sequence (αn) ful-
fills the conditions of Corollary 4.9. Let f ∈ L1(I × I) such that supp f ⊂
Ik(u

1) × Ik(u
2),

∫
Ik(u1)×Ik(u2)

fdλ = 0 for some dyadic rectangle. Then we

have ∫
Ik(u1)×Ik(u2)

t∗fdλ ≤ C‖f‖1.

Besides, operator t∗ is of strong type (L∞, L∞).
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Proof. Recall that for any m,n ≤ 2k we have f̂(m,n) = 0 and then

t∗f(y) := supn>2k |t∗,αn
n f(y)|. The proof this lemma is based on Lemma

4.3. More precisely, on inequalities (4.2) and (4.3). That is,∫
Ik(u1)×Ik(u2)

t∗fdλ

≤
∫

Ik(u1)×Ik(u2)

sup
n>2k

|t̃αn
n f |dλ

+

∫
Ik(u1)×Ik(u2)

sup
n>2k

|t̄αn
n f |dλ+

∫
Ik(u1)×Ik(u2)

sup
n>2k

|¯̄tαn
n f |dλ

=: A1 +A2 +A3.

Lemma 4.3 means that A1 ≤ C‖f‖1. Since the difference between terms A2

and A3 is only the interchange of variables therefore it is enough to discuss

A2 only. By the theorem of Fubini and the shift invariance of the Lebesgue

measure we have

A2 ≤
∫

Ik(u1)×Ik(u2)

|f(x1, x2)|
∫
Ik×Ik

sup
n>2k

T̄αn
n (z1, z2)dλ(z)dλ(x).

Therefore, if we could prove the inequality∫
Ik×Ik

supn>2k T̄
αn
n (z1, z2)dλ(z) ≤ C, then the proof of Lemma 4.10

would be complete.

By the help of the Abel transform we get:

Aαn
n T̄αn

n (z1, z2) = D2B (z
1)

∣∣∣∣∣∣
2B−1∑
j=0

Aαa−1
n(B)+jDj(z

2)

∣∣∣∣∣∣
= D2B (z

1)

∣∣∣∣∣∣
2B−1∑
j=0

(Aαa−1
n(B)+j −Aαa−1

n(B)+j+1)

j∑
i=0

Di +Aαn−1
n(B)+2B

2B−1∑
i=0

Di(z
2)

∣∣∣∣∣∣
= D2B (z

1)

∣∣∣∣∣∣(1− αn)

2B−1∑
j=0

Aαa−1
n(B)+j

j + 1

n(B) + j + 1
K1

j (z
2) +Aαn−1

n 2BK1
2B−1(z

2)

∣∣∣∣∣∣
≤ D2B (z

1)

2B−1∑
j=0

Aαn−1
j

∣∣K1
j (z

2)
∣∣+D2B (z

1)Aαn−1
n 2B

∣∣K1
2B−1(z

2)
∣∣ .

(4.5)
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Use the facts that Ik × Ik = Īk × Ik ∪ Īk × Īk ∪ Ik × Īk and D2B (z
1) =

0 for n > 2k, that is, B = |n| ≥ k in the case of z1 ∈ Īk. Moreover,

2BAαn−1
n /Aαn

n ≤ 1 then by Corollary 4.9 the proof of the sublinearity of

operator t∗f is complete. On the other hand,

‖t∗f‖∞ ≤ sup
n

∣∣∣∣
∫
I×I

‖f‖∞|Tαn
n (x+ y)|dλ(x)

∣∣∣∣ ≤ C‖f‖∞

as it comes from (4.5) and the fact that the L1-norms of the Fejér kernels and

also the Dirichlet kernels with indices of the form 2m are uniformly bounded.

This completes the proof of Lemma 4.10.

Now, we can prove the main tool in order to have Theorem 4.1. for opera-

tors

σβ
∗ f := sup

n∈N

∣∣∣σβn
2n f

∣∣∣ = sup
n∈N

∣∣∣f ∗Kβn
2n

∣∣∣
and

σ̃β
∗ f := sup

n∈N

∣∣∣σ̃βn
2n f

∣∣∣ = sup
n∈N

∣∣∣f ∗ |Kβn
2n |

∣∣∣
Lemma 4.11. (Abu Joudeh and Gát [7]) The operators σ̃β

∗ and σβ
∗ are of weak

type (L1, L1).

Proof. First, we prove Lemma 4.11 for operator σ̃β
∗ . We apply the Calderon-

Zygmund decomposition lemma [32]. That is, let f ∈ L1(I2) and ‖f‖1 < η.

Then there is a decomposition:

f = f0 +

∞∑
j=1

fj

such that ‖f0‖∞ ≤ Cη , ‖f0‖1 ≤ C‖f‖1 and Ij × Ij = Ikj (u
j,1)× Ikj (u

j,2)
are disjoint dyadic rectangles for which

fj ⊂ Ij × Ij ,

∫
Ij×Ij

fjdλ = 0 , λ(F ) ≤ C‖f1‖
η

((uj,1, uj,2) ∈ I × I , kj ∈ N , j ∈ P), where F = ∪∞
j=1I

j × Ij . By

the σ-sublinearity of the maximal operator with an appropriate constant C we

have

λ(σ̃β
∗ f > 2Cη) ≤ λ(σ̃β

∗ f0 > Cη) + λ(σ̃β
∗ (

∞∑
i=1

fi) > Cη) := I + II.
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Notice that

Kβn
2n (x) = Tα2n

2n (x) +
D2n(x

1)D2n(x
2)

Aα2n

2n

and keep in mind that operator supn |f ∗(D2n×D2n)| is quasi-local and it is of

weak type (L1, L1) and it is also of type (Lp, Lp) for each 1 < p ≤ ∞ ([32]).

Since by Lemma 4.10 ‖σ̃α∗ f0‖∞ ≤ C‖f0‖∞ ≤ Cη then we have I = 0. So,

λ(σ̃β
∗ (

∞∑
i=1

fi) > Cη) ≤ λ(F ) + λ(F̄ ∩ {σ̃β
∗ (

∞∑
i=1

fi) > Cη})

≤ C‖f‖1
η

+
C

η

∞∑
i=1

∫
Ij×Ij

σ̃β
∗ fjdλ =:

C‖f‖1
η

+
C

η

∞∑
i=1

IIIj ,

where

IIIj :=

∫
Ij×Ij

σ̃β
∗ fjdλ

=

∫
Ikj (u

j)×Ikj (u
j)

sup
n∈N

∣∣∣∣∣∣∣∣
∫

Ikj (u
j)×Ikj (u

j)

fj(x)
∣∣∣Kβn

2n (y + x)
∣∣∣ dλ(x1, x2)

∣∣∣∣∣∣∣∣
dλ(y1, y2).

The forthcoming estimation of IIIj is given by the help Lemma 4.10

IIIj ≤ C‖fj‖1.

That is, operator σ̃β
∗ is of weak type (L1, L1) and same holds for operator σβ

∗ .

This completes the proof of Lemma 4.11.

Proof of Theorem 4.1. (Abu Joudeh and Gát [7]) Let P ∈ P be a two-

dimensional Walsh polynomial, that is, P (x) =
∑2k−1

i,j=0 ci,jωi(x
1)ωj(x

2).

Then for all natural number m ≥ 2k we have that Sm,mP ≡ P . Conse-

quently, the statement σβn
2nP → P holds everywhere. This follows from the

fact that for any fixed j it holds
Aβn−1

2n−j

Aβn
2n

→ 0 since for instance for j = 1 we

have
Aβn−1

2n−1

Aβn
2n

= βn2n

(2n−1+βn)(2n+βn)
→ 0.
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Now, let η, ε > 0, f ∈ L1(I2). Let P ∈ P be a two-dimensional Walsh

polynomial such that ‖f −P‖1 < η. Then by the already seen method we get

λ(lim
n∈N

|σβn
2n f − f | > ε)

≤ λ(lim
n∈N

|σβn
2n (f − P )| > ε

3
) + λ(lim

n∈N
|σβn

2nP − P | > ε

3
)

+ λ(lim
n∈N

|P − f | > ε

3
)

≤ C‖P − f‖1 3
ε

≤ C

ε
η

because σβ
∗ is of weak type (L1, L1). This holds for all η > 0. That is, for an

arbitrary ε > 0 we have

λ(lim
n∈N

|σβn
2n f − f | > ε) = 0

and consequently we also have

λ(lim
n∈N

|σβn
2n f − f | > 0) = 0.

This finally gives σβn
2n f −→ f a.e. This completes the proof of Theorem

4.1.



Chapter 5

Summary

The present thesis talks about convergence of Cesàro means with variable pa-

rameters for Walsh-Fourier series. It consists of an introduction, four chapters,

an abstract and a bibliography. In the introduction, we present some important

and well-known notions and definitions related to the new results appearing in

the thesis. Moreover, we present some historical background.

From Chapter 2 to 4 we discuss some specific results with respect to the

convergence of Cesàro means with variable parameters for the Walsh-Fourier

series. Since in Chapter 1 we have already summarized our basic tools and

concepts, we do not repeat them here. All results are quoted from the Thesis

with the same numbering. If a theorem, lemma, corollary or proposition is

not new, we mention the name of the original author right at the beginning

of the statement. If a result of ours have been already published, we cite the

publication also at the beginning of the theorem.

In 1800’s Jean Baptiste Joseph Fourier began to work on the theory of

heat. In 1822, he published book with tittle of Théorie Analytic de la Chaleur

(The Analytic Theory of Heat).

A great deal of effort has been expended after this work in this research

area. It became and called Fourier theory and field of harmonic analysis.

Fourier theory gained exceptional importance in theoretical content and also

enormous scope and great relevance everywhere in applications such as elec-

trical engineering.

One of the greatest achievements of mathematics in the twentieth century

is the result of Carleson. In 1966 he prved the almost everywhere convergence

of the partial sums of the (trigonometric) Fourier series of a square integrable

function. On the other, hand in 1926 Kolmogoroff [5] gave the construction
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of an integrable function with everywhere divergent trigonometric Fourier se-

ries. That is, if we want to have some pointwise convergence result for each

function belonging to the Lebesgue space L1 then it is needed to use some

summation method. The invention of Fejér [11] was to use the arithmetical

means of the partial sums. Among others, he proved for continuous functions

that these means converge to the function in the supreumum norm. One year

later, Lebesgue proved the almost everywhere convergence of these so-called

Fejér means to the function for each integrable function. That is, the behav-

ior of the Fejér (or also called (C, 1)) means is better than the behavior of

the partial sums in this point of view. This fact also justifies the investigation

of various summation methods of Fourier series. Later on, we write about

the (C,α) summation - which is a generalization of the Fejér summation- of

Fourier series. The result of Lebesgue above for the (C,α) case (α > 0) is

due to M. Riesz [33].

Moreover, Fourier analyis has been developed on other structures too. For

example, the dyadic group is the simplest but nontrivial model of the com-

plete product of finite groups. Representing the characters of the dyadic group

ordered in the Paley’s sense, we obtain the Walsh system.

A relatively new thing of the generalizations on the Walsh-Paley system is

the Vilenkin system introduced by Vilenkin [37] in 1947. He used the set of

all characters of the complete product of arbitrary cyclic groups to obtain the

commutative case.

In Hungary a dyadic analysis team works leaded by F. Schipp having

many results in this theory. For instance, he proved that the partial sums

of the Vilenkin-Fourier series (even in the unbounded case) of a function in

Lp(G) (1 < p < 1) converge in the appropriate norm to the function (Schipp

[29], Simon [34]). And also Young [41] from Canada .

With respect to noncommutative Vilenkin groups (complete direct product

of not necessarily Abelian groups) some studies were appeared in [14] by Gát

and Toledo. They obtained not only negative results for this situation. They

proved the convergence in Lp-norm of the Fejér means of Fourier series when

p ≥ 1 in the bounded case.

In Chapter two, we introduced the notion of Cesàro means of Fourier se-

ries with variable parameters. We proved the almost everywhere convergence

of a subsequnce of the Cesàro (C,αn) means of integrable functions. That

is, σα2n

2n f → f for f ∈ L1(I), where I is the unit interval (representing the

dyadic, or Walsh group) for every sequence α = (αn), 0 < αn < 1.
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The main theorems of this chapter was proving:

Theorem 2.1. Suppose that 1 > αn > 0. Let f ∈ L1(I). Then we have the

a.e convergence σα2n

2n f −→ f.
The method we used to prove Theorem 2.1 is to investigated the maximal

operator σα∗ f := supn∈N |σα2n

2n f |. We also proved that this operator is of type

(H,L) and of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

Theorem 2.2. Suppose that 1 > αn > 0. Let f ∈ H(I). Then we have

‖σα
∗ f‖1 ≤ C‖f‖H .

Moreover, the operator σα∗ is of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

‖σα
∗ f‖p ≤ Cp‖f‖p for all 1 < p ≤ ∞.

Basically, in order to proved Theorem 2.1 we verified that the maximal

operator σα∗ f (α = (αn)) is of weak type (L1, L1). The way we got this, the

investigation of kernel functions, and its maximal function on the unit interval

I by making a hole around zero. To have the proof of Theorem 2.2 is the

standard way after having the fact that σα∗ f is of weak type (L1, L1).

In Chapter three we introduced the notion of Cesàro means of Fourier

series with variable parameters. We proved the almost everywhere conver-

gence of the Cesàro (C,αn) means of integrable functions σαn
n f → f for

each f ∈ L1(I), where α = (αn), 0 < αn < 1. Provided that for some

restriction set (discussed below) Nα,K � n → ∞, where K is any but fixed

natural number.

Set two variable function P (n, α) :=
∑∞

i=0 ni2
iα for n ∈ N, α ∈ R. For

instance P (n, 1) = n. Also set for sequences α = (αn) and positive reals K
the subset of natural numbers

Nα,K :=

{
n ∈ N :

P (n, αn)

nαn
≤ K

}
.

We can easily remark that for a sequence α such that 1 > αn ≥ α0 > 0
we have Nα,K = N for some K depending only on α0. We also remark that

2n ∈ Nα,K for every α = (αn), 0 < αn < 1 and K ≥ 1.

In this chapter C denotes an absolute constant and CK another one which

may depend only on K. The introduction of (C,αn) means of Fourier series

due to Akhobadze (although for numerical series Kaplan published a paper

in [27] 1960) investigated [1] the behavior of the L1-norm convergence of
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σαn
n f → f for the trigonometric system. In this chapter it is also supposed

that 1 > αn > 0 for all n.

The main theorems of this chapter was proving:

Theorem 3.1. Suppose that 1 > αn > 0. Let f ∈ L1(I). Then we have the

almost everywhere convergence σαn
n f → f provided that Nα,K � n → ∞.

The method we used to proved Theorem 3.1 is to investigate the maximal

operator σα∗ f := supn∈Nα,K
|σαn

n f |. We also proved that this operator is a

kind of type (H,L) and of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

Theorem 3.2. Suppose that 1 > αn > 0. Let |f | ∈ H(I). Then we have

‖σα
∗ f‖1 ≤ CK‖|f |‖H .

Moreover, the operator σα∗ is of type (Lp, Lp) for all 1 < p ≤ ∞. That is,

‖σα
∗ f‖p ≤ CK,p‖f‖p, for all 1 < p ≤ ∞.

For the sequence αn = 1 Theorem 3.2 is due to Fujii [12]. For the more

general but constant sequence αn = α1 see Weisz [38].

Basically, in order to prove Theorem 3.1 we verified that the maximal

operator σα∗ f (α = (αn)) is of weak type (L1, L1). The way we get this is

the investigation of kernel functions and their maximal function on the unit

interval I by making a hole around zero. Besides, some quasi locality issue

(for the notion of quasi-locality see [32]). To have the proof of Theorem 3.2

is the standard way.

In Chapter four, we formulated and proved that the maximal operator

of some (C, βn) means of cubical partial sums of two variable Walsh-Fourier

series of integrable functions is of weak type (L1, L1). Moreover, the (C, βn)-

means σβn
2n f of the function f ∈ L1 converge a.e. to f for f ∈ L1(I2), for

some sequences 1 > βn ↘ 0.

We supposed that (αn) and (βn) sequences are monotone decreasing se-

quences and they satisfy:

βn = α2n ,
αN

AαN
N

logδ
(
1 +

N

n

)
≤ C

αn

Aαn
n

(N ≥ n, n,N ∈ P) = N \ {0}

for some δ > 1 and for some positive constant C. We remark that from the

condition above it follows that sequence ( αn

Aαn
n

) is quasi monotone decreasing.

That is, for some C > 0 we have αN

A
αN
N

≤ C αn

Aαn
n

(N ≥ n, n,N ∈ P).
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The main theorem of this chapter is:

Theorem 4.1. Suppose that monotone decreasing sequence 1 > βn > 0

satisfies the condition
Aβn

2n

βn

βN

A
βN
2N

(N + 1− n)δ ≤ C for every N � N ≥ n ≥ 1

and for some δ > 1. Let f ∈ L1(I2). Then we have the almost everywhere

convergence

σβn
2n f → f.

Remark 4.2. In the proof of Theorem 4.1 we defined the sequence (αn) in a

way that α2k = βk and for any 2k ≤ n < 2k+1 let αn = α2k = βk. Then the

sequence (αn) satisfies that it is decreasing and Aαn
n
αn

αN

A
αN
N

logδ
(
1 + N

n

) ≤ C

for every N � N ≥ n ≥ 1. That is, condition above is fulfilled.

• We give two examples for sequences (βn) like above. Example one:

βk = α2k = αn = α ∈ (0, 1) for every natural number k, n.

• Example two: Let αn = 1/n. Then it is not difficult to have that Aαn
n →

1 and for the sequence (αn)CN/n ≥ logδ(1+N/n) trivially holds with

some δ > 1.
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[40] F. Weisz, Cesàro and Riesz summability with varying parameters of
multi-dimensional Walsh–Fourier series., Acta Mathematica Hungarica

(2020): 1-21.

[41] W.S. Young, Mean convergence of generalized Walsh-Fourier series,

Trans. Amer. Math. Soc. 218 (1976), 311-320.

[42] L. V. Zhizhiashvili, A generalization of a theorem of Marcinkiewicz.,
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 32.5
(1968), DOI:http://mi.mathnet.ru/eng/izv/v32/i5/p1112, 1112–1122.

[43] Sh. Tetunashvili, On divergence of Fourier series by some methods of

summability. J. Funct. Spaces Appl. 2012, Art. ID 542607, 9 pp.

[44] A. Zygmund, Trigonometric Series., University Press, Cambridge, 1959

(English).
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