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A NEW CHARACTERIZATION OF CONVEXITY

WITH RESPECT TO CHEBYSHEV SYSTEMS

ZSOLT PÁLES AND ÉVA SZÉKELYNÉ RADÁCSI

(Communicated by J. Matkowski)

Abstract. The notion of n th order convexity in the sense of Hopf and Popoviciu is defined via

the nonnegativity of the (n + 1) st order divided differences of a given real-valued function. In

view of the well-known recursive formula for divided differences, the nonnegativity of (n+1) st

order divided differences is equivalent to the (n− k − 1) st order convexity of the k th order

divided differences which provides a characterization of n th order convexity.

The aim of this paper is to apply the notion of higher-order divided differences in the

context of convexity with respect to Chebyshev systems introduced by Karlin in 1968. Using a

determinant identity of Sylvester, we then establish a formula for the generalized divided differ-

ences which enables us to obtain a new characterization of convexity with respect to Chebyshev

systems. Our result generalizes that of Wa̧sowicz which was obtained in 2006. As an applica-

tion, we derive a necessary condition for functions which can be written as the difference of two

functions convex with respect to a given Chebyshev system.

1. Introduction

Denote by N , Z , Q , R the sets of natural, integer, rational, and real numbers,

respectively. Given a set H ⊆ R , the set of positive elements of H is denoted by H+ .

Thus, for instance, N = Z+ .

For a set H ⊆ R , denote the simplex of strictly increasingly ordered n -tuples of

Hn by σn(H) , i.e.,

σn(H) := {(x1, . . . ,xn) ∈ Hn | x1 < .. . < xn}.

The set of those elements of Hn that have pairwise distinct coordinates will be denoted

by τn(H) , i.e.,

τn(H) := {(x1, . . . ,xn) ∈ Hn | xi 6= x j (i 6= j)}.

Obviously, σn(H) 6= /0 and τn(H) 6= /0 if and only if the cardinality |H| of H is at least

n , furthermore, we have that σn(H) ⊆ τn(H) ⊆ Hn .
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Provided that |H| > n , for a vector valued function ω = (ω1, . . . ,ωn) : H → Rn ,

the functional operator Φω : Hn → R is defined by

Φω (x1, . . . ,xn) :=

∣

∣

∣

∣

∣

∣

∣

ω1(x1) . . . ω1(xn)
...

. . .
...

ωn(x1) . . . ωn(xn)

∣

∣

∣

∣

∣

∣

∣

(

(x1, . . . ,xn) ∈ Hn
)

.

We say that ω is an n-dimensional positive (resp. negative) Chebyshev system over H

if Φω is positive (resp. negative) over σn(H) , respectively.

The following systems are the most important particular cases for positive Cheby-

shev systems. For more important examples we refer to the books by Karlin [5] and

Karlin–Studden [6].

(i) The function ω : R → Rn given by ω(x) := (1,x, . . . ,xn−1) is an n -dimensional

positive Chebyshev system on R . This system is called the standard, or polyno-

mial n-dimensional Chebyshev system.

(ii) The function ω(x) :=
(

1,cos(x),sin(x), . . . ,cos(nx),sin(nx)
)

is a (2n+1)-dimen-

sional positive Chebyshev system on any open interval I whose length is less than

or equal to 2π .

(iii) The function ω(x) :=
(

cos(x),sin(x), . . . ,cos(nx),sin(nx)
)

is a (2n)-dimensional

positive Chebyshev system on any open interval I whose length is less than or

equal to π .

(iv) For the function ω(x) := (1,x2) , we get that Φω (x1,x2) = (x1 + x2)(x2 − x1) .

Therefore ω is a 2-dimensional positive Chebyshev system on R+ , but it is not

a Chebyshev system on R (observe that Φω (−1,1) = 0).

Given a positive Chebyshev system ω : H → Rn , a function f : H → R is called

ω -convex (i.e., convex with respect to the Chebyshev system ω ) if, Φ(ω, f ) is non-

negative over σn+1(H) . A function f : H → R is strictly ω -convex if a function

(ω1, . . . ,ωn, f ) is an (n + 1)-dimensional positive Chebyshev system over H .

For k > 0, define the k th power function pk : R → R by pk(x) := xk . As we

have seen it before, (p0, . . . , pn−1) is an n -dimensional Chebyshev system. The notion

of convexity with respect to this system, called polynomial convexity, was introduced

by Hopf [4] and by Popoviciu [7]. The particular case, when ω = (p0, p1) , simpli-

fies to the notion of standard convexity, moreover, for (x,y,z) ∈ σ3(H) , the inequality

Φ(p0,p1, f )(x,y,z) > 0 is equivalent to

f (y) 6
z− y

z− x
f (x)+

y− x

z− x
f (z).

It is easy to verify that this inequality holds if and only if, for all p ∈ H , the mapping

x 7→
f (x)− f (p)

x− p
(x ∈ H \ {p})
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is nondecreasing. More generally, in view of the well-known recursive formula for di-

vided differences, the nonnegativity of (n+1)st order divided differences is equivalent

to the monotonicity of the n th order divided differences which provides a characteriza-

tion of n th order convexity.

The aim of this paper is to characterize higher-order convexity with respect to

Chebyshev systems (cf. [2]) by applying the notion of related generalized higher-order

divided differences introduced by Karlin in [5] and rediscovered in [8]. Using a de-

terminant identity of Sylvester, we then establish a formula for the generalized divided

differences of higher order and obtain new characterizations of convexity with respect

to Chebyshev systems. Our result generalizes that of Wa̧sowicz which was obtained

in [9]. As an application, we introduce the notion of ω -variation and we derive a nec-

essary condition for functions that can be written as the difference of two ω -convex

functions.

2. Characterizations of convexity with respect to Chebyshev systems

In the sequel, we will need the following classical formula which is termed Sylves-

ter’s Determinant Identity in the literature [1], [3].

THEOREM. Let n∈N and A : {1, . . . ,n}×{1, . . . ,n}→R be an n×n matrix. For

1 6 k 6 n−1 define the (n−k)×(n−k) matrix Bk : {k+1, . . . ,n}×{k+1, . . . ,n}→R

by

Bk(i, j) := det
(

A|{1,...,k,i}×{1,...,k, j}

)

(i, j ∈ {k + 1, . . . ,n}).

Then the following identity holds

det(Bk) =
(

det
(

A|{1,...,k}×{1,...,k}

)

)n−k−1

det(A).

To formulate our main results below, we introduce the notions of divided differ-

ences with respect to Chebyshev systems. Let n ∈ N , H ⊆ R with |H| > n and let

ω = (ω1, . . . ,ωn) : H → Rn be an n -dimensional positive Chebyshev system over H .

In the sequel, for the sake of convenience and brevity, given k ∈ {1, . . . ,n} , we shall

denote by ω〈k〉 the k -tuple (ω1, . . . ,ωk) . Thus, in particular, we have that

ω〈1〉 = ω1, ω〈2〉 = (ω1,ω2), . . . , ω〈n〉 = ω .

For a function f : H → R and k ∈ {1, . . . ,n} , the generalized (k − 1)-st order ω -

divided difference of f (cf. [5]) is defined by

[

x1, . . . ,xk; f
]

ω〈k〉
:=

Φ(ω〈k−1〉, f )(x1, . . . ,xk)

Φω〈k〉
(x1, . . . ,xk)

(

(x1, . . . ,xk) ∈ τk(H)
)

.

provided that ω〈k〉 is a k -dimensional Chebyshev system. Clearly, if ω = (ω1, . . . ,ωn)=

(p0, . . . , pn−1) , then,
[

x1, . . . ,xk; f
]

ω〈k〉
is equal to the standard (k−1)-st order divided

difference
[

x1, . . . ,xk; f
]

.
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THEOREM 1. Let n,k ∈ N , k < n, |H| > n and let x1 < .. . < xk be arbitrary

elements of H . Let ω := (ω1, . . . ,ωn) be an n-dimensional positive Chebyshev system

over H such that ω〈k〉 and ω〈k+1〉 are k and (k + 1)-dimensional positive Chebyshev

system over H , respectively. Then the following system of functions

x 7→
[

x1, . . . ,xk,x;ω j

]

ω〈k+1〉
(k + 1 6 j 6 n) (1)

is an (n− k)-dimensional positive Chebyshev system over H \ {x1, . . . ,xk} .

Proof. Let xk+1 < .. . < xn be arbitrary elements of H \ {x1, . . . ,xk} . Applying

Sylvester’s determinant identity for the matrix A defined by A(i, j) := ωi(x j) , we get

Φω (x1, . . . ,xn) ·
(

Φω〈k〉
(x1, . . . ,xk)

)n−k−1

=

∣

∣

∣

∣

∣

∣

∣

Φ(ω〈k〉,ωk+1)(x1, . . . ,xk,xk+1) . . . Φ(ω〈k〉,ωk+1)(x1, . . . ,xk,xn)

...
. . .

...

Φ(ω〈k〉,ωn)(x1, . . . ,xk,xk+1) . . . Φ(ω〈k〉,ωn)(x1, . . . ,xk,xn)

∣

∣

∣

∣

∣

∣

∣

.

Then dividing the j -th column ( j ∈ {1, . . . ,n−k}) of the determinant on the right hand

side of the above identity by Φω〈k+1〉
(x1, . . . ,xk,x j) , we arrive at the following equality:

Φω (x1, . . . ,xn) ·
(

Φω〈k〉
(x1, . . . ,xk)

)n−k−1

∏
n
j=k+1 Φω〈k+1〉

(x1, . . . ,xk,x j)

=

∣

∣

∣

∣

∣

∣

∣

∣

[

x1, . . . ,xk,xk+1;ωk+1

]

ω〈k+1〉
· · ·
[

x1, . . . ,xk,xn;ωk+1

]

ω〈k+1〉

...
. . .

...
[

x1, . . . ,xk,xk+1;ωn

]

ω〈k+1〉
· · ·

[

x1, . . . ,xk,xn;ωn

]

ω〈k+1〉

∣

∣

∣

∣

∣

∣

∣

∣

.

(2)

In order to complete the proof of the theorem, it suffices to show that the left hand side

of the above identity is positive for elements xk+1 < .. . < xn of H \ {x1, . . . ,xk} .

Define the indices ℓk+1, . . . , ℓn by

ℓ j :=







max
{

i ∈ {1, . . . ,k} | xi < x j

}

if x1 < x j,

0 if x j < x1.

Now, using that ω〈k+1〉 is a positive Chebyshev system, for j ∈ {k + 1, . . . ,n} , we are

going to show that

signΦω〈k+1〉
(x1, . . . ,xk,x j) = (−1)k−ℓ j . (3)

If x j < x1 , then ℓ j = 0 and

signΦω〈k+1〉
(x1, . . . ,xk,x j) = (−1)k signΦω〈k+1〉

(x j,x1, . . . ,xk) = (−1)k = (−1)k−ℓ j .

If x1 < x j < xk , then xℓ j
< x j < xℓ j+1 , hence

signΦω〈k+1〉
(x1, . . .,xk,x j) = (−1)k−ℓ j signΦω〈k+1〉

(x1, . . .,xℓ j
,x j,xℓ j+1, . . .,xk) = (−1)k−ℓ j .
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Finally, if xk < x j , then ℓ j = k and

signΦω〈k+1〉
(x1, . . . ,xk,x j) = 1 = (−1)k−ℓ j .

Applying (3), we get

sign
n

∏
j=k+1

Φω〈k+1〉
(x1, . . . ,xk,x j) = (−1)(n−k)k−(ℓk+1+···+ℓn).

An analogous computation and the positive Chebyshev property of ω results that

signΦω (x1, . . . ,xn) = (−1)(n−k)k−(ℓk+1+···+ℓn).

Therefore, the left hand side of (2) is positive since ω〈k〉 is also a positive Chebyshev

system. �

THEOREM 2. Let n,k ∈ N , k < n, |H| > n + 1 . Let ω := (ω1, . . . ,ωn) : H → Rn

be an n-dimensional positive Chebyshev system over H such that ω〈k〉 and ω〈k+1〉

are k and (k +1)-dimensional positive Chebyshev system over H , respectively and let

f : H → R be a function. Then, for all (x1, . . . ,xn+1) ∈ τn+1(H) , the following identity

is valid

Φ(ω, f )(x1, . . . ,xn+1) ·
(

Φω〈k〉
(x1, . . . ,xk)

)n−k

∏
n+1
j=k+1 Φω〈k+1〉

(x1, . . . ,xk,x j)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

x1, . . . ,xk,xk+1;ωk+1

]

ω〈k+1〉
· · ·
[

x1, . . . ,xk,xn+1;ωk+1

]

ω〈k+1〉

...
. . .

...
[

x1, . . . ,xk,xk+1;ωn

]

ω〈k+1〉
· · ·

[

x1, . . . ,xk,xn+1;ωn

]

ω〈k+1〉
[

x1, . . . ,xk,xk+1; f
]

ω〈k+1〉
· · ·

[

x1, . . . ,xk,xn+1; f
]

ω〈k+1〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(4)

Furthermore, the following statements are equivalent:

(i) f is ω -convex on H ;

(ii) For each ordered k -tuple (x1, . . .,xk)∈σk(H) , the function x 7→
[

x1, . . .,xk,x; f
]

ω〈k+1〉

is convex on H \ {x1, . . . ,xk} with respect to the (n− k)-dimensional Chebyshev

system defined by (1);

(iii) There exists ℓ ∈ {0, . . . ,k} such that, for each ordered k -tuple (x1, . . . ,xk) ∈
σk(H) , the function x 7→

[

x1, . . . ,xk,x; f
]

ω〈k+1〉
is convex with respect to the (n−

k)-dimensional Chebyshev system defined by (1) on H∩ ]−∞,x1[ if ℓ = 0 , on

H∩ ]xℓ,xℓ+1[ if 0 < ℓ < k and on H∩ ]xk,+∞[ if ℓ = k .

Proof. The formula in (4) follows from Sylvester’s determinant identity with the

(n + 1)× (n + 1) matrix A defined by

A(i, j) :=

{

ωi(x j) if (i, j) ∈ {1, . . . ,n}×{1, . . . ,n + 1},

f (x j) if (i, j) ∈ {n + 1}×{1, . . .,n + 1}
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in the same way as formula (2) in the proof of Theorem 1.

(i)⇒(ii). Assume that the function f is ω -convex, i.e. Φ(ω, f ) is nonnegative

over σn+1(H) . Let k < n , let x1, . . . ,xk ∈ σk(H) and xk+1, . . . ,xn+1 ∈ σn+1−k(H \
{x1, . . . ,xk}) . With similar idea as in the previous proof we can prove that the left hand

side of (4) is nonnegative, hence the right hand side of (4) is also nonnegative, then using

the positive Chebyshev property of (1), we get that a function x 7→
[

x1, . . . ,xk,x; f
]

ω〈k+1〉

is a convex function with respect to the Chebyshev system (1).

The implication (ii)⇒(iii) is trivial.

(iii)⇒(i). Assume that (iii) holds for some ℓ ∈ {0, . . . ,k} . To prove that f is

ω -convex, let (x1, . . . ,xn+1) ∈ σn+1(H) . Define

x′i :=



















xi if 1 6 i and i 6 ℓ,

xi+n−k+1 if ℓ+ 1 6 i and i 6 k,

xi+ℓ−k if k + 1 6 i and i 6 n + 1.

Now observe that (x′1, . . . ,x
′
k) ∈ σk(H) and (x′k+1, . . . ,x

′
n+1) ∈ σn−k+1(Hℓ) , where

Hℓ :=



















H∩ ]−∞,x′1[ if ℓ = 0,

H∩ ]x′ℓ,x
′
ℓ+1[ if 0 < ℓ < k,

H∩ ]x′k,∞[ if ℓ = k.

To complete the proof, applying formula (4) for the (n + 1)-tuple (x′1, . . . ,x
′
n+1) , we

obtain:

Φ(ω, f )(x
′
1, . . . ,x

′
n+1) ·

(

Φω〈k〉
(x′1, . . . ,x

′
k)
)n−k

∏
n+1
j=k+1 Φω〈k+1〉

(x′1, . . . ,x
′
k,x

′
j)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

x′1, . . . ,x
′
k,x

′
k+1;ωk+1

]

ω〈k+1〉
· · ·
[

x′1, . . . ,x
′
k,x

′
n+1;ωk+1

]

ω〈k+1〉

...
. . .

...
[

x′1, . . . ,x
′
k,x

′
k+1;ωn

]

ω〈k+1〉
· · ·

[

x′1, . . . ,x
′
k,x

′
n+1;ωn

]

ω〈k+1〉
[

x′1, . . . ,x
′
k,x

′
k+1; f

]

ω〈k+1〉
· · ·

[

x′1, . . . ,x
′
k,x

′
n+1; f

]

ω〈k+1〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(5)

We have that the right hand side of the above equality is nonnegative, since, by (iii),
[

x′1, . . . ,x
′
k, ·, f

]

ω〈k+1〉
is convex with respect to the (n−k)-dimensional Chebyshev sys-

tem defined by (1) (where the xi s are replaced by x′i ) on Hℓ . The subsystem ω〈k〉 being

a positive Chebyshev system, Φω〈k〉
(x′1, . . . ,x

′
k) > 0. Hence, (5) implies that

Φ(ω, f )(x
′
1, . . . ,x

′
n+1)

∏
n+1
j=k+1 Φω〈k+1〉

(x′1, . . . ,x
′
k,x

′
j)

> 0. (6)

For j ∈ {k + 1, . . . ,n + 1} , we have that x′j < x′1 if ℓ = 0, x′ℓ < x′j < x′ℓ+1 if 0 < ℓ < k ,

and x′k < x′j if ℓ = k , therefore

signΦω〈k+1〉
(x′1, . . . ,x

′
k,x

′
j) = (−1)k−ℓ,
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which yields that

sign
n+1

∏
j=k+1

Φω〈k+1〉
(x′1, . . . ,x

′
k,x

′
j) = (−1)(n−k+1)(k−ℓ). (7)

Therefore, using (7) and inequality (6), after interchanging the appropriate columns of

the determinant Φ(ω, f )(x1, . . . ,xn+1) , we get that

Φ(ω, f )(x1, . . . ,xn+1) = (−1)(n−k+1)(k−ℓ)Φ(ω, f )(x
′
1, . . . ,x

′
n+1) > 0.

This completes the proof of the ω -convexity of f . �

The following result, which was established by Wa̧sowicz [9, Theorem 2], con-

cerns the particular case k = n−1 of the previous theorem.

COROLLARY 3. Let n ∈ N , n > 2 , |H| > n + 1 and ω := (ω1, . . . ,ωn) : H →
Rn be an n-dimensional positive Chebyshev system such that ω〈n−1〉 is an (n− 1)-

dimensional positive Chebyshev system and let f : H → R be a function. Then, for all

(x1, . . . ,xn+1) ∈ τn+1(H) , the following identity is valid

Φ(ω, f )(x1, . . . ,xn+1)Φω〈n−1〉
(x1, . . . ,xn−1)

Φω(x1, . . . ,xn−1,xn)Φω (x1, . . . ,xn−1,xn+1)

=
[

x1, . . . ,xn−1,xn+1; f
]

ω
−
[

x1, . . . ,xn−1,xn; f
]

ω
.

(8)

Furthermore, the following statements are equivalent:

(i) f is ω -convex;

(ii) For each ordered (n − 1)-tuple (x1, . . . ,xn−1) ∈ σn−1(H) , the function x 7→
[

x1, . . . ,xn−1,x; f
]

ω
is nondecreasing on H \ {x1, . . . ,xn−1} ;

(iii) There exists ℓ ∈ {0, . . . ,n − 1} such that, for each ordered (n − 1)-tuple

(x1, . . . ,xn−1) ∈ σn−1(H) , the function x 7→
[

x1, . . . ,xn−1,x; f
]

ω
is nondecreasing

on H∩ ]−∞,x1[ if ℓ = 0 , on H∩ ]xℓ,xℓ+1[ if 0 < ℓ < n−1 and on H∩ ]xn−1,+∞[
if ℓ = n−1 .

Proof. If k = n−1 then the n− k = 1 dimensional Chebyshev system defined by

(1) is the constant function 1 and (8) is a particular case of (4). The convexity of the

function x 7→
[

x1, . . . ,xn−1,x; f
]

ω
with respect to this Chebyshev system is equivalent

to its nondecreasingness. Thus, Theorem 2 directly yields the equivalence of statements

(i), (ii), and (iii). �

In what follows, we apply Theorem 2 to the n -dimensional polynomial system.

For this, we shall need the following auxiliary statement. Recall that we have defined

pn : R → R by pn(x) := xn .
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LEMMA 4. Let k ∈ N and x1 < .. . < xk be arbitrary elements of H . Then the

following equality is valid

[

x1, . . . ,xk; pn

]

= ∑
α1,...,αk>0,

α1+...+αk=n−k+1

x
α1
1 · · ·x

αk

k (n ∈ N∪{0}).
(9)

Proof. The proof runs by induction on k . For k = 1 the statement trivially holds.

Assume that (9) is true for k = m−1∈N , m > 2. By a well-known property of classical

divided differences, we have

[

x1, . . . ,xm; pn

]

=

[

x2, . . . ,xm; pn

]

−
[

x1, . . . ,xm−1; pn

]

xm − x1

.

By the induction hypothesis,

[

x1, . . . ,xm; pn

]

= ∑
α2,...,αm>0,

α2+...+αm=n−m+2

x
α2
2 · · ·xαm

m

xm − x1

− ∑
α1,...,αm−1>0,

α1+...+αm−1=n−m+2

x
α1
1 · · ·x

αm−1

m−1

xm − x1

=
n−m+2

∑
j=0

(

x
j
m − x

j
1

xm − x1
∑

α2,...,αm−1>0,
α2+...+αm−1=n−m− j+2

x
α2
2 · · ·x

αm−1

m−1

)

= ∑
α1,...,αm>0,

α1+...+αm=n−m+1

x
α1
1 · · ·xαm

m .

Thus we obtain (9) for k = m , which completes the proof of the induction. �

COROLLARY 5. Let n,k ∈ N , k < n, |H| > n + 1 . Let f : H → R be a function.

Then the following statements are pairwise equivalent.

(i) f is n-monotone, i.e., it is convex with respect to the Chebyshev system

(p0, . . . , pn−1);

(ii) For each ordered k -tuple (x1, . . .,xk)∈σk(H) , the function x 7→
[

x1, . . .,xk,x; f
]

is

(n−k)-monotone (i.e., it is convex with respect to the Chebyshev system

(p0, . . . , pn−k−1)) on the set H \ {x1, . . . ,xk} ;

(iii) There exists ℓ ∈ {0, . . . ,k} such that, for each ordered k -tuple (x1, . . . ,xk) ∈
σk(H) , the function x 7→

[

x1, . . . ,xk,x; f
]

is (n− k)-monotone on H∩ ]−∞,x1[
if ℓ = 0 , on H∩ ]xℓ,xℓ+1[ if 0 < ℓ < k and on H∩ ]xk,+∞[ if ℓ = k .

Proof. Let (x1, . . . ,xk) ∈ σk(H) be fixed. Define, for ℓ > 0,

Pℓ := Pℓ(x1, . . . ,xk) := ∑
α1,...,αk>0,

α1+...+αk=ℓ

x
α1
1 · · ·x

αk

k .
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Observe that P0 = 1, P1 = x1 + · · ·+ xk , etc. Using Lemma 4, for j ∈ {k, . . . ,n− 1} ,

we obtain

[

x1, . . . ,xk,x; p j

]

=
j−k

∑
α=0

(

∑
α1,...,αk>0,

α1+...+αk= j−k−α

x
α1
1 · · ·x

αk

k

)

xα =
j−k

∑
α=0

Pj−k−αxα .

Therefore, performing elementary row operations on determinants (subtracting P1 times

the first row from the second, then subtracting P2 times the first plus P1 times the sec-

ond row from the third, etc.), for the right hand side of (4), we obtain the following

formula

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

x1, . . . ,xk,xk+1; pk

]

· · ·
[

x1, . . . ,xk,xn+1; pk

]

...
. . .

...
[

x1, . . . ,xk,xk+1; pn−1

]

· · ·
[

x1, . . . ,xk,xn+1; pn−1

]

[

x1, . . . ,xk,xk+1; f
]

· · ·
[

x1, . . . ,xk,xn+1; f
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1

xk+1 + P1 · · · xn+1 + P1

...
. . .

...

xn−k−1
k+1 + P1xn−k−2

k+1 + · · ·+ Pn−k−1 · · · xn−k−1
n+1 + P1xn−k−2

n+1 + · · ·+ Pn−k−1
[

x1, . . . ,xk,xk+1; f
]

· · ·
[

x1, . . . ,xk,xn+1; f
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1

xk+1 · · · xn+1

...
. . .

...

xn−k−1
k+1 · · · xn−k−1

n+1
[

x1, . . . ,xk,xk+1; f
]

· · ·
[

x1, . . . ,xk,xn+1; f
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Replacing the right hand side of (4) by the right hand side the above identity, it fol-

lows from Theorem 2 that the convexity of f with respect to the Chebyshev system

(ω1, . . . ,ωn) = (p0, . . . , pn−1) is equivalent to the monotonicity/convexity properties

of the mapping x 7→
[

x1, . . . ,xk,x; f
]

on H \ {x1, . . . ,xk} or on the subintervals of

H \ {x1, . . . ,xk} . �

EXAMPLE. For a direct application of our results, let ω be the 3-dimensional

positive Chebyshev system
(

1,cos,sin
)

over the interval H =]− π ,0[ . Then ω〈2〉 =
(1,cos) is a 2-dimensional positive Chebyshev system and, for any function f : H →R ,

the following statements are equivalent

(i) f is ω -convex on H ;

(ii) For each x1 ∈ H , the function x 7→
[

x1,x; f
]

(1,cos)
= f (x)− f (x1)

cos(x)−cos(x1) is convex on

H \ {x1} with respect to Chebyshev system
(

1,−ctg
( x1+(·)

2

)

)

.
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Proof. By well-known trigonometrical identities

sin(x)− sin(y) = 2cos
(x + y

2

)

sin
(x− y

2

)

,

cos(x)− cos(y) = −2sin
(x + y

2

)

sin
(x− y

2

)

,

for x,y ∈ H with x 6= y , we have

sin(x)− sin(y)

cos(x)− cos(y)
= −ctg

(x + y

2

)

. (10)

Using (10), the right hand side of (4) with k = 1 can be written as
∣

∣

∣

∣

∣

∣

∣

1 1 1
[

x1,x2; sin
]

(1,cos)

[

x1,x3; sin
]

(1,cos)

[

x1,x4; sin
]

(1,cos)
[

x1,x2; f
]

(1,cos)

[

x1,x3; f
]

(1,cos)

[

x1,x4; f
]

(1,cos)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 1 1
sin(x2)−sin(x1)
cos(x2)−cos(x1)

sin(x3)−sin(x1)
cos(x3)−cos(x1)

sin(x4)−sin(x1)
cos(x4)−cos(x1)

[

x1,x2; f
]

(1,cos)

[

x1,x3; f
]

(1,cos)

[

x1,x4; f
]

(1,cos)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1

−ctg
(

x1+x2
2

)

−ctg
(

x1+x3
2

)

−ctg
(

x1+x4
2

)

[

x1,x2; f
]

(1,cos)

[

x1,x3; f
]

(1,cos)

[

x1,x4; f
]

(1,cos)

∣

∣

∣

∣

∣

∣

.

By Theorem 2, the (1,cos,sin)-convexity of a function f : H → R is equivalent to the

nonnegativity of the above determinants, which exactly means that the function x 7→
[

x1,x; f
]

(1,cos)
is convex with respect to Chebyshev system

(

1,ctg
(−x1−(·)

2

)

)

. �

3. Differences of ω -convex functions

Let H be an open real interval throughout this section and let ω : H → Rn be a

Chebyshev system. We introduce the notion of ω -variation which will turn out to be

finite for differences of ω -convex functions.

Given a subinterval [a,b] , define the set of partitions P([a,b]) of [a,b] by

P([a,b]) := {(x0, . . . ,xn) | n ∈ N, a = x0 < · · · < xn = b}.

The ω -variation of f : H → R on [a,b] is now defined by

V ω
[a,b]( f ) := sup

{

m−n

∑
i=0

∣

∣

∣

[

xi+1, . . . ,xi+n; f
]

ω
−
[

xi, . . . ,xi+n−1; f
]

ω

∣

∣

∣
:

m > n, (x0, . . . ,xm) ∈ P([a,b])

}

.

Applying the notion of ω -variation, the next theorem formulates a necessary con-

dition in order that a function could be decomposed as the difference of two ω -convex

functions. The sufficiency of this conditions remains an open problem.
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THEOREM 6. Let ω := (ω1, . . . ,ωn) : H →Rn be an n-dimensional positive Cheby-

shev system such that ω〈n−1〉 is an (n−1)-dimensional positive Chebyshev system and

let f : H → R be a function. If there exist ω -convex functions g,h : H → R such

that f = g−h, then, for all subinterval [a,b] ⊆ H , the ω -variation V ω
[a,b]

( f ) is finite.

Furthermore, for all elements a1, . . . ,an,b1, . . . ,bn ∈ H with a1 < .. . < an = a and

b = b1 < .. . < bn , the inequality

V ω
[a,b]( f ) 6

[

b1, . . . ,bn;g + h
]

ω
−
[

a1, . . . ,an;g + h
]

ω (11)

holds.

Proof. Assume that f is of the form f = g−h , where g,h : H →R are ω -convex

functions. Let a,b ∈ H with a < b and fix a1 < .. . < an = a and b = b1 < .. . < bn in

H . Let (x0, . . . ,xm) ∈ P([a,b]) be an arbitrary partition of [a,b] with m > n . Then,

using the linearity of ω -divided differences and the triangle inequality, we get

m−n

∑
i=0

∣

∣

∣

[

xi+1, . . . ,xi+n; f
]

ω
−
[

xi, . . . ,xi+n−1; f
]

ω

∣

∣

∣

=
m−n

∑
i=0

∣

∣

∣

[

xi+1, . . . ,xi+n;g−h
]

ω
−
[

xi, . . . ,xi+n−1;g−h
]

ω

∣

∣

∣

6

m−n

∑
i=0

(

∣

∣

∣

[

xi+1, . . . ,xi+n;g
]

ω
−
[

xi, . . . ,xi+n−1;g
]

ω

∣

∣

∣

+
∣

∣

∣

[

xi+1, . . . ,xi+n;h
]

ω
−
[

xi, . . . ,xi+n−1;h
]

ω

∣

∣

∣

)

.

In view of the monotonicity property of ω -divided differences established in Corol-

lary 3 for the ω -convex functions g and h , for i ∈ {0, . . . ,m−n} , we have

∣

∣

∣

[

xi+1, . . . ,xi+n;g
]

ω
−
[

xi, . . . ,xi+n−1;g
]

ω

∣

∣

∣
=
[

xi+1, . . . ,xi+n;g
]

ω
−
[

xi, . . . ,xi+n−1;g
]

ω
,

∣

∣

∣

[

xi+1, . . . ,xi+n;h
]

ω
−
[

xi, . . . ,xi+n−1;h
]

ω

∣

∣

∣
=
[

xi+1, . . . ,xi+n;h
]

ω
−
[

xi, . . . ,xi+n−1;h
]

ω
.

Thus, performing telescopic summation and using the linearity of ω -divided differ-

ences, we obtain

m−n

∑
i=0

(

∣

∣

∣

[

xi+1, . . . ,xi+n;g
]

ω
−
[

xi, . . . ,xi+n−1;g
]

ω

∣

∣

∣
+
∣

∣

∣

[

xi+1, . . . ,xi+n;h
]

ω

−
[

xi, . . . ,xi+n−1;h
]

ω

∣

∣

∣

)

=
m−n

∑
i=0

(

[

xi+1, . . . ,xi+n;g
]

ω
−
[

xi, . . . ,xi+n−1;g
]

ω
+
[

xi+1, . . . ,xi+n;h
]

ω

−
[

xi, . . . ,xi+n−1;h
]

ω

)
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=

(

[

xm−n+1, . . . ,xm;g
]

ω
−
[

x0, . . . ,xn−1;g
]

ω

)

+

(

[

xm−n+1, . . . ,xm;h
]

ω

−
[

x0, . . . ,xn−1;h
]

ω

)

=
[

xm−n+1, . . . ,xm;g + h
]

ω
−
[

x0, . . . ,xn−1;g + h
]

ω
.

Now, using the inequalities ai < xi−1 and xm−n+i < bi (which follow from the choice of

a1, . . . ,an and b1, . . . ,bn ), and applying again the monotonicity property of ω -divided

differences established in Corollary 3 for the ω -convex function g + h , we get

−
[

x0, . . . ,xn−1;g + h
]

ω
6 −

[

a1, . . . ,an;g + h
]

ω
[

xm−n+1, . . . ,xm;g + h
]

ω
6
[

b1, . . . ,bn;g + h
]

ω
.

Finally, combining the above three estimates, for every partition (t0, . . . ,tm) of [a,b] ,
we obtain

m−n

∑
i=0

∣

∣

∣

[

xi+1, . . . ,xi+n; f
]

ω
−
[

xi, . . . ,xi+n−1; f
]

ω

∣

∣

∣

6
[

b1, . . . ,bn;g + h
]

ω
−
[

a1, . . . ,an;g + h
]

ω
,

which implies

V ω
[a,b]( f ) 6

[

b1, . . . ,bn;g + h
]

ω
−
[

a1, . . . ,an;g + h
]

ω
< +∞.

Thus, inequality (11) and the theorem is proved. �

For the case of higher-order convexity in the sense of Hopf and Popoviciu, the

following characterization holds (cf. [7]), which, in one direction, is a consequence

Theorem 6.

COROLLARY 7. Let ω := (p0, . . . , pn−1) : H →Rn be the n-dimensional positive

Chebyshev system and let f : H → R be a function. Then, there exist ω -convex func-

tions g,h : H → R such that f = g−h if and only if for all subinterval [a,b] ⊆ H , the

ω -variation V ω
[a,b]

( f ) is finite.
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