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Analysis of sampling problems using dispersion
models

ABSTRACT - Sampling problems were analysed using random and conta-—
gious dispersion models simulated by computer., The models were two-di-
mensional homogeneous point patterns produced by pseudo-random number
generators. Taking different random samples we found that the adeguate
size of sampling units was largely effected by the type of dispersion.
In the case of random dispersion all sizes gave acceptable evaluaticns
of the population size and distribution. When examining contagious
models, Morisita's index of dispersion proved to be useful in determi-
ning adequate sampling unit sizes, which gave precise estimations of
the type of dispersion and of the two major population parameters, the
mean and variance. A graphical method was proposed for the determination
of the adeguate number of sampling units for a given sampling accuracy.
Applying it together with the common index of precision enables more
accurate evaluation of the population mean and variation. No consider-
able differences were found in the results given by random and syste-
matic samplina, a fact probably due to the random characteristics of
our models. Spatial and temporal changes of dispersion are briefly
discussed, providing a possibility for further improvement for our
work.

1. Intreduction

The dispersion of organisms, ie, the distribution of their repre-
sentatives in certain ranges of real space and time, is not only a
pPopulation characteristic. As it is in close connection with community
structure it may indicate envirommental changes as well. A number of
widely used textbooks (eg. GREIG-SMITH 1964; ENGEN 1978) have dealt with
the problems of estimating the dispersion of populations and with re-
lated sampling questions. The rest of the literature, however, has either
used a totally theoretical approach, or tried to model the dispersion of
natural populations with fitting theoretical probability distributions
to sample data. In such cases the actual type of dispersion and the



snaracteristic parameters of the population are unknown, making error
sstimation inaccurate and unreliable.

In order to avold such difficulties we applied computer simu-—
lazion to produce a variety of dispersion models based on probability
distributions with known parameters. After reviewing the possibilities
for computer simmlation of various types of dispersion, we analysed
sampling problems associated with the dispersion of orcanisms. The two
main guestions were the dependence of l/sampling unit size and 2/
sample size (number of sampling units needed for a given precision) on
dispersion, with special regard to the role of distribution inhomogene-
itie: in the accuracy of estimations. Besides, we analyzed the possible
differences of sampling results due to systematic or random allocation
of sampling points. A theoretical discussion was also made on the
state-space changes of dispersion types and the possibilities for
tracing these changes by field sampling.

1.1. Definitions

The area of one sampling unit (ie. quadrat-size) divided by the
total sampling area gives the total number of possible sampling units.
The area {(or the volume) covered by one sampling unit will be referred
to as sampling unit size. The total number of sampling units is the
sample size [N).

2. Main tvpes of distributions with biological significance

2.1. General orinciples in modelling dispersion

The dispersion of a universe of organisms can be characterized by
a certain probability distribution. Only by being aware of the distrib-
ution type and its parameters can we determine the optimal sampling
strategy for the given universe. In practice, however, the distributior
of the universe is hardly ever known, so the first task is to estimate
its type and parameters.

Let us assume that in nature there are infinitely many types of
dispersion, and with their abstraction we can obtain infinitely many
empirical distribution functions. The distribution function defines
the distribution unambiguously. Let us further assume that the dis-
tribution function of samples taken from the universe does not differ
essentially from the actual distribution function of the universe
itself. Let {F.lindicate the set of "known® distribution functions.

!‘j;} set consists of the theoretical distribution functions having
practical significance. From this set we must choose the !1 most
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Sinilar oo the distribution function of the gsamplie. In practice we can
simplify this process into testing statistical hypotheses. These sta-
tistical tests (eg.chi-sguare test]! analyse the "fit" of thecrerical
distribution functions in consideration to the empirical ones pair by
pair. It is possible, however, that none of the theorstical functions
are "fitting" to the empirical distribution function at the given
level of significance. On the other hand, we may have several smpir:i-
cal distribution functions fitting, which again is a problematic case.

In modelling dispersion mathematical statistics utilizes another
concept. It assumes that in an ideal case,the organisms are distrib-
uted according to a known theoretical distribution \F; wnere F+EI?1ﬁ
i€ N, isco). Random effects may distort this ideal case and it iz o
further "injured” by the sampling process. Our task is to determine
the "ideal® probability distribution. The analysis of fit can be
applied to solve this problem.

Here we are going to review briefly the distribution types having
biclogical siguificnnce. Their detailed description can be found in
statistical textbooks (eg. JOHNSON-KOTZ 1969).

2.2 Dispersion and tvpes of distribution .

While dispersion in space is usually two- or three-dimensional,
from sampling data we can conclude only to one-dimensional distrib-
ution-types. Nevertheless, fitting theoretical distributions can reveal
the major features of dispersion ie. the local point-distribution,
which is most simply characterized by the variance to mean ratio
:Uz:u].

For example, regular dispersion fﬁzfu}. which occcurs rarely in
nature (ASHBY, 1948), may be modelled by the binomial and hypergeo-
metric probability distributions. Random dispersion (& =g, usually
approached by Poisson distribution, is also rare (TAYLOR, 1976, Lut
may result when all environmental factors are in optimum |[GREIG-SMITH,
1964). The most freguent way of dispersion is aggregation or contagion
lazbu?. There ars different theories to explain the causes of individ-
uals forming clumps, serving as bases for different models of conta-
gion, ie. negative binomial, logarithmic, POLYA-AEPPLI, THOMAS and
NEYMAN-A-type (NEYMAN, 1939). The models were reviewed by WESTMAN
{1976 ).

3. Computer-simulation of random point-patterns

For modelling sampling procedures we needed two-dimensional
{plane] point-patterns, which had distributions of given types and
parameters. Expressed by the terms used in the paper, the point-patterns
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which had distributions of given types and parameters. Expressed by the
rerms used in the paper, the point-patterns were simulated into an m %0
» crid with the units called cells. We usually chose m=100 and n=100
and thus obtained 10 000 cells. The simulation of a given dlscrete
distribution has several possible ways. Here we mention only one of
the simplest cases. The events, here meaning the numbers of points
falling into one cell, are drawn 10 000 successive times. Drawing
gmsentially means generating of a number on the interval (0,1 by a
random number generator of uniform distribution (here using the "
"EANDU® function, designed for IBM 360 computers), and examining which
event is represented by the partial interval it falls into. (Fer fnrtﬁ#;
raference on random number generators see SREJGYER (1356 ,BUSZILENKO
(1872, TARLOS (1977), SZICAROVSEZKY (1974), RACESKO (1977)). Since th
gvents can be consldered independent, this one-dimensiconal distribut
can be rearranged to become a two-dimensional. The procedure we used
was to divide the subseguent horizental 10 00C cells inte 100 units
with 100 cells in each, and to place these cell-rows one under the
in plane. Thus we obtained a 100x100 grid.

The whole simulation process proved to be wvery successful for
negative binomial and Polsson-distributions, and it could most prok
be used for the generation of several other discrete distributions
[for the simulation of the so-called aggregate-type random patterns
NEYMAN-distribution) because the cells there are not independent, and
5o the above described methed for the augmentaion of dimensicns c:nnq&#
be applied. When trylng to generate aggregate-patterns, this method i
will not give aggregating points, and cannot be used for sampling
studies on contagious distributions. Namely the "pseudo-aggregate”
pattern that we would obtain, could show aggregation when using many i -
different sampling unit sizes and taking large encugh number of units,
while in the case of real aggregate distributions, a representative '
sample is very much the question of finding a certain sampling unit
size corresponding to the average size of aggregates.

With a special method we managed to produce a two-dimensional
agoregate-pattern (other methods, eg. adegquately chosen two-dimensional
stochastic processes, can also be successful}. The model has three
basic assumptions:

a/ Let the distribution of aggregates be Foisson-typae;

b/ Let the distribution of points within the aggregates be

Polsson-type;
¢/ Let the distribution of points around the aggregate-center be

two=-dimensional normal distributicn.
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We must some additional assumptions:

d/ The dimensions of the two-dimensional normal distributions

cannot be correlating;

e/ Let the expected value of normal distributions be egqual with

the cocrdinates of aggregate-centras;

£/ For the sake of simplicity let the standard deviation of the

normal distribution be egual in each aggregate.

The aggregate-pattern was simulated in to a 100x100 qr:d, The
aggregate-centers weras determined first, using a Poisscn-distribution
of »=0.] parameter, then the coordinates of sach point were determined.
Here wa used assumption 4/, because the first, and later the second
coordinate of the point was determined using a4 random number generator
with a one=dimensicnal normal distribution (with the well-known “"NORML"
process!. The numbers of points falling into each agyregate were
determined by a Polsson-generator with =10 parameter, and the standard
deviation of normal distribution was chosen to be one unit. The point-
coordinates obtained were continuous variables, so we had to discretize
them, ie. determine to which cell they fell. For example when three
points fell to the area of cell C (I,J7), then the content of the cell
was three points, independently of their interrelated positiocns.

4. Bampling from patterns produced by simulation

4.1. Establishing the final "sample area"

With the simulation of the different patterns we always cbtained
grids consisting of 10 000 cells, but to be able to test different
sampling strategies we produced a large net of | million cells, with
the randem rotation of grids., These polnt-patterns were considered
42 single-species populations, in order to avoid the p&rtu:binq affect
of the presence of other specics.

Sampling was carried out using a table of random numbers in order
o aveoid statistical bilas. The smallest sampling unit size was lg, ie.
the area of one cell in the grids, the others were 2,4,8,16,32,64 times
larger [dencted by 2g, 4 g,...ete.). "N" indicated the numbar of
sampling units in the samples.

5. Results

5.1. The analysed models and distributions
The following dispersion models were used in the study:
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poisson-models with »=0,2, A=0.5, .= 28 parameters as random models;
jegative binomial models with u=0.5, k=1,0 and u=22.0, k=7.33 para-
meters as contagious models; the .=0.% Polsson-aggregate model, and

the .=0.9381, &=1.5712 aggregate model.
The Poisson-ageregate model was made of the 1=0.5 Poisson model,

in which the values eqgual and larger than 2 were chosen as aggregate
centars, and all the values 1 nearby were gathered around them. The
hypotheses that the dispersion {5 random or contagious can be tested
most simply by fitting Poisson and negative binomial distributions,
respectively. The "goodeness of £it" is tested by chi-sguare (x°)
test, though ENGER {1978) stated that it could not be adequate in
every case. Thus we accepted or rearetted fitting, using this test,
only when the chi-square values obtained were much higher or mueh
Lower than the tabulated values. For the estimation of "k" in the
negative binomial we used the simplest methed, the expression

(117

5.2, The guestion of sampling unit sige

Without testing any sampling strategy it should be ohvious
the randem distribution of any "per se" environmental factors, ed.
food will cause random dispersion of the organisms, while if eg.
(s available in forms of aggregates, the dispersion turna inte
aious as well. In order to be able to detect the resulting effect
environmental factors, first we must choose the adequate sampling
size.

We supposed that if choosing a fairly small size, the sample
would always reflect random dispersion. Thus we sampled the differen
models using sampling unit sizes of 1, 2, 4, B, 16, 32 and 64q, and
examined the trends of the Morisita-index {(ELLIOTT 1971, see 5.3. b
Random samples of N=128 units were taken from the Poisson model of i
}=0.5 parameter. Poisson-distributions fitted well to the frequency
distributions in every case (Table 1.). The fitting of nagative bi-
nomial distributions was not tested, becausa estimation of parameter
"k" gave negative or too high values. In the latter case nagative
binomial distribution approaches Poisson. According to table l. all
sampling unit sizes proved to be adequate, except Bg.
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Fitzing negative binomial and Poisson distributions to
data from three differant contagious models
sampling negative binomial Polssaon
unit size distribution distribution
X" af P % a€

4 negative binomial model

ig 5,875 B a0, a0

ifg 4,616 11 =0,95 4,588 10
b/ aggregate-model

g 1,564 6. >0,85 4,897 &
2g 12,088 T ¥0,057 31,454 7

4 15,070 10 =0,in 37,279 g
Bg 9,458 ii *0,%0 83,402 i 5
lég 25,067 20 0,10 120,487 15
idg 6,245 -] *Q,50 93,808 19
Bdg 4,904 7 »0.50. 74,884 7
2/ Polsson-aggregate model

dg 4,773 7 0,70 44,581 7

Hg cannot be fitted 5,409 '

vk = =51,90

>

ambigquous

sample

<0001
0,90

*0; 50
“0, 001
<0, 001
0,001
<0,001
0,001
<0 ;001

0,001
*3,70









Random samples of N=32 were taken from the u.=0.3 negative Linomial
model. Only negative binomial distribution fitted the frequency distrib-
ution of the counts of the sample taken with lg unit size, while in all
other cases both the negative binomial and Folsseon distributlions gave
good fit [Table 2.). The reason could be the randomness of aggregates
on one hand, and the eize cof aggregates being equal to one cell on the
other, resulting from the characteristics of the basic distribution.
Sampling with larger units gives ambiguous results, as the size of the
units is greater than that of the aggreagates. The same fact is reflected
by the regult of sampling the aggregate model (IN=32) and fitting nega-
tive binomial and Poisson distributions (Table 2.). The use of too
small sampling unit size (lg) here reflects random dispersion, which
is in good agreement with our presumption. The larger the sampling unit
size i@, the better negative binomial distribution fits the freguency
distribution of counts. Samples of N=32 from the Polsson-aggregate modal
show that both too small, and too large unit sizes give biased estima=
tes of the population dispersion (Table 2.)

The results from our models were compared to data from natural
populations. Random samples (N=32) of the lumbricid fauna (Annelida:
Lumbricidae) in "SikfSkut Project" were taken, using different guadrat
sizes (Table 3.)., Fitting variocus distributions we astablished that
the worms had contagious distributions, best reflected by sampling
unit sizes 4g and lég.

5.3. The adeguate sampling unit size

The index of dispersion I, by Morisita (ELLIOTT 1971) can be used
for the determination of the adequate quadrat size. The expression is:

o]

C [xiixi-l}]
o xi 8 :iﬂl)
L 31

im] im]

The ratio of ta for the (i-1)-th guadrat size to I, for the i-th
quadrat size should be deplcted against guadrat size (Fig.2.|. The
peak of the curve will indicate the size egqual to the area of aggregates
| GREIG-SMITH, 1964). This will be the adeguate sampling unit size.The
securrence of several peaks indicates that there are smaller aggragates
within larger clumps. IWAO and KUNO (1961) criticized the use of this
index, but their "mean crowding” index has a fairly limited use in real
biological situations, even in their opinion.(Here the index was not
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teated ), The index of dispersion by Morisita, however, can be sussess-
fully used for working out sampling strategies, and for the compariscn
of disparsion in different populations if the number of sampling units

is ‘egual.

5.4 Establishing the adeguate number of sampling units

in this section we can start from two criteria. The basis of
usual approach is to search for that number of sampling units which
given an estimate of the population mean with a certain aAccuracy.
wevertheless, the estimation of dispersion type 18 needed for the
statistical evaluation of samples. Hence we must also consider at
leagt the variance to mean ratio, characterizing the dispersion most
simply.

Random samples of increasing sizes, goina up to N=1i8 were taken
from the random and negative binomial models with their mean = 0,5,
three replicatiens, while the i=28 Poisson and u=22 negative binomial
models were sampled without replication. Partly due to the characteris-
tics of "acodness of f£it" tests, distributions cannot be fitted well
when taking too few sampling units. In the first two (N=4 and Ne=8)
<ases replications gave qguite divergent results, and paraneter estima-
tions were not accurate. Precision increased together with the increase
in numbers of units, but accuracy must compromize with cost when deter-
mining the adequate number. In the case of random dispersion, for ex-
ample, we must find the point when the mean and variance do not differ
on a certain level of significance. We were loocking for a new method
when trying to determine this value. The first solution is demonstrated
here with the 1=28 Poisson model.

The variance to mean ratics were depicted against the number of
sampling units, and limits of precision were calculated on the basis of
the last element of the row. The limits of 10 % precision we @ot with
multiolying the last s°/x value by 1.00$0.05, and those of 20 ¥ with
multiplying by 1.00+0.10. The limits hecame .79 = 0.B8 and 0.75 =0.92,
respectively. The smallest adeguate number of sampling units is the one
where the ratio curve remains between these limits. They are: N=112
for 108 precision, and N=87 for 20 %mecision (Fig.3.]).

For the determination of the number of samnling units needed, for
a specified orecisieon the following term is generally used:
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p* 7* 'ELLIOTT 1971},

where sz means the sample variance, x the sample mean and D ig the
index of precislon chosen, originally the reguired standami error as
a4 proportion of the mean. Using this term in our case gave H=q for
10 % precision, at which point the curve in figure 3 still shows
significant cscillations. Thus in this case the value given by the
graphical methed should be accepted, but a8 a general rule the twg
methods should be vonsidered together and the resulting higher value
Bhould be accevted (Table 4.). The graphical method still needs a lot
more imnrovements, to be msasily applicable. The possible ways for
that could be the use of confidence-interval calculations, or the use
of a more precise index of aggregaticn.

5.5. Random and systematic allocation of sampling sites

The differences between the results given bv random and systematic
allocation of sampling units could be the greatest with recular and
contagious types of dispersion. However, we found no diffarence bet=
ween the two in the cases studied, which was probably due to the "
random distribution of ageregates and of "individuals" within them.

qw

6. Changes of disoersion in space and time

The discersion of organisms depends on exterior environmental and
interior facters. The scatlal and temporal changes of these factors
cause the changes of dispersion, which can be described most obvicusly
oy by seriec of time-static models. Another possibility is the use of
such a multi-dimensiconal stochastic orocess, in which one of the di-
mansions is timae.

The sampling frequency is very much dependent on changes of dis=
persion, thus the analyisis of the latter has great importance in
sampling problems. Changes of dispersion in time have two altarnatives.
In asimpler case only the parameters of dispersion change with the
t¥re remaining unaltered, while in other cases the type of dispersion
may change as wall 'HAIRSTON, HILL, RITTE 1876). A good example of the
latter can be based on NEYMAN's distributien. It was constructed to
describe the dispersion of lnsect larvae recently hatched f£rom randomly
digtriblitad zlumps of agas. Then larvae have contagious dispersion for
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4 cortain period of time, but eg. a decrease of abundance due to emer-
.once could result in a shift towards random dispersion. Regular dis-
tributien can alsa follow, due to etholegical reasons, eg, territorial
behaviour. Here dispersion oroblems are closely related to densitv-
dependent and density-independent population dynamic processes | such
as mo:taliéy. gea IWAD, JUNO 1976). Consequentlv, the frequency of
gamoling should alwavs be determined on the basis of the species and
digpmrsion area characteristics.

In our study we examined only two dimensional types of disparsicn,
rhus considerably simplifiyng the real three-dimensional problem. In
rature, however, one-dimensional dispersion can also occur with good
approximation, for example in nasts and territories of Motacilla ci-
norea populations, nestling along a mountain creek.

1f our sampling area is not homogeneucs, it should be divided into
relatively uniform areas, and different sampling strategies should be
worked out for each of them. This process is called stratified sam-
pling [GREUG.SNUTG 1964; ELLIOTT 1971;. If the dispersion all cver the
sample area is the same, but the parameters within large units are
different, the deviation cannot be revealed by simole samoling. In
order to study this guestion we sampled a "mixed copulation”, taking
a sample with 16 units from the A=0.2 and 16 from the %=0.5 Polsson
models and taking a N=32 sample from each model separataly. Analysis
af variance was carried out with all samples, using a BMDP program.

In two replications out of the three was no significant difference
among the three samples (F»>0,05). Greater differences in parameters.
however, can be revealed by well organized sameling.

Summary

Dispersion models made by cﬁmnuter simulation were used for the
analvsis of samvling problems. Homooeneous plane ooint-patterns pro-
duced by randem number generator were sampled, and the effect of tha
type of dispersion on the adequate sampling unit size and on the number
of sampling unit size and on the number of sampling units was examined.
The use of all sampling unit sizes gave good results with random dis-
persien, while in the case of contagious populations the index of
dispersion bv Morisita proved to be useful in determining the size of
samplino units adegquately revealing the tvpe of dispersion. The area
of the unit depends on the size of aagregates. For a certain level of
precision the number of sampling units needed can be determined, when
applying the common expression together with a graphical methed worked
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out here, No difference was found berwsen the results of randem and
systematic sampling, probably due to the random character of the modals
studied. One further aspect of the preblem was described shortly with
the spatidl and cemporal changes of dispersion. The stability of para-
meter estimates in time-series sampling also desires more attention.
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MOLDOVAN JUDIT = MOSKAT CSABA = NAGY SANDOR
Mintavétell problémék vizsgdlata diszpergdltsdgi modelleken

HSSZEFOGLALAS - Mintavédteli problémékat vizsghltunk szdmitdgépes
szimulfcidval alBAllitott dSiszpergAltsdgl modelleken. Pszeudo-véletlen-
szam generdtorock segitséeével sikbeli homogén pontmintdzatckat hoztunk
létra, s az szekbil vett mintdk seglitségével megillapitottuk, hogy a
diszperghltsigl tipus nagyban befolyasolja a mintavételi egység alakal-
mazhats méretét., Randomizdlt diszperghltsdg esetén minden terlletnagy-
séggal az eredeti populdcid 36 becslését kaptuk, mig a kontagion .icus
esetén a Morisita-index ‘segitségével meghatdrozhatdk voltak olyan ki-
tiintetett, az aggregitumok teriiletétSl figgd terliletnagysdgok, melyek
alkalmasak a diszpergdltshgi tipus felderitésére. A tdbbl nagysidggal
t8rténd mintavétel a paraméterek becslését torz{tja, {gy lehetetlennd
teszi a diszpergdltsdgi tipus felismerését. A megfeleld pontossigu
becsléshez szllkséges mintaelemszim megdllapitdsdra kidolgoztunk egy
grafikus médszert, amely a szokvényos pontossfgl indexxel vald szamitas-
sal egyiitt alkalmazva biztosabb becslést tesz lehetlve. valészinilileg az
elemzett modellek véletlen jellege miatt az fltalunk alkalmazott szisz-
tematikus és randomizhlt mintavitel eredményei kézdtt nem taldlunk je-
lentfs kll&nbséget. A szé&mitéoépes modellek sajatossigaibél kivetkezd-
en nem allott médunkban megvizsgélni a mintavételi egységek alakjénak
hatdsdt a mintavétel eredményességére. A tovibblépés lehetBségeirdl
széltunk a diszpergiltsdg tér- és idSbeli valtozAsdnak kapcsadn. A tovib-
biakban fontosnak tartjuk még megvizsgdlni nagysorozatu mintavételek
esetén a becsiilt paraméterek Allandésdgit. Eredményeink felhaszndlind-
val lehet®vé vilhat egy-egy terlilet 8koldgiai felmérésének pontosabb
megtervezése, az adatok pontosabb becslése,
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