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Abstract
In this study two high-resolution satellite imagery, the PlanetScope, and SkySat were compared based 
on their classification capabilities of urban vegetation. During the research, we applied Random Forest 
and Support Vector Machine classification methods at a study area, center of Rome, Italy. We performed 
the classifications based on the spectral bands, then we involved the NDVI index, too. We evaluated the 
classification performance of the classifiers using different sets of input data with ROC curves and AUC 
values. Additional statistical analyses were applied to reveal the correlation structure of the satellite 
bands and the NDVI and General Linear Modeling to evaluate the AUC of different models. Although 
different classification methods did not result in significantly differing outcomes (AUC values between 
0.96 and 0.99), SVM’s performance was better. The contribution of NDVI resulted in significantly higher 
AUC values. SkySat’s bands provided slightly better input data related to PlanetScope but the difference 
was minimal (~3%); accordingly, both satellites ensured excellent classification results. 

Keywords: vegetation classification, high-resolution, satellite imagery, Planet, SkySat, urban 
vegetation, NDVI, ROC curve, classification performance, Random Forest,  
Support Vector Machine

1.	 Introduction

Remote sensing is one of the fast-growing 
geospatial technologies, progressively 
influencing a wide range of areas such as 
commerce, science, and applied research 
as well as public policy (Estes et al. 2001). 
By definition, remote sensing relates to 
the science and technology of obtaining 
information about the earth’s surface without 
any direct physical contact (Campbell and 
Wynne, 2011). The field of remote sensing 
has evolved considerably. For several 
decades, aerial photographs, acquired from 

airborne vehicles, have been the main source 
of information, until the early 1970s, satellite 
images have emerged as an alternative 
to aerial photography for earth’s surface 
observation (Szabó et al. 2018). One of the 
advantages of satellite images over aerial 
images is the spatio-temporal characteristics, 
which permit for wide-area mapping 
on a temporal basis. Already, successful 
application of satellite images in various 
areas has been demonstrated i.e., land use/
land cover monitoring (Kraas, 2007; Singh 
et al. 2015; Szabó et al. 2016; Phinzi and 
Ngetar, 2019; Gyenizse et al. 2020), urban 
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applications (Streutker, 2002; Li et al. 2009; 
Szabó Z. et al. 2019; Paramita and Matzarakis, 
2019), agriculture (Atzberger, 2013), water 
quality monitoring (Chebud et al. 2012), 
drought monitoring (Gulácsi and Kovács, 
2018) mapping at wetlands (Szabó et al. 
2020; Van Leeuwen et al. 2020) and erosion 
risk assessment (Bakacsi et al. 2019; Phinzi 
et al. 2020).

Recently, there has been increased interest 
in the use of remote sensing for urban 
vegetation mapping. Such increased interest 
in remote sensing of urban vegetation is a 
direct response to global climate change, a 
major burden for cities (Kraas, 2007). The 
increasing number of urban dwellers, traffic 
congestion, and the ongoing urban heat island 
effect, all have a direct bearing on global 
climate change. In the face of such urban 
problems and their subsequent contributions 
to climate change, urban vegetation, trees, 
in particular, plays a critical role as an 
ecosystem service, mitigating climate change 
impacts (Pickett et al. 2011). The availability 
of accurate information on the spatial 
distribution of urban vegetation is the first, 
but important step towards addressing the 
aforementioned urban problems, ultimately 
reducing the effects of climate change.

Remote sensing, due to its spatial and 
temporal characteristic, offers tremendous 
opportunities for mapping urban vegetation, 
providing reliable and reproducible 
information on urban vegetation patterns 
across large areas (Melesse et al. 2007). 
However, urban vegetation assessment 
using remote sensing-based approaches is 
still faced with challenges, largely related 
to the spectral and spatial complexity of 
urban environments. The presence of a 
variety of vegetation types together with 
the pronounced 3D structure of urban 
environments with shadowing and obscured 
urban objects, as well as rapid temporal 
changes (Tigges et al. 2013), make it even 
more difficult to assess urban vegetation 
using remote sensing. Freely available 
satellite images like Landsat and Sentinel, 

with 30 m and 10 m spatial resolutions, 
respectively, are probably the most widely 
used for vegetation mapping over large 
areas but they are not suitable for detailed 
urban vegetation mapping because of their 
relatively low spatial resolutions (Burai et al. 
2019).

Although Sentinel-2 has the best spatial 
resolution among the freely available 
multispectral datasets, the © Planet 
Labs Inc. (Planet Team, 2017) provides 
PlanetScope imagery free for educational and 
research applications. The PlanetScope is a 
constellation with more than 180 lunchbox 
multispectral satellites with 3 m spatial 
resolution and daily revisit time (Shendryk 
et al. 2019). © Planet Labs Inc. has another 
ultra-high (1 m multispectral and 0.8 m 
panchromatic) spatial resolution satellite 
constellation, the SkySat satellites. SkySat is a 
commercial database, but it has a few sample 
scenes ready to use.

The use of PlanetScope and SkySat images 
has not been widely reported in the literature, 
especially their capabilities in vegetation 
classification. The aim of this study is to 
compare the classification capabilities of the 
urban vegetation using these high spatial 
resolution satellite imageries. The main 
goal is to reveal that a) the images provide 
accurate maps of vegetation cover; b) which 
classifier provides the best classification 
accuracy; c) does the NDVI improve the 
classification results?

2.	 Materials and Methods

Study area

The study area is located in the center of 
Rome, Italy. The area is 30 km2 and contains 
mostly urban built-up areas, green parks, and 
the River Tevere. There is very little amount 
of vegetation in the built-up areas, especially 
in the city center. Most of the vegetation is 
located in the green parks and along the main 
roads and the river.
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Satellite imagery

In this study, we used two high-resolution 
satellite imageries, both from the Planet Labs 
database (Planet Team, 2017) and with the 
same capture date 28th August 2018. First 
is PlanetScope satellite imagery. PlanetScope 
has four spectral bands, blue, green, red, and 
near-infrared. The spatial resolution is 3 m, 
and the constellation has a daily revisit time. 
The second is a SkySat scene. SkySat also 
has four multispectral bands (blue, green, 
red, and near-infrared) with 1 m spatial 
resolution and a panchromatic band with 0.8 
m spatial resolution. In this study, we used 
the pan-sharpened multispectral dataset 
with 0.8 m spatial resolution.

Reference data

We applied the binary approach; thus, 
reference data were collected as vegetation 
and non-vegetation classes. We gathered the 
data from the same spots in the images. In 
the vegetation class, we included pixels from 
trees and herbaceous plants as well. The 
“non-vegetation” class incorporated more 
diverse land cover types for e.g. buildings, 
roads, water surfaces etc.

Classification methods

Analyses were conducted with two 
supervised classification algorithms: Random 
Forest (RF) and Support Vector Machine 
(SVM). RF is an ensemble learning method 
that uses multiple (i.e. 100-500) decision 
trees to make predictions. Class labels are 
assigned based on the majority votes of the 
decision trees (Belgiu and Drăguţ, 2016; 
Breiman, 2001). The basic idea behind SVM 
is to find a line (hyperplane) which separates 
the classes, however, there could be infinite 
possible lines to do this, so the algorithm’s 
goal is to find the optimal hyperplane by 
maximizing the margin between the support 
vectors (Chapelle et al., 1999).

Evaluation of the classification perfor-
mance

In this study, we performed ROC curves to 
evaluate the accuracy of our classifications. 
The method represents the tradeoff 
between false-positive and true-positive 
rates (McClish, D. K., 1989). The Area Under 
the Curve (AUC) values represent the 
classification quality.

Statistical analysis

We determined the correlations among the 
satellite bands and NDVI with the Pearson 
correlation test; furthermore, as a quantified 
comparison tool, we used the Cronbach’s 
alpha, a measure of internal consistency (0 
indicates the lack of correlations, and when 
the shared covariances increase, Cronbach’s 
alpha approaches 1). 

We evaluated the AUC values (as 
dependent variable) with General Linear 
Modelling (GLM), and determined the 
explained variance by the following factors 
(as independent variables): satellite type, 
classifier, and the usage of NDVI as an 
additional variable in the classification. We 
also determined the statistical interactions 
among the factors (i.e. to reveal if a factor 
influences the effect of another). Effect sizes 
(ω²) had been calculated to quantify the 
contribution of the variables in the model 
(Field, 2013; Rotigliano et al., 2018). 

3.	 Results

Classification by spectral bands and by 
involving NDVI

Evaluating the classification performances 
of the Planet data by the ROC curve (Fig. 
1.) show that SVM had 0.97 AUC, better 
than RF (0.96 AUC) classifying with the 
spectral bands. Involving the NDVI into the 
classification the RF reached 0.98 AUC (Fig. 
3.), better than SVM (0.97 AUC).
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Fig. 1. ROC curves of the Planet classifications

Fig. 2. ROC curves of the SkySat classifications
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Fig. 3. Extracted vegetation of the Planet (input data: bands+NDVI, classifier: Random Forest)

Fig. 4 Extracted vegetation of the SkySat (input data: bands+NDVI, classifier: Random Forest)
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Fig. 5. Samples of each classification. (Left column: Planet, right column: SkySat; input: BANDS or 
BANDS+NDVI; classifier: RF - Random Forest, SVM - Support Vector Machine)

Fig. 6. Correlation matrices of Planet (a) and SkySat (b) bands and the derived NDVIs
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In the case of the SkySat, the RF 
classification with the spectral bands had 
0.98 AUC. The same classification using SVM, 
and involving NDVI using both classifiers 
reached 0.99 AUC as well (Fig. 2, 4.). Figure 5. 
shows samples of the classified maps.

Correlations among the bands and NDVI

NDVI differently correlated with the 
original bands of the two satellites (Fig. 
6.). While the correlation differences were 
minimal (0.01) in the case of B1-B3 bands, 
these were ~0.1 in the case of B4 and 0.2-
0.3 between NDVIs. Cronbach’s alpha was 
0.819 for the Planet and 0.827 for the SkySat 

images. Accordingly, both values indicated 
high consistency, in the case of SkySat it was 
slightly higher.

Effects of factorial variables on the AUC

GLM revealed that type of satellites, 
classifiers and the involvement/omitting of 
NDVI explained 31.6% (adjusted R2 = 0.316) 
of the variance. Although most of the factors 
and their interactions were significant 
(except the interaction of satellite type and 
the classifier, and the interaction of satellite 
type and the inclusion of NDVI), effect sizes 
indicated large effect only in case of satellite 
type, and all other factors had a small effect 

Fig. 7. AUC values of 50 cross-validated samples by satellites (SAT) classification algorithms, (RF or 
SVM) and involved data (NDVI, False: original bands, True: original bands + NDVI)

Table 1. GLM of 50 models of cross-validation (SS: Sum of Squares, df: degree of freedom, F: F-statistic, 
p: significance, ω²: effect size; SAT: satellite type)

SS df F p ω²

Model 0.06410 7 27.39161 < .001 0.316

Classifier 0.00539 1 16.11659 < .001 0.026
Sat 0.03266 1 97.69124 < .001 0.165
NDVI 0.01113 1 33.29940 < .001 0.055
Classifier × Sat 2.15e-6 1 0.00642 0.936 -0.002

Classifier × NDVI 0.01193 1 35.67160 < .001 0.059

Sat × NDVI 0.00124 1 3.72352 0.054 0.005

Classifier × Sat × NDVI 0.00175 1 5.23251 0.023 0.007

Residuals 0.13105 392    

Total 0.19515 399    
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(Table 1.). Comparison by factors (Fig. 7.) 
showed that on average Skysat had 0.018 
higher AUC values than Planet (t = -9.88, df 
= 392, p<0.001), inclusion of NDVI improved 
AUC by 0.011 (t = -5.77, df = 392, p<0.001), 
and SVM provided 0.007 better AUC (t = 
-4.01, df = 392, p<0.001).

4.	 Discussion

Classifying the Planet and SkySat data 
showed that SVM provided slightly better AUC 
values than RF in case of the classification 
with the spectral bands. When we involved 
the NDVI into the classification RF provided 
slightly better results in case of the Planet. 
SkySat, except the RF classification of the 
spectral bands provided 0.99 AUC, the 
best outcomes in this evaluation method. 
Involving NDVI improves the classification 
performance in almost all cases. The SkySat 
performed better than the Planet, although 
the RF classification of the Planet involving 
NDVI also reached the same AUC than the 
SkySat classified the spectral bands with RF.

Several studies proved that RF 
outperforms, at least slightly, SVM (Schlosser 
et al. 2020, Szabó L. et al. 2019, Liu et al. 2013), 
in this case SVM provided better accuracy. 
Although the difference of AUC was only small 
(0.007), but significant. This is a special case 
of statistical analysis when the significant 
differences are not completely useful: the 
difference is true, but the magnitude between 
the groups is rather small; thus, effect size 
can be a more useful metric than the p-value. 
The ω² indicated a small effect; accordingly, 
the two classifiers can be characterized with 
almost similar accuracies.

These satellites are rather new ones, thus, 
the literature is not wide of them, and there is 
not much experience with their applicability. 
Zeng et al. (2018) applied the Planet satellites 
in South Asia to reveal the expansion of 
croplands against forests; however, the 
Planet images were used as auxiliary data. 
Olthof and Svacina (2020) applied Planet 
images in flood mapping, and they used 

these data to determine the maximum flood 
extent to serve as a validation dataset in their 
flood simulations. Shendryk et al. (2019) also 
found Planet images efficient to filter out 
clouds and shadows in land cover mapping. 
Planet images were successfully applied in 
oil spill detection (Park et al. 2019), and in 
vegetation mapping (Gašparović et al. 2018), 
in this latter case, Planet performed ~5% 
better than Sentinel-2 in vegetation mapping. 
Terra Bella’s SkySat (a previous generation of 
this type of satellites with 2 m resolution) 
was used in smallholder (<0.3 ha) plots to 
predict crop yield and served appropriate 
data (Jain et al. 2016). Generally, similarly 
to our findings, all previous studies found 
microsatellites useful in environmental 
mapping.

The contribution of NDVI resulted in 
a significant difference in AUC values; 
nevertheless, this was only ~1%. In this case 
the ω² was 0.05, which indicated medium 
effect. NDVI had different correlations with 
the original bands, and in case of Skysat 
correlations were only moderate. However, 
the interaction between satellite type and the 
involvement of NDVI into the set of predictors 
had only a very small effect (ω²=0.005). It 
means that in spite of the differences in the 
correlation matrices (i.e. NDVI provided 
different predictors by satellites), the AUC 
did not result in significantly differing 
outcomes with high magnitude of differences; 
differences were insignificant (p=0.054).

5.	 Conclusions

In this study the PlanetScope and SkySat 
satellite imageries were compared based 
on their classification capabilities of urban 
vegetation. Study area was in the city centre 
of Rome, Italy. We classified the imageries 
using RF and SVM classification methods 
using the original bands of the satellites and 
the NDVI indices. We found that satellite 
bands resulted in better outcomes using 
SVM than RF, and adding NDVI provided 
higher AUC values. AUC values were slightly 
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better (0.04) by using the SkySat imagery 
than Planet which was also high (AUC=0.96). 
While the different classification methods did 
not result in significantly differing outcomes 
(AUC values between 0.96 and 0.99), the 
contribution of NDVI caused significantly 
higher AUC.
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