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Abstract

In this paper we discuss some possibilities of approximating the Euclidean distance
in Z2 by the help of digital metrics induced by neighbourhood sequences. We de-
termine those metrics which can be regarded as the best approximations to the
Euclidean distance in some sense. We compare the results obtained with earlier
studies of Das [1].
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1 Introduction

In 2-dimensional digital applications it is often very useful to have an app-
ropriate (digital) distance function on Z?. Thus the investigation of digital
distance functions and metrics becomes more and more important. See e.g.
the survey paper [8] of Melter for an account, and the papers [1], [3], [4], [5],
[9], [11] and the references given there for earlier results and the present state.
One of the most essential tasks is to give a convenient digital metric, which
approximates the Euclidean metric Ly on Z? well.
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In [10] Rosenfeld and Pfaltz introduced the digital metrics dy and dg in Z?
based on cityblock and chessboard motions, respectively. Cityblock motion
allows movements only to horizontal and vertical directions, while chessboard
motion to diagonal ones, as well. The distance of two points is the number
of steps required to reach either point from the other. To obtain a better
approximation of Lo, Rosenfeld and Pfaltz recommended the alternate use of
cityblock and chessboard motions, which defines the d,. distance.

By allowing arbitrary periodic mixture of these motions, Das et al. [2] int-
roduced the concept of periodic neighbourhood sequences. In [6] Fazekas et
al. extended this concept to arbitrary finite and infinite dimensions, and the
notion of general (not necessarily periodic) neighbourhood sequences was also
introduced. The main advantage of neighbourhood sequences over the classi-
cal distances d4, dg and d, is that they provide more flexibility in moving on
the plane. Making use of this property, Das [1] determined distance functions
that provide good approximations of the Euclidean distance in a certain sense.
However, he used periodic neighbourhood sequences only, and restricted his
investigations to the so called simple metrics.

In this paper we perform an approximation of the 2D Euclidean distance
by distance functions d(A) based on general neighbourhood sequences A. In
contrast with the periodic case, in this way we can give the actually best app-
roximating sequence, instead of a finite part of it. In fact we distinguish two
types of approximation. On one hand, we investigate the general situation, i.e.
the problem of finding a digital metric d(A) which approximates Ly best. On
the other hand, we consider the problem of approximating L, from below, se-
parately. In this case the problem is to find the digital metric d(A) minorating
Ly on Z?, which approximates Lo best.

To measure the error of approximation, we compare the disks of radii & with
k € N of Ly and of the distance functions d(A). Interestingly, the best appro-
ximating sequences we obtain are (mostly) Beatty sequences, thus they can be
constructed very easily. For each type of approximation under consideration we
give neighbourhood sequences such that the corresponding distance functions
are metrics on Z2. Thus we get good approximation of the Euclidean distance
by digital metrics. In particular, we determine the digital metric d(A), best
approximating Lo from below ”uniformly”, i.e. independently of the sense of
approximation.

The structure of the paper is as follows. In the second section we introduce our
notation. In the third section we formulate three problems, which summarize
our aims in a precise form. In the fourth section we solve these problems, by
giving the best approximating neighbourhood sequences. In the last section
we compare the sequences obtained with those recommended by Das in [1].
As we use a different method to measure the error of the approximation than



the author in [1], we choose a third type of error function to this purpose.

2 Basic concepts and notation

First we recall some definitions and notation from [2] and [6].

Let ¢ be a point in Z2 The i-th coordinate of ¢ is denoted by Pr;(q) (i =
1,2). Let M € {0,1,2}. The points q,r € Z? are called M-neighbours, if the
following two conditions hold:

e |Pri(q) —Pri(r)| <1 (i=1,2),
e |Pri(q) — Pri(r)| + | Pra(q) — Pra(r)| < M.

The sequence A = (a(i))2,, where a(i) € {1,2} for all i € N, is called a 2-
dimensional (shortly 2D) neighbourhood sequence. If for some [ € N, a(i+1) =
a(i) (i € N), then A is periodic with period /. In this case we briefly write
A= (a(1),a(2),...,a(l)). The set of the 2D-neighbourhood sequences will be
denoted by Ss.

Let ¢,r € Z? and A € S,. The point sequence ¢ = qo, qi,...,qm = r, Where
¢;—1 and ¢; are a(i)-neighbours in Z? (1 < i < m), is called an A-path of length
m from ¢ to r. The A-distance d(q,r; A) of ¢ and r is defined as the length of
the shortest A-path(s) between them. We shortly write d(A) for the distance
function generated by the neighbourhood sequence A. In general d(A) is not
a metric, but by a theorem of Nagy [9] we can check this property. Nagy’s
result describes the general nD case, but we formulate it only for 2D.

Theorem 1 (see [9]) Let A € Sy. Then d(A) is a metric if and only if for
any s,t € N

i=1 i=t
Let ¢, € Z*. As usual, the L, (p > 0) distance of ¢ and r is defined by

Ly(g,7) = (| Pri(q) — Pri(r) + | Pra(q) — Pra(r) )7 ,

and
Leo(q,7) = max{|Pri(¢) — Pri(r)[, [Pra(q) — Pra(r)[}.
We have L, < L,, for every ¢,r € Z?, provided that p; > ps.

Obviously,

Li(g,r) = dalg, ) = d(g, 75 (1)) and Leo(q,7) = ds(g,7) = d(g, 75 (2)).



The constant periodic neighbourhood sequences (1) and (2), respectively,
spread in the slowest and fastest way in Z2 among the 2D-neighbourhood
sequences. So for every A € Sy we have Li(q,r) < d(q,7; A) < Ly(gq,7). It is a
natural problem to find the neighbourhood sequences, whose distance functi-
ons approximates the 2D Euclidean distance L, best in some sense. To handle
this problem, we will compare the regions occupied by a sequence A € Sy with
the Euclidean disks. As the neighbourhood sequences spread in Z? in a trans-
lation invariant way, we may choose the origin 0 € Z? as the starting point.
For illustration, Figure 1 shows that the metric d,. (generated by (1,2)) is
"closer” to Ls, than d4 or dg.

Fig. 1. The regions occupied by the neighbourhood sequences (1), (2) and (1,2)
after two steps.

Let A € S,. For every k € N, let
Ay ={qe€Z” :d(0,q;A) <k}

denote the region occupied by A after k steps, and write H(Ay) for the con-
vex hull of A in R?. Observe that H(Ag) in general is an octagon which is
symmetric to the coordinate axes and to the lines y = x and y = —x in the
[z, y] plane. Let

Or ={q € Z* : Ly(0,q) < k}
and

Gr={q€R® : Ly(0,q) <k}
be the disks of radius k& in Z? and R2, respectively. The sets A; and Oy will
be called the k-disks of the distances d(A) and Ls, respectively.

We will often use the number of 1 and 2 values occurring among the first &
elements of a neighbourhood sequence A. So for every k£ € N put

14(k) = {a(i) : a(i) =1, 1 <i <k}
and

24(k) = Ha(i) = a(i) =2, 1 <1 <k},

where A = (a(i))$2,. For convenience, write 14(0) = 2,4(0) = 0. Note that
1a(k) + 24(k) = k (k € N).



For any = € R, let | x| denote the largest integer which is less than or equal to
x, and [z] the smallest integer which is greater than or equal to x. Let « € R
with 0 < a < 1, and let A = (a(i))2,, B = (b(7))2, be sequences of 1-s and
2-s, defined by

a(i) = lia] — [(i — Da) +1, b(i) = [ia] — [(i—1)a]+1 (i € N).

The sequences A, B are called Beatty sequences on the letters 1, 2. Clearly,
for every k € N we have

24(k) = |ka| and 2g(k) = [ka].

Conversely, these equalities define Beatty sequences which are uniquely deter-
mined. We refer to [7] for the basic properties of Beatty sequences and their
generalizations.

3 Three approximation problems

To decide how a digital distance d(A) approximates the Euclidean distance Lo
on Z2, we will compare the k-disks A; and Oj. A natural approach could be
to choose the number of integer points in the symmetric difference Ay 7 Oy
as an error function. However, there is no exact formula for the number of
integer points inside Oy. So we will follow a slightly different method. Namely,
we will compare the sets H(A;) and Gi, and we will choose A to minimize
the area of H(Ag) v Gg. Of course, it can be done only separately for each
k. However, surprisingly it turns out that for every k£ € N the very same A
can be chosen to minimize this area. So this neighbourhood sequence A can
be regarded as the one that approximates Ly best (in the above sense).

According to the these principles, we will investigate the function
TEA(]{Z) = Area(H(Ak) \V4 Gk),

called the total error of the approximation at the k-th step. We will also use
the relative error at the k-th step, defined as
TE(k
RE4 (k) = l ),

k27

and the limit relative error (if it exists)

k—o00

We perform several types of approximation. Our aims can be summarized in
the following problems. The first problem concerns the general case.



Problem 1. Find a neighbourhood sequence A" € S, (if exists) such that for
every B € Sy and k € N

Area(H(AM) 7 G)) < Area(H(By) v Gy).

We consider separately the case when the octagons H(Ay) cover Gy for every
k € N, that is the corresponding function d(A) minorates Lo.

Problem 2. Find a neighbourhood sequence A € S, (if exists) such that
H(Agf)) D Gy for every k € N, and for every B € Sy, H(Bg) 2 Gy implies
that

Area(H(AP)\ Gi) < Area(H(By) \ Gy).

Note that it does not make sense to consider a problem with H(Ay) C Gy.
Indeed, observe that H(Ay) is contained in G if and only if the first k£ elements
of A are all 1-s. This is the reason why we do not take up the problem of
majorating Lo by digital metrics d(A).

Figure 2 illustrates Problems 1 and 2.

(a) (b)

Fig. 2. The error of approximation (a) in the general case (b) when H(Ay) D Gj.

We will construct two neighbourhood sequences, satisfying the requirements
of Problems 1 and 2, respectively. Moreover, we will give a sequence such that
the corresponding distance function d(A) is a metric, and it can be considered
as the digital metric which approximates Lo best in the sense of Problem 1.

We also investigate the following ”discrete” version of Problem 2. Note that
Problem 1 does not have a similar variant.



Problem 3. Find a neighbourhood sequence A® € S, (if exists) such that
A,(f) D Oy for every k € N, and if B € Sy with By O Oy, then By D Ag’).

Observe that the sequence A® has the nice property that the corresponding
distance function d (A(3)) is "uniformly” the best one to approximate Ly from
below. That is, for any B € Ss, if

d(q,m; B) < Ly(q,r) for any ¢,r € Z*, then

d(q,r; B) <d (q, r; A(3)) for any ¢, r € Z>.

In Theorem 6 we will solve Problem 3, by constructing the sequence A®)
having the desired property. Interestingly, it will turn out that the distance
function d(A®) is a metric on Z2. To show this, the following lemma will be
useful.

Lemma 2 Let o € R with 0 < o < 1, and let A € Sy be the unique sequence
with 24(k) = |ka] for every k € N. Then d(A) is a metric.

PROOF. Suppose to the contrary that d(A) is not a metric. Then using
Theorem 1, for some n, N € N with n < N

>a)> >l )

holds. Clearly, we may suppose that N —n + 1 > n. We rewrite (1) as

ZA(n) >2A(N)—2A(N—n). (2)

As all the numbers in (2) are integers, we obtain

2A(N—TL)Z2A(N)—|—1—2A(TL) (3)

Observe that by the definition of A, for every k € N we have

2A]§k) <a< 2A(k]3+1. (1)
Combining (3) and (4), we get
(N—=n)aa>24(N—n)>24(N)+1—-24(n) > Na—n«a (5)

which is a contradiction. Hence the lemma follows. O



4 The solution of the approximation problems

In this section we construct ”extremal” sequences described in Problems 1, 2
and 3. We start with Problem 2, as it is the simplest to handle.

4.1 Approximating Ly from below

In this subsection we consider only neighbourhood sequences A with H(A;) D
Gy, for all £ € N. As we have already mentioned, it means that the correspon-
ding distance function d(A) minorates Ly. The next result gives a solution to
Problem 2.

Theorem 3 Let A®) = (a®(i))2, be the unique 2D-neighbourhood sequence
defined by 2 40 (k) = [k(v2 —1)] (k €N), that is

a® (@) =i(vV2-1)] - [ -1)(V2-1)]+1 (ieN).
Then H(Agf)) D Gy forany k € N, and B € Sy, H(By) 2 Gy implies that

Area(H(AP)\ Gi) < Area(H (By) \ Gy).

PROOF. Let k be a fixed positive integer, and let B € S, be arbitrary
such that H(By) contains Gj. Clearly, the vertices of H(Bj) with positive
coordinates are (k,2p(k)) and (2g(k), k). Hence H(By) O G}, implies that
the line z + y = k + 25 (k) has at most one point in common with the circle
2?2 +y* = k? in the [z, y]-plane. A simple calculation gives that it is equivalent
to

(k—25(k))" —2(2p(k))" <0, (6)
that is 25(k)/k > V2 — 1.

One can easily check that Area(H(By)) = 4k*> — 2(k — 2p(k))?, whence the
total error of the approximation is

TEp(k) = 4k* — 2(k — 2p(k))* — mk*. (7)

Clearly, T Ep (k) is minimal, when 25 (k) is maximal. Taking into consideration
that 25(k)/k > /2 —1 and 25(k) is an integer, we obtain that TEg(k) takes
its minimum when 25 (k) = [k(v/2 — 1)]. Hence the theorem follows. O

Figure 3 shows how the octagons H(Agf)) of the neighbourhood sequence A(?)
defined in Theorem 3 approximate Gy for k = 2,5,7,9,12. The dark regions



show the error of the approximation.

Fig. 3. Approximating Gy, by H(AY) for k = 2,5,7,9,12.

Remark 4 The octagons H(A,?)) are almost reqular. (For reqularity we sho-
uld have 2,(k) = k(v/2 — 1), which is impossible.) Obviously, the ratio of the
inclined and horizontal (or vertical) sides of H(A,(CQ)) tends to 1 as k — co.

Remark 5 For the k-th total error of the approvimation of Lo with d(A®)
we get

TE o (k) = (4 — m)k? — 2 (k — 2,40 (k))*.
Thus for the k-th relative error and for the relative error we obtain

4 9 2. (k)
RE (k) = —~ — = (1 _ M)

T T k

and
8(vV2—1)—7

™

RE ) = = (.054786175...

By the following theorem we solve Problem 3.

Theorem 6 Let A®) € Sy, A® = (a®(4))2, be the unique sequene defined
by 24 (k) = |k(v2—1)] (k €N), that is

a®()=[i(V2-1)] - [(i-1)(V2=1)]+1 (ieN).

Then for every k € N, Oy, C A,(f). Moreover, if B € Sy such that O C By for
some k € N, then A,g?’) C By.

PROOF. Let k € N be fixed, and suppose that O, < Ag’). Let A® be the
neighbourhood sequence defined in Theorem 3. Then, as A,(f) D Oy, there



exists an integer point ¢ of O, which is also in A,(f) \A,(f’). Since 24 (k) =
2,4 (k) + 1, ¢ must be on the border of A,(f).

Moreover, by H(A,(f)) D G}, the only possibility is that ¢ is the tangent point
of G}, and one of the inclined sides of H(A,(f)). Using symmetry, this implies
that ¢ belongs to one of the lines y = x or y = —z. However, the points being
both on the perimeter of Gy and on one of these lines, do not have integer
coordinates. This contradiction shows that O C Ag’) for every k € N.

To prove the second statement, we show that for any k£ € N, every inclined

side of A,(f’) contains an integer point from Oy. To this purpose, observe that
as 2,4 (k)/k < /2 — 1, we have

(k= 2,40 (k) — 2(240(k))* > 0. (8)

That is, by formula (6) in the proof of Theorem 3, every inclined side of H(Agf’))
has two points in common with the perimeter of GG;.. A simple calculation yields
that the intersection points with positive coordinates are

(k + 240 (k) +Q k42,6 (k) — Q)
2 ’ 2

and

(k +2,m(k) —Q k+ 2,40 (k) + Q)
2 ’ 2 ’

where

Q = \/(k — 2,40 (k)2 — 2(240 (k)2

For the distance D of these points we obtain

D = \/2[(k — 246 (k))? — 2(2 49 (K))?]-
As k and 2 ) (k) are integers, by (8) we infer that
(k — 240 (k))* = 2 (240 (k))* > 1

which yields D > /2. As the line containing the above intersection points is
given by x4y = k+ 24 (k) on the [z, y] plane, D > /2 implies that there is
at least one integer point on the corresponding inclined side of H (Af’)), which
also belons to Gy. However, this shows that if B € Sy with B, O O, then
2p5(k) > 243 (k) must be valid. Thus By D A,(f), and the theorem follows. O

Remark 7 By Lemma 2, d(A®)) is a metric on Z2. That is, among the digital
metrics corresponding to neighbourhood sequences, d(A(3)) 1s the best one to
approzimate Ly from below in Z2.
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4.2 The general case

In this subsection we solve Problem 1. For this purpose the following lemma
will be useful.

Lemma 8 Define the function E : [0,1] = R by

E(y) = { 2arccos(y(y + 2))—
2(y + 1)v1 =2y — y%2 — y* + 2y, otherwise.
Then E(y) has a global minimum at yy = Lg’?’. Moreover, E(y) is strictly

monotone decreasing in [0, yo] and strictly monotone increasing in [yo, 1].

PROOF. Observe that F(y) is continuous on [0, 1]. Taking the first two deri-
vatives of F on the intervals [0,/2 — 1] and [v/2 — 1, 1] separately, by a simple
calculation the lemma follows from elementary calculus. O

Theorem 9 Let the neighbourhood sequence AV = (a(V(4))2, be defined by

i (B0  p (Rantmin)

2, otherwise,

aV (i) =

where E is introduced in the previous lemma. Then for any B € Sy and k € N,

Area(H(AM) 7 G),) < Area(H(By) v Gy).

PROOF. Let k be a fixed positive integer and B € S,. Using (7) when the
inclined sides of H(By,) do not intersect G, and by a simple calculation in the
opposite case, we obtain that the k-th total error of the approximation of L,
by B is
2k% — k? + 2k*(2y — y?), if y>+v2-1,
TEp(k) = { 2k? — mk? + 2k*(2 arccos(y(y + 2))—
2(y + 1)v/1 — 2y — y2 — y? + 2y), otherwise,

where y = 25(k)/k.

11



Clearly, T Eg(k) is minimal if and only if E(y) is minimal for B. By Lemma 8
. . Lkyo] [kyol

o (0 - (21) ()}

0<t<k

2v6—3
-

where 1y =

We prove that for every k € N, 2 ,44)(k) = |kyo] or [kyy] according to whether

[Fyo) kYol
El—|<E|—
( k A
or not. This will imply that E(y) is minimal for A", whence TE ,u)(k) <
TEg(k) for every B € Sy and k € N.

We proceed by induction on k. For k = 1 the statement is obvious: a™" (1) = 2
and E(1) < E(0). Suppose that for some k we have 2 44)(k) = |kyo]; the case
when 2, (k) = [kyo] is similar. Then, by the induction hypothesis,

() () s)

We distinguish two cases.

(i) Assume first that [kyo| = [(k+ 1)yo| < [(E+ Dyo| = [kyo]-

B (ka°J> <FE (M> : (10)

kE+1 k+1
then by definition a") (k + 1) = 1, whence

Now if

2,0k +1) = 2,40 (k) = [kyo] = [(k + Dyo].

Since we can write (10) as

E(L(k+1)yoJ> <E<((k+1)y01>,

E+1 E+1

the statement is also true for £ + 1. On the other hand, if

s (kaoJ> . B (M) , (11)

kE+1 kE+1

then we obtain a(!)(k + 1) = 2. This yields

230 (k+ 1) = 2400 (k) + 1 = [kyo] = [(k + Dgo].

12



Now the statement for k + 1 follows from rewriting (11) as

E([(kJrl)yoW) SE(L(/Hl)ZJUJ)_

k+1 kE+1

(i7) Assume now that |kyo| < [kyo] = [(k+ 1)yo| < [(k + 1)yo]-

In this case we have

Lkyo] _ Lkyo) _ L(k+1)yo) [kyol _ [(k 4+ 1)yo]
kil< l?j = k+1y << l?j = k+1y' (12)

Combining (9) with Lemma 8, we immediately obtain

(Wt n)  p (10 u0)

E+1 E+1

Moreover, (12) yields

(i) (52200 - (212,

Hence, by definition, a® (k 4 1) = 2 and

ZA(I)(k + 1) = 2A(1)(k) + 1= Ufy[)J + 1= L(k + 1)y0J
Thus the statement follows for £ 4+ 1 also in this case.

Observe that as 0 < yp < 1/2, the above two cases cover all the possibilities.
Thus the sequence A®") minimizes E(y). This implies that T'E 4, (k) is minimal
for every k£ € N, and the theorem follows. O

Remark 10 We have A = (2,1,1,1,2,1,2,1,1,2,1,1,...). For the k-th
total and relative errors of A" we obtain

TE, (k) =k (27 +2E(y))

and
2—m+2F
RE (k) = - W),
where y and E(y) are as in Theorem 9. By klim Yy = 2@’3 we get
—00

2 — 2 46 — 11
RE o) = T (2 arccos <3 + 8\/6> + V6
T

T 25 5

) = 0.046525347 . ..

13



Fig. 4. Approximating Gy, by H(AY) for k=2, 5, 7,9, 12.

Figure 4 illustrates how H(A,(Cl)) approximates Gy for k = 2,5,7,9,12. The
dark regions show the error of the approximation.

Clearly, d(A™) is not a metric on Z2. Another unpleasant feature of A() is
that it is not easy to generate: to obtain its k-th element, we have to calculate
the first k—1 elements previously. Now we give two sequences which are easy to

construct, and for every k£ € N, one of them is also the "best” to approximate
G

Corollary 11 For j =1,2 and i1 € N put

N E if i=1,

283 (i - 1)288 | 11, df 0> 1,

and write O = (M ()22, and C® = () (i))2,. Then for every B € S,
and k € N,
min {TEC(l)(k), TEc(Q) (k)} S TEB (k)

PROOF. Observe that for every k € N, 2,0 (k) = |kyo| and 240 (k) =
[kyo], where yo = 2‘[%. Hence, A,gl) = C,gl) or C’,EQ) for every k£ € N, and the
statement follows from Theorem 9. O

Remark 12 As 2.0 (k) = |kyo| for every k € N, by Lemma 2, d(C™)
is a metric on Z?. Thus in a sense d(C)) can be considered to be the best

metric (coming from a neighbourhood sequence) to approzimate the Euclidean
distance on Z?. Note that REq0) = RE 4.

14



5 Comparing approximation results

In this section we compare our results with those of Das in [1]. He used an error
function which measures the average difference between the Euclidean distance
and the ”simple metric value” generated by a neighbourhood sequence. He
concluded that the periodic neighbourhood sequence S = (1, 1,2, 1,2), which
generates a ”simple metric”, should be used to approximate L,. Note that for
every k € N, H(S;) 2 Gi. As we propose to use the sequence C") defined in
Corollary 11 to approximate Lo, in this case we compare S and C'") here.

Since we used a different error function than Das in [1], we choose a third
one to compare our results. We examine how the k-disks A; approximate the
k-disks Gy in digital sense. That is, we count the k-th discrete total error

being the number of grid points in the symmetric difference of Ay and Oy,
where A € S5, k € N. The k-th discrete relative error of the approximation is
defined as

DTE(k
DRE(k) = |07;‘|()

The following table shows the discrete relative errors of the neighbourhood
sequences S = (1,1,2,1,2) given in [1] and CV given in Corollary 11 which
provide metrics on Z2.

Table 1
Discrete relative errors of distance functions generated by S and C(1).
DRE(k)
B S=(1,1,2,1,2) | 00 = ([i2/82) - (- )2E2) +1) "
10 0.12618297... 0.11356467...
50 0.06322498... 0.05863607...
100 0.05551135... 0.05169176...
200 0.05218540... 0.04909694...
500 0.05023499... 0.04755593...
1000 0.04955390... 0.04704176...

From Table 1 we can see that C'") behaves better in this ”digital” sense.

15
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