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A two-parameter family of complexity measures C*P based on the Rényi entro-
pies is introduced and characterized by a detailed study of its mathematical prop-
erties. This family is the generalization of a continuous version of the Lopez-Ruiz—
Mancini—Calbet complexity, which is recovered for a=1 and B=2. These
complexity measures are obtained by multiplying two quantities bringing global
information on the probability distribution defining the system. When one of the
parameters, « or 3, goes to infinity, one of the global factors becomes a local factor.
For this special case, the complexity is calculated on different quantum systems:
H-atom, harmonic oscillator, and square well. © 2009 American Institute of
Physics. [doi:10.1063/1.3274387]

I. INTRODUCTION

The question concerning the quantification of complexity1 has been addressed in many dif-
ferent fields, from computer science to physics. Depending on the properties to be grasped differ-
ent answers are found in the literature.” The study of these statistical measures in physical
systems, and, in particular, in quantum systems, has a role of growing importance. So, information
entropies and statistical complexities have been calculated on different atomic systems.(”7 In par-
ticular, the so-called Lopez-Ruiz—-Mancini—Calbet (LMC) complexityg_10 has been computed in
the position and momentum spaces for the density functions of the hydrogenlike atoms and the
quantum isotropic harmonic oscillator.'"' It has been found that the minimum values of that
statistical measure is taken on the quantum states with the highest orbital angular momentum, just
those wave functions that correspond to the Bohr-like orbits in the prequantum image.

Many LMC-like statistical complexities are defined as a product of two factors, one of them
measuring the broadening of the distribution that defines the system and the other one quantifying
the narrowness of it. Both factors are global magnitudes that can be calculated by integrating over
the whole support of the distribution.

Shannon information'” is an adequate indicator to grasp the spreading of a distribution and
thus it is employed as a basic ingredient of the first factor of complexity measures. Concretely, it
plays an important role in the original LMC statistical complexity in which the second factor, the
so-called disequilibrium,8 was originally chosen to be the square distance to the equiprobability
distribution. Other functions can be used to define different families of LMC-like complexities.14
When the simple power Shannon entropy is taken as the first factor, it is a meaningful parameter
to characterize the shape of a distribution.” In this particular case, the log of the LMC complexity
coincides with the structural entropy introduced to study questions concerning quantum

“Electronic mail: rilopez @unizar.es.

0022-2488/2009/50(12)/123528/10/$25.00 50, 123528-1 © 2009 American Institute of Physics

Downloaded 15 Jan 2010 to 165.123.34.86. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



123528-2 Lépez-Ruiz et al. J. Math. Phys. 50, 123528 (2009)

localization.'>'®  Other generalizations of the Shannon information that depend on a
parameterm’”’18 can also be used. For instance, the Rényi entropy, that is, related with relevant
physical magnitudes in atomic physics,1920 is a good candidate to be adopted in this purpose.

Hence, in this work, we undertake the generalization of the second factor of the LMC com-
plexity by means of the Rényi entropy. We apply the same procedure in Ref. 21 where the first
factor was generalized. This is presented in Sec. II. Some properties of this new two-parameter-
dependent complexity measure are indicated in Sec. III. Strikingly, when one of the parameters
tends to infinity, the asymptotic limit of this measure becomes the product of a global quantity by
a local one. In Sec. IV, the analysis and calculation of this special global/local product case of the
generalized complexity measure are performed for the H-atom, the quantum harmonic oscillator,
and the square well. Section V includes the conclusions.

Il. GENERALIZED STATISTICAL COMPLEXITY MEASURE é(f"’ﬁ)

Let us consider a D-dimensional density function f(r) [with f(r) nonnegative and [f(r)dr
=1]. The Rényi entropy of order « of the density function f is given by

1

1-«a

R}“) = lnf [fr)]%dr for 0<a<ow, a#l, (1)
where r stands for r, ... ,rp. From the above definition, it is straightforward to see that in the limit
a—1 we have R(.a)—>Sf=—ff(r)1n f(r)dr, with S, the Shannon entropy of f, and in the limit «
— 00 then R(f“)—>—ln|[ﬂ «» Where ||f|..=sup, f(r) represents the maximum reached by f over its
whole support.

The importance of Rényi entropies comes from the fact that, for atoms and molecules, density
functionals (kinetic energy, exchange energy, and classical Coulomb repulsion energy) can be
expanded in terms of the local homogeneous functionals exp(1— a)RE)”).lg’ZO In particular, it is well
known that for a=5/3, a=4/3, and a=2, the local density approximations are related to the
kinetic and exchange energies and the average of the density, respectively. Also the case when «
goes to infinity has physical significance: it contains information about the maximum of the
probability density, which in the ground state of atoms is taken at the nucleus. In this situation, let
us recall the importance of the density in the cusp due to Kato’s theorem.

A continuous version’ of the measure of complexity Cy, the so-called LMC complexity intro-
duced in Ref. 8, is defined by

(2)
Cf= Hfo, with Hf= eSf and Qf= E_sz . (2)
When the Shannon entropy of the statistical complexity Cy is replaced with the Rényi entropy of

order o, we obtain the generalized statistical measure of complexity C;.a ), which has been defined
by21 ’

(a)
Ci=HMQ,, with HW =R, 3)

and tends to Cy in the limit a— 1.
Now we can substitute in a symmetric way the R}z) ingredient of the above complexities for
the Rényi entropy of order B, which allows us to obtain a («, 8)-dependent measure of complexity

), which is defined by

~ (@)_p(B)
CeP=efi R 0<a, B<eo. (4)

So, we recover 6‘;1’2)=C_ ; and E;Q’Q)=C;a) of Refs. 8 and 21, respectively. This type of generali-
zation based on Rényi entropies differences was suggested in Refs. 22 and 23. Taking into account

that [[f],=(/")""7, C!% can also be expressed as

Downloaded 15 Jan 2010 to 165.123.34.86. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



123528-3 Generalized statistical complexity measure J. Math. Phys. 50, 123528 (2009)

& =I5 1. )

Here, we suppose that the integral of the pth power of the probability density exists. It might
happen, however, that for certain power(s) the integral does (do) not exist. Even if there are values
of a for which Eq. (5) diverge, we can find several other values of « for which the new complexity
measure takes a finite value. In this sense, the generalized complexity extends the complexity
measure to any kind of well behaved distribution.

lil. PROPERTIES OF C\*#

Now, having as guideline Ref. 9, we proceed to present some mathematical properties of this
new generalized statistical complexity measure.

A. Inversion symmetry

It is straightforward to check that

CiePCipo =1, (6)

and then 6’;Fy’a)=l.

B. Monotonicity and universal bound

Taking into account that the Rényi entropy is a nonincreasing function of «, it can be easily
proven the following.

@) CMP=1if a<pand CP'<1if a>p.

(ii) C}“’ﬂ ) is a nonincreasing function of « for a fixed 8 and an increasing function of S for a
fixed a.

(iii)  The lower (upper) bound 1 is reached for a<<B (a> B) for the rectangular density func-
tion. It is a universal bound independent of « and g, as it is shown in Sec. III F.

C. Invariance under translations and rescaling transformations

q(f'ﬁ ) is invariant under scaling transformations, i.e., for f,=Af(\r), then é}jﬁ )=€'}a’ﬁ ).

Also, it is invariant under translations. Hence, in general, let us consider a scaling transformation
and a translation parametrized by (a,b), respectively, of the form

fap(r) =’ fla(r -b)], (7)
where the distribution function f is normalized, [f(r)dr=1.

The Rényi entropy of order «a is transforming as

RCK
-

111J (dfla(r=b))%dr=R“ -D Ina, (8)

where a change in variable y=a(r—b) was applied. Note that there is no dependence on the

parameter b. Therefore, the new complexity measure Ej(f' ) (4) is invariant under this transforma-
tion.

D. Invariance under replication

Different types of replication can be defined. Here we show the invariance of the complexity
measure for one particular type of replication. Take n copies f,,(r),m=1,...,n of the distribution
function f(r),
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where the support of each f,,(r) is centered at the point b,, and the supports are disjoint. We can
immediately obtain that [f,,(r)dr=1/n. Then we can define the distribution function,’

q(r) = X f,,(v), (10)
m=1

that is normalized, [¢(r)dr=1. From Eq. (9) we can easily calculate that

f fo(r)dr = ple-hP2-a f (y)dy. (11)

As the replicas are supported on disjoint sets, we have

> | £ae)dr = pleh 2= f F(y)dy. (12)
m=1

Then the transformation of the Rényi entropy of order « is

R =R~ (D/2- Dln n. (13)

Hence the complexity measure Eéa’ﬁ ) (4) is replica invariant.

E. Near continuity

Take two distribution functions f(r) and g(r) defined on the set M in the D-dimensional space
considered. Let § be a positive real number. The functions f(r) and g(r) are S-neighboring
functions on M, if the Lebesgue measure of the points r € M satisfying |f(r)—g(r)|= & is zero. A
functional T of the distribution functions is near continuous if for any £>0 there exists &(e)
>0, such that for any S-neighboring functions f(r) and g(r) on 7, then |T(f)-T(g)|<e.

Take the function

.
1-6 .
if [r] <1
Cp
=1 ) 14
gas(r) ——— if 1<[r|<B (14)
cp(B” 1)
\O otherwise,
where
2777
=—, 15
2= Drpr2) (15)

where B>1 and 1>6>0. As cp is the volume of a unity D-dimensional sphere then g is
normalized to 1. One can easily calculate the Rényi entropy of order «,

1 o
R = In|(1-8)%+———— | +Incp. 16
=1 a {( ) (BD_I)Q_I} p (16)
@B _ RW_gP . .
From here, we obtain C p P=ee ™% ,0<a,B<%. Consider now the rectangular density func-

tion,
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1
— if |r| <1

X =1cp (17)
0  otherwise.

The Rényi entropy of order «,

Rg(a):ln ¢p» (18)

does not depend on the «. Consequently, we are led to the result

CeP=1. (19)

Note that g5p and x are gneighboring functions for 0< §< <1 and

lims_o R\ =R\ =1n cp. (20)

Therefore, in the limit 6— 0 the complexity measure C*P) takes the same value,

lims o C*# =P =1. 1)

The importance of a bounded support to obtain this result deserves some longer explanation to be
done in a future work, such as it was suggested in Ref. 9.

F. The extremal complexity

Naturally, the extremal complexity, as it happens with the structural entlropy,15 is reached for
the rectangular function [Egs. (17) and (19)]. Here, by following Ref. 9, we prove that this is only
distribution reaching the minimal complexity. The function f is taken as a sum of rectangular
functions XE, defined on disjoint sets E;,k=1,...,n with Lebesgue measure p,

= NiXE, - (22)
k=1

Its integrals can be easily calculated,

J fodr =2 Ny (23)

The logarithm of complexity measure C*P has the form

_ : 1 (<
In Cl@B = 1n<2 )\;fl/ak) - —1n<2 )\f,u,k). (24)

k=1 1- B k=1

-

We seek the extremum of the logarithm of complexity measure C*A) under the normalization
condition,

> Nepre=1. (25)

k=1

The variation with respect to A; and u, after straightforward manipulation leads the equations
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AP ——— (26)

for all k=1,...,n. As \; has the same value for all k, then f is a rectangular function. Moreover,
with the help of the near-continuity property as explained in Ref. 9, it can also be argued that the
rectangular distribution is the only distribution reaching the extremal complexity.

G. The cases C\**) and C{*?

As before explained, the new complexity measure has a completely different behavior for «
< B and a> B. In the first case, there is a lower bound, and in the second case there is an upper
bound. Both are universal, i.e., the bound is equal to 1 for any (finite and nonzero) value of « or
B3, and this universal bound is reached at the rectangular density function. This is a consequence of
the fact that the Rényi entropy is independent of the parameter « or B, then the new complexity
measure has the value of 1 for any a or B.

Finally, let us remark that when 8 goes to infinity a special case of the complexity measure in

(01)
terms of a local quantity (||fl|..=sup, f(r)) is obtained: C =e®s ||fl|... To prove this property it is
sufficient to take into account that lim,_,..(J. f(r)”dr)”” sup, f(r). 2 This complexity measure

verifies Cfa #>1 for all @ (and C(°c 0‘)< 1). We can also mention that C (,0)
B—0.

— 0 for finite « and

IV. CALCULATION OF é(f“’w) ON DIFFERENT QUANTUM SYSTEMS

Among the different statistical indicators that have been defined as a product of two entropic
terms, the generalized complexity C'@P is also obtained by multiplying two factors, each one of
them bringing global information on the distribution f. Recall, however, that the limit C

Rl
combines global information on the distribution £, just the part corresponding to e®/ , and local
information coming from only a specific point of the space where the d1str1but10n fis supported,

indeed the maximum of the density, |[}‘1|oo Equivalently, the limit version C' f°° presents a sym-
metrical behavior with respect to C by considering the property C C(‘7 “)=1. Here we

undertake the calculation of C'** for three paradigmatic quantum systems the H-atom, the
harmonic oscillator, and the square well.

A. H-atom

The atomic state of the H-atom determined by the quantum numbers (n,/,m) in position space
[7=(r,Q), with r the radial distance and () the solid angle] is given by the nonrelativistic wave
function,

\I,n,l,m(F) = Rn,l(r) Yl,m(Q) > (27)

where R, ,(r) is the radial part and Y;,,(€) is the spherical harmonic. The radial part is expressed
25

as
(}’l —I- ) 1/2<2)1 —r/ny 2l+1 (2_1’)
n, l(r) l’l2 |: (I’l + l) ] :| n e ! Ln—l—] n > (28)

L'g(t) being the associated Laguerre polynomials. Atomic units are used in this section.
The same hydrogenic atomic state in momentum space [p= (p,Q), with the momentum modu-
lus p and the solid angle )] is given by the wave function
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FIG. 1. Generalized statistical complexity in position space, C (r“'x), vs |m| for different / values when n=15 in the hydrogen
atom. (a) @=0.5 and (b) a=2. All values are in atomic units.

\f,n,l,m(ﬁ) = én,l(p)Yl,ln(Q) > (29)

where the radial part Ién,,(p) is expressed now as”

. 2(m-1-1)|" n'p! n*p? -1
R | == 7 2221+21 ! —Gl+1 |, 30
nP) [ a (n+10)! :| " (n*p? +1)*? n-l-1 n’p?+1 (30)

with the Gegenbauer polynomials GA(t).
Taking the former expressions, the probability density in position and momentum spaces,

p(F) = |\I,n,l,m(7)|2’ ’y(ﬁ) = |‘i}n,l,m(ﬁ)|2’ (3 1)

can be explicitly calculated. From these densities, we compute G}Q’m), taking into account that for
these cases f=p(F) or f=(p), respectively.

In Fig. 1, the value of the generalized complexity in position space, 55“‘30), is shown for n
=15 and [=5,10, 14 versus |m| with @=0.5 [Fig. 1(a)] and a=2 [Fig. 1(b)]. The same calculation
in momentum space, E‘(a’w), can be seen in Figs. 2(a) and 2(b) for the cases @=0.5 and a=2,
respectively. Note that the minimum of the generalized complexity corresponds just to the orbitals
with the highest [ for a given n in both position and momentum spaces, that for a large n converge
to the Bohr orbits in the prequantum image. Moreover, due to the property 3-B(i), the behavior
displayed in Figs. 1 and 2 for a=0.5 and =2 is qualitatively independent of the parameter .

B. Harmonic oscillator

Let us consider a particle under the action of the potential energy V(r)=N2r?/2, where \ is a
positive real constant expressing the potential strength. The three-dimensional nonrelativistic wave
functions of this system in position space (7=(r,{})) are

% T T T T T T ™ T T T T T T T T
2500 Lo« ]
2000 - 4
n=15 n=15
1500 e /=14 10 e /=14 -
o [ A =10 T A /=10
~(0.5,00 A
c,l7 ) * [=5 ~(0.0) * [=5
(,ﬁ *
1000 | 4 A
* ® x ,
- 54 o * 4 3 . ]
500 A * ok * ] ® . A 4 4 oa
L2 )
* o o
R ® o o 0
A A A
of ® e e 08 8 48866480000
L ! ? ' ' ' ? ? ol L L L L L L L
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(a) I (b) L

FIG. 2. Generalized statistical complexity in momentum space, (j‘;)”’m), vs |m| for different [ values when n=15 in the
hydrogen atom. (a) @=0.5 and @=2. All values are in atomic units.
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100 — T T T T T T T 25 T T T T T T T T
*
9 | ]
80 | B w0p * B
e =15 e =15
0F o nl ] A nl
e /=15 e /=15
60 g 15 g
~(0.5,00 A = = A =
G052) =11 &e® . =11
50 * (=7 ] x 1=7
#~(0.5,00) . =(2,00)
Cp Cp
40 | g 10 * g
A
of X 1 *
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[ L 4 A 4 A ] ® ° 0000
®e sttt e
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FIG. 3. Generalized statistical complexity in position space, 6'(,“'§°), and momentum space, Eila’x), vs |m| for the energy
e,,;=15 in the quantum isotropic harmonic oscillator for (a) @=0.5 and (b) a=2. Recall that E'f_“‘x)=€'1(,“’x). All values are
in atomic units.

\I,n,l,m(’?) = Rn,l(r) Yl,m(Q) s (32)

where R, ;(r) is the radial part and Y, (€) is the spherical harmonic of the quantum state deter-
mined by the quantum numbers (7,/,m). The radial part is expressed as>

on! )\[+3/2

172
! —(}\/2)r2L1+1/2 A2 33
T(n+l+3/2)] re w7, (33)

Rn,l(r ) = |:
where Lg(t) are the associated Laguerre polynomials. The levels of energy are given by

E,;=N2n+1+3/2)=\(e,;+3/2), (34)

where n=0,1,2,... and [=0,1,2,.... Let us observe that e, ;=2n+I. Thus, different pairs of (r,])
can give the same e, ;, and then the same energy E,, .

The wave functions in momentum space (5=(p,Q)) are

\pn,l,m(ﬁ) = I/én,l(p)Yl,m(Q) P (35)

where the radial part Ién,,(p) is now given by the expression

on! )\—1—3/2 172
) ple—pZ/Z}\Lf:-l/Z(pZ/)\). (36)

R )= | 2R
ni(P) [F(n+l+3/2

Taking the former expressions, the probability density in position and momentum spaces,

p)\(F) = |q,n,l,m(7)|2’ 7)\(5) = |q,i1,l,m(ﬁ)|2’ (37)
can be explicitly calculated. From these densities, the generalized statistical complexity is com-

puted. The subindex A can be dropped because this indicator, ClP s independent of the potential
strength A due to its invariance under scaling transformation. As a consequence of this property, it

is also found that this magnitude is the same in both position and momentum spaces, 6’5“”3 )

_lod),

In Fig. 3, 55“’00) (or E’La’m)) is plotted as function of the modulus of the third component m,
—I=m=1, of the orbital angular momentum [ for different / values with a fixed energy, ¢, =15,
when «@=0.5 in Fig. 3(a) and a=2 in Fig. 3(b). It can be observed that ~(ra’°°) splits again in
different sets of discrete points. Note that the values associated with the orbitals with the highest
[ give the minimum values of 55“’30) that are similar to the H-atom converge to the Bohr-like orbits
in the prequantum image. Also, due to the property 3-B(i), the behavior displayed in Fig. 3 for
a=0.5 and a=2 is qualitatively independent of the parameter a.
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C. Square well

The eigenstates of the energy in the quantum infinite square well in position space for a
particle in a box, that is, confined in the one-dimensional interval [0,L], are given by the wave

functions®’
2 kTrx
= —si - 1, k=l,2,.... 38
@) \/;sm( 3 ) (38)

The probability density of the kth excited state is

% (39)

p(x) = |@p(x)

that gives a maximum of 2 when L is considered as the natural length unit in this problem. The
other factor necessary to obtain the generalized statistical complexity, E‘ga’w), gives

w [2e (7 1(1-a)
L= =— J sin®® tdt . (40)

mJo
o i (@) - o

Then, Ci‘" )=2g(a) with g(a)=e®r . We conclude that the statistical complexity is degener-
ated for all the energy eigenstates of the quantum infinite square well. Its value can be computed
as a function of «. It takes 2 for =0 and decays monotonically to 1 when o— . In the general
case of a particle in a d-dimensional box of width L in each dimension, it can be also verified that
complexity is degenerated for all its energy eigenstates with a constant value given by 55’1’&)
=(2g()".

V. SUMMARY

The generalized complexity measure defined here provides a family of complexity measures.
We have performed a detailed mathematical characterization of its properties. As usual, these
complexities have been defined by multiplying two factors, each one bringing global information
on the probability distribution defining the system. The whole family is identified by two param-
eters, a and S. For the special case of 8 going to infinity, it is remarkable that the new complexity
measure is the product of a global quantity by a local information of the density distribution.

Also we have carried out the calculation of C' for different quantum systems: H-atom,
harmonic oscillator, and square well. Let us observe that although the H-atom seems to be a very
simple system as there is only one electron and the wave functions are known exactly, the
excited-state densities are expected to show more complex behavior. Similarly, it can be said for
the harmonic oscillator case. Besides the radial dependence of the densities, the angular depen-
dence is becoming more and more complicated (through the spherical harmonics, of course) as the
degree of excitation is increased. It is remarkable that the new complexity measure shows some
simple systematic tendency reflected in the nicely fallen curves of Figs. 1-3 that we are not able
to explore by a direct inspection of the shape of the excited-state densities. This behavior of the
complexity for this specific case of global/local term product is similar to that displayed by it in
the general case of global/global term product.
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