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1. Background of the doctoral thesis 

Advancement of adhesive technology and introduction of minimalinvasive concept resulted 
more conservative treatment modalities in restorative dentistry. In recent years there has been 
a paradigm shift towards the use of resin-based composites (RBCs) for the direct restoration of 
both anterior and posterior teeth. RBCs became the most popular restorative material of choice 
due to the improvements in their compositions and placement techniques resulting a well-
balanced tooth-restorative biomechanical unit paralel with strenghtening the remaining tooth 
structure. However several drawbacks as polymerization shrinkage, limited degree of 
conversion and limitation in fracture strenght associated with reduced lifespan of resin based 
restorations in hostile oral environment. Fractures, secondary decay are the two main cause of 
failures leading to the replacement of restorations in everyday clinical practice. Nowdays a 
widely accepted protocol is the repair of failing restorations based on the micromechanical 
roughening of the surface, the presence of unreacted monomers and possibilities of chemical 
bonding to the exposed filler particles. Due to the diversity of RBCs ideal repair protocol still 
not exist. 

1.1 Failure of composite restorations 
The minimum intervention approach, the demands of esthetic restorations a shift has been 
driven that RBCs became the first choice restorative material in most of clinical practices (1–
3). Patients’ oral environment (4–7) operator skills (8) physical, chemical, mechanical 
parameters of resin based materials (9–15)  the type of adhesives (16,17), size and type the 
prepared cavity (6,18,19) are the main influencing factors of the restorations’ lifespan.  
The most common type of failures are microleakage, discoloration followed by secondary 
decay around the cavity margins and bulk fracture due to the propagation of microcracks  (20–
22). Follow-up studies reported annual failure rates around 0-7,5 % of composite restorations,  
12%  of restorations showed increased wear rate after ten years of function and at the same time 
50% are being replaced (23,24) representing 50-70% of the activity of general dental practice 
(25–27) . 
 
1.2 Micromechanical and chemical adhesion on the tooth-restoration 
interface Adhesives 
Introduction of resin based materials (28) in a combination with an etching step, and application 
of low viscosity adhesive material provide the possibility of micromechanical and chemical 
adhesion towards the tooth structure (29–31) While the protocols and the effectiveness of 
interaction have been improved by manufacturers and operators the process is still invariably 
technique sensitive (32). 
From the beginning the overall adhesion concept based on the reliable enamel adhesion but on 
the last ten years turned towards the simplification of clinical steps, besides reducing technique 
sensitivity, shorten the application time and achieve a well-controlled dentin adhesion (33–37). 
 
1.3 Reliability of adhesive systems 
The conventional three step etch and rinse approach still considered as the most accurate and 
durable adhesion, representing the gold standard  proved by short and long term results (17). 
Siplified one or two step adhesives show comparable results in short term with three step 
adhesives (13,38,39), but their hydrophil nature seems to be one of the major shortcomings in  
the oral environment (39,40). 
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Success rate of two-step 10-MDP functional monomer containing adhesives after 8 years 
(41,42), one step adhesives in short term has been reported to be limited (13). The hydrophilicity 
of these complex solutions in long term may jeopardize the adhesive interface integrity (39,40). 
 
1.4 Concept of composite repair 
Failing but still serviceable restorations with fracture, crack formation, discoloration or 
secondary decay can be extense their longevity by application of repair procedure (43,44). This 
concept may extend the service time with aproximately 2-7 years (45–48). Refurbishing, 
repolishing and relayering as an minimally interventive repair concept means a conservative, 
time and cost effective therapy with lower risk of pulp irritation (49–53)  
 
Basic steps of the intervention is the surface roughening and application of intermedier agent 
providing a micromechanical and chemical intimate connection between the old and fresh resin 
based composite  (54). The time interval between the placement and the repair of the restoration 
is seems to be one of the main contributing factor (1,53,55). The 14 days timeframe means 
immediate repair, when C=C are still available for chemical bonding. In this case the 
importance of the intermedier layer hypothetically negligible. (55,56). Beyond this period of 
time the circumstances much more worse, the hydrolysis and degradation of resins should be 
taken into account (57–59). 
The composition of the repaired composite such as the type of resin and filler components is 
also a critical factor, but unfortunately in most cases these details are unknown and not available 
for the operators (60–64). 
The proper strategy may ensure an effective, durable result in medium and long term (65,66), 
however data about an universal protocol is still limited. 

1.5 Objectives 

The doctoral thesis gives an overview about the composition of resin based composite 
materials, adhesive systems and technologies focusing of the background of main clinical 
failures, and a summary of possibilities of composite repairs highlighting the importance of 
mechanical surface treatment, quality of surface texture and effectiveness of universal bonding 
agents.  

The primary aim of the first study was to evaluate the effects of different surface treatment and 
conditioning methods on the repair bond strength of a nanohybrid resin composite material. 
The secondary aim was to analyze the nature of interfacial failure, using scanning electron 
microscopy (SEM) and profilometry examinations of failed interfacial surfaces. The primary 
aim of the second in vitro study was to evaluate the effects of different universal adhesive 
systems on the repair bond strength of bulk fill composites. The secondary aim was to evaluate 
differences, if any, in repairability between low and high viscosity bulk fill composites.  The 
tertiary aim was to detect the nature of interfacial failure, using stereo microscopy, profilometry 
and scanning electron microscopy (SEM) examinations of failed interfacial surfaces. 
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2. Methods and materials 

2.1 Specimen preparation for shear bond strenght testing 
An universal nanohybrid resin composite material (Tetric EvoCeram™, Ivoclar Vivadent, 
Lichtenstein) was applied in 2mm thickness into the rectangular recess (25mm length x 13mm 
width x 4mm depth) of the individually fabricated Teflon molds. The layer of resin composite 
was photo-polymerized in a light oven (Dentacolor XS Kulzer, Germany) for 180 s, operating 
with a wavelength 320-500 nm (435 nm peak), to achieve maximum polymerization. An 
increment layer of 2mm of the same resin composite was applied on the polymerised first layer. 
The increment layer specimen was covered with a glass slide to achieve a flat smooth surface 
and prevent the formation of an oxygen inhibition layer, prior to photo-polymersiation in the 
light oven for 180 s. Subsequently, with an exception of positive control specimens composite 
blocks were removed from the Teflon molds and their top surfaces were polished with a wet 
500-grit silicon carbide disc using a polishing machine (Struers LaboPol35, Struers A/S, 
Rodovre, Denmark) at 300 rpm for 30 s and cleaned for 10 min in an ultrasonic bath (Quantrex 
90 WT, L&R Manufacturing Inc., Kearner, NJ, USA) containing deionized water to eliminate 
possible contamination. All surface polished resin composite specimens were placed back into 
the Teflon molds and air-dried (23 ± 1.0 °C) for 24 h. One group of 15 specimens served as a 
positive control and the resin composite surfaces were not polished. 
 
2.2 Surface conditioning methods 
The surface polished resin composite blocks were randomly divided, using randomisation 
tables, into six equal groups, each of distinct specimens to receive the following surface 
conditioning treatments according to the manufacturers’ instructions: 
Group 1: one coating of Gluma Self-Etch™ adhesive system (Heraeus Kulzer, Hanau, 
Germany) applied with a disposable applicator and circular brushing motion for 20 s, dried with 
oil-free air/water syringe for 5 s and light cured for 20 s using the Bluephase 20i (Ivoclar 
Vivadent, Lichtenstein) hand held LED light cure unit operating at a measured output of 1200 
mW/cm2 intensity. 
Group 2: one coating of Tokuyama Bond Force II™ adhesive bottle system (Tokuyama Dental, 
Tokyo, Japan) applied with a disposable applicator and circular brushing motion for 10 s, 
waited for 10 s, dried with oil-free air/water syringe for 5 s and light cured for 10 s (Bluephase 
20i, Ivoclar Vivadent, Lichtenstein). 
Group 3 (negative control group): No air abrasion and no chemical surface conditioning was 
used. 
Group 4: Air-borne particle abrasion with 50 μm Al2O3 (Korox R, Bego, Bremen, Germany) 
using an intraoral sandblaster (Dento-PrepTM, RønvignA/S, Daugaard, Denmark) from a 
distance of 10mm at a pressure of 2.5 bar for 10 s followed by washing (10 s) and drying (10 
s) with air/water syringe and the application of one coating of Gluma Self-Etch adhesive system 
(Heraeus Kulzer, Hanau, Germany) with circular brushing motion for 20 s, dried for 5 s and 
photopolymerised for 20 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 5: Air-borne particle abrasion with 50 μm Al2O3 (Korox R, Bego, Bremen, Germany) 
using an intraoral sandblaster (Dento-PrepTM, RønvignA/S, Daugaard, Denmark) from a 
distance of 10mm at a pressure of 2.5 bar for 10 s followed by washing (10 s) and drying 
(10 s) with air water syringe and the application of one coating of Tokuyama Bond Force II 
adhesive system (Tokuyama Dental, Tokyo, Japan) with circular brushing motion for 10 s, 
waited for 10 s, dried for 5 s and photopolymerised for 10 s (Bluephase 20i, Ivoclar Vivadent, 
Lichtenstein). 
Group 6: Air-borne particle abrasion with 50 μm Al2O3 Bego, Bremen, Germany) using an 
intraoral sandblaster (Dento-PrepTM, RønvignA/S, Daugaard, Denmark) from a distance of 
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10mm at a pressure of 2.5 bar for 10 s followed by washing (10 s) and drying (10 s) with 
air/water syringe. 
Subsequently, the Teflon molds in all six groups were removed and the specimens were air-
dried (23 ± 1.0 °C) for one minute.  
 
2.3 Repair resin composite application 
The repair resin composite was identical in type and brand to the substrate resin composite 
material. The base of the Teflon molds had a prepared cylindrical recess of 2mm diameter and 
2mm depth which was used for the resin composite application procedure. In the six test groups 
and the positive control group, the universal nanohybrid resin composite material was packed 
using a flat plastic instrument into the cylindrical recess and light cured (Bluephase 20i, Ivoclar 
Vivadent, Lichtenstein) for 20 s. In the positive control group, the repair resin composite was 
immediately applied on the prepared fresh resin composite substrate. All surface treatment and 
resin composite application procedures were performed by a single experienced operator in 
accordance with the manufacturers’ instructions. Subsequently, the Teflon molds were removed 
and all specimens were stored for 24 h at 23 ± 1.0 °C room temperature before being subjected 
to repair bond strength testing. 
 
2.4 Specimen preparation for microtensile strenght testing 
An incremental layer of 3-4 mm Tetric EvoCeram™ bulk fill (TECBF) (Ivoclar Vivadent, 
Liechtenstein) was applied to the specimens in half of the individually fabricated Teflon molds 
(square recess 10 mm length × 10 mm width × 14 mm depth at the centre), whereas SureFil 
SDR Flow™ bulk fill composite (SDR) (Dentsply Sirona, North Carolina, USA) was applied 
in similar increments to the remaining half of the molds. The first incremental layer of each 
bulk fill composite application was photo-polymerized in a polymerization oven (LC-6 Light 
Oven, Scheu GmbH, Iserlohn, Germany) for 180 seconds prior to the application of the second 
3-4mm increment layer of the respective bulk fill composite on the polymerised first layer. The 
second increment layer of each specimen was covered with a glass slide to achieve a flat smooth 
surface and prevent the formation of an oxygen inhibition layer, prior to photo-polymersiation 
in the light oven for 180 seconds. The light oven was equipped with six fluorescent light tubes 
(3 UVA and 3 blue light) generating wavelengths between 340 and 420nm, the maximum being 
370nm for UV-A and 350-450nm for blue light to achieve maximum polymerization. All molds 
were incrementally filled and photo-polymerized to a depth of 7mm. 
Subsequently, specimens from the TECBF group and specimens from the SDR group were 
successively removed from the Teflon molds and their top surfaces were consecutively polished 
with wet 500-grit, 1000-grit and 1200-grit silicon carbide discs using a polishing machine 
(Struers LaboPol35, Struers A/S, Rodovre, Denmark) at 300rpm for 30s and cleaned for 10min 
in an ultrasonic bath (Quantrex 90 WT, L&R Manufacturing Inc., Kearner, NJ, USA) 
containing deionized water to eliminate possible contamination. All surface polished resin 
composite specimens were placed back into the Teflon molds and air-dried (25 ± 1.0 °C) for 24 
h.  One group of 15 specimens of each TECBF and SDR served as positive control (PC) groups 
and the surfaces were not polished.  
 
2.5 Surface conditioning methods 
The TECBF and the SDR specimens were each randomly divided, using block randomisation, 
into eight equal sample groups. The eight sample groups of each bulk fill material were further 
randomly divided into two equal subgroups.  Whilst one of the subgroups of each bulk fill 
material remained polished without any additional surface preparation, the remaining half was 
subjected to an accelerated ageing in a thermal cycling machine (SD Mechatronik 
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Thermocycler THE-1100, Germany) for 5000 cycles at 5–55°C with a dwell time of 30s. 
Subsequently, all non-aged and aged specimens were placed back in their respective Teflon 
molds and air-dried (25 ± 1.0 °C) for 24 h. The non-aged and aged specimens received the 
following surface conditioning treatments according to the manufacturers’ instructions: 
Group 1: (negative non aged TECBF control group): no adhesive system was used between non 
aged TECBF and TEC.  
Group 2: one thin coating of Heliobond adhesive system (Ivoclar Vivadent, Lichtenstein) 
applied to the non-aged TECBF with a disposable applicator and circular brushing motion for 
10 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 10s 
(Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 3: one thin coating of Tokuyama Bond Force II™ adhesive system (Tokuyama Dental, 
Tokyo, Japan) applied to the non-aged TECBF with a disposable applicator and circular 
brushing motion for 10 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light 
cured for 10 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 4: one thin coating of Scotchbond universal adhesive system (3m ESPE, Neuss, 
Germany) applied to the non-aged TECBF with a disposable applicator and circular brushing 
motion for 20 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 
10 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 1A: (negative aged TECBF control group): no adhesive system was used between aged 
TECBF and TEC.  
Group 2A: one thin coating of Heliobond adhesive system (Ivoclar Vivadent, Lichtenstein) 
applied to the aged TECBF with a disposable applicator and circular brushing motion for 10 s, 
waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 10s (Bluephase 
20i, Ivoclar Vivadent, Lichtenstein). 
Group 3A: one thin coating of Tokuyama Bond Force II™ adhesive system (Tokuyama Dental, 
Tokyo, Japan) applied to the aged TECBF with a disposable applicator and circular brushing 
motion for 10 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 
10 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 4A: one thin coating of Scotchbond universal adhesive system (3m ESPE, Neuss, 
Germany) applied to the aged TECBF with a disposable applicator and circular brushing motion 
for 20 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 10 s 
(Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 5: (negative non aged SDR control group): no adhesive system was used between non 
aged SDR and TEC. 
Group 6: one thin coating of Heliobond adhesive system (Ivoclar Vivadent, Lichtenstein) 
applied to the non-aged SDR with a disposable applicator and circular brushing motion for 10 
s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 10s (Bluephase 
20i, Ivoclar Vivadent, Lichtenstein). 
Group 7: one thin coating of Tokuyama Bond Force II™ adhesive system (Tokuyama Dental, 
Tokyo, Japan) applied to the non-aged SDR with a disposable applicator and circular brushing 
motion for 10 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 
10 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 8: one thin coating of Scotchbond universal adhesive system (3m ESPE, Neuss, 
Germany) applied to the non-aged SDR with a disposable applicator and circular brushing 
motion for 20 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 
10 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 5A: (negative aged SDR control group): no adhesive system was used between aged 
SDR and TEC.  
Group 6A: one thin coating of Heliobond adhesive system (Ivoclar Vivadent, Lichtenstein) 
applied to the aged SDR with a disposable applicator and circular brushing motion for 10 s, 
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waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 10s (Bluephase 
20i, Ivoclar Vivadent, Lichtenstein). 
Group 7A: one thin coating of Tokuyama Bond Force II™ adhesive system (Tokuyama Dental, 
Tokyo, Japan) applied to the aged SDR with a disposable applicator and circular brushing 
motion for 10 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 
10 s (Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Group 8A: one thin coating of Scotchbond universal adhesive system (3m ESPE, Neuss, 
Germany) applied to the aged SDR with a disposable applicator and circular brushing motion 
for 20 s, waited for 10 s, dried with oil-free air/water syringe for 5s and light cured for 10 s 
(Bluephase 20i, Ivoclar Vivadent, Lichtenstein). 
Subsequently, the Teflon molds in all groups were removed and the specimens were air-dried 
(25 ± 1.0 °C) for one minute.  
 
2.6 Repair resin composite application 
The repair resin composite used was the nanohybrid Tetric EvoCeram (Ivoclair Vivadent, 
Liechtenstein).  With the exception of the two positive control groups the repair universal 
nanohybrid resin composite material was incrementally packed according to manufacturers’ 
instructions into the remaining 7mm height of the 14mm deep central recesses of the Teflon 
molds and light-cured in a light oven (Dentacolor XS Kulzer, Germany) for 180 s. In the two 
positive control groups no adhesive was applied and the respective TECBF and SDR bulk fill 
composites were immediately applied in accordance with manufacturers’ instructions to the full 
14mm depth of the molds.  All surface treatment and resin composite application procedures 
were performed by a single experienced operator in accordance with the manufacturers’ 
instructions. Subsequently, the Teflon molds were removed and all specimens were stored for 
24 h at 25 ± 1.0 °C room temperature before being subjected to repair bond strength testing. 

3. Methods 

3.1 Shear bond strength testing 
All specimens were individually mounted on a universal testing machine (Instron, Norwood, 
Massachusetts, USA) and subjected to shear bond strength (SBS) testing travelling at a 
crosshead speed of 0.5 mm/minute. The shear force was applied until failure occurred. For 
calculation of the SBS results the applied force was recorded and compression load at break 
divided by the contact area of cylindrical repair.  
 
3.2 Failure analysis 
Five specimens were randomly selected, using a computer generated allocation sequence, and 
their surfaces were examined under optical microscopy (Olympus SZ61, Tokyo, Japan) at 45x 
magnification. Mode of failure was recorded as adhesive – failure at the substrate-repair resin 
interface, cohesive – failure within the resin substrate or within the repair composite, or mixed 
– areas of adhesive and cohesive failure. Subsequently, these specimens were examined under 
SEM. The specimens were sputter-coated with a 50 nm gold layer (Bio-Rad SEM Sputter 
Coating Unit PS3, Microscience Division, West Chester, USA) to aid conductivity and 
examined using a Hitachi S-4300 SEM (Hitachi Science Systems, Ltd., Tokyo, Japan) at 
accelerating operating voltages of 5 and 15 kV in the secondary electron mode for taking high-
resolution electron micrographs.  
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3.3 Profilometry and SEM examination 
Another five randomly selected specimens, using a randomisation table, from each test group 
were examined under three-dimensional high resolution profilometry (Ambios Technology XP-
1, Santa Cruz, California, USA) to examine the surface roughness profiles. A Stylus tip radius 
of 2.0 microns was travelling at a tracing speed of 0.5 mm/s applying a stylus force of 1 mg. 
The arithmetical mean deviation of profile (Ra), root mean square deviation of profile (Rq), 
maximum depth of profile peak (Rp) and maximum depth of profile valley (Rv) amplitude 
parameters were recorded and determined using three dimensional profilometry (Ambios 
Technology Inc. software, Santa Cruz, California, USA). The data was analyses statistically 
using a two-way multivariate analysis of variance (ANOVA) at α=0.05. 
 
 
3.4 Statistical analysis 
The data were subjected to statistical analysis using a two-way multivariate analysis of variance 
(ANOVA), two independent sample ttest to analyse the equality of means and the Kolmogorov-
Smirnov test at a 95% confidence interval level. 
 
 
3.5 Microtensile bond strength (μTBS) testing 
The fabricated block specimens were adhesively secured using a flowable resin composite 
(M+W Select Permaplast LH viscous flow, M+W Dental, Büdingen, Germany) to a flat 
polymer support surface prior to being mounted on a hard tissue microtome (Leitz 1600, Leitz, 
Wetzlar, Germany). Subsequently, the blocks were serially sectioned perpendicular to the 
interface using the diamond-coated saw (Leitz, Wetzlar, Germany) of the microtome at low 
speed to obtain sticks with approximate dimensions of 1.0 mm x 1.0 mm x 14 mm. A minimum 
of 30 sticks were obtained for each group. 
 
All stick specimens were individually mounted on an universal testing machine (Instron 5544, 
Norwood, Massachusetts, USA) equipped with 2 kN load cell and strength tests were carried 
out at a 1 mm/min crosshead speed. The applied force (N) was recorded. The µTBS was 
calculated using the formula: σ=F/A where F is the applied force and A is the attached surface 
area of the samples. The latter was verified using a digital caliper (DC54150, DML digital 
micrometers, Sheffield, England). 
 
3.6 Failure analysis and SEM 
Five specimens from each group were randomly selected, using a computer-generated 
allocation sequence, and their surfaces were examined using a stereo microscope (Olympus 
SZ61, Tokyo, Japan) at a magnification of 45x to determine their mode of failure. Mode of 
failure was recorded as ‘adhesive’ (failure at the adhesive interface), ‘cohesive’ or ‘mixed 
failure’ (more than one type of failure). Subsequently, specimens were examined under SEM. 
The surfaces of the specimens were sputter-coated with a 50 nm gold layer (Bio-Rad SEM 
Sputter Coating Unit PS3, Microscience Division, West Chester, USA) to aid conductivity and 
examined using a Hitachi S-4300 SEM (Hitachi Science Systems, Ltd., Tokyo, Japan) at 
accelerating operating voltages of 5 and 15 kV in the secondary electron mode for taking high-
resolution electron micrographs. 
 
3.7 Profilometry examination 
The another five randomly selected specimens, using a randomisation table, from the aged and 
non-aged test groups were examined under three-dimensional high resolution profilometry 
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(Ambios Technology XP-1, Santa Cruz, California, USA) to examine the surface roughness 
profiles. A Stylus tip radius of 2.0 microns was travelling at a tracing speed of 0.5 mm/s 
applying a stylus force of 1 mg. The arithmetical mean deviation of profile (Ra), root mean 
square deviation of profile (Rq), maximum depth of profile peak (Rp) and maximum depth of 
profile valley (Rv) amplitude parameters were recorded and determined using three 
dimensional profilometry (Ambios Technology Inc. software, Santa Cruz, California, USA). 
The data was analysed statistically using a two-way multivariate analysis of variance (ANOVA) 
at a significance level of 0.05. 
 
3.8 Statistical analysis 
The Kolmogorov-Smirnov test was performed to verify normal distribution of bond strength 
values within the various groups. The Levene’s F-test was used for variance homogeneity. The 
data were normally distributed. Multiple comparison procedures were performed using the two-
way ANOVA test followed by Tukey’s post-hoc HSD test to determine any significant 
differences in μTBS between the bulkfill groups, artificial ageing, adhesion protocols, and the 
occurrence of interaction between these variables in the positive and negative control groups 
against the experimental repair protocols. The independent t-test was applied to compare the 
μTBS values for the different bulkfill composites and for the profilometry analyses. The 
Welch’s t-test was applied where different variances were observed in the profilometry groups. 
The assessment of the equality of variances for the profilometry groups was carried out using 
Levene’s F-test. All statistical tests were carried out at a set significance level of 0.05. Statistical 
analysis was carried out using IBM SPSS Statistics V22 (Statistical Package for Social Science 
Inc, Chicago, Illinois, USA). 
 

4. Results 

4.1. Bond strength data of shear bond strenght test 
Surface roughening with alumina sandblasting yielded significantly higher repair bond strength 
compared to no surface modification in the negative control group (p < 0.01). The bond strength 
values of specimens treated with adhesive techniques presented significantly higher bond 
strength values compared to where surface polishing alone (p=0.02) and sandblasting (p=0.03) 
was used. The Surface conditioning with alumina sandblasting and the use of TBF II resulted 
in significantly higher bond strength values (5.40 ± 0.36 MPa) than all other surface 
conditioning methods (p=0.017). No significant difference in bond strength values was noted 
between the use of TBF II without sandblasting (4.71 ± 0.55 MPa) and the use of GSE following 
sandblasting (4.79 ± 0.54 MPa) (p=0.061) or polishing (4.34 ± 0.48 MPa (p=0.082). There was 
no significant difference between the specimens prepared with sandblasting and the TBF II 
adhesive system (5.40 ± 0.36 MPa) and the positive control group (5.66 ± 0.49 MPa) (p=0.094). 
With the exception of the use of sandblasting and TBF II, the positive control group presented 
significantly higher bond strength values compared to all surface conditioning methods (p < 
0.01). 
 
4.2. Failure analysis, Profilometry, SEM  
The surfaces of five randomly selected specimens from each test group were examined using 
optical microscopy to investigate the mode of failure and by SEM examination to investigate 
the surface morphology of the failed surfaces. Optical microscopy examination showed that 
polished specimens had significantly more adhesive failures than sandblasted surfaces 
(p=0.001). Specimens treated with polishing and GSE (Group 1) showed 100% adhesive 
failures, whereas those treated with polishing and TBF II (Group 2) showed 73% adhesive 
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failure. In contrast, the sandblasted surfaces conditioned with TBF II (Group 5) showed mostly 
cohesive failures (80%), while the sandblasted surfaces conditioned with GSE (Group 4) 
showed predominantly adhesive failures (60%). These results revealed that there were 
significant differences between the sandblasted and polished groups in respect to surface 
roughness values and all other amplitude parameters tested. There was strong evidence that the 
sandblasted specimens provided a more irregular and rougher surface finish than the polishing 
technique (p=0.0001). SEM examinations have confirmed these findings  
 
4.3 Bond strength data of microtensile bond strength test 
The bond strength values of specimens treated with adhesive techniques yielded significantly 
higher bond strength values comparedto the non-aged and aged negative control groups (p < 
0.01). The Tokuyama Bond Force II™ (TBF II) and Scotchbond™ universal (SBU) 
 adhesive systems consistently resulted in significantly higher bond strength values than the use 
of the Heliobond™ (HB) adhesive system inall surface conditioned groups irrespective of the 
type of bulk fill RBC substrate (p < 0.01). No significant differences in bond strength values 
were observed between repaired non-aged TECBF specimens treated with TBF II (42.07 ± 1.76 
MPa) and SBU (42.43 ± 1.26 MPa) (p = 0.519) and between aged TECBF repair groups of TBF 
II (39.46 ± 1.81 MPa) and SBU (38.12 ± 1.79 MPa) (p = 0.051). There was no significant 
difference between the non-aged SDR specimens treated with TBF II (46.33± 1.95 MPa) and 
SBU (46.8 ± 1.43 MPa) (p = 0.458), and between aged SDR repair groups conditioned with 
TBF II (43.27 ± 1.62 MPa) and SBU (43.51 ± 2.17 MPa) (p = 0.731). Whilst ageing did not 
result in a significant difference in the TECBF and SDR groups treated with TBF II and SBU, 
ageing resulted in significant lower bond strengths values in both Bulk fill groups conditioned 
with HB (TECBF, p<0.001; SDR, p <0.001). The Tukey’s test did not show statistically 
significant differences in bond strength between non-aged SDR specimens conditioned with 
TBF II (p = 0.12) and SBU (p = 0.27) compared to the positive SDR control group. Marginal 
significant differences were noted in bond strength (p<0.05) and SBU (p <0.05) compared to 
the positive TECBF control group. 
 
4.4. Failure analysis, Profilometry, SEM 
The surfaces of five randomly selected specimens from each test group and the positive and 
negative control groups were examined using optical microscopy to investigate the mode of 
failure and by SEM examination to investigate the surface morphology of the failed surfaces. 
Stereo microscopy examination showed that positive control specimens of both bulkfill 
composites showed 100 % cohesive failures, whilst with the exception of the negative non aged 
SDR group (Group 5) all negative control groups exhibited exclusively adhesive failures. 
TECBF specimens treated with SBU (Groups 4 and 4A) showed 66.67 % cohesive failures in 
non-aged specimens, and 53.33 % cohesive failures in aged samples. Of the TECBF specimens 
treated with the TBFII adhesive system, cohesive failure was observed in 46.67 % in non-aged 
(Group 3) and 33.33 % in aged (Group 3A) specimens. In the TECBF test groups the greatest 
cohesive bond strength (66.67 %) was observed in the non-aged SBU group (Group 4) followed 
by the aged SBU group (53.33 %, Group 4A). The non-aged and aged SDR specimens treated 
with SBU showed cohesive failures of 53.33 % (Group 8) and 33.33 % (Group 8A) 
respectively. In the non-aged and aged SDR specimens treated with TBFII cohesive failure was 
33.33 % (Group 7) and 40 % (Group 7A) respectively. In both bulkfill groups the use of HB 
resulted predominantly in adhesive failures. The failure mode of aged TECBF treated with 
HB (Group 2A) was comparable to the non-aged control groups of TECBF (Groups 1 and 1A). 
There was strong evidence that the SDR specimens provided a more irregular and rougher 
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surface finish than the TECBF specimens (p < 0.005). SEM examinations have confirmed these 
findings. In contrast to theTECBF groups, no significant difference was found between the aged 
and non-aged SDR specimens. 
 
 
 
 
 

5. Conclusions 

Within the limitations of this study, the following conclusions can be drawn: 
1. Nanohybrid composite (TEC) substrate treated with sandblasting yielded statistically higher 
bond strength values when compared to non-sandblasted polished up to 500 Grit substrate 
surfaces. 
2. The use of sandblasting followed by the application of TBF II containing universal adhesive 
(TBF II) yielded the statistically highest repair bond strength values, suggesting that this repair 
protocol may be recommended to achieve the best outcome for nanohybrid composite repairs. 
3. The bonding performance observed in nanohybrid composite (TEC) repairs treated with 
sandblasting and the 10-MDP containing universal adhesive system (TBF II) is comparable to 
the bond strength values of cohesive composites. 
4. Bulk-fill RBC (SDR, TECBF) treated with universal adhesive systems containing a 
functional monomer 10-MDP (TBF II, SU) yielded statistically higher bond strenght values 
when compared to non-functional containing adhesive. 
5. The viscosity of bulk-fill RBC (SDR, TECBF) does not influence repair bond strenght values, 
suggesting both low and high viscosity RBCs are amenable to successfull repair using 
functional monomers to achieve the best outcome.  
6.The repair bond strenghts obeserved in bulk-fill RBC (SDR, TECBF) repairs treated with the 
10-MDP containing universal adhesive systems (TBFII, SU) is comparable to the bond strenght 
values of cohesive RBCs. 
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