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Abstract 
 
 

   Data mining is an emergent field, whose main goal is to discover useful patterns hidden 
in large databases. Because of its interdisciplinary nature, there is a wide variety of 
techniques and methods that come from diverse disciplines, such as statistics, database, 
machine learning, knowledge representation, and visualization. The Knowledge 
Discovery in Databases (KDD) process is modeled as an iterative process composed of 
several phases, each of which contains many obstacles, open problems, and research 
questions needing to be investigated and resolved. These reflect the current limitations of 
both humans and machines to generate, analyze, and interpret knowledge from large 
databases. To improve the data mining process requires strong theoretical and empirical 
research, that involves, mainly, the creation of better interfaces to database systems, new 
strategies to simplify the pre-processing stage, optimization and tuning of inductive 
learning algorithms and creation of a proposed new ones, and better techniques to 
interpret and evaluate patterns produced by data mining methods.  
 
 In this dissertation work, we will focus on two research problems within the KDD 
process: algorithm selection and algorithm engineering. Currently, the selection of a data 
mining algorithm that performs well in solving a data mining problem is rather subjective 
and it may lead to users and data analysts to make wrong decisions about the most 
appropriate technique for the problem being solved, or they may spend significant amount 
of time and effort trying to apply a technique that is not best suited to the problem. Thus, 
this course of research will introduce a set of heuristics to guide the user in the selection 
of the most appropriate methods for searching for patterns in a data set, for a particular 
problem or data mining task. In addition, other issues arise when the selected data mining 
algorithm is applied to a training dataset to induce a model. A model to data mining could 
be one of the remote access KDD models. One of these models which we used to call it 
ODBC _ KDD (2), was proposed by us. The methodology of this model began when an 
end user submitted a query. This query will be reconstructed to be what we used to call it 
knowledge discovery query language (KDQL). To meet the KDD process requirements 
the classical user query must have some extra parameters or rules to extract the hidden 
information or patterns in the databases. Many data mining algorithms rely on several 
parameters that the user must set, and that significantly affect the quality of generated 
patterns.  Generating these patterns requires logical investigation in the form of data 
mining to be able to find out the association rules that we used to discover or mine. These 
rules help us to discover many associations in one particular database. Association   rules 
can drive us to understand the behavior of our databases.  The requirement of discovering 
the association rules in our databases leads us to think for a strong query language that 
could express more complex questions then the classical SQL. Such type of languages is 
called data mining query language (DMQL). Commonly, the user is forced to explore a 
huge parameter space without clues about which parameter settings are more convenient 
to induce an appropriate model for the dataset being explored. Also, when the induced 
model is used to predict new cases, it is fundamental that the model be represented in 
such form that the user can understand how the model is really working in making 
decisions, and then exploring alternative models based on the query language and also to 
the databases that have to be retrieved. According to the databases we implement a 
database concept called i-extended database. The main aim of this is to extract all the 
useful information from classical databases and store it a standard form to make it 
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suitable for establishing the knowledge discovery query language (KDQL). Regarding to 
the data mining  query language we implement a data mining query language named as   
knowledge discovery  query  language (KDQL). The syntactic of KDQL came from the 
Structured Query Language   (SQL) since several extensions to the SQL have been 
proposed to serve as a data mining query language (DMQL) described in DMQL Chapter 
7. However, they do not sufficiently address how to visualize query results. We will 
investigate the requirements for a SQL describing the graphical representation of 
Knowledge Discovery Query (KDQ) results from the perspective of a large database 
system. With frequent map output and assesses several SQL extensions with respect to 
their treatment of the graphical representation. It concludes that the SQL + DM (rules) = 
is the appropriate form for this task at the user interface. DM rules are based on the 
association rules to interact i-extended database. I-extended database can access to other 
type of databases such as relational databases. The association rules will be obtain   by the 
use of KDQL rules, and then graphically represented in a 2D and 3D charts. The KDQL 
syntax will presented also in the appendix A, without a practical use. We also provide 
some practical scripts from the KDQL program by displaying some retrieving results with 
charts of four different types. Visualization result can significantly presented in 2D or 3D 
in forms such as: pie, bar, line and points charts.  
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Chapter 1 
Overview  

1.1 Introduction  
 
 
   Looming atop a wide variety of human activities are the menacing profiles of ever-
growing mountains of data. These mountains grew as a result of great engineering 
successes that enabled us to build devices to generate, collect, and store digital data. With 
major advances in database, technology came to the creation of huge efficient data stores. 
Advances in computer networking have enabled the data glut to reach anyone who cares 
to tap in. Unfortunately, we have not witnessed corresponding advances in computational 
techniques to help us discover the accumulated data. Without such developments, we risk 
missing most of what the data have to offer. 
 
  Be it a satellite orbiting our planet, a medical imaging device, a credit-card transaction 
verification system, or a supermarket’s checkout system, the human at the other end of 
the data gathering and storage machinery is faced with the same problem: What to do with 
all this data? Ignoring whatever we cannot analyze would be wasteful and unwise. 
Should one choose to ignore valuable information buried within the data, and then one’s 
competition may put them to good use; perhaps to one’s detriment. In scientific 
endeavours, data represents observations carefully collected about some phenomena 
under study, and the race is on for who can explain the observations best. In business 
endeavours, data captures information about the markets, competitors, and customers. In 
manufacturing, data captures performance and optimization opportunities, and keys to 
improving processes and troubleshooting problems. 
 The value of raw data is typically predicated on the ability to extract higher-level 
information: information useful for decision support, for exploration, and for better 
understanding of the phenomena generating the data. Traditionally, humans have done the 
task of analysis. One or more analysts get intimately familiar with the data and with the 
help of statistical techniques provide summaries and generate reports. In effect, analysts 
determine the right queries to ask and sometimes even act as sophisticated query 
processors. Such an approach rapidly breaks down as the volume and dimensionality of 
the data increase. Who could be expected to “understand” millions of cases each having 
hundreds of fields? To further complicate the situation, the data grow and change at rates 
that would quickly overwhelm manual analysis (even if it were possible). Hence, tools to 
aid in at least the partial automation of analysis tasks are becoming a necessity. These 
tools could be Knowledge Discovery in Database (KDD), or Data Mining (DM).      
 

1.2 Data Mining (DM) and Knowledge Discovery in Databases 
(KDD) 

 
1.2.1 Motivation 

 
  Data Mining (DM) is not new to statistician; it is a term synonymous with data 
dredging or fishing and has been used to describe the process of trawling through 
data in the hope of identifying patterns, but for us Data Mining is the fitting model 
to extract patterns from the databases. Knowledge Discovery in Database (KDD) 
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is the overall process of discovering useful knowledge from databases, but also 
KDD is the nontrivial process of identifying valid novel, potentially useful, and 
ultimately understandable patterns in databases. A clear distinction between Data 
Mining and Knowledge Discovery is drawn under their conventions(see figure 1.1 
for the process); the Knowledge Discovery process takes the raw results from 
Data Mining and carefully and accurately transforms them into useful and 
understandable information. This information is not typically retrievable by 
standard techniques but is uncovered through the use of KDD or DM techniques. 
A detailed description of figure 1.1 can be found in [122].  
 
 

 
 

Figure 1.1 KDD and DM process  
 
Steps in KDD process can be defined as follows. 
  

1.Learning the application domain (i.e. relevant prior knowledge and goals of 
application). 
2.Gathering and integrating of data. 
3.Cleaning and preprocessing data (i.e. may take 60% of effort!). 
4.Reducing and projecting data (i.e. find useful features, 
dimensionality/variable reduction,…etc). 
5.Choosing functions of DM (i.e. summarization, classification, regression, 
association, clustering,…etc). 
6.Choosing the mining algorithm(s). 
7.DM: search for patterns of interest. 
8.Evaluating results. 
9.Interpretation: analysis of results ( i.e. visualization, alteration, removing 
redundant patterns, …etc). 
10.  Use of discovered knowledge. 

 
    KDD steps also can be merged into two classes such as  
data cleaning + data integration = data pre-processing; 
data selection + data transformation = data consolidation. 
 
  In fact, KDD process is based on the extensive use of methods developed in 
more traditional topics, such that Artificial Intelligence, Machine Learning, 
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Mathematical Statistics, Database Management, Visualization, Pattern 
Recognition, Decision Support, etc, see figure 1.2. 
 

 
 

 
 
 
 
 
                 
 
 
 
 
 
 
 

Figure1.2 KDD & DM shared with several topics 
 

  A clear definition for DM and KDD could be the extraction of interesting (non-
trivial, implicit, previously unknown and potentially useful) information or 
patterns from data in large databases.  Alternative name such as mining databases   
led to knowledge extraction, data/pattern analysis, data archeology, data dredging, 
information harvesting, business intelligence, etc. 
 

1.2.2 History of DM 
 

   The first appearance of DM was in 1990-2000s after the RDBMS and advance 
data model was established in 1980s. Relational data model and relational DBMS 
was implemented in 1970s, although the first occurrence of data collection and 
database creation was in 1960s. In theses day’s knowledge discovery in databases 
(KDD) is concerned with extracting useful information from databases. The term 
Data Mining has historically been used in the database community and in 
statistics. We take the view that any algorithm that enumerates patterns from, or 
fits models to data is a Data Mining algorithm. We further view Data Mining to 
be a single step in a larger process that we call the KDD process. KDD process is 
a process that includes Data Warehousing, Target Data Selection, Cleaning, 
Preprocessing, Transformation and Reduction, Data Mining, Model Selection (or 
Combination), Evaluation and Interpretation, and finally consolidation and use of 
the extracted “knowledge.” Hence, Data Mining is but a step in this iterative and 
interactive process.  
 
   KDD’s goal, as stated above, is very broad, and can describe a multitude of 
fields of study. Statistics has been preoccupied with this goal for over a century. 

DM & 
KDD 
KDD&  

DM 
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Therefore, we have many other fields including database systems, pattern 
recognition, artificial intelligence, data visualization, and a host of activities 
related to data analysis (see figure 1.2). So why has a separate community 
emerged under the name “KDD”? 
 
The answer: new approaches, techniques, and solutions have to be developed to 
enable analysis of large databases. We faced with massive data sets, traditional 
approaches in statistics and pattern recognition collapse. For example, a statistical 
analysis package (e.g. K-means clustering in our favorite Fortran library) 
assumes data can be “loaded” into memory and then manipulated. What happens 
when the data set will not fit in main memory? What happens if the database is on 
a remote server and will never permit a particular scan of the data? How do I 
sample effectively if I am not permitted to query for a stratified sample because 
the relevant fields are not indexed? What if the data set is in a multitude of tables 
(relations) and can only be accessed via some hierarchically structured set of 
fields? What if the relations are sparse (not all fields are defined or even 
applicable to any fixed subset of the data)? How do I fit a statistical model with a 
large number of variables?  
 
   The open problems are not restricted to scalability issues of storage, access, and 
scale. For example, a problem that is not addressed by the database field is one 
that  Usama Fayyad [1] uses to call it the “query formulation problem”: what to 
do if one does not know how to specify the desired query to begin with? For 
example, it would be desirable for a bank to issue a query at a high level: “give me 
all transactions whose likelihood of being fraudulent exceeds 0.75.” It is not clear 
that one can write a SQL query (or even a program) to retrieve the target. Most 
interesting queries that arise with end-users of the data are of this class. KDD 
provides an alternative solution to this problem. Assuming that certain cases in the 
database can be identified as “fraudulent” and others as “known to be legitimate”, 
then one can construct a training sample for a Data Mining algorithm, let the 
algorithm build a predictive model, and then retrieve records that the model 
triggers on. This is an example of a much needed and much more natural interface 
between humans and databases. Issues of inference under uncertainty search for 
patterns and parameters in large spaces, and so on are fundamental to KDD. 
 
   Data mining queries derive their name from the similarities between searching 
for valuable information in a large database and mining rocks for a vein of 
valuable ore. Both imply either sifting through a large amount of material or 
ingeniously probing the material to exactly pinpoint where the values reside. It is, 
however, a misnomer, since mining for fish in sea is usually called "fish mining" 
and not "water mining", thus by analogy, data mining should have been called 
"Knowledge Mining" instead. Nevertheless, data mining became the accepted 
customary term, and very rapidly a trend that even overshadowed more general 
terms such as Knowledge Discovery in Databases (KDD) that describe a more 
complete process [7]. Other similar terms referring to data mining are: Data 
Dredging, Knowledge Extraction, and Pattern Discovery. 
 
 
  While these issues are studied in many related fields, approaches to solving them 
in the context of large databases are unique to DM and KDD.  
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1.2.3 Importance  of DM and KDD  

   If we take into account that what Kurt Thearling  [2] say’s then we can say that 
Data Mining is the process of searching through databases for interesting 
statistical relationships that would be hard to find any other way.  

   For example, traditionally someone selling cookware might try various 
marketing techniques aimed at young women, but this would merely be a guess as 
to what works. DM of a customer database might uncover a surprising 
relationship such as: middle aged men who buy luxury soap and discount foods 
respond to promotions for cookware. This information would be useful for 
targeting future promotions. 

  In potential applications, database analysis and decision support are used for 
market analysis and management to target marketing, customer relation 
management, market basket analysis, cross selling and market segmentation. Risk 
analysis and management is used for forecasting, customer retention, improved 
underwriting, quality control and competitive analysis. Fraud detection and 
management is used to detect insurance companies. Also other potential 
applications were defined for text mining (i.e. news group, email, documents) and 
web analysis or intelligent query answering. 

1.2.3.1 Steps in DM and KDD 

A typical DM project would go through the following steps: 

1. Chose an issue. For example, "we're losing existing customers”. 
2. Gather large amounts of data from sources such as customer service 
logs and customer demographic databases. This data might already be 
collected. If not, you will need to start collecting customer data as part of 
your normal business operations. It is also possible to buy overlay data 
from third parties such as estimated income levels based on zip codes. 
3. Transform the data into the format needed for the DM application. 
4. Use DM software applications to uncover patterns in the database. 

  DM articles sometimes give the impression that the whole process 
automatically, almost magically, finds valuable insights. While DM automates 
a lot of time-consuming work, a smart analyst is still required and statisticians 
do not need to worry that they'll be reduced to flipping burgers any time soon. 

1.2.3.2 Typical applications for solving common problems   

 The vast majority of DM and KDD applications are for marketing purposes. 
Another area where DM is used is fraud and risk management. One of the 
biggest problems in DM is clean data. Vendors and academics have debated 
the merits of various algorithms but those differences are minor compared to 
the problems companies have with data. For example, statistically there is a 
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big difference between a null value (no response) and zero yet it is not 
uncommon for null values to show up in the data as zeros. 

  Organizing the data so that a DM application can also be a large project. 
Simply having the data on some system is no guarantee that it will be easy to 
put it into a form that the DM application can use [4]. 

1.2.3.3 How do we know if our company can benefit from DM? 

  Most companies using DM have large customer bases, 100,000 customers or 
more, and have many data about these customers. DM is more important when 
customers are fickle and the company needs to work hard to find ways to 
attract and retain them [5].  

1.2.4 Appearances of DM  

   DM techniques are the result of a long process of research and product 
development. This evolution began when business data was first stored on 
computers, continued with improvements in data access, and more recently, 
generated technologies that allow users to navigate through their data in real time. 
DM takes this evolutionary process beyond retrospective data access and 
navigation to prospective and proactive information delivery. DM is ready for 
application in the business community because it is supported by three 
technologies that are now sufficiently matured: Massive data collection, powerful 
multiprocessor computers, and DM algorithms. 

   DM appears in marketing analysis, in where are the data sources for analysis? 
(i.e. credit card transactions, loyalty cards, discount coupons, customer complaint 
calls, plus (public) lifestyle studies). Target marketing also is used in marketing 
analysis for instance, to find clusters of “model” customers who share the same 
characteristics: interest, income level, spending habits, etc. Using determine 
customer purchasing patterns over time is another for DM in marketing analysis to 
identify the conversion of single to a joint bank account: marriage, etc. Cross-
market analysis is also a common use of DM in marketing analysis to find 
associations/co-relations between product sales or prediction based on the 
association information. There is other marketing analysis applications were DM 
appears these applications are customer profiling, identifying customer 
requirements, provides summary information. 

  Corporate analysis and risk management also uses DM in Finance planning and 
asset evaluation ( i.e. cash flow analysis and prediction, contingent claim analysis 
to evaluate assets, cross-sectional and time series analysis). In  Corporate analysis 
and risk management we use DM  in resource planning (i.e. summarize and 
compare the resources and spending) and in competition to monitor competitors 
and market directions, group customers into classes and a class-based pricing 
procedure and set pricing strategy in a highly competitive market. 

  In fraud detection and management DM was used in several applications such as 
widely used in health care, retail, credit card services, telecommunications (phone 
card fraud), etc. The DM approach in fraud detection and management was the 
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use of the historical data to build models of fraudulent behavior and then DM will 
help to identify similar instances. For instances, (1) auto insurance: detect a group 
of people who stage accidents to collect on insurance. (2) money laundering: 
detect suspicious money transactions (US Treasury's Financial Crimes 
Enforcement Network).  (3) medical insurance: detect professional patients and 
ring of doctors and ring of references. Other uses of fraud detection are detecting 
inappropriate medical treatment (i.e. Australian Health Insurance Commission 
identifies that in many cases blanket screening tests were requested (save 
Australian $1m/yr). Detecting telephone fraud is another use of fraud detection for 
instances, (1) telephone call model: destination of the call, duration, and time of 
day or week. (2) analyze patterns that deviate from an expected norm and  (3) 
British Telecom identified discrete groups of callers with frequent intra-group 
calls, especially mobile phones, and broke a multimillion dollar fraud. Fraud 
detection also has been used in retail (i.e. Analysts estimate that 38% of retail 
shrinks is due to dishonest employees). 

 Commercial databases are growing at unprecedented rates. A recent estimated 
time of arrival group and known also as  ETA group survey of data warehouse 
(DW) projects found that 19% of respondents are beyond the 50-gigabyte level, 
while 59% expect to be there by second quarter of 1996 in some industries, such 
as retail, these numbers can be much larger. The accompanying need for improved 
computational engines can now be met in a cost effective manner with parallel 
multiprocessor computer technology [6]. DM algorithms embody techniques that 
have existed for at least 10 years, but have only recently been implemented as 
mature, reliable, understandable tools that consistently outperform older statistical 
methods. In the evolution from business data to business information, each new 
step has built upon the previous one. For example, dynamic data access is critical 
for drill through in data navigation applications, and the ability to store large 
databases is critical to DM. This will allow new business questions to be answered 
accurately and quickly. 

1.2.5 Tools for KDD and DM 

As a former developer of DM and KDD Tools, it will be understood how 
difficult it is to create applications that are relevant to business users. Much of the 
DM community comes from an academic background and has focused on the 
algorithms buried deep in the bowels of the technology. But algorithms are not 
what business users care about. Over the past few years the technology of DM has 
moved from the research lab to Fortune 500 companies, requiring a significant 
change in focus. The core algorithms are now a small part of the overall 
application, being perhaps 10% of a larger part, which itself is only 10% of the 
whole. That being said, the focus of this article is to point out some areas in the 
remaining 99% that need to be improved upon [15]. This is one of a current top 
ten list:  

1.Database integration: No flat files. One more time: No flat files.  Not 
supporting database access (reading and writing) via ODBC or native 
methods is just plain lazy. Companies spend millions of dollars to build DW 
to hold their data and DM applications must take advantage of this. Besides 
saving significant manual effort and storage space, relational integration 
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allows DM applications to access the most up-to-date information available. 
Today many of the leading DM vendors have heard this message but there is 
stillroom for improvement [7]. 

2.Automated model scoring: Scoring is the unglamorous workhorse of DM. It 
does not have the sexiness of a neural network or a genetic algorithm but 
without it, DM is useless. (There are some DM applications that cannot 
score the models that they produce to this list is like building a house and  
forgetting to put in any doors.) At the end of the day, when your DM tools 
have given you a great predictive model, there's still a lot of work to be 
done. Scoring models against a database is currently a time consuming, error 
prone activity that has not been given the consideration that it is due. When 
someone in marketing needs to have a database scored, they usually have to 
call someone in IT and cross their fingers that it will be done correctly. If the 
marketing campaigns that rely on the scores are run on a continuous (daily) 
basis, this means a lot of phone calls and lot of manual processing. Instead, 
the process that makes use of the scores should drive the model scoring. 
Scoring should be    integrated with the driving applications via published 
API's (a standard would be nice but it's probably too soon for this) and run-
time-library scoring engines [121]. Automation will reduce processing time, 
allow for the most up-to-date data to be used, and reduce error [8]. 

3.Exporting models to other applications: This is really an extension to the 
automated model scoring; once a model has been produced, other 
applications (especially applications will drive the scoring process) need to 
know that they exist. Technologies such as OLE automation can make this 
process relatively straightforward. It's just a matter of adding the "export" 
button on the DM user interface and creating a means to extend the export 
functionality by external applications. Exporting models will then close the 
loop between DM and the applications that need to use the results (scores). 
Besides exporting the model itself, it would be useful to include summary 
statistics and other high-level pieces of information about the model so that 
the external application could incorporate this information into its own 
process. 

4.Business templates: Solving a business problem is much more     valuable to 
a user than is solving a statistical modeling problem. This means that a 
cross-selling specific application is more valuable than a general modeling 
tool that can create cross-selling models. It might be simply a matter of 
changing terminology and a few modifications to the user interface but those 
changes are important. From the user’s perspective, it means that they don’t 
have to stretch very far in order to take their current understanding of their 
problem and map it to the software they are using. 

5.Effort Knob: Users do not necessarily understand the relationship between 
complex algorithm parameters and the performance that they will see. As a 
result, the user might naively change a tuning parameter in order to improve 
modeling accuracy, increasing processing time by an order of magnitude. 
This is not a relationship     that the user can (or should) understand. Instead, 
a better solution is to provide an "effort knob" that allows a user to control 
global behavior. Set it to a low value and the system should produce a model 
quickly, doing the best it can give the limited amount of time. On the other 
hand, if it is set to the maximum value the system might run overnight to 
produce the best model possible. Because time and effort are concepts that a 
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business user can understand, an effort knob is relevant in a way that tuning 
armatures are not. 

6. Incorporate financial information: DM does not   operate in a vacuum. The 
results of the DM process will drive efforts in areas such as marketing, risk 
management, and credit scoring. Each of these areas is influenced by 
financial considerations that need to be incorporated in the DM modeling 
process. A business user is concerned with maximizing profit, not 
minimizing RMS error. The information necessary to make these financial 
decisions (costs, expected revenue, etc.) is often available and should be 
provided as an input to the DM application. 

7. Computed target columns: In many cases the desired target     variable does 
not necessarily exist in the database. If the database includes information 
about customer purchases, a business user might only be interested in 
customers whose purchases were more than one hundred dollars. Obviously, 
it would be straightforward to add a new column to the database that 
contained this information. But this would probably involve database 
administrator and IT personnel, complicating a process that is probably 
complicated already. In addition, the database could become messy as more 
and more possible targets are added during an exploratory data analysis 
phase. The solution is to allow the user to interactively create a new target 
variable. Combining this with an application wizard described later, it would 
be relatively simple to allow the user to create computed targets on the fly. 

8. Time series data: Much of the data that exists in DW has a time based 
component. A year’s worth of monthly balance information is qualitatively 
different than twelve distinct non-time-series variables. DM applications 
need to understand that fact and use it to create better models. Knowing that 
a set of variables is a time-series allows for calculations to be done that 
make sense only for time series data: trends, slopes, deltas, etc. These 
calculations have been in use manually by statisticians for years but most 
DM applications cannot perform them because time-series data is considered 
as a set of unrelated variables. 

9. Use vs. view: DM models are often complex objects. A decision tree with 
four hundred nodes is impossible to fit on a high-resolution video display, let 
alone be understood by a human viewer. Unfortunately most DM 
applications do not differentiate between the model that is used to score a 
database and the model representation that is presented to users. This needs 
to be changed. The model that is presented visually to the user does not 
necessarily have to be the full model that is used to score data. A slider on 
the interface that visualizes a decision tree could be used to limit the display 
to the first few (most important) levels of the tree. Interacting with the 
display would not have an effect on the complexity of the model but it 
would simplify its representation. As a result, users would be able to interact 
with the system to provide only the amount of information they can 
comprehend [9]. 

10. Wizards: Not necessarily a must-have, application wizards can significantly 
improve the user’s experience. Besides simplifying the process, they can 
help prevent human error by keeping the user on track. 

  Some of current KDD tools are listed as follows. 
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1.Science: SKYCAT: used to aid astronomers by classifying faint sky objects. 
2. Marketing: AMEX: used customer group identification and forecasting.   

Claims 10%-15% increase in card usage.  
3.Investment: Many use Few tell: LBS Capitol Management: uses and expert 

system/neural network to manage $600 million portfolio. Results outperform 
market. 

4. Fraud Detection: HNC Falcon, Nestor Prism: credit card fraud detection   
FAIS: US Treasury money laundering detection system. 

5. Manufacturing: CASSIOPEE: a trouble-shooting system used in Europe to   
diagnose 737 problems by deriving families of faults by clustering. 

6. Telecommunications: TASA (Telecommunications Alarm-Sequence 
Analyzer):  locates patterns of frequently occurring alarm episodes and 
represents the   patterns as rules. 

7. Data Cleaning: MERGE-PURGE: used by Washington State to locate and 
remove   duplicate welfare claims.  

8.Sports: ADVANCED SCOUT: helps NBA coaches analyze data to organize 
and   interpret game data ==> player selection and team management. 

9. Information Retrieval:  Intelligent Agents have been designed to navigate the 
internet and return information pertinent to some non-trivial query. 

 To use DM or KDD approaches we need to call data from a remote side. To 
access these databases we should use a tool which can access to any databases. 
This tool is Open Database Connectivity (ODBC).     

1.3 Open Database Connectivity (ODBC) 
 
1.3.1 Motivation of ODBC 
 
  The Open Database Connectivity (ODBC) interface allows applications to access data 
from remote database management systems (DBMS).  The interface permits maximum 
interoperability (a single application can access diverse back-end databases). 
Application developer can develop, compile, and ship an application without targeting a 
specific DBMS product.  Users can then add modules called database drivers that 
link the application to their choice of database management systems. The ODBC 
interface defines libraries of ODBC function calls that allow an application to connect 
to a DBMS, execute SQL statements, and retrieve results [11].  
 
 
1.3.2 ODBC history 
 
  ODBC is based on Call-Level Interface and was defined by the SQL Access Group. 
Microsoft was one member of the group and was the first company to release a 
commercial product based on its work (under Microsoft Windows). ODBC 1.0 was 
released in September 1992. ODBC is not a Microsoft standard (as many people 
believe). ODBC drivers and development tools are available now for Microsoft 
Windows, Unix, OS/2, and Macintosh.  There exist other types of standards for the 
same purpose (c.f. JDBC).  
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1.3.3 Importance  of ODBC 
  

   Application programs (word processor, data access & retrieve tool, etc.) 
perform processing by passing SQL statements to and receiving results from the 
ODBC driver manager. Driver manager with a dynamic link library (DLL) that 
loads specific drivers on behalf of an application. Driver is a DLL element that 
processes ODBC function calls received from the driver manager, submitting the 
resultant SQL requests to a specific data source, and returns results to the 
application. Driver modifies an application's request so that the request conforms 
to syntax supported by the associated DBMS. Data Source consists of a DBMS, 
the operating system the DBMS runs on, and the network (if any) used to access 
the DBMS.  

 
 
1.3.4 Appearances  of ODBC 
 

   ODBC is a set of database serve as an application programming interface (API) 
provided by the database system vendors for their client programs to use. The 
benefit of using the simple set of APIs is that the client programs can be database 
system independent. This is a noble concept since it prevents the developers from 
having to write one program for Oracle, one for SQL server, and one for access, 
and many others for other database systems of the customers' choice. ODBC 
drivers refer to the software that implements those defined API’s. The client 
programs make call through the drivers. The drivers in turn translate the calls into 
database system's native database requests. There are different levels of ODBC 
standard compliance to allow vendors to provide a subset of all defined services 
and still be considered standard compliant. Client programs can first inquire about 
whether a particular service is available before committing the applications to 
support certain database features [11].  

       
 
1.3.5 ODBC Drivers, Servers and Tools 

  
1.3.5.1 XML and ODBC 

   
ODBC is a standard for accessing data from SQL databases. XML is a 

standard for content data interchange and business-to-business 
integration we can go to the MERANT site (www.merant.com) for 
information about an ODBC driver for XML data sources [119]. Also 
the intelligent systems research group (ISRG) presented the 
ODBC2XML shareware product that generates XML documents from 
ODBC data sources. 

1.3.5.2 Heterogeneous Data Replication 

  ODBC is a useful solution for replicating data across heterogeneous 
SQL data sources. In syware site (www.syware.com) we can find more 
detailed information about heterogeneous SQL data sources [120].  
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1.3.5.3 Drivers and Vendors 

   There are dozens of vendors and hundreds of ODBC drivers. For 
popular DBMS products, there are often multiple vendors with drivers. 
There are also drivers for oracle database managements system 
(ODBMS), oracle relational database managements system 
(ORDBMS), and non-relational data such as lotus notes and indexed 
sequential access method (ISAM) files. If we are doing serious ODBC 
development we need serious tools. We may be able to trace tools even 
if you aren't writing directly to the ODBC API. Syware is a suite of 
several ODBC tools that are useful for purposes such as logging SQL 
and ODBC functions, replaying scripts, and validating an application's 
use of ODBC. 

1.3.5.4 ODBC and JDBC servers 

   ODBC requires the installation of a driver manager, one or more 
drivers, a cursor library, and INI files. This is often installed on top of 
an infrastructure that includes protocol stacks, client libraries and 
network libraries. Administering ODBC or JDBC for a large number of 
clients can be a problem. To simplify administration, several vendors 
have built ODBC and JDBC servers. By using a data access server, we 
can reduce the resource requirements on the client. The client of such a 
server requires only a single driver and single network transport. 
Vendors of these servers often can provide drivers for both ODBC and 
JDBC clients. For instances, OpenLink, Simba Technologies, and 
Merant are middleware vendors who have server-side products that 
support ODBC and JDBC clients [11]. 

 1.3.5.5  Developing a Driver 

   If we are developing an ODBC driver and we don't have an optimizing 
SQL engine, then we've probably noticed there isn't one in the ODBC 
software development kits (SDK). Developing a driver is a much simpler 
task if we start with SDK driver. In syware we can find information 
about different SDK drivers such as Dr.DeeBee driver SDK, Simba SDK 
and Open Access SDK [120]. 

1.4 Query Language and SQL  

1.4.1 Motivation of SQL 
 

   The query language is a source language consisting of procedural operators that 
invoke functions to be executed. A query is a method by which you obtain access 
to a subset of records from one or more tables that have attribute values satisfying 
one or more criteria. There are a variety of ways to process queries against 
databases. One of the processing queries is SQL. Structure Query Language SQL 
is an industry-standard language for creating, updating and, querying relational 
database management systems. 
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1.4.2 History of SQL 

 
   SQL was developed by IBM in the 1970s for use in System R. It is the de facto 
standard as well as being an International Organization for Standardization (ISO) 
and Americans National Standards Institute (ANSI) standard. It is often 
embedded in general purpose programming languages. The first SQL standard, in 
1986, provided basic language constructs for defining and manipulating tables of 
data; a revision in 1989 added language extensions for referential  integrity and 
generalized integrity constraints.  Another revision in 1992 provided facilities for 
schema manipulation and data administration, as well as substantial enhancements 
for data definition and data manipulation. Development is currently underway to 
enhance SQL into a computationally complete language for the definition and 
management of persistent, complex objects. This includes: generalization and 
specialization hierarchies, multiple inheritance, user defined data types, triggers 
and assertions, support for knowledge based systems, recursive query expressions, 
and additional data administration tools [10].  It also includes the specification of 
Abstract Data Types (ADT), object identifiers, methods, inheritance, 
polymorphism, encapsulation, and all of the other facilities normally associated 
with object data  management. 

 
 

1.4.3 Importance of  SQL 
 

   SQL is the de facto standard language that does much more than asking 
questions. SQL used to manipulate and retrieve data from relational databases. 
SQL enables a programmer or database administrator to modify a database's 
structure, change system security settings, add user permissions on databases or 
tables, query a database for information and update the contents of a database. 
With SQL we can also create tables, add data, delete data, splice data together, 
trigger actions based on changes to the database, and store your queries within 
your program or database. 

 
1.4.4 Appearances   of SQL 

 
  SQL is a language which can be used to make queries and other requests of 
many database managers using a variety of connection vehicles. SQL is not a 
procedural language, and it is missing many of the things which are familiar to 
programmers who know other languages. SQL allow us to store, retrieve and 
query tabular data without having to rely on any external database engine or 
package. We use SQL to access and manipulate the contents of any databases.  

 
 

1.4.5 Tools of SQL 
 

  In this Section we will introduce some of the popular implementations of SQL, 
each of which has its own strengths and weaknesses. Where some 
implementations of SQL have been developed for PC use and easy user 
interactivity, others have been developed to accommodate very large databases. 
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1.4.5.1 Microsoft access 

 
    Microsoft access is a PC-based DBMS, to illustrate some of the examples in 
this text. Access is very easy to use and we can use graphical user interface 
(GUI) tools or manually enter our SQL statements. 
 

1.4.5.2 Personal Oracle7 
 

   We use Personal Oracle7, which represents the larger corporate database 
world, to demonstrate command line SQL and database management techniques. 
(These techniques are important because the days of the standalone machine are 
drawing to an end, as are the days when knowing one database or one operating 
system was enough). We can write SQL statements to entered the Oracle's SQL 
*Plus tool. This tool then returns data to the screen for the user to performs the 
appropriate action on the database. 

 
Most examples are directed toward the beginning programmer or first time 

user of SQL. We begin with the simplest of SQL statements and advance to the 
topics of transaction management and stored procedure programming. The 
ORDBMS is distributed with a full complement of development tools. It 
includes Delphi, C++ and Visual Basic language library (Oracle Objects for  
object linking and embedding (OLE)) that can link an application to a personal 
oracle database. It also comes with graphical tools for database, user, and object 
administration, as well as the SQL *loader utility, which is used to import and 
export data to and from oracle. 

       
1.4.5.3 Microsoft Query 
 

   Microsoft Query is a useful query tool that comes packaged with Microsoft's 
Windows development tools, Visual C++, and Visual Basic. It uses the ODBC 
standard to communicate with i-extended database (it will be described later in 
Chapter 8). Microsoft Query passes SQL statements to a driver, which processes 
the statements before passing them to a database system. 

 
1.4.5.4 Open Database Connectivity (ODBC) 
 

   ODBC is a functional library designed to provide a common Application 
Programming Interface (API) to i-extended database systems. It communicates 
with the database through a library driver, just as Windows communicates with 
a printer via a printer driver. Depending on the database being used, a 
networking driver may be required to connect to a remote database. The unique 
feature of ODBC (as compared to the Oracle or Sybase libraries) is that none of 
its functions are database vendor specific. For instance, we can use the same 
code to perform queries against a Microsoft Access table or an Informix 
database with little or no modification. Once again, it should be noted that most 
vendors add some proprietary extensions to the SQL standard, such as 
Microsoft's and Sybase's Transact SQL and Oracle's PL/SQL [11].  
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We should always consult the documentation before beginning to work with a 
new data source. ODBC has developed into a standard adopted into many 
products, including Visual Basic, Visual C++, FoxPro, Borland Delphi, and 
PowerBuilder. As always, application developers need to weigh the benefit of 
using the emerging ODBC standard, which enables you to design code without 
regard for a specific database, versus the speed gained by using a database 
specific function library. In other words, using ODBC will be more portable but 
slower than using the Oracle7 or Sybase libraries. 
 
Until recently, if you weren't working on a large database system, you probably 
had only a passing knowledge of SQL. With the advent of client/server 
development tools (such as Visual Basic, Visual C++, ODBC, Borland's Delphi, 
and Powersoft's PowerBuilder) and the movement of several large databases 
(Oracle and Sybase) to the PC platform, most business applications being 
developed today require a working knowledge of SQL. 

 
1.4.6 How KDD tools can access databases today? 

 
  DM is a term for the computer implementation of a timeless human activity: It is 
the process of using automated methods to uncover trends, patterns, and 
relationships from accumulated electronic traces of data. DM or Knowledge 
Discovery, as it is sometimes called lets us exploit an enterprise data store by 
examining the data for patterns that suggest better ways to produce profit, savings, 
higher quality products, and greater customer satisfaction.  
 
With the release of SQL server 7.0 in fall 1998, Microsoft stepped squarely into 
the maturing area of decision support and business intelligence. SQL server 7.0’s 
with on-line analytical processing (OLAP) services provides a widely accessible, 
functional, and flexible approach to OLAP and multidimensional cube data query 
and data manipulation. SQL server 2000 extends OLAP services capabilities, 
incorporating DM algorithms in its renamed analysis services. 
 
1.4.6.1 Origins of DM 

 
       To mine data, we need access to data, so it's no coincidence that DM 

developed at the same time as DW did. As computer power and database 
capability grew through the late 1900s, people began to see that data wasn't 
simply a passive receptacle, useful only in performing billing or order entry 
functions. People could also use data in a more proactive role to provide 
predictive value in guiding their businesses forward. This notion led to the 
development of a new breed of computer systems that went beyond running the 
business (as early computer applications did) to informing and analyzing the 
business. These new systems were sometimes called decision support systems or 
executive information systems (EIS). These systems were designed to harness 
growing computing power and improved GUIs to provide ad hoc analytical 
reports that could slice and dice data in novel ways and went well beyond earlier 
notions of static reporting. Slicing and dicing data drilling down into detailed 
reports or zooming up to a 10,000 foot "big picture" view required special ways 
of organizing data for decision making. This need gave rise to the data 
warehouse. The term DW was virtually unknown in 1990. Ten years later, DW 
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has become a multibillion dollar business of capturing and organizing data to 
provide a proactive analytical (versus operational) environment that uses data in 
defining and guiding business activity. As DW matured, decision support and 
EIS gave way to the more general concepts of business intelligence in DM. 

 
1.4.6.2 Concepts of business intelligence in  DM 

 
    Business intelligence involves organizing data along various potential  
dimensions of analysis so that you can cross-reference  and display any view of 
data say sales results from  within any number of other potential dimensions say 
region or product line. The ability to move up and down dimensions lets you 
drill down into detail or zoom up for a more general view. The ability to show 
variations in data along various dimensions often, many dimensions 
simultaneously provides multidimensional reporting capability in real-time. This 
general approach to manipulating data became known as OLAP that is, 
processing data for analytical purposes instead of operational purposes. The 
term online refers to having the analytical data continuously available. OLAP 
takes advantage of a DW by making data continuously available in a form that 
supports analytical decision-support tasks. The distinguishing characteristic of 
OLAP is the preprocessing, indexing, and storage of data in various dimensional 
representations to quickly deliver the various dimensional views business 
intelligence requires. However, business intelligence OLAP tools might not find 
all the patterns and dependencies that exist in data. OLAP cubes are appropriate 
for a limited amount of data exploration, involving major variations according to 
critical and known business dimensions. But when the dimensions change as the 
business changes or when you're exploring novel situations, DM can be an 
extremely flexible and powerful complement to OLAP.  

 
   DM solutions are perfectly suited for shifting through hundreds of competing 
and potentially useful dimensions of analysis and associated combinations. All 
DM algorithms have built in mechanisms that can examine huge numbers of 
potential patterns in data and reduce the results to a simple summary report. The 
business intelligence OLAP and DM approaches to reporting on data belong 
together and are synergistic when deployed together. Microsoft recognized this 
synergy after it released SQL server 7.0 and began a development program to 
migrate DM capabilities into the SQL server 2000 release. 

 
     The most common DM techniques are decision trees, neural networks, cluster 
analysis, and regression. In preparing to release SQL server 2000 and commerce 
server, Microsoft developed a substantial DM infrastructure and core DM 
algorithms to carry out decision tree and cluster analysis DM tasks. As part of 
the DM infrastructure, Microsoft created the OLE DB for DM specification, an 
extension of OLE DB for OLAP that defines the DM infrastructure and 
interfaces that expose DM models and algorithms to DM consumers. OLE DB 
for DM serves as a standard that external product vendors can use for delivering 
their DM functionality in the Microsoft environment. Other common DM 
technique is known as Data Mining Suite [3].   
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1.4.6.3 The DM development  approach 
 

   The DM and exploration group at Microsoft, which developed the DM 
algorithms in SQL server 2000, describes the goal of DM finding "structure 
within data". As defined by the group, structures are revealed through patterns, 
which are relationships or correlations (co-relations) in data. So the DM and 
exploration group has captured the essence of DM. Correlations produce 
patterns or associations that show the structure of data. Structure, when placed 
in a business context, can drive a business model or even drive the business and 
improve its effectiveness in the marketplace. The DM and exploration group 
model of DM is to deliver indicators of data structure through extensions of the 
data query process. Traditionally, you construct a query to retrieve particular 
information fields from a database and to summarize the fields in a particular 
fashion. A DM query is different from a traditional query in the same way that a 
DM model is different from a traditional database table. In a DM query, we 
specify the question that we want to examine (e.g., gross sales or likeliness to 
respond to a targeted marketing offer), and the DM query processor returns to 
the query station the query results in the form of a structural model that responds 
to the question. 

 
1.4.6.4 The central object of Microsoft's DM 

 
   Implementation in SQL server 2000 is the DM model. The DM and 
Exploration group built several query wizards to facilitate the process of 
creating and interacting with the DM model so that end users need no query 
syntax. The OLE DB for DM specification provides interfaces that can be 
accessed directly from a client application, however, so both end users and 
third-party applications can access DM directly through query processing. The 
query creates a DM model to predict or classify age based on other attributes in 
the data set, such as gender, product name, or product type and quantity. Here, 
the client executes a CREATE statement that is similar to a CREATE TABLE 
statement. A full description of the language for creating and manipulating a 
DM model is contained in the OLE DB for DM specification, see 
(http://www.microsoft.com/) for more description.  
 
  Although the wizard driven interface is the primary mechanism for accessing 
SQL server 2000's DM query engine, clients and third party applications can 
access DM models by using an OLE DB command object. After a DM model 
structure is built (either by wizard or directly), it is stored as part of an object 
hierarchy in the analysis services directory. The patterns or structure within the 
data are stored in summary form with dimensions, patterns, and relationships so 
that the predictive or classification power of the data will persist regardless of 
what happens to the original row level data that the model is based on 

 
1.5 Data Visualization in  DM 

 
1.5.1 Motivation 

 
  The point of data visualization is to let the user understand what is going on. 
Since DM usually involves extracting "hidden" information from a database, this 
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understanding process can get somewhat complicated. In most standard database 
operations, nearly everything the user sees is something that they knew existed in 
the database already. A report showing the breakdown of sales by product and 
region is straightforward for the user to understand because they intuitively know 
that this kind of information already exists in the database. If the company sells 
different products in different regions of the county, there is no problem 
translating a display of this information into a relevant understanding of the 
business process. 

   But if we want to visualize DM, then we have to visualize information from a 
database that the user did not already know about. Useful relationships between 
variables that are non-intuitive are the jewels that data mining hopes to locate. 
Since the user does not know beforehand what the data mining process has 
discovered, it is a much bigger leap to take the output of the system and translate 
it into an actionable solution to a business problem. Since there are usually many 
ways to graphically represent a model, the visualizations that are used should be 
chosen to maximize the value to the viewer. This requires that we understand the 
viewer's needs and design the visualization with that end-user in mind. 

 
1.5.2 History of data visualization  in DM 

 
  There is thousands of visualization systems used on computers today. Every new 
piece of software produced today usually has a nice Graphical User Interface 
(GUI) where the "visual" aspect of the user interaction and information displayed 
is very important. The trend is still toward "higher resolution" with more colors. 
High Definition Television (HDT) will allow better information visualizations. 
However, most visualizations systems are for a specific domain, such as weather, 
scientific displays, information retrieval, software analysis, network analysis, etc.. 
General purpose multidimensional information visualizations are needed for 
today's DM problems. Programs, systems, or algorithms which provide these 
general tools are not so abundant. It does seem that the newer DM packages are 
realizing the importance of these new visualization techniques and are starting to 
incorporate them in their products. 

 
1.5.3 Importance  of data visualization in  DM 

 
  The purpose of data visualization is to give the user an understanding of what is 
going on. Since data mining usually involves extracting "hidden" information 
from a database, this understanding process can get somewhat complicated. 
Because the user does not know beforehand what the DM process has discovered, 
it is a much bigger leap to take the output of the system and translate it into an 
actionable solution to a business problem. There are several   methods to visualize 
DM models [12]. In the other hand side data visualization is defined as the 
presentation of processed information in a coherent and easily accessible way. 
Information can be presented in different forms using traditional devices such as 
pie charts, scatter graphs, line charts etc. 
 
There are many methods for data visualization (examples include bar graphs, pie 

charts, scatter graphs, and linear plots), usually held within a two-dimensional 
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data rectangle. In addition to ‘traditional’ methods, computer visualizations allow 
more complex and dynamic approaches to presenting information. Different 
methods are suitable for different purposes. For example a scatter graph allows 
clustering of large sets of data. A line graph on the other hand can allow 
comparison of two or more sets of data as they change in value. 
 
   The advantages of using data visualization are that, the user can absorb large 
sets of data, so data can be easily accessed and patterns perceived. Pointing 
devices can also more easily access it. Visual pattern perception is a ‘natural’ 
function of the human brain (see Pattern perception and Gestalt psychology 
below). Navigation through complex and disparate sets of data is easier. 
Communication with other people is made more straightforward. 

 
1.5.4 Appearances  of data visualization in  DM 

 
  Visualization and DM are committed to deliver data visualization solutions to 
business customers who use multiple, large databases. The mission is to: 

• Empower users to make better decisions, faster, through visual comparisons;  
• Enable transformation of complex data into useful graphic information;  
• Facilitate real-time decision making ; 
• Facilitate the continuous flow of information from corporate data stores to 
information consumers;  
• Enable easy integration with applications and data sources.  

These approaches are developed additionally, to a strong commitment for the 
customers with a primary reason companies such as Oracle, Sybase, Sun 
Microsystems, IBM and hundreds of others select our charting tools. We can 
discover soon the value found in using the supported data visualization products 
available [14].  

1.5.5 Tools of data visualization  in  DM 
 

   There are several tools which can serve high performance data visualization 
visions to the end user to help him create, program and display an online charts 
and applications with the most robust charting components available. I will point 
out some of theses tools: Visual Mining, Data Mining Gallery, Mineit, and IBM 
Visualization Data Explorer (DX).    

 
1.6 XML  as a  visualization approach  

 
  XML is a markup language for documents containing structured information. 
Structured information contains both content (words, pictures, etc.) and some indication 
of what role that content plays (for example, content in a section heading has a different 
meaning from content in a footnote, which means something different than content in a 
figure caption or content in a database table, etc.). Using XML to retrieve databases can 
facilitate the discovery process by enabling the researcher to integrate and annotate 
complex query results within a highly visual and interactive environment. The result 
can be represented in different databases mode together in visual interfaces. The value 
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of converting both the queries and the results into XML can be also shown for 
remarkable purpose. Meanwhile, the XML description of the GUI can be handling by 
using various scripting languages. With XML we could configure at run time to have 
2D or 3D graphics depending on the needs of the end-user at that moment [14].        
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Chapter 2 
Research main aspect  

 
2.1 Introduction  

 
  Knowledge discovery in databases (KDD) is the non-trivial process of extraction of 
implicit, previously unknown, and potentially useful information from data. In the KDD 
process, humans play a key role, because ``knowledge discovery involves a 
knowledge-intensive task consisting of complex interactions between a human and a 
large database, possibly supported by a heterogeneous variety of tools'' (Brachman 
1996, [16]). In general, three basic steps compose any KDD process: preliminary data 
analysis, model selection and refinement, and output generation. Ideally, the user and 
data analyst should be closely involved in each of these steps. Typically, the user 
provides a set of requirements to the data analyst, who extracts data relevant to the goal 
by querying a database, performs data analysis using analytical, algorithmic and/or 
visual techniques, and finally uses presentation tools to report the insight to the user. In 
real data mining projects, the role of visualization is key to performing an adequate 
analysis of the data, developing understandable models, and generating useful output. 
The insight that can be obtained from appropriate visualizations of the data, for 
example, is hardly reachable by looking at tables or simple summary statistics. 
Although data visualization is usually not considered a formal kind of analysis, for 
some tasks it may be the best tool to solve a problem or confirm a hypothesis.  
  In addition, in real KDD applications, the analyst needs to be supported by iterative 
use of algorithm-based tools (e.g., statistical packages, machine learning, neural 
networks, case-based reasoning, and classification tools) and visualization-based 
analysis tools (e.g., geometric, icon-based, pixel-oriented, hierarchical, and graph-based 
techniques). However, in most KDD systems the integration of these approaches is 
lacking, causing frustration in data analysts, who are unable to use the output from one 
tool to refine the input to another tool.  
 
  Besides the three basic steps of the KDD process, other complex tasks are performed 
in real KDD problems. Mainly, they include task discovery, data discovery, data 
cleansing, and the use of background knowledge. Task discovery involves clarifying 
and refining the user requirements for the task. Commonly, task discovery is a very 
time consuming and difficult process, but it is essential to guarantee that we are not 
wasting time answering the wrong questions. Data discovery, on the other hand, 
involves a preliminary analysis of the raw data, so that the analyst can understand the 
structure, coverage, and quality of the data. Data discovery and task discovery are 
intimately related, because the goals that arise from the task discovery phase can not be 
reached without a good understanding of the data.  
 
  Data cleansing involves all work needed to prepare the data for the analysis phase. It 
involves handling missing and empty values, handling non-numerical variables, 
normalization and redistribution of variables, etc.  
 
  This process requires user assistance and knowledge, because what looks like an 
anomaly for the data analyst for an exhaustive description and comparison of visual 
techniques for exploring databases, see (Keim 1997, [17]) may be an interesting domain 
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phenomenon for the user; in other words, outliers may be key data points where the 
knowledge discovery process should be focused, according to the user goals and 
knowledge.  
 
  Also, it is really important to incorporate domain and background knowledge in the 
KDD process. For example, simple forms of background knowledge in databases 
include the data dictionary, integrity constraints, and various forms of meta-data from 
database management systems. However, more complex or richer forms of background 
knowledge are difficult to capture, mainly because they are resident only in the mind of 
the expert.  
Some tools, however, give users the ability to provide richer inputs to the data analysis 
methods. For example, IMACS (Brachman 1993, [24]) can represent meta-data or 
abstract concept descriptions, and ReMind (REMIND 1992, [25]) can represent abstract 
data elements using formula fields.  
 
  The most accepted model of the KDD process was formulated by Fayyad, 
Piatetsky-Shapiro, and Smyth (1996, [10]). An outline of this process is shown in 
Figure 1.1. In this model of the KDD process, data mining is considered a step in the 
KDD process that applies an algorithm to data and generates an enumeration of patterns 
over the data. The KDD process described in Figure 1.1 is interactive and iterative, and 
it involves several steps, summarized as (Fayyad et al. 1996, [5]): 

 
1- Understanding the application domain. It includes learning relevant prior 
knowledge and the goals of the application.  
 
2- Data selection. It includes selecting a dataset from an operational data repository, 
and creating a target dataset on which the KDD process will be performed.  
 
3- Data Preprocessing. It includes basic operations for handling noisy data (e.g., de-
duplication of records, correction of domain inconsistencies, and disambiguation of 
attribute values), deciding on and applying of strategies for dealing with missing 
attribute values, as well as accounting for time sequence information and known 
changes.  
 
4- Data transformation. It includes applying strategies to identify relevant and 
irrelevant features, reduce the number of attributes under consideration 
(dimensionality reduction), and code some attributes (e.g., flattening an attribute 2). 
 
5- Defining the purpose of the data mining task. It includes deciding which will be 
the main goal of the data mining task (e.g., classification, regression, clustering, 
summarization, deviation detection, dependency modeling, link analysis, sequence 
analysis).   
 
6- Choosing the DM algorithm(s). It involves deciding which set of data mining 
techniques may be best suited for the problem under consideration, and what 
parameter settings seem to be more appropriate for each data mining algorithm 
selected.  
 
7- DM includes applying the selected data mining method(s) to the transformed 
dataset, in order to induce a model and then generate an enumeration of patterns. 
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8- Pattern interpretation. It includes the evaluation/interpretation of the enumerated 
patterns, by assessing their quality in terms of a measure of goodness. Appropriate 
visualizations of discovered patterns can help users to understand the useful ones. 
This evaluation/interpretation of patterns may also result into iterations of the KDD 
process from any of the previous steps.  
 
9- Using discovered knowledge. It includes the incorporation and effective use of 
the knowledge mined from data. The actions based on the discovered knowledge 
can range from simple documenting and reporting activities to more elaborate uses, 
such as decision support and decision making based on the mined knowledge.  

 
  The DM step has been the main focus of most previous work on KDD. Other steps in 
the KDD process have received less attention, although some of them impact 
significantly the quality of the results. For example, algorithm selection, parameter 
selection, and model understanding, may significantly improve the quality of the 
patterns generated; however, they are ignored in most of the current data mining 
projects, because of the lack of guidelines and tools to support them. Other steps 
involve a significant amount of work and effort, like data cleaning and pre-processing, 
and they are starting to be seriously studied only recently (Pyle 1999, [18]). 

  
2.2 Current role of visualization in the KDD process  

 
  Visualization is one of the most promising areas in the computer science discipline, 
because it exploits the human visual system capabilities, which have shown to be more 
developed than other human perception systems (Pickett & Grinstein 1988, [19]). 
However, computer visualization has been only partially utilized in the KDD process 
described in the previous section, and it has been rather limited to data visualization and 
output generation (Grinstein 1996, [20]).  
 
  Although there is a wide variety of techniques currently used to visualize low 
dimensional (1, 2 or 3 dimensions) and multidimensional (more than 3 dimensions) data 
sets, and to present results of the knowledge discovery process, they have not been 
integrated with analytic and algorithmic approaches used to extract knowledge and 
identify patterns from large data sets.  
 
   However, visualization should not be only limited to datasets and output generation, 
but it might be used experimentally to support some other stages of the DM process. 
For example, understanding the application domain and defining the problem. Although 
it may seem obvious that before attempting any DM tasks we do need to understand 
well the application domain and define the right problem to be solved, in real KDD 
applications this step is key and essential, because without a clear understanding of the 
problem, the results may be worthless. The history of projects that involve DM tasks 
includes a good number of cases where little time was spent in understanding the 
application domain and defining the problem, and as consequence, the application of 
DM algorithms to the database generated useless results for the goals that the end-user 
pursued. In this sense, DM is different from other analytical processes: it may become 
very easy to apply DM algorithms to the data set, but without spending a significant 
amount of time in understanding the application domain and defining the problem to be 
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solved, the results gotten may be deceptive and worthless for the end-user expectations 
and goals.  
 
  Sometimes the problem, as formulated by the domain expert, seems clear to him or 
her, but it may be unsolvable from a DM perspective, or it may be solved in many 
different forms, some more appropriate than others. Thus, task discovery and data 
discovery should be applied in order to understand the application domain and define 
the problem to be solved. However, currently there is a lack of tools that support these 
early stages in the DM process, which makes these phases complex and expensive. In 
this sense, developing appropriate visualizations can help both domain expert and DM 
analyst to perform these tasks more efficiently and therefore to reduce the costs usually 
incurred in DM projects.  
 
   In relation to other tasks in the KDD process, besides data visualization and output 
generation, the use of visualization has been rather primitive and uninformative. For 
example, regarding the model used to predict or describe patterns, the approach used in 
some current DM tools, both commercial and public domain, is mainly focused to 
present the topology of the model visually, and/or to show some parameters of the 
model. Instead, we argue that visualization can be used effectively and efficiently for a 
better understanding of the model, supporting its evaluation and tuning more 
consistently, reducing the space of models (which in some cases becomes a very huge 
space) to be searched, and comparing several of them in order to choose the best one.  
 
  Other examples are the activities performed before reaching the DM step: data 
selection, data pre-processing, and data transformation. Usually these activities are 
expensive in terms of time and budget, although they are essential to guarantee that the 
right problem is being solved and to reduce the probability that the results produced by 
the DM algorithm may contain invalid or spurious patterns.  
 
  Other uses of visualization for knowledge discovery tasks, besides data visualization 
and output generation, have not been formally investigated. Typically, visualization for 
knowledge discovery tasks has been used to get an overview of the data set before 
applying a DM algorithm to it. However, visualization has not been used or has been 
used poorly for helping both user and analyst to define and ``discover'' the real goal of 
the knowledge discovery process, to support a good and full understanding of the 
syntax and semantics of the data set, and the possible errors or outliers that it may 
contain, or any abnormality that may indicate interesting patterns in the data set being 
explored.  
 
  Also, visualization may give valuable insight for understanding in what aspects of the 
hidden information the data the mining activity should be focused. For example, 
appropriate visualizations of the raw and transformed data, parameter space, induced 
model, and generated patterns, may provide valuable knowledge. This knowledge can 
be used as additional input for selecting the most appropriate DM technique, tuning the 
parameters associated with the algorithm, understanding the induced model and its 
complexity, and interpreting and/or evaluating the patterns generated.  
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2.3 Research questions and problems  
 

  Before formulating the goals that we pursue in this research, we list several research 
questions and problems, which form the core motivation to the development of this 
dissertation.  

 
1-What exactly do we mean by the integration of visualization within the DM 

process? Traditionally, integration of visualization and DM has been viewed simply 
as the incorporation of data visualization techniques in software tools already 
equipped with inductive learning algorithms and this strictly at the output level 
(back-end). However, in this thesis, the integration of visualization with DM has a 
broader meaning, and it should be understood as the effective and efficient use of 
visualization to support some of the phases in the knowledge discovery process; for 
example, early stages such as definition of the problem, concepts, and goals, and 
cleansing and pre-processing of the data set, and later phases such as selection and 
optimization of the induced model, and interpretation and evaluation of the patterns 
generated.  

  
2-How can visualization is used effectively and efficiently in the knowledge 

discovery process, beyond visualizing data sets? The KDD process is basically an 
exploratory process, and therefore many hypotheses and models need to be 
generated, optimized, and evaluated before the hidden knowledge may become 
visible and understandable. In this sense, visualization should be used to support the 
expression of end-user hypotheses, the analysis and ``debugging'' of the data set, the 
understanding, tuning, and selection of one or more candidate models, and the 
interpretation and evaluation of patterns produced by DM algorithms.  

 
3-If some visualization techniques seem to be more appropriate to help certain DM 

tasks, then which are the features of these techniques that make them perform better 
than others? An ongoing research activity at University of Massachusetts Lowell 
(Hoffman 1998, [21]) pursues the formulation of a formal model of array 
visualizations that permits assessing the usefulness of several multidimensional 
visualization techniques to perform certain DM tasks, among other goals. Instead of 
looking for new visualizations created by combining others, an alternative research 
direction is to focus on discovering the features of some visualization techniques 
that make them more appropriate to use in certain DM tasks, and use these criteria 
to select visualization techniques that are complementary to other visualization 
techniques. Moreover, the integration of visualization techniques with analytical and 
algorithmic approaches should take advantage of the fact that these visualization 
techniques perform better than others for the type of task(s) being sought. For 
example, parallel coordinates (Inselberg 1990, [22]), a multidimensional 
visualization technique well suited for datasets with large number of dimensions 
(attributes) but with small number of observations (records), can be integrated with 
an algorithmic technique or other visual technique that works well for data sets with 
large number of records.  

 
4-Can the models induced from a data set be better understood and tuned if they are 

appropriately visualized? Some predictive and descriptive models are poor with 
respect to supporting understanding how the model is making decisions to classify 
data or describe patterns. This commonly produces frustration in the analyst, who is 



 27 

unable to tune and improve the model in a systematic manner, but the analyst 
explores the model and parameter spaces without clues. Therefore, in order to 
enhance the tuning of the DM algorithm and understandability of the induced 
model, these tasks should be supported with adequate techniques and tools. In this 
sense, if those kinds of models are appropriately visualized then, we hypothesize, 
the user or analyst should be able to understand and tune them more effectively.  

 
5-How can the parameters of an inductive learning algorithm be tuned to maximize 

its predictive or descriptive capability? If this can be viewed as an optimization 
problem, then how can visualization are used to help the user/analyst in the 
exploration and selection of the best parameter setting for a particular problem or 
data set, through the space of all possible parameter settings? (John 1997, [23]) 
describes a method, based on a wrapper approach, for estimating a measure of 
goodness of a set of parameters for a DM algorithm, and heuristically searching in 
the entire parameter space. Then this method was applied to tune the parameters 
of the C4.5 algorithm. 

 
6-Even though the tuned version of C4.5 outperforms the default version of C4.5 in 

most of the data sets, it is not clear why some parameter values improve the 
performance of the algorithm for certain data sets, and how they are related to the 
characteristics of the data set. Thus, visualization may provide a useful input and 
feedback to algorithm engineering tasks, such as parameter tuning, when 
integrated with these algorithmic methods.  

 
7-Some DM techniques seem to be best suited for certain DM tasks. In this context, 

are there any application domain independent criteria that may be used to select 
the best method or subset of methods that would solve a specific problem better 
than other techniques? Can these domain independent criteria, if any, be combined 
with domain dependent features of the specific problem, in order to improve the 
selection of the most appropriate DM techniques to solve a specific problem? 
Although the algorithm space is rather sparse, the selection of the algorithm to be 
used to perform a DM task impacts the results significantly. Even though some 
authors have formulated guides or developed experimental work in order to assist 
the user in the selection of an appropriate method, there is a lack of guides or 
heuristics that combine application domain independent information with domain 
dependent features in order to guide the user in the selection of the set of best 
suited techniques for solving a particular problem.  

 
2.4 Research goals  

 
   The KDD process is complex, and many obstacles, research questions and problems 
still need to be investigated and clarified. In the previous Section, we pointed out some 
of the research questions and problems that motivate this dissertation work. In this 
Section, we describe our research goals.  
 
  Once the database has been pre-processed (cleaned and appropriately transformed), 
two basic problems arise: what DM algorithm(s) should be used, and how to apply the 
selected algorithm(s). Many of the problems reported in DM projects are related to 
wrong decisions about what DM algorithm should be used and how to apply it, in order 
to get useful and understandable patterns. Our basic premise is that the visualization 
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paradigm has been applied in a very limited form in the DM process, and mainly 
focused toward data visualization. Therefore, we argue that visualization can be applied 
and integrated in other DM tasks and phases in the KDD process, for which currently 
only analytical and algorithmic approaches have been explored, or visualization has 
been applied poorly. Thus, we pursue three basic goals in this dissertation work:  

 
• To investigate the relationship between a problem and the subset of DM algorithms 

that are best suited for solving it. This research goal pursues to clarify the matching 
between the problem and DM algorithms. Given a well defined problem P, typically 
there are several algorithms from which to choose. Let A = {a1,a2,…,aN}, be the set 
of DM algorithms feasible to use for solving P. The choice of the algorithm ai to be 
used would have a significant impact on the results, in other words, in the quality of 
the mined patterns. Currently, how to match a problem P with a DM algorithm that 
performs well in solving P, is still an open research problem. In some cases, a 
mismatch between the problem and algorithm may be caused by either having an 
inadequate set of DM tools or by trying to apply DM to problems for which 
adequate algorithms have not been developed. Also, a mismatch between problem 
and algorithm may be an indication that the problem has not been well defined, or 
that the algorithm's application domain is diffuse, or not well understood by the 
analyst. In this dissertation work, we will investigate the problem of matching a DM 
problem with the set of DM algorithms that are suitable for solving it.  

 
      In this context, we propose to formulate heuristics that can be used to clarify the 

matching between the problem and the algorithm (algorithm selection problem), by 
considering simultaneously domain independent and domain dependent features of 
both the problem and the DM algorithm. These heuristics would help and guide the 
user in the selection of the best algorithm (or the best subset of algorithms) to solve 
a specific problem that involves DM tasks.   

 
• To investigate whether the use of visualization and its integration with analytical 

and algorithmic approaches can improve algorithm engineering tasks. The problem 
of how to apply a specific DM algorithm involves selecting a set of parameters, with 
which the algorithm would be executed. The important thing to highlight here is that 
for many algorithms, the patterns discovered by them depend highly on the values 
set for their parameters. The usual approach is to run the algorithms with parameters 
set at their default values, hoping to discover some ``interesting'' patterns, or to run 
several experiments with different parameter settings, compare their results, and 
choose the one which performs best. This approach is equivalent to exploring the 
huge parameter space without clues and intuition about what parameter settings 
would give the best results, and it ignores the fact the parameters can be tuned. In 
fact, this parameter setting problem can be viewed as an optimization problem: 
given a training set, a DM algorithm and a vector of parameters for it, the goal is to 
find an instance of the vector of parameters, such that the patterns discovered by the 
DM algorithm optimizes some objective function that assigns some real-valued 
measure of "interestingness'' of the patterns. Unfortunately, for this optimization 
problem, no analytical method is known. However, some algorithmic methods have 
been created that heuristically search within the parameter space for an appropriate 
parameter setting.  
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     The parameter settings used are correlated not only with the results of the DM 
activity, but also with the complexity of the induced model, and the data sample and 
features selected to induce, test, and validate the model. Therefore, making visible 
and understandable these correlations may help the analyst to perform the parameter 
selection task more consistently and systematically.  

 
     In this sense, we will experiment with the integration of visualizations with 

algorithmic approaches to tune the parameters of DM algorithms, in order to support 
the parameter selection process, currently only explored by algorithmic approaches, 
in a more systematic form than using default values or setting parameter values 
without clues.  

 
• To visualize inductive learning models generated by the application of DM 

algorithms to a training data set. As mentioned in the previous Sections, most of the 
applications of visualization have been focused on visualizing the database (or 
dataset) to which some DM algorithms would be applied, and to visualize patterns 
(e.g., clusters) generated by those algorithms. However, little work has been done in 
visualizing the models generated by inductive learning algorithms, and statistic 
entities (e.g. confusion matrix, cost matrix) in a richer way than just presenting the 
topology of the model or listing the statistical results of the application of the DM 
algorithm to a testing data set. A key issue in improving the predictive power 
(accuracy) or descriptive capability of the model is to understand how the inductive 
model is really working in making decisions, how some parameter settings affect its 
predictive or descriptive capability, what parameter changes have more impact on 
the model, and how the attribute space is split up by a model.  

 
  In this sense, we will introduce visualizations in order to provide richer information 
about induced models and statistics entities, and to support the interactive and dynamic 
exploration of induced models for DM. Therefore, we will address the research issue of 
how visualization can support the evaluation of individual models, the comparative 
evaluation of several candidate models, the exploration of the model, and the sensitivity 
analysis.  
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Chapter 3 
 

Remote access KDD models 
 
 

3.1 Introduction  
 
  With the explosive growth of information sources available on the remote sides, it 
has become increasingly necessary for users to utilize automated tool in finding the 
desired information resources, and to track and analyze their usage patterns. Theses 
factors give rise to the necessity of creating server side and client side a reliable 
system that can effectively discover knowledge in databases via a remote access. A 
remote access knowledge discovery in databases (KDD) model can be broadly 
defined as the discovery and analysis of useful information from a remote database. 
To discover new information from the server side databases we will use DM or 
commonly known as KDD approaches. 
 
 
  The connection between ODBC and KDD is to use KDD process to the retrieved 
database table from the ODBC connection. KDD is a process for extracting useful 
patterns and hidden information from raw data stores and making discovered patterns 
more understandable. KDD process will investigate useful patterns in the retrieved 
database table. This table is obtained from remote access databases by ODBC drivers 
[11].  
 
  In part II, we will take these aspects (ODBC, KDD) into account. The interaction 
between the KDD process and the ODBC driver is simply shown in figure 3.1. In this 
direction, we will describe all the related components on the client and server sides. In 
this connection, we will capture a new connection between the raw database and the 
KDD process by getting data from ODBC driver. We will investigate all the related 
components of this bidirectional connection between the two approaches ODBC, 
KDD. We will also propose a conceptual classical model for this bidirectional 
connection. This model will be called ODBC_KDD (1). On the other hand we 
suggested a new conceptual model for ODBC_KDD (1) with some new components 
and more capability known as ODBC_KDD (2) [26]. We will investigate the 
architecture of both models.    
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Figure 3.1 shows the connection between DM and ODBC 

 
 

 
 
           Figure 3.2 ODBC_KDD (1) model architecture 
 
 

 
     
                                       Figure 3.3 ODBC_KDD (2) model architecture 
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3.2 Main characteristics of ODBC_KDD models  
 

  In ODBC_KDD models the requests are formulated in SQL from the client side by the 
user. These SQL statements are submitted via ODBC connection through ODBC driver 
manager. ODBC driver links the application to specific databases and processes ODBC 
function calls, submits SQL requests to specific data sources, and returns results to the 
application. The server responds by receiving and processing client requests, and 
sending the results back to the client. The received database table representing the result 
of retrieving the databases is submitted to the KDD process. KDD process extracts all 
the necessary rules and patterns in the table and returns back the result to the user 
interface. 

 
3.2.1 ODBC_KDD (1) model    

 
  A user sends a query to the user interface. User interface submits the request to 
the KDD interpreter. KDD interpreter translates the query into SQL statements 
and passes the request to the ODBC driver on the client side. ODBC driver 
forwards the request to the server side using the gateway border. ODBC driver 
forwards the request to the SQL application. SQL interpreter looks up the 
databases to get the necessary information. The result table is submitted then, to 
the client side in a database table form to the KDD interpreter. KDD interpreter 
gets the result table, and then calls the KDD process to extract the interesting 
pattern from the table. The final answer is sent to the user through the user 
interface.  

  
3.2.2 ODBC_KDD (2) model   

 
  User formulates a knowledge discovery query language (KDQL) statement and 
put it to the user interface. KDQL query passes both Extended ODBC (EODBC) 
drivers located in two sides (client / server) over the gateway border. The EODBC 
driver on the server side sends the query to the interpreter. The interpreter 
transforms the KDQL statement to be represented in SQL mode as an SQL 
application.  The SQL application seeks the raw database located in the server side 
for an answer to the retrieved statement. The result is sent back to the interpreter 
which is located on the same side. The interpreter initiates a KDD process in order 
to discover the interesting patterns in the retrieved database table. The interpreter 
retransforms the filtered table and sends it back to the EODBC drivers on the 
server side and then to client sides through the gateway border. The EODBC 
driver located on the client side submits back the result to the user interface and 
then to the user. 

 
3.3 Architecture of ODBC_KDD models 

 
3.3.1 Description of the first classical model  

 
  The first classical model consists of several components. Theses components can 
be counted and described from left to right according to figure 3.2, as follows. 
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1- User interface: It is the program that controls the display mode for the user 
(usually on a computer monitor). The program allows the user to interact with 
the model by writing different queries in high level languages. 
 
2- KDD interpreter: This program translates queries from the high level form 
to Structured Query Language (SQL) statements in order to retrieve databases 
via remote access mode. The KDD interpreter passes the translated SQL 
application to the Open Database Connectivity (ODBC) driver. KDD interpreter 
encodes the result table and submits it to the KDD process to discover all 
necessary patterns.   
 
3- ODBC drivers: ODBC driver on the client side receives the SQL query and 
send it to the ODBC driver on the server side through the getaway border. The 
ODBC driver on the server side passes the SQL applications to the databases. 
 
4-  SQL interpreter: The SQL interpreter processes SQL statements and 
retrieves information from the database. The SQL application captures all the 
necessary information and sends it back to the ODBC driver located on the 
server side. 
 
5- DBMS:  DBMS is a database management system which is a collection of 
programs strongly structured to manipulate data, and offering query facilities to 
different users. 
  
6- Answer table: After the SQL application submits the request and retrieves 
the results, these results will be presented in a database table back to the client 
side. The table contains all the related information the user needs. The table is 
send to the KDD interpreter.      
 
7- KDD process:  The KDD process extracts all the interesting patterns from 
the result table and then sent it to the user interface.  

 
3.3.2 Description of the second conceptual model 

 
   This model is suggested as a new conceptual model to the ODBC_KDD (1) with 
some new components. These new components add more capability to this model. 
This model is named as ODBC_KDD (2). This model consist of several 
components, these components are counted and described from left to right 
according to figure 3.3, as follows:  

  
1- User interface: It is a screen which represents the output of the KDD query in 
visual mode.  
 
2- KDQL: KDQL is a proposed query that can handle SQL request with some 
visualization aids to the hidden patterns which is discovered in the retrieved 
database table. This KDD query will be the main point of my work. We will talk 
about it in more details in the Chapters 7 and 9. 
 
3- Extended ODBC driver (EODBC): It is a conceptual remote access 
(client/server) databases driver. Theses drivers were suggested to the model to 
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handle KDD queries and keep it more attractive. In the other hand, this driver was 
conceptually maintained without a practical use until now. I won’t focus on it in 
this dissertation, but nevertheless it could be a good topic for my future work. The 
purpose of the EODBC drivers (client/server) sides, is to (send / receive), (receive 
/ send) KDD queries from both sides or from the Interpreter.  
 
4- Interpreter: It is a server side program that interacts between the EODBC and 
the SQL interpreter. The goal of this program is to encode the requested KDD 
queries to classical SQL statements and then pass them to the SQL interpreter. In 
the other direction, the Interpreter receives the answer table. The Interpreter 
translates the answer table to a form known by EODBC drivers and KDD process. 
The Interpreter was proposed to deal with the KDD query and with the undefined 
structure until now.    
 
5- SQL interpreter: The SQL interpreter acts just the same way as the SQL 
interpreter in the ODBC _ KDD (1) model. It executes SQL statements and gets 
tables as result. 
 
6- DBMS: DBMS is a database management system which is a collection of 
strongly structured programs to manipulate data, offering query facilities to 
different users. 
 
7- Answer table: The Interpreter receives the result table from the SQL 
interpreter and then calls the KDD process. The table is a simple database table 
with all possible patterns. 
 
8- KDD process:  The process starts to discover and extract all the interesting 
patterns available in the table and then sends them back the user interface. The 
result will be returned to the user interface on the client side.   

 
  These abstract models are motivated by extensive analyses of accessing huge 
databases by remote access applications.  

 
3.4 Retrieving in ODBC_KDD models  

 
   A query is a user request for information submitted to the raw database scheme. In 
other description, the query is a formal request to a raw database scheme. A database 
scheme is a collection of logical structures of data, or objects. In the practice we usually 
use database schemes commonly known as relational database scheme which is a list of 
attributes and their corresponding domains. A database is a large amount of data that 
can be accessible for any user who use the system [27]. Database scheme can be created 
and manipulated with any database management system (DBMS). We can access a 
database by the use of SQL commands or any other query languages.  
 
  Let us consider a small banking relational database scheme as an example. This 
example could be a part of our model.   This example also could demonstrate how 
queries can be translated from the natural language to one of the existing query 
languages that correspond to our ODBC_KDD models. 
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       Brach-scheme = (bname, assets, bcity)                  
 Customer-scheme =   (cname, street, ccity) 
      Account-scheme= (account_number ,bname, balance) 
      Loan-scheme = (loan_number, bname ,amount)   
      Depositor-scheme    =   (cname, account_number) 
 Borrow-scheme    =    (cname, loan_number) 

 
 

 
3.4.1 Comparison of SQL and  Knowledge Discovery Query Language   
( KDQL) 

 
   As we know a query is a question or a request formulated in a natural language. 
Before processing it has to be converted into one of our query languages: classical 
SQL query or KDD query. See Chapter 1 for more information about SQL. As an 
example consider the previous relational scheme. We can submit natural questions 
in SQL forms such as: "Find the names of the branches whose assets are greater 
than the assets of some branch in Debrecen". In SQL forms it will be suited as:    

 
   SELECT DISTINCT  T.bname, T.assets 

FROM  branch  T, branch  S 
WHERE T.assets > S.assets AND S.bcity = 'Debrecen' 

 
 

  In natural level language, we can also ask: "Find all customers who purchase 
pasta and purchase cheese". It is a frequently occurring request written in a most 
common implemented query language SQL. The corresponding recursive query 
expression in SQL is: 

        SELECT  cname, I1.iname, I2.iname 
 FROM   customer , item I1, item I2 

  WHER  I1.iname='pasta' AND  I2.iname='cheese' 
 

  Both of these queries are combinatorial in the sense that both of them could be 
answered by single or multiple look up of the underlying database tables. These 
tables are considered as finite sets and the look up results an another table (finite 
set) as an answer. Consequently the result is always deterministic (it is based on 
deterministic finite set operation) although the result table could be very large.        
 
  There are queries which couldn't be formulated and answered by using a single 
SQL statement. For example, if we want to formulate an assertion such as 
“Customers who purchase pasta are three times more likely to purchase cheese 
than customers who don’t buy pasta". In this assertion we are going to investigate 
all the possibilities which “pasta” and “cheese” appears. Our goal is to prove 
whether this assertion is true or not. If the assertion is true then this assertion 
could be set as an association rule. Moreover, formulating this assertion in SQL 
would require some sophisticated multiple SQL statements. This answer can be 
the unification of multiple answers queried by the sub-queries in SQL. The 
alternative to this problem could be the use of KDQL instead of SQL.       
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  KDQL has been proposed by us as we mentioned before in Section 3.3. This 
query language is able to express some more sophisticated user requests. We use 
SQL as a basic syntax structure of KDQL, but we never use KDQL syntax as an 
underlying language or technique in SQL.  In KDQL we may apply some 
aggregation methods while KDQL is locating all the related patterns in the 
database. We may also visualize the results in different charts as well. 
Consequently KDQL consists of SQL syntax plus a showing statement [29].  
KDQL is a related framework to DMQL in [12] in discovering patterns manner 
and SQL+D in [29] in visualizing the result tables. The KDQL will be presented 
as the main part of this thesis. Especially in Chapters 7 and 9 we are going to 
describe the KDQL in more detail.  
 
  For instance, we can solve the previous example “Customers who purchase 
pasta are three times more likely to purchase cheese than customers who don’t 
buy pasta" in KDQL by a convenient  way descried  in Chapter 9 by using some 
association rules.   
 
  The rule that could be proved here is “buying cheese motivates people to buy 
pasta”. The rule that might be proved here is “buying cheese “motivates” people 
to buy pasta”. However, if we have a book called “You can lose five pounds a 
week by eating pasta with cheese” the book will be bought together with them and 
this may cause an explosion.  
     
  
  Retrieving databases to discover hidden information requires an attractive query 
language to locate all inferences rules possible in the databases. This query 
language could be an attractive SQL, visualization query, or, any attractive query 
language. 
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Chapter 4 
 

Logical Foundations in Data Mining 
 

 

4.1 Introduction 

  DM is the process of discovering particular patterns over database [10]. Typically 
hidden patters are stored in databases. Approaches using First Order Logic (FOL) 
languages for the description of such patterns offer data mining the opportunity of 
discovering more complex regularities which may be out of reach for attribute-value 
languages and classical statistical algorithms. Logical Foundations in Data Mining 
(LFDM) still has other advantages. Complex background knowledge provided by 
experts can be encoded as first order formulae and be used in the discovery task. The 
expressiveness of FOL enables discovered patterns to be described in a concise way, 
which in most cases increases readability of the output. Multiple relations can be 
naturally handled without explicit (and expensive) joins. 

  The obvious drawback of LFDM is efficiency. A LFDM algorithm must consider a 
much larger set of possible hypothesis (language complexity), and may have to access 
the database repeatedly. However, recent works in Inductive Logic Programming (ILP) 
show that logical approaches to data mining are feasible and can scale up to handle 
large databases. Before that happens, many practical and theoretical problems have to 
be solved, which offers many research opportunities. 

  LFDM fits naturally into the field of Inductive Logic Programming (ILP) [30, 31], and 
is inherently related to Logic Programming [53] and Deductive Databases [47]. 

4.2 Advantages of LFDM 

• Expressiveness. First order logic can represent more complex concepts than 
traditional attribute-value languages. Typically, structural concepts are hard to represent 
using a zero-order language.  
• Readability. It is arguable whether logic formulae are easier to read than decision 
trees or a set of linear equations. However, they are potentially readable. If the 
knowledge is structural, a first order representation is probably easier to read than a 
zero-order one.  
• Background knowledge. Domain knowledge can be encoded and given as 
background knowledge. The source of the background knowledge can be an expert or a 
discovery system. In some cases, background knowledge can be grown during 
discovery time for example, in time series. 
• Multiple tables. Handling multiple relations is natural in first order logic. Therefore, 
multiple database tables can be handled without explicit and expensive joins.  
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• Deductive databases. Logical discovery engines can be transparently linked to 
relational databases via deductive databases. Logical approaches benefit from the work 
done in this area of logic programming.  

4.3 Disadvantages 

• Language complexity. First order hypothesis are usually constructed through heavy 
search. Appropriate biases must be set a priori to make the discovery task feasible.  
• Database access times. Candidate hypothesis must be regularly confronted with the 
data to guide the search. Checking one single candidate might involve heavy querying.  
• Number handling. Logical approaches to discovery usually suffer from poor number 
handling capabilities. However, some proposals have been made to overcome this 
limitation.  

4.4 DM tasks  

 The DM task that could be employed will follow the categorizes below [10]:   

• Classification and prediction. The aim is to predict the value of some database field 
based on the values of other fields. The field to predict is sometimes called class. If the 
class takes discrete values, then it is a classification problem. If the class takes 
continuous numerical values, it is a regression problem.  
• Clustering. The aim is to partition the set of data items into smaller subsets. The 
elements of one subset are similar to each other and significantly different from 
elements in other subsets.  
• Data summarization. The aim is to discover patterns that describe subsets of the 
data. Association rules relate different fields we will focus on it later.  
• Dependency modeling. The aim is to derive some causal structure within the data. 
One example is functional dependency between predicates.  
• Change and deviation detection. Data has a sequential structure, temporal, physical 
or other. The aim is to find patterns assuming an ordering of the observations.  

4.5 Logical approaches 
 

  Logical approaches to DM state the discovery tasks in a logical setting. Hypothesis, 
evidence, and background knowledge are represented in some first order logic 
framework, such as Horn clauses1, first order temporal logic (FOTL)2, logical decision 
trees3, etc [79]. 

 
 
 
 
(1) Horn clauses: came from the logician Alfred Horn in 1951 and it is a set of atomic literals with at most one positive literal.  Usually 
written L <- L1, ..., Ln , where n≥0. If L is false the clause is regarded as a goal and it could be expressed as a subset statements of first 
order logic.. 
(2) FOLT: first-order temporal logic, obtained by augmenting classical first-order logic with temporal operators (such as since and 
until) operating over various kinds of flows of time. FOLT are known by Scott and Lindström in the 1960s. 
(3) Logical decision trees: A logical decision trees is binary decision tree in which each node contains a conjunction of literals. This 
conjunction may share variables with nodes above it in the tree.   
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4.5.1 The general logical setting 
 

The general logical approaches can be sets by given predicate formulas to find 
some statistical inferences.          

Given: 

B, background knowledge. Potentially any set of logical formulae. 
Typically a logic program. Sometimes a definite logic program. 

E, evidence/examples/data. Potentially any set of logical formulae. 
Typically ground atoms. Sometimes unconstrained atoms. 

A language of hypothesis LH. 

A notion of satisfaction. 

Find: 

  H in LH, set of hypothesis/model, such that H satisfies E relatively to B. 
Potentially H is any set of logical formulae. Typically a set of clauses, 
either definite or indefinite. Currently, other first order formulae are being 
used. 

4.6 Classification and prediction 
 
   This is by far the most studied problem in relational learning. It can be stated as 
follows. 

Given evidence E and background knowledge B, find hypothesis H such that H&B╞ E, 
where H, B and E are logical formulae. 

  In other words, the discovered hypothesis should explain the evidence. 

   System FOCL discovers rules for early diagnosis of Alzheimer's disease [32]. Rules are 
Horn clauses. One particular form of language bias, monotonicity constraints, prevents 
learned rules to be inconsistent with existing knowledge. Expressing one relation R in 
terms of a set of relations {R1,R2,...,Rn} [33] can be useful to detect redundancies in a 
database. System P-Progol4 constructs Horn clauses to predict the carcinogenicity of 
chemicals used by people [34]. Background knowledge contains general information 
about structure and composition of chemicals. This is one good example of the suitability 
of logical approaches to handle complex, structured knowledge.  

(4) System P-Progol : is a system  implemented  to contain aspects of the Progol algorithms by Aleph. It was commenced in 1993 as a   
part of a project undertaken by Ashwin Srinivasan and Rui Camacho at Oxford University. Progol algorithm is described in detail in 
S.H. Muggleton (1995), Inverse Entailment and Progol, New Gen. Comput.. 
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4.7 Clustering 

  The approach to first order clustering described in [35] discovers a set of Horn clauses 
that partition a set of ground examples into homogeneous classes. A typical ILP 
refinement operator is adapted for clustering. System KM5 of [36] is applied to a real 
chemical research database about compounds, their ingredients, and properties. There is 
one table for the ingredients of the compounds and more than 50 tables for the properties. 
The system uses meta-queries to restrict the search.  

 In one experiment, given the meta-query 

Ingredient(C, X, Y) /\ Property(C, Z) ⇒  Cluster (Z) 

The system produced the rule 

Ingredient(C, 3060, X) /\ densityBM(C, Y) ⇒   
Clusters (Y) = {(1.243, 0.46, 0.99), (-999.9, 0.2, 0.01)} 

 The rule says that 99% of the compounds with ingredient 3060 have densityBM6 around 
1.243 (with a variance of 0.46). The other cluster possibly indicates the presence of noisy 
data. 

 The rule indicates that for this type of compounds, the majority (99%) of values of 
property densityBM are near 1.243 (with a variance 0.46). Thus, the ingredient 3060 has a 
very specific effect on the compound's densityBM property, irrespective of the other 
ingredient X. This information is extremely valuable to the chemists. This rule also 
indicates (with a very low probability cluster) that there may be some noisy data in the 
densityBM table. 

  Logical decision trees for clustering [37]. System RIBL [38] finds groups of patients 
with unusual cost or success structure. This is a real application on relatively large 
hospital database.  

4.8 Data summarization 

   The most common logical statement of this problem is given evidence E and 
background knowledge B, find hypothesis H such that   B&E╞  H, where H, B and E are 
logical formulae. 

In other words, the hypothesis should describe the evidence. This statement is related to 
the non-monotonic setting of [39], also known as descriptive ILP. 

 

 (5) KM: is a Knowledge Miner system extracted automatically from the schema by the meta query generator the important 
information and returns a set of patterns describing the relationships between specific ingredients and properties. 

(6) densityBM: is a majority of the variance  in the density function. 
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4.8.1 Integrity constraints 

  The hypothesis H can be a set of integrity constraints. An integrity constraint is a 
formula of the form 

A1 /\ ... /\ An →B1 \/ ...\/ Bm 

  Where the Ai and the Bi are first order atoms like p(a,X,b(t)) , and a⊆Ai, b⊆Bi , 
t  is a term and  X is a variable. 

System CLAUDIEN finds integrity constraints in a database appeared in [40]. 

4.8.2 Association rules 

  In [41] they define first order association rules as expressions of the form  

{A1 ,... ,An }⇒ {B1 ,..., Bm}  

  Where the Ai and the Bi are first order atomic forms. Each data item may be 
covered or not covered by a given association rule. The proportion of data items 
covered by one rule is its support. The proportion between the number of data 
items that are covered by the rule and the data items that are covered by its 
antecedent is the confidence of the rule. We are going to consider them in more 
details in Chapter 5.  

Example 4.1 The rule 

   { Likes (KID, A), has (KID, B)} ⇒  { Prefers (KID, A, B) (C: 98, s: 70)} 

  Says that 98% of the kids prefer a thing they like over a thing they have, and 
70% of the kids like and have something and prefer the first over the second. 

 The implemented system WARMR extends APRIORI [42] and learns association 
rules. It was applied to part-of-speech tagging (natural language processing). 

  In another work, [38] association rules are defined as first order clauses.           
The experiments shown are with the KRK data (chess).  

4.9 Other tasks 

4.9.1 Dependency modeling 

   System INDEX induces attribute dependencies in a relational database [44]. The 
two types of attribute dependencies considered are functional dependencies and 
multi-valued dependencies.  
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4.9.2 Change and deviation detection 

  In [40] the non-monotonic setting and system CLAUDIEN are used to discover 
regularities between temporal states in clinical databases. In [45] the first order 
temporal logic (FOTL) is used to describe discovered patterns. One example of 
one temporal pattern is X1 Until X2, where X1 and X2 are second order variables. 
The method is applied to capture the behavior of financial analysts in the stock 
market.  

 4.10 Links to relational databases 

  A LFDM engine can be linked to a relational database at two alternative levels. 

• First Order predicates can be mapped to database tables/views.  
• First Order queries can be translated to SQL or other similar query languages.  

 The first option is a more transparent solution for the designer of the LFDM engine (if 
the data mining system is implemented in a first order language like Prolog). However, 
this solution may increase database access times [43,46]. 

  The second option of translating first order formulae into SQL queries may take 
advantage of the relational database query strategies [27]. For example, the coverage of a 
first order rule can be computed via SQL counts. Hypothesis may also be directly 
constructed in the query language using (Inductive Logic Programming ILP/ Machine 
Learning ML), ILP/ML techniques. 

4.10.1  Mapping first order predicates into views 

 We consider the mapping of the first order predicates into database tables or other 
type of views by several ordinarily steps. These steps are more likely mentioned in 
[118] and it is pointed below:-   

• Step1. For each table R with fields A1,...,An, construct a predicate R(A1,...,An).  
• Step2. For each table R with fields A1,...,An, where the attributes Aj,...,Ak are the 

primary key, for each Ax not in the primary key, construct a predicate 
R_Ax(Aj,...,Ak,Ax). 

• Step.3 For each attribute Ax which is not a primary key and has values a1,...,am, 
construct a set of predicates R_Ax_ai(Aj,...,Ak), where Aj,...,Ak are the primary 
key.  

• Step4.The same as the previous one, but considering a set of value intervals 
instead of a set of values.  

Other possibilities exist, obviously. The choice of the most appropriate mapping 
depends on how hypothesis are constructed. The first mapping introduces less 
predicates. The other mappings have more predicates with smaller arity. From the 
second to the third mapping we lose the possibility of manipulating the value of 
Ax. 



 44 

4.10.2 Translating first order queries into SQL 

  Example 4.2 If we ask in our natural language a question such as “find all 
employers who are mangers and getting salary or expenses more than 75000 USD 
a year”. This question could be reconstructed by the first order rule in [36] as 
follows. 

expensive_employee(Name) ← employee(Name, Salary1, Manager), 
Salary1 > 75000, employee(Manager, Salary2, _),Salary1 > Salary2 

 This first order rule can be converted into the following rule 

     expensive_employee(Name)←  sql_node(Name). 

  The SQL query corresponds to the predicate sql_node and formulates the      
following query. 

  SELECT employee_0.NAME 
  FROM employee employee_0, employee employee_1 
  WHERE employee_0.SALARY > 7500 0 AND 
  employee_1.NAME = employee_0.MANAGER  AND 
  employee_0.SALARY > employee_1.SALARY 

4.10.3 Deductive databases 

  A third way of linking the discovery engine to a relational database is via 
deductive databases [47]. This solution provides a natural link between the two 
worlds. Moreover, LFDM inherits a good deal of research work and results from 
the DDB field. 

4.11 Managing complexity 
  

   To reduce complexity we are going to focus of two main aspects: the database size and 
the language that could retrieve that database.    
 

4.11.1 Database size 
 

    One of the majorities of reducing complexity is to reduce the size of the 
database. The main methods for reducing the size of database are pointed as 
follows: 

• Partitioning the database into bits that fit in the main memory [41].  
• Sampling [32].  

4.11.2 Languages 

   The problem of language complexity can be managed by restricting the 
language of hypothesis. In other words, by defining an appropriate language bias. 
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One line of work in ILP exploits ways of defining the language in a declarative 
manner. Similar approaches can also be found in the areas of KDD and DM. 

• Rule Models [48] also known as Clause Schemata [49] are second order rules 
like  

    P(X,Z) ←Q(X,Z),P(Y,Z) 

Where P and Q are variables that range over predicate names. The search for 
clauses consists mainly in instantiating the predicate variables to all possible 
values.  

Example 4.3 Rule models, clause schemata:  

P(X,Y) ←Q(X,Z),P(Z,Y).        (P in {p1, p2}, Q in {q1, q2} ) 

 

• Meta-patterns [36], also known as meta-queries [36], are second order rules 
very similar to rule models. They can be automatically discovered or provided 
by the user. Example to meat-pattern will be mentioned in the next Section in 
M-SQL [51].  

 

• DLAB [41], Clause Sets [50], MILES-CTL [28].  

Example 4.4 to DLAB is as follows:  

  p1(X,Y) ←  [q1(X,Z),q2(X,Z)],p1(Z,Y) 
 p2(X,Y) ←  [q1(X,Z),q2(X,Z)],p2(Z,Y) 

 

• Antecedent Description Grammars [54], Clause Structure Grammars [55].  

Example 4.5 to Antecedent Description Grammars is as follows:  

body(p1(X,Y)) → q_lit, p_lit(p1)  
body(p2(X,Y)) →q_lit, p_lit(p2) 

q_lit → [q1(X,Z)];[q2(X,Z)] 
p_lit(p1) → [p1(Z,Y)]           
p_lit(p2) → [p2(Z,Y)] 

Example 4.6 to Clause Structure Grammars is : 

 body →q_lit(+1),rec_lit(+1) 
 q_lit  →  [q1/2],[q2/2] 
 rec_lit → [P] 



 46 

4.12 SQL queries with extensions  

 In the KDD field two proposed extensions to SQL enable the user to write queries 
whose answer is a set of rules instead of a set of records. These query languages have 
the spirit of declarative bias. We take M-SQL in [51] and DMQL in [12] as an example 
as an extension SQL query. 

• In M-SQL [51].  

 We can answer such a question” find all rules in table T involving the attributes 
disease, age and claimant with confidence of at least 50%” 

 
SELECT * 
FROM Mine(T) R 
WHERE 
        R.Body < {Disease=*, Age=*, ClaimAnt=*} 
        AND { } < R.Body 
        AND R.Consequent IN 
                        {Disease=*, Age=*, ClaimAnt=*} 
    AND R.Confidence > 0.5 

• In DMQL [12].  

   We can maintain a query such as “ find all rules involving the attributes major, 
gpa, status, birth_place, address in relation student for those born in Canada in a 
university database”. 

 Find association rules in the form of 
        major(s:student,X)/\Q(S,Y) -> R(S,Z) 
      related to major,gpa,status,birth_place,address 
 From student 

 Where birth_place = "Canada" 

Result rules will be represented instead of database table 

    major(S,’Science’) /\ gpa(S,’Excellent’)→  status(S,’Graduate’)  (60 %) 

We can conclude to the following, the LFDM is a part in DM that is concerned with 
the following points: 

• Study and optimize database access patterns of ILP algorithms [52].  
• Use of ILP algorithms for feature extraction as preprocessing [52].  
• Use of ILP algorithms to build more complex hypothesis from patterns 
derived by other approaches [52].  
• Extend query languages to allow vagueness adapting declarative bias 
languages.  

In DMQL [12] and M-SQL [51] we use the following.  
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• Explore forms of declarative bias Meta-patterns [36]. 

• Improve number handling capabilities. 

  Finally, LFDM is feasible and some fielded applications exist. LFDM is worthwhile 
since it is necessary (or at least convenient) for problems with multiple relations or 
complex knowledge. LFDM offers many research opportunities.  
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Chapter 5 
Mining the Discovered Association Rules 

 
 

5.1 General foundation of association rules  
  

  Association rules identify collections of data attributes that are statistically related in i-
extended database. An association rule is of the form X ⇒  Y where X and Y are 
disjoint conjunctions of attribute-value pairs. The confidence of the rule is the 
conditional probability of Y given X, Pr(Y|X), and the support of the rule is the prior 
probability of X and Y, Pr(X and Y) [74]. Here probability is taken to be the observed 
frequency in the data set. The traditional association rule mining problem can be 
described as follows. Given a database of transactions, a minimal confidence threshold 
and a minimal support threshold, find all association rules whose confidence and 
support are above the corresponding thresholds. In our research, we have extended this 
traditional framework to better fit into this application domain. 

5.2 Mining the association rules  
 

  Association rule mining has been most widely studied of all data mining functions. 
Association rule mining though easy to use, but in its current form lacks for exploration. 
Minimal interaction with the user during the mining process, slow response, 
voluminous output etc. prevents end-user to exploit full potential of association rule 
mining [56]. One of the reasons behind maintaining any database is to enable the user to 
find interesting patterns and trends in the data. For example, in a supermarket, the user 
can figure out which items are being sold most frequently. Nevertheless, this is not the 
only type of `trend’, which one can possibly think of. The goal of database mining is to 
automate this process of finding interesting patterns and trends. Once this information is 
available, we can perhaps get rid of the original database. The output of the DM process 
should be a "summary" of the database. This goal is difficult to achieve due to the 
vagueness associated with the term `interesting'. The solution is to define various types 
of trends and to look for only those trends in the database [57]. One such type 
constitutes the association rule.  

  In the some Sections, we shall assume the supermarket example, where each record or 
tuple consists of the items of a single purchase [58]. However, the concepts are 
applicable in a large number of situations.  

  In the present context, an association rule tells us about the association between two or 
more items. For example: “In 80% of the cases when people buy bread, they also buy 
milk”. This tells us of the association between bread and milk. We represent it as 
following. 

Bread ⇒  milk /80%  
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 This should be read as "Bread means or implies milk, 80% of the time." Here 80% is the 
"confidence factor" of the rule.  

Association rules can be between more than 2 items.  

Example 5.1 

Bread, milk ⇒  jam / 60%  

Bread  ⇒  milk, jam /40%  

      Given any rule, we can easily find its confidence. For example, for the rule  

Bread, milk ⇒  jam  

 We count the number say n1, of records that contain bread and milk. Of these, how 
many contain jam as well? Let this be n2. Then required confidence is n2/n1.  

  This means that the user has to guess which rule is interesting and ask for its 
confidence. However, our goal was to ‘automatically’ find all interesting rules. This is 
going to be difficult because the database is bound to be very large [59]. We might have 
to go through the entire database many times to find all interesting rules. 

According to this description, we will motivate mining association rules as the rules that 
are concerned in finding frequent patterns, associations, correlations, or causal 
structures among sets of items or objects in transaction databases, relational databases, 
and other information repositories [60]. Our concern is to find frequent association rules 
among set of items in relational database. On the other side, there are existing 
applications for mining association rules. Theses rules could be one of the following 
Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering 
and classification [69,70,74].  

 Rules formalization will be as follow. 

        Rule form: “Body → Head [support, confidence]” 
 
 Example 5.2 

buys(x, “bread”) →  buys(x, “milk”) [0.6%, 65%] 
major(x, “CS”)  ∧  takes(x, “DB”) → grade(x, “A”) [1%, 75%] 

 
 The basic concepts of mining the association rules will be the following. 

 
 A transaction is a set of items:  T={ia,ib,….,it} ,    IT ⊂ , where I is the set of all 
possible items {ia,ib,….,in} and D, the task relevant data,  is a set of transactions [60]. 
The association rule is of the form QP → , where φ=⊂⊂ QandPIQIP I,, .  
 
Some examples for some existing applications for mining association rules. 

    
Basket Data: Tea ∧  Milk ⇒  Sugar [0.3, 0.9] 
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 In this association rule the Tea and Milk was implied by Sugar with 0.3 supports and 
0.9 confidences. It says” Over 0.3 of the customers who purchase tea and milk at least 
0.9 of them purchase sugar”.       
 
Relational Data:  X.Diagnosis = “heart disease” ∧  X.Sex =”male” ⇒  X.Age > 50 
[0.4, 0.7]. 
 
  Suppose we have a relational database of Patinas with these attributes (Age, Sex, 
Diagnosis). This rule say’s “Over 0.4 of the patinas are men who had heart disease   
and at least 0.8 of them are over the age of 50”.   
         
 
Object-Oriented Data: S.Hobbies = “sport”∧  “art”  ⇒  S.Aeg(30)= Young [0.5 , 
0.8] 
       
 If we are working with Object-Oriented data  and we had a database with fields such 
as hobbies and age then we may stress a rule that say’s “ 0.5 of people who have 
hobbies like sport  and  art at least 0.8 of them are young in the age of 30”.        

  
5.3 Support itemset  

The common-sense approach to solving this problem is following. 

  Let I = { i1, i2, ..., in } be a set of items. We will referre to it as itemset. An itemset 
containing k items are called k-itemset, and the itemset could also be seen as a 
conjunction of items (or a predicate) [9]. The number of times, this itemset appears in 
the database is called its "support". Note that we can speak about support of an 
itemset and confidence of a rule. The other combinations, support of a rule and 
confidence of an itemset are not defined.  

 Now, if we know the support of ‘I’ and all its subsets, we can calculate the 
confidence of all rules which involve these items. For example, the confidence of the 
rule   i1, i2, i3 ⇒  i4, i5, which   support of {i1, i2, i3, i4, i5 },  will only  support of { i1, i2, 
i3 }. 

 So, the easiest approach would be to let `I' contain all items in the supermarket. Then 
setup a counter for every subset of `I' to count all its occurrences in the database [61]. 
At the end of one pass of the database, we would have all those counts and we can 
find the confidence of all rules. Then select the most "interesting" rules based on their 
confidence factors.  

  The problem with this approach is that, normally `I' will contain at least about 100 
items. This means that it can have 2100 subsets. We will need to maintain that many 
counters. If each counter is a single byte, then about 1020 GB will be required. Clearly 
this can't be done.  

  Referring to P, Q we can say that. If QP →  holds in D with support s and QP →  
has a confidence c in the transaction set D. The support or the confidence of P, Q will 
have the following probabilities. 
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)(Pr)( QPobabilityQPSupport ∪=→  

)/(Pr)( PQobabilityQPConfidence =→  
 

  The support of nPPPP ∧∧∧= ...21 in D help us to know the  )/( QPσ  
which are the percentage of the transaction T in D satisfying in P (number of T by 
cardinality of D) [62].   
 
   The confidence of the rule QP →  where )/( DQP →ϕ  ratio 

)/()/)(( DPbyDQP σσ ∧ , and the thresholds will consider the minimum support 
'σ  and the minimum confidence 'ϕ [63]. 

 
 5.4 Minimum support with confidence 

 
 To make the problem tractable, we introduce the concept of minimum support. The 
user   has to specify this parameter - let us call it minsupport. Then any rule  

i1, i2, ..., in ⇒  j1, j2, ... , jn  

 Needs to be considered, only if the set of all items in this rule which is { i1, i2, ... , in, j1, 
j2, ... , jn } has support greater than minsupport.  

The idea is that in the rule  

Bread, milk ⇒  jam  

  If the number of people buying bread, milk and jam together is very small, then this 
rule is hardly worth consideration (even if it has high confidence).  

 Our problem now becomes - Find all rules that have a given minimum confidence and 
involves itemsets whose support is more than minsupport. Clearly, once we know the 
supports of all these itemsets, we can easily determine the rules and their confidences. 
Hence, we need to concentrate on the problem of finding all itemsets, which have 
minimum support [64]. We call such itemsets as frequent itemsets.  

  In fact, one of the strong rules could be   the frequent itemset which represent in the 
frequent (or large) predicate P in a set D that support of P large minimum support. 
Other rule %)( cQP →     is strong where )( QP ∧  is frequent (or large) and c is 
larger than minimum confidence.    

 
5.5 Properties of the frequent itemsets 

The methods used to find frequent itemsets are based on, the following properties. 

1. Every subset of a frequent itemset is also frequent. Algorithms make use of this 
property in the following way: we need not find the count of an itemset, if all its 
subsets are not frequent [65]. So, we can first find the counts of some short 
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itemsets in one pass of the database. Then consider longer and longer itemsets in 
subsequent passes. When we consider a long itemset, we can make sure that all its 
subsets are frequent. This can be done because we already have the counts of all 
those subsets in previous passes.  

2. Let us divide the tuples of the database into partitions, not necessarily of equal 
size. Then an itemset can be frequent only if it is frequent in atleast one partition. 
This property enables us to apply divide and conquer type algorithms. We can 
divide the database into partitions and find the frequent itemsets in each partition 
[66]. An itemset can be frequent only if it is frequent in atleast one of these 
partitions. To see that this is true, consider k partitions of sizes n1, n2,..., nk.Let 
minimum support be s. 

3. Consider an itemset which does not have minimum support in any partition. Then 
its count in each partition must be less than sn1, sn2,..., snk respectively. 
Therefore its total count must be less than the sum of all these counts, which is s( 
n1 + n2 +...+ nk ). This is equal to s*(size of database).Hence, the itemset is not 
frequent in the entire database [67].  

5.6 Different kinds of association rules  

We will point out some of the known association rules and it is as follow [123]. 

• Boolean vs. quantitative associations:  Based on the types of values handled and 
the association on discrete vs. continuous data. 

   Ex. ),()7550,()4530,( SUVcarXBuysKKXIncomeXAge →−∧−  

• Single dimension vs. multiple dimensional associations: Based on the dimensions 
in data involved [68]. One predicate then single dimension and more predicates then 
multi-dimensions. 

  
Ex. )1,,()2,,( milkXBuysbreadXBuys →

),()7550,()4530,( SUVcarXBuysKKXIncomeXAge →−∧−  

•    Single occurrence vs. multiple occurrences: In this type one item may occur 
more than once in the transaction and not only the presence of the item is important 
but its frequency [69]. 

    Ex. )1,,()2,,( milkXBuysbreadXBuys →  

•   Association vs. correlation analysis: Association does not necessarily imply 
correlation. 

     Ex.:  
)()(
)(

BPAP
BAP ∧   it could be equal to 1 or it is greater than 1 or less than 1.  
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5.7 How to mine the association rules? 

   To answer this question we should consider two main ides that are the input and 
finding rules. 

• The input will be a database of a transactions and each transaction is a list of items 
(Ex. Purchased by a customer in a visit). 

•  Finding all rules that associate the pressure of one set of the items. 

Example 5.3 98% of people who purchase tires and auto accessories also get automotive 
services done. 

There are no restrictions on the number of items in the head or body of rule. 

5.8 Rule measures for support and confidence 

  To measure the support and confidence we will consider the following example. 

 

      Figure 5.1  Support and confidence example 

  If our interest is to find all the rules ZYX →∧  with minimum confidence and 
support. Support s, probability that a transaction contains {X,Y,Z}and  confidence c, 
conditional probability that a transaction having {X,Y} also contains Z. 

 

 

      

 
       

             Table 5.1 Support and confidence example 
 
  In table 5.1 we will give the minimum support 50%, and the minimum confidence also 
50% then we will have. 

 
%).100%,50(%),6.66%,50( ACCA →→  

  
  

Transcation ID Items bought  
2000 A,B,C 
1000 A,C 
4000 A,D 
5000 B,E,F 

Customer buys bread 
X 

Customer buys both 
 Z 

Customer buys milk 
Y  
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 After defining the support and confidence percentage mining the association rules will 
be as follows.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.2 Mining the support and confidence percentage   
 
 
 

Referring to the previous figure and from rule CA →  we can define that. 
 

Support =support ({A, C}) =50%. 
Confidence= support ({A, C})/support ({A}) =66.6%. 

 
  The Apriori principle algorithm defined the frequent itemset as 'any subset of a 
frequent itemset must be frequent' [42].   

 
• Apriori algorithm : The Apriori algorithm is as follow. 
     

Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 
 
L1 = {frequent items}; 
for (k = 1; Lk !=∅; k++) do begin 
       Ck+1 = candidates generated from Lk; 
          for each transaction t in database do 
                                       increment the count of all candidates in  
   Ck+1  that are contained in t 
                   Lk+1  = candidates in Ck+1 with min_support 
             end 
 return ∪k Lk; 

Transaction ID Items bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%

{A,C} 50%

Min. support 50% 
Min. confidence 50% 
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• Apriori algorithm example  

 

    
 
               Figure 5.3 Apriori algorithm example 

 
Note that  the sets {1,2,3},{1,2,5} and {1,3,5} are  not in C. 

 
5.9 Mining frequent itemsets 

 
  Mining frequent itemsets is the key step of finding supported items and generating the 
association rules. Mining frequent itemsets was defined from two main aspects. 

 
• Find the frequent itemsets: the sets of items that have minimum support: A subset of 
a frequent itemset must also be a frequent itemset; i.e., if {AB} is a frequent itemset, 
both {A} and {B} should be a frequent itemset; iteratively find frequent itemsets with 
cardinality from 1 to k (k-itemset). 
 
• Using the frequent itemsets to generate association rules, to generates the 
association rules we are going to use the following properties: Only strong association 
rules are generated; frequent itemset are satisfying minimum support threshold; strong 
AR satisfy minimum confidence threshold; Confidence =→ )( BA  

.
)(

)()/((Pr
ASupport

BASupportABob ∪
=  

 
To apply these properties we will consider this algorithm. 

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D 

C1 
L1 

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2 

C2 C2 
Scan D 

C3 L3 itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2
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  For  each frequent itemset, f, generate  all non-empty subsets of  f.   
  For every non-empty subset s of f 
        do 
         Output  rule )( sfs −→ if support (f) / support(s) ≥  min_confidence  
  end.   
 

 
5.10 From association mining to correlation analysis 

 
To reach the correlation analysis from the association rule we should consider the 
following. 

 
5.10.1  Interestingness measurements 

 
The interesting measure we will focus on is the object and subject measure  

 
 Objective measures: With two popular measurements ∂  support, and 

confidence. 
 

 Subjective measures was introduced by (Silberschatz & Tuzhilin, KDD 95) 
in [70]: A rule (pattern) is interesting if ∂  it is unexpected (surprising to the 
user), and/or actionable (the user can do something with it). 

 
5.11 Criticism to support and confidence 

 
  For a deep understanding to the criticism to support and confidence we consider two 
examples produced by (Aggarwal & Yu, PODS98) in [71]. 

 
Example 5.4 Among 5000 students there are 3000 play basketball, 3750 eat cereal and 
2000 both play basket ball and eat cereal. 

 
1.Play basketball  ⇒ eat cereal [40%, 66.7%] is misleading because the overall 
percentage of students eating cereal is 75% which is higher than 66.7%. 
2.Play basketball  ⇒ not eat cereal [20%, 33.3%] is far more accurate, although 
with lower support and confidence. 

 
 
 
 

 
 
 
  

                      Table 5.2 Criticism to support and confidence 
 

Example 5.5 In table 5.3 X and Y positively correlated, X and Z, negatively related, and 
for support and confidence of     X⇒Z dominates. 

 

basketballnot basketba sum(row)
cereal 2000 1750 3750
not cereal 1000 250 1250
sum(col.) 3000 2000 5000
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  Table 5.3 X, Y, Z positively or negatively correlated  

 
  We need a measure of dependent or correlated events  

 
 

 
 
 
 

       Table 5.4 X, Y, Z support and confidence  
    
        

5.12 Other interestingness measures for  interest 
 

  The P(B|A)/P (B) are also called the lift of rule A => B. Interest (correlation, lift) can 
be defined by the following. 

 
• Taking both P(A) and P(B) in consideration. 
• P(A^B)=P(B)*P(A), if A and B are independent events. 
• A and B negatively correlated, if the value is less than 1, otherwise A and B positively 

correlated. 
 

 
 
 
 
 
 
 
 

Table 5.5 Interest (correlation, lift) 
 

5.13 Rule constraints in association mining 
 

• There are two kinds of rule constraints such as following.  
 
1- Rule form constraints: meta-rule guided mining.   
   
    Ex.:  P(x, y) ∧Q(x, w) →  takes(x, “database systems”). 
2-  Rule (content) constraint: constraint-based query optimization (Ng, et al., 

SIGMOD’98) [72]. 

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

)()(
)(

, BPAP
BAPcorr BA

∪
=

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Itemset Support Interest
X,Y 25% 2
X,Z 37.50% 0.9
Y,Z 12.50% 0.57

Rule Support Confidence
X=>Y 25% 50%
X=>Z 37.50% 75%
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     Ex.: Sum (LHS) < 100 ∧  Min (LHS) > 20 ∧  Count (LHS) > 3 ∧ Sum (RHS) > 

1000. 
 
 

•   There are 1-variable vs. 2-variable constraints which was presented by  
(Lakshmanan, et al. SIGMOD’99) in  [73] and it is as following:  

 
1- Var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.  
 
2- Var: A constraint confining both sides (L and R). 
 
 Ex.: Sum (LHS) < Min (RHS) ∧Max (RHS) < 5* Sum (LHS). 

 
 

5.14 Constrain-Based association query 
 

  Constraint data by using SQL-like queries can be defined by given some existing 
algorithms below.  

 
• Given CAQ = { (S1, S2) | C }, the algorithm should be: 

- Sound: It only finds frequent sets that satisfy the given constraints C. 
- Complete: All frequent sets satisfy the given constraints C are found. 
- Ex. Find product pairs sold together in Debrecen in Dec.'2001'. 

 
 

• A naïve solution: 
- Apply Apriori for finding all frequent sets, and then to test them for constraint 

satisfaction one by one. 
 

• Other approach: 
- Comprehensive analysis of the properties of constraints and try to push them as 

deeply as possible inside the frequent set computation. 
 
   Finally we can say that association rule mining is probably the most significant 
contribution from the database community in KDD. Many interesting issues have been 
explored to association analysis in other types of data such as spatial data, multimedia 
data, time series data, etc.  
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Chapter 6 
 

Data Mining Query Languages (DMQL) 
 

 
6.1  Introduction  

 
  With the explosive growth of information stored in databases, it has become 
increasingly necessary for users to utilize automated tools in order to find, extract, filter, 
and evaluate the desired information and resources [4]. In addition, with the primary 
tool for electronic commerce, it is imperative for organizations and companies, who 
have invested millions of records in large databases on remote (client/server) side 
databases technologies, to track and analyze user access patterns. 
 
 
   These factors give rise to the necessity of creating server-side and client-side 
intelligent systems that can effectively discover the knowledge and mine it in both 
across the Internet and in particular query languages, these query languages are called 
Data mining or KDD query languages [5]. The question that will appear is that what 
kind of databases Data mining query could interact. 

 
 

6.2 DM is a part of KDD process 
 

  For understanding the data mining query languages descriptions, we should point out 
the difference between DM and KDD. As it has been said “data mining and knowledge 
discovery in databases, refers to the nontrivial extraction of implicit, previously 
unknown and potentially useful information from data in databases” [5]. While DM and 
KDD are frequently treated as synonyms, DM actually is a part of the knowledge 
discovery process. In figure 1.1 DM was shown as a step in an iterative knowledge 
discovery process. 
 
 
  The knowledge discovery in databases process comprises of a few steps leading from 
raw data collections to some form of new knowledge. The iterative process consists of 
the following steps [6]: 

 
• Data Cleaning: also known as data cleansing, it is a phase in which noise data and 

irrelevant data are removed from the collection. 
 
• Data Integration: at this stage, multiple data sources, often heterogeneous, may be 

combined in a common source.  
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• Data Selection:  at this step, the data relevant to the analysis is decided on and 
retrieved from the data collection.  

 
• Data Transformation: also known as data consolidation, it is a phase in which the 

selected data is transformed into forms appropriate for the mining procedure.  
 

• Data Mining:  it is the crucial step in which clever techniques are applied to extract 
patterns potentially useful.  

 
• Pattern Evaluation:  in this step, strictly interesting patterns representing knowledge 

are identified based on given measures.  
 

• Knowledge Representation: is the final phase in which the discovered knowledge is 
visually represented to the user. This essential step uses visualization techniques to 
help users understand and interpret the data mining results.  

 
   

  It is common to combine some of these steps together. For instance, data cleaning and 
data integration can be performed together as a pre-processing phase to generate a data 
warehouse. Data selection and data transformation can also be combined where the 
consolidation of the data is the result of the selection, or, as for the case of data 
warehouses, the selection is done on transformed data. 
 
Data mining query (DMQ) is an iterative process to the KDD process. Once the DMQ 

discovered knowledge and presented the knowledge to the user, the evaluation 
measures can be enhanced, the mining can be further refined, new data can be selected 
or further transformed, or new data sources can be integrated, in order to get different, 
more appropriate results [122]. 

 
 

6.3 Types of discovered data by data mining queries   
 

   In principle, data mining queries are not specific to one type of media or database. 
DMQ should be applicable to any kind of information repository. However, algorithms 
and approaches may differ when applied to different types of data. Indeed, the 
challenges presented by different types of data vary significantly. Data mining query is 
used and studied for databases, including relational databases, object-relational 
databases and object-oriented databases, data warehouses, transactional databases, 
unstructured and semi-structured repositories such as the World Wide Web, advanced 
databases such as spatial databases, multimedia databases, time-series databases and 
textual databases, and even flat files [8]. Here are some examples in more detail: 

  
• Flat files: Flat files are actually the most common data source for data mining 

algorithms, which can be interacting commonly by data mining query especially at 
the research level. Flat files are simple data files in text or binary format with a 
structure known by the data-mining algorithm to be applied and most of data mining 
query supports flat files in the source database. The data in these files can be 
transactions, time-series data, scientific measurements, etc. 



 61 

• Relational Databases: Briefly, a relational database consists of a set of tables 
containing either values of entity attributes, or values of attributes from entity 
relationships. Tables have columns and rows, where columns represent attributes 
and rows represent tuples. A tuple in a relational table corresponds to either an 
object or a     relationship between objects and is identified by a set of attribute 
values representing a unique key. In figure 6.1, we present some relations Customer, 
Items, and Borrow representing business activity in a fictitious video store 
OurVideoStore. These relations are just a subset of what could be a database for the 
video store and is given as an example.  

 

  
 

Figure 6.1 Fragments of some relations from relational databases for 
OurVideoStore (in DBMiner system)   

 
   The most commonly used query language for relational database is SQL, which 
allows retrieval and manipulation of the data stored in the tables, as well as the 
calculation of aggregate functions such as average, sum, min, max and count. For 
instance, an SQL query to select the videos grouped by category would be: 

 
  SELECT count(*) FROM Items WHERE type=video GROUP BY category 

 
   Data mining query algorithms using relational databases can be more versatile than 
data mining algorithms specifically written for flat files, since they can take advantage 
of the structure inherent to relational databases. While data mining query can benefit 
from SQL for data selection, transformation and consolidation, it goes beyond what 
SQL could provide, such as predicting, comparing, detecting deviations, etc [9]. Data 
mining query such as DMQL presented in [12] used relational databases as database 
sources in DBMiner system. 
 
• Data Warehouses: A data warehouse as a storehouse is a repository of data 

collected from multiple data sources (often heterogeneous) and is intended to be 
used as a whole under the same unified schema. A data warehouse gives the option 
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to the DMQ to analyze data from different sources under the same roof. Let us 
suppose that OurVideoStore becomes a franchise in Hungary. Many video stores 
belonging to OurVideoStore Company may have different databases and different 
structures. If the executive of the company wants to access the data from all stores 
for strategic decision-making, future direction, marketing, etc., it would be more 
appropriate to store all the data in one site with a homogeneous structure that allows 
interactive analysis. In other words, data from the different stores would be loaded, 
cleaned, transformed, and integrated together [10]. To facilitate decision-making 
and multi-dimensional views, data warehouses are usually modeled by a multi-
dimensional data structure to make data accessible for data mining query. Figure 
6.2, shows an example of a three dimensional subset of a data cube structure used 
for OurVideoStore data warehouse. 

        
 
Figure 6.2. A multi dimensional data cube structure commonly used in data for 
data wherehousing (in DBMiner system) 

 
   The figure shows summarized rentals grouped by film categories, then a cross table 
of summarized rentals by film categories and time (in quarters). The data cube gives 
the summarized rentals along three dimensions: category, time, and city. A cube 
contains cells that store values of some aggregate measures (in this case rental 
counts), and special cells that store summations along dimensions. Each dimension of 
the data cube contains a hierarchy of values for one attribute. Because of their 
structure, the pre-computed summarized data they contain and the hierarchical 
attribute values of their dimensions, data cubes are well suited for fast interactive 
querying and analysis of data at different conceptual levels, known as On-Line 
Analytical Processing (OLAP). OLAP operations allow DMQ to retrieve data at 
different levels of abstraction, such as drill-down, roll-up, slice, dice, etc. DMQL in 
[12] can also interact multi-dimensional databases in different OLAP stages. Figure 
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6.3, illustrates the drill-down (on the time dimension) and roll-up (on the location 
dimension) operations. 

 
• Transaction Databases: A transaction database is a set of records representing 

transactions, each with a time stamp, an identifier, and a set of items. Associated 
with the transaction files could also be descriptive data for the items. For example, 
in the case of the video store, the rentals table such as shown in figure 6.4, 
represents the transaction database. Each record is a rental contract with a customer 
identifier, a date, and the list of items rented (i.e. video tapes, games, VCR, etc.). 
Since relational databases do not allow nested tables (i.e. a set as attribute value), 
transactions are usually stored in flat files or stored in two normalized transaction 
tables, one for the transactions, and one for the transaction items. One typical data 
mining analysis on such data is the so-called market basket analysis or association 
rules in which associations between items occurring together or in sequence are 
studied. 

 

   
   Figure 6.3. Summarized data from  OurVideoStore before and after drill-down 
and roll-up operations (in DBMiner system)  
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Figure 6.4. Fragment of a transaction   database for the rentals at OurVideoStore (in   
DBMiner system) 

 
• Multimedia Databases: Multimedia databases include video, images, and audio and 

text media. They can be stored in extended object-relational or object-oriented 
databases, or simply on a file system. Multimedia is characterized by its high 
dimensionality, which makes data mining query even more challenging. Data 
mining query from multimedia repositories may require computer vision, computer 
graphics, image interpretation, and natural language processing methodologies 
which can be interacted parallel with DMQ such as DMQL in [12] by using 
MultiMediaMiner system described in [13]. We also may use Visual Query 
Languages VQL to retrieve multimedia databases.   

 
• Spatial Databases: Spatial databases are databases that, in addition to usual data, 

store geographical information like maps, and global or regional positioning. Such 
spatial databases present new challenges to data mining query based on data mining 
algorithms. Geo-mining query language (GMQL) is one of the DMQL’s that is used 
to retrieve data from a spatial database and extract all the new information [7].   

 
 

      Figure 6.5 Visualization of Spatial OLAP ( from a  Geo- mining system)    
 

• Time-Series Databases: Time-series databases contain time related data such as 
stock market data or logged activities. These databases usually have a continuous 



 65 

flow of new data coming in, which sometimes causes the need for a challenging real 
time analysis. DMQ in such databases commonly includes the study of trends and 
correlations between evolutions of different variables, as well as the prediction of 
trends and movements of the variables in time. Figure 6.6, shows some examples of 
time-series data. In this type of databases the data mining queries will deal with 
dynamic databases to discover and present the expected behavior of that databases 
in a given time interval.  

  

 
 
  Figure 6.6 Example of Time-Series Data retrieved by DM Quires  
 
• World Wide Web: The World Wide Web is the most heterogeneous and dynamic 

repository available. A very large number of authors and publishers are 
continuously contributing to its growth and metamorphosis, and a massive number 
of users are accessing its resources daily. Data in the World Wide Web is organized 
in inter-connected documents. These documents can be text, audio, video, raw data, 
and even applications. Conceptually, the World Wide Web is comprised of three 
major components: The content of the Web, which encompasses documents 
available; the structure of the Web, which covers the hyperlinks and the 
relationships between documents; and the usage of the web, describing how and 
then the resources are accessed. A fourth dimension can be added relating the 
dynamic nature or evolution of the documents. Data mining in the World Wide 
Web, or Web mining, tries to address all these issues and is often divided into web 
content mining, web structure mining, and web usage mining. An example to a web-
mining query language could be WEBMINER [12].    
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6.4 The discovered patterns by data mining query  
 

 The kinds of patterns that can be discovered depend upon the data mining tasks 
employed. By and large, there are two types of data mining tasks: descriptive data 
mining tasks that describe the general properties of the existing data, and predictive data 
mining tasks that attempt to do predictions based on inference on available data. 
 
 The data mining functionalities and the variety of knowledge they discover are briefly 
presented in the following list: 

 
• Characterization:  Data characterization is a summarization of general features of 

objects in a target class, and produces what is called characteristic rules. The data 
relevant to a user-specified class are normally retrieved by a database query and run 
through a summarization module to extract the essence of the data at different levels 
of abstractions. For example, one may want to characterize the OurVideoStore 
customers who regularly rent more than 30 movies a year. With concept hierarchies 
on the attributes describing the target class, the attribute-oriented induction method 
can be used, for example, to carry out data summarization. Note that with a data 
cube     containing summarization of data, simple OLAP operations fit the purpose 
of data characterization. 

 
• Discrimination: Data discrimination produces what are called discriminant rules and 

is basically the comparison of the general features of objects between two classes 
referred to as the target class and the contrasting class. For example, one may want 
to compare the general characteristics of the customers who rented more than 30 
movies in the last year with those whose rental account is lower than 5. The 
techniques used for data discrimination are very similar to the techniques used for 
data characterization with the exception that data discrimination results include 
comparative measures. 

 
• Association analysis: Association analysis is the discovery of what are commonly 

called association rules. It studies the frequency of items occurring together in 
transactional databases, and based on a threshold called support, identifies the 
frequent item sets. Another threshold, confidence, which is the conditional 
probability than an item appears in a transaction when another item appears, is used 
to pinpoint association rules. Association analysis is commonly used for market 
basket analysis. For example, it could be useful for the OurVideoStore manager to 
know what movies are often rented together or if there is a relationship between 
renting a certain type of movies and buying popcorn or pop. The discovered 
association rules are of the form: P→Q described in Chapter 5, where P and Q are 
conjunctions of attribute value-pairs, and s (for support) is the probability that P and 
Q appear together in a transaction and c (for confidence) is the conditional 
probability that Q appears in a transaction when P is present. For example, the 
hypothetic association rule: RentType(X, "game") AND Age(X, "13-19")→  
Buys(X,"pop") [s=2% ,c=55%] would indicate that 2% of the transactions 
considered are of customers aged between 13 and 19 who are renting a game and 
buying a pop, and that there is a certainty of 55% that teenage customers who rent a 
game also buy pop. 
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• Classification: Classification analysis is the organization of data in given classes. 
Also known as supervised classification, the classification uses given class labels to 
order the objects in the data collection. Classification approaches normally use a 
training set where all objects are already associated with known class labels. The 
classification algorithm learns from the training set   and builds a model. The model 
is used to classify new objects. For example, after starting a credit policy, the 
OurVideoStore managers could analyze the customers’ behaviors vis-à-vis their 
credit, and label accordingly the customers who received credits with three possible 
labels "safe", "risky" and "very risky". The classification analysis would generate a 
model that could be used to either accept or reject credit requests in the future.  

 
• Prediction: Prediction has attracted considerable attention given the potential 

implications of successful forecasting in a business context. There are two major 
types of predictions: one can either try to predict some unavailable data values or 
pending trends, or predict a class label for some data. The latter is tied to 
classification. Once a classification model is built based on a  training set, the class 
label of an object can be foreseen based on the attribute values of the object and the 
attribute values of the classes. Prediction is however more often referred to the 
forecast of missing numerical values, or increase / decrease trends in time related 
data.  The major idea is to use a large number of past values to consider probable 
future values. 

 
 
• Clustering: Similar to classification, clustering is the organization of data in classes. 

However, unlike classification, in clustering, class labels are unknown and it is up to 
the clustering algorithm to discover acceptable classes. Clustering is also called 
unsupervised classification, because the classification is not dictated by given class 
labels. There are many clustering approaches all based on the principle of 
maximizing the similarity between objects in a same class (intra-class similarity) 
and minimizing the similarity between objects of different classes (inter-class 
similarity). 

 
• Outlier analysis: Outliers are data elements that cannot be grouped in a given class 

or cluster. Also known as exceptions or surprises, they are often very important to 
identify. While outliers can be considered noise and discarded in some applications, 
they can reveal important knowledge in other domains, and thus can be very 
significant and their analysis valuable. 

 
• Evolution and deviation analysis: Evolution and deviation analysis pertain to the 

study of time related data that changes in time. Evolution analysis models 
evolutionary trends in data, which consent to characterizing, comparing, classifying 
or clustering of time related data. Deviation analysis, on the other hand, considers 
differences between measured values and expected values, and attempts to find the 
cause of the deviations from the anticipated values.  

 
6.4.1 Examples of different data mining query languages 

 
  We will consider an university database schema as a universal example for some 
important  DMQL  functions as following:  
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         Student (name, sno, status, major, gpa, birth date, birth place, address) 
         Course (cno, title, department) 
         Grading (sno, cno, instructor, semester, grade)  

 
  DMQL examples are presented below in different data mining languages in each 
function as follows. Notice that the statements like "use database university 
database" is omitted in the example queries.  

 
(Q1) characteristic rules: - By the use of DMQL described in [12]. The query will 
be requested to find the general characteristics of the graduate students in 
computing science in relevance to attributes gpa, birth_place and address, for the 
students born in "Hungary".  
 
(A_Q1): find characteristic rule  

  related to gpa, birth_place, address, count(*)%  
                    from student  

  where status = "graduate" and major = "cs"  
  and birth place = "Hungary" 
  with noise threshold = 0.05  

 
 This DMQ will first retrieve data from the database using a transformed SQL 
query, where the high level constants "Hungary" and "graduate" are transformed 
into low level primitive concepts in the database according to the provided 
(default) concept hierarchy for each attribute. The algorithm for finding 
characteristic rules [12] is then executed with the data generalized to high level for 
manipulation and presentation. The set of generalized data grouped according to 
the high level concept values of the attributes gpa, birth_place and address are 
presented, associated with the corresponding count(*)% (i.e., the count of tuples 
in the corresponding group in proportion to the total number of tuples). The noise 
threshold 0.05 means that a generalized tuple taking less than 5% of the total 
count will not be included in the final result.  

 
(Q2) Discriminant rules: - Generating queries using DBMiner data mining query 
system issued in [14]. The query will try to find the discriminant features to 
compare graduate students versus undergraduate students in computing science in 
relevance to attributes gpa, birth_ place and address, for the students born in 
"Hungary".  

 
(A_Q2) : find discriminant rule  

 for cs_grads with status = "graduate''  
 in contrast to cs_undergrads  
 with status = "undergraduate''  
 related to gpa, birth_place, address, count(*)%  
  from student  
 where major = "cs'' and birth_place = "Hungary"'  

 
 This DMQ will first retrieve data into two classes, "cs_grads'' and 
"cs_undergrads'', using a transformed SQL query which maps the high level 
constants in (A_Q2 ) into low level ones. The algorithm for finding discriminant 
rules [14] is then executed for data mining and result manipulation.  
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 (Q3) Classification rules: DMQL use to classify   students according to their 
gpa's and find their classification rules for those majoring in computing science 
and born in "Hungary", with the attributes birth_place and address in 
consideration.  

 
(A_Q3) : find classification rules for cs_students  

according to gpa  
related to birth_place, address  
from student  
where major = “cs'' and birth_place = “ Hungary''  

 
  This query will first collect the relevant set of data, and then execute some data 
classification algorithm, such as [12] to classify students according to their gpa's 
and present each class and its associated characteristics.  
 
(Q4) Association rules: Querying the DBMiner data mining   query system to find 
strong association relationships for those students majoring in computing science 
and born in "Hungary",in relevance to the attributes gpa, birth_place and address.  
 
(A_Q4): find association rules  

 related to gpa, birth_place, address  
 from student  
 where major = ``cs'' and birth_place = “Hungary” 
 with support threshold = 0.05  
 with confidence threshold = 0.7  

 
  This query will first collect the relevant set of data and then execute an 
association mining algorithm, such as [12] or [14], to find a set of interesting 
association rules. The support and confidence thresholds are specified (otherwise 
using default values) for mining strong rules. 

  
   It is common that users do not have a clear idea of the kind of patterns they can 
discover or need to discover from the data at hand. It is therefore important to have a 
versatile and inclusive data mining query systems that allows the discovery of different 
kinds of knowledge and at different levels of abstraction. This also makes interactivity 
an important attribute of a data mining query systems. 

 
6.5 Usefulness of the discovered patterns  

 
  DMQ allows the discovery of knowledge potentially useful and unknown. Whether the 
knowledge discovered is new, useful or interesting, is very subjective and depends upon 
the application and the user. It is certain that data mining query can generate, or 
discover, a very large number of patterns or rules. In some cases, the number of rules 
can reach the millions. One can even think of a meta-mining phase to mine the 
oversized data mining results. To reduce the number of patterns or rules discovered that 
have a high probability to be non-interesting, one has to put a measurement on the 
patterns. However, this raises the problem of completeness. The user would want to 
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discover all rules or patterns, but only those that are interesting. The measurement of 
how interesting a discovery is, often called interestingness, can be based on quantifiable 
objective elements such as validity of the patterns when tested on new data with some 
degree of certainty, or on some subjective depictions such as understandability of the 
patterns, novelty of the patterns, or usefulness. Discovered patterns can also be found 
interesting if they confirm or validate a hypothesis sought to be confirmed or 
unexpectedly contradict a common belief. This brings the issue of describing what is 
interesting to discover, such as meta-rule guided discovery that describes forms of rules 
before the discovery process, and interestingness refinement languages that 
interactively query the results for interesting patterns after the discovery phase. 
Typically, measurements for interestingness are based on thresholds set by the user. 
These thresholds define the completeness of the patterns discovered. 
 
Identifying and measuring the interestingness of patterns and rules discovered, or to be 

discovered is essential for the evaluation of the mined knowledge and the KDD process 
as a whole. While some concrete measurements exist, assessing the interestingness of 
discovered knowledge's by data mining query is still an important research issue [10]. 

 
 

6.6 Categorization of data mining queries 
 

  There are many DMQL available or being developed. Some are specialized systems 
dedicated to a given data source or are confined to limited data mining functionalities, 
other are more versatile and comprehensive. DMQ can be categorized according to 
various criteria. Among other classification are the following [12]: 

  
• Classification according to the type of data source mined: this classification 

categorizes DMQ according to the type of data handled such as spatial data, 
multimedia data, time-series data, text data, World Wide Web, etc. 

 
• Classification according to the data model drawn on: this classification 

categorizes DMQ based on the data model involved such as relational database, 
object-oriented database, data warehouse, transactional, etc. 

 
• Classification according to the kind of knowledge discovered: this classification 

categorizes DMQ based on the kind of knowledge discovered or data mining 
functionalities, such as characterization, discrimination, association, classification, 
clustering, etc. Some systems tend to be comprehensive systems offering several 
data mining functionalities together. 

 
 
• Classification according to mining techniques used: DMQ employ and provide 

different techniques. This classification categorizes DMQ according to the data 
analysis approach used such as machine learning, neural networks, genetic 
algorithms, statistics, visualization, database-oriented or data warehouse-oriented, 
etc. The classification can also take into account the degree of user interaction 
involved in the data mining process such as query-driven systems, interactive 
exploratory systems, or autonomous systems. A comprehensive system would 
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provide a wide variety of data mining techniques to fit different situations and 
options, and offer different degrees of user interaction. 

 
 

6.7 Issues in data mining query  
 

  DMQ algorithms embody techniques that have sometimes existed for many years, but 
have only lately been applied as reliable and scalable tools that repeatedly outperform 
older classical statistical methods. While DMQ are still in its infancy, it is becoming a 
trend and ubiquitous. Before DMQ system develops into a conventional, mature and 
trusted discipline, many still pending issues have to be addressed. Some of these issues 
are addressed below. Note that these issues are not exclusive and are not ordered in any 
way.  
  
• Security and social issues: Security is an important issue with any data collection 

that is shared and/or is intended to be used for strategic decision-making. In 
addition, when data is collected for customer profiling, user behaviour 
understanding, correlating personal data with other information, etc., large amounts 
of sensitive and private information about individuals or companies is gathered and 
stored. This becomes controversial given the confidential nature of some of this data 
and the potential illegal access to the information. Moreover, DMQ could disclose 
new implicit knowledge about individuals or groups that could be against privacy 
policies, especially if there is potential dissemination of discovered information. 
Another issue that arises from this concern is the appropriate use of data mining. 
Due to the value of data, databases of all sorts of content are regularly sold, and 
because of the competitive advantage that can be attained from implicit knowledge 
discovered, some important information could be withheld, while other information 
could be widely distributed and used without control.  

 
• User interface issues: The knowledge discovered by DMQ is useful as long as it is 

interesting, and above all understandable by the user. Good data visualization eases 
the interpretation of DMQ results, as well as helps users had better understand their 
needs. Many data exploratory analysis tasks are significantly facilitated by the 
ability to see data in an appropriate visual presentation. There are many 
visualization ideas and proposals for effective data graphical presentation. However, 
there is still much research to accomplish in order to obtain good visualization tools 
for large datasets that could be used to display and manipulate mined 
knowledge. The major issues related to user interfaces and visualization is "screen 
real-estate", information rendering, and interaction. Interactivity with the data and 
data mining results is crucial since it provides means for the user to focus and refine 
the mining tasks, as well as to picture the discovered knowledge from different 
angles and at different conceptual levels.   

 
• Mining methodology issues: These issues pertain to the DMQ approaches applied 

and their limitations. Topics such as versatility of the mining approaches, the 
diversity of data available, the dimensionality of the domain, the broad analysis 
needs (when known), the assessment of the knowledge discovered, the exploitation 
of background knowledge and metadata, the control and handling of noise in data, 
etc. are all examples that can dictate mining methodology choices. For instance, it is 
often desirable to have different data mining methods available since different 
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approaches may perform differently depending upon the data at hand. Moreover, 
different approaches may suit and solve user's needs differently.  

 
      Most algorithms assume the data noise-free. This is of course a strong assumption. 

Most datasets contain exceptions, invalid or incomplete information, etc., which 
may complicate, if not obscure, the analysis process and in many cases compromise 
the accuracy of the results. Consequently, data preprocessing (data cleaning and 
transformation) becomes vital. It is often seen as lost time, but data cleaning, as 
time-consuming and frustrating as it may be, is one of the most important phases in 
the knowledge discovery process. Data mining techniques should be able to handle 
noise in data or incomplete information.  

 
      More than the size of data, the size of the search space is even more decisive for 

data mining techniques. The size of the search space is often depending upon the 
number of dimensions in the domain space. The search space usually grows 
exponentially when the number of dimensions increases. This is known as the curse 
of dimensionality. This "curse" affects so badly the performance of some DMQ 
approaches that it is becoming one of the most urgent issues to solve. 

 
• Performance issues: Many artificial intelligence and statistical methods exist for 

data analysis and interpretation. However, these methods were often not designed 
for the very large data sets DM is dealing with today. Terabyte sizes are common. 
This raises the issues of scalability and efficiency of the data mining methods when 
processing considerably large data. Algorithms with exponential and even medium-
order polynomial complexity cannot be of practical use for DMQ. Linear algorithms 
are usually the norm. In same theme, sampling can be used for mining instead of the 
whole dataset. However, concerns such as completeness and choice of samples may 
arise. Other topics in the issue of performance are incremental updating, and parallel 
programming. There is no doubt that parallelism can help solve the size problem if 
the dataset can be subdivided and the results can be merged later. Incremental 
updating is important for merging results from parallel mining, or updating DMQ 
results when new data becomes available without having to re-analyze the complete 
dataset.  

 
• Data source issues: There are many issues related to the data sources, some are 

practical such as the diversity of data types, while others are philosophical like the 
data glut problem. We certainly have an excess of data since we already have more 
data than we can handle and we are still collecting data at an even higher rate. If the 
spread of database management systems has helped increase the gathering of 
information, the advent of DMQ are certainly encouraging more data harvesting. 
The current practice is to collect as much data as possible now and process it, or try 
to process it, later. The concern is whether we are collecting the right data at the 
appropriate amount, whether we know what we want to do with it, and whether we 
distinguish between what data is important and what data is insignificant. Regarding 
the practical issues related to data sources, there is the subject of heterogeneous 
databases and the focus on diverse complex data types. We are storing different 
types of data in a variety of repositories. It is difficult to expect a DMQ to 
effectively and efficiently achieve good mining results on all kinds of data and 
sources. Different kinds of data and sources may require distinct algorithms and 
methodologies. Currently, there is a focus on relational databases and data 
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warehouses, but other approaches need to be pioneered for other specific complex 
data types. A versatile DMQ, for all sorts of data, may not be realistic. Moreover, 
the proliferation of heterogeneous data sources, at structural and semantic levels, 
poses important challenges not only to the database community but also to the data 
mining and KDD communities. 

 
 
     We cannot specify a concrete DMQL for all types of databases, which support all 

common DM techniques. Although there are many approaches to DMQ, but only 
six common and essential elements qualify each as a knowledge discovery 
technique to each DMQ. The following are basic features that all DMQ share 
(adapted from [6] and [7]): 

 
 All approaches deal with large amounts of data. 
 Efficiency is required due to volume of data.  
 Accuracy is an essential element. 
 All require the use of a high-level language. 
 All approaches use some form of automated learning. 
 All produce some interesting results.  

 
   Large amounts of data are required to provide sufficient information to derive 
additional knowledge. Since large amounts of data are required, processing 
efficiency is essential. Accuracy is required to assure that discovered knowledge is 
valid. The results should be   presented in a manner that is understandable by 
humans. One of the major premises of DMQ is that the knowledge is discovered 
using intelligent learning techniques that sift through the data in an automated 
process. For this technique to be considered useful in terms of knowledge discovery 
the discovered knowledge must be interesting; that is, it must have potential value to 
the user. DMQ provides the capability to discover new and meaningful information 
by using existing data. KDD quickly exceeds the human capacity to analyze large 
data sets. The amount of data that requires processing and analysis in a large 
database exceeds human capabilities, and the difficulty of accurately transforming 
raw data into knowledge surpasses the limits of traditional databases. Therefore, the 
full utilization of stored data depends on the use of knowledge discovery techniques. 
The usefulness of future applications of DMQ is far-reaching. DMQ may be used as 
a means of information retrieval, in the same manner that intelligent agents perform 
information retrieval on the web. New patterns or trends in data may be discovered 
using these techniques. DMQ may also be used as a basis for the intelligent 
interfaces of tomorrow, by adding a knowledge discovery component to a database 
engine or by integrating DMQ with spreadsheets and visualizations. 

 
6.8 Data mining query environments   

 
   DMQ environment with good performance discovered tasks such as classification; 
summarization; dependency analysis; visualization; prediction; class comparison has 
the following distinct features [8]:  
 

• It incorporates several interesting DMQ techniques, including attribute-oriented 
induction; progressive deepening for mining multiple-level rules and meta-rule 
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guided knowledge mining, etc., and implements a wide spectrum of data mining 
functions including generalization, characterization, association, classification, and 
prediction. 

 

• It performs interactive DMQ at multiple concept levels on any user-specified set 
of data in a database using an SQL-like DMQL, or a graphical user interface. 
Users may interactively set and adjust various thresholds, control a DM process, 
perform roll-up or drill-down at multiple concept levels, and generate different 
forms of outputs, including generalized relations, generalized feature tables, 
multiple forms of generalized rules, visual presentation of rules, charts, curves, 
etc. 

 

• Efficient implementation techniques have been explored using different data 
structures, including generalized relations and multiple-dimensional data cubes, 
and being integrated with relational database techniques. The data mining process 
may utilize user- or expert-defined set-grouping or schema-level concept 
hierarchies which can be specified flexibly, adjusted dynamically based on data 
distribution, and generated automatically for numerical attributes. 

 

• Both UNIX and PC (Windows/NT) versions of the system adopt client/server 
architecture. The latter communicates with various commercial database systems 
for DMQ using the ODBC technology. 
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Chapter 7 
 

Knowledge Discovery Query Language 
(KDQL) 

 

7.1 Abstract 

   KDD and DM represent very important tools for processing and analyzing data in 
large databases such as relational databases. The combination of powerful DM 
techniques and sophisticated resources of different database systems brings results that 
are even more considerable. These emerging tools and techniques require a powerful 
DMQL serving as an interface between the applications and the DM tools [12]. These 
requirements motivate us to design a KDD query language for mining association rules 
in the databases (i.e. relational database). This makes it possible to visualize the 
discovered results in different charts (i.e. 2D and 3D). We give an overview of this 
language in this Chapter, and its syntax and semantics will be present in Chapter 9 and 
some examples of practical use will be shown as well. We will call this query language 
Knowledge Discovery Query Language (KDQL) such a query was not implemented 
namely yet.  

7.2  Introduction 

  KDD is a general process of useful knowledge discovery from databases. This process 
involves data pre-processing, DM itself and then the interpretation of minded   patterns. 
DM is only one part of KDD process. It analyses preprocessed data and produces 
information patterns which are then interpreted, and convenient ones are considered as 
knowledge. Development of modern database management systems (DBMS) has 
advanced considerably. It is naturally then to investigate knowledge discovered in RDB 
[15] offering richer structure and semantics, which can be employed in the DM process. 
 
  In the present time there is many practical applications employing or based on the 
KDD technology. These applications require introducing certain standards. This   
standard is called DMQL it was described in details in Chapter 7. DMQL would offer 
standard interface between application and the KDD system. Design of such language 
for DM to interact databases such as relational databases is described in [12]. The 
language will use data visualization to represent the result in a simple form for the user.  
    
   Joining KDD technology and data visualization with conjunction of the request of 
creating query language for DM leads us to develop a language tool that can handle two 
approaches in one session. Figure 7.1 shows the relation between database and 
visualization. Designing a query language that could deal with both approaches is a 
good challenge these days. This language will be called Knowledge Discovery Query 



 77 

Language (KDQL); such a language has not been designed namely yet. KDQL would 
enable an application to get knowledge from databases, in certain standard simple way 
similar to getting stored data by the help of DBMS.  KDQL is the result of a long 
searching and investigations in this area. It is described in this dissertation exactly in 
Chapters 7, 8, 9. 

  

 
 

Figure 7.1 Database and visualization 
  

7.3 Background of the KDQL   
 
 To consider the KDQL we should ask ourselves some questions such like: what is the 
difference between DM and a normal query environment? What can DM tool do that 
SQL cannot? 
 
  Firstly, it is important to realize that query languages and DMQL are complementary. 
A data mining language (DML) does not replace a query language, but it does give the 
use many additional possibilities. Suppose that we have a large file containing millions 
of records that describe your customers’ purchases over the last ten years. This is a 
wealth of potentially useful knowledge in such a file, most of which can be found by 
firing normal queries at the database, such as following.  
 

‘Who bought which product on what date?’   
‘What is the average turnover in a certain sales region in July?’ 

   
  There is, however, knowledge hidden in your database that is much harder to find using 
SQL. Examples would be the answer to questions such as "What is an optimal 
segmentation   of my clients?" (That is, "how do I find the most important different 
customer profiles?"), or "what are the most important trends in customer behavior?" Of 
course, these questions could be answered using SQL. You could try to guess for 
yourself some defining criteria for customer profiles and search  the database to see 

Visualization Tool 

Database Management System 
(DBMS) 

 
Request Data Data to Visualize 

 



 78 

whether they work or not. In a process of trial and error, one could gradually develop 
intuitions about what important distinguishing attributes are proceeding in such away, it 
could take days or months to find an optimal segmentation for a large database [75]. 
while a machine learning algorithm like a neural network or genetic algorithm could 
find the answer automatically in a much shorter time, sometimes even in minutes or a 
couple of hours. Once the data mining query DMQ has found segmentation, we can use 
the classical query environment again to query and analyze the profiles found. 
 
  One could say that if we know exactly what we are looking for, use SQL; but if we 
know only vaguely, what we are looking for, then we may turn to DMQ. Generally, 
there are far more occasions when the initial approach is vague than times when you 
know precisely what you are looking for. It is that has motivated the recent surge of 
interest in DM. 
 
   It is clear that KDD is not an activity that stands on its own: good foundation in terms 
of a data warehouse is necessary condition of its effective implementation. Noisy and 
incomplete data, and legal and privacy issues, constitute important problems [76]. One 
must pay attention to the process of data cleaning – remove duplication records, correct 
typographical errors in strings, add missing information, and so on. In KDD in an 
organization is to start a process of permanent refinement and detailing of data. The real 
aim should be ultimately to create a self-learning query.   

 
7.4  Analyzing the pre discovered  data by using traditional query 
tools  

 
  The first step in KDQL should always be a rough analysis of the data set using 
traditional query tools. Just by applying simple SQL request to a data set, we can obtain 
a wealth of information.  However, before we can apply more advanced pattern analysis 
algorithms, we need to know some basic aspects and structures of the data set. With 
SQL we can uncover only shallow data (known data), which information that is easily 
accessible from the data set. Although yet we cannot find hidden data, for the most part 
80% of the interesting information can be abstracted from a database using SQL.   
 

                                    Average 
Age
Income
Credit
Car owner 
House owner

46.9 
20.8 
34.9 
0.59 
0.59 

Car magazine
House magazine
Sports magazine 
Music magazine
Comic magazine

0.329 
0.702 
0.447 
0.146 
0.081 

 
              Table 7.1 Average  
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 The remaining 20% of hidden information requires more advanced techniques, and for 
large marketing driven organizations, this 20% can prove of vital importance. A good 
way to start is to extract some simple, statistical information from the data set, and 
averages are important example in this respect [76]. 
 
  In our data set in table 7.1 we see that the average age is 46 years old, the average 
income 20, the average credit 34, and so on. It is interesting to look at the averages of 
the input fields: we see that 329 clients out of every 1000 subscribe to a car magazine, 
whereas only 81 out of 1000 subscribe to comic. These numbers are very important, 
because they give us a norm by which top judge the performance of pattern recognition 
and learning algorithms. Suppose that we want to predict how many clients will buy a 
car magazine. Now an algorithm that always predicts 'no car magazine' would be correct 
in 671 out of 1000 cases, which is about 70%. Any learning algorithm that clams to give 
some insight into the data set and do some real predicating has to improve on this. A 
trivial result that is obtained by an extremely simple method is called naïve prediction, 
and an algorithm that claims to learn anything must always do better than the naïve 
prediction (table 7.2) [75]. Here we can see also that it is more difficult to make 
predictions for the small group in our sample set. Since only 81 out of 1000 clients 
subscribe to comics, a learning algorithm that claims to predict which clients will 
subscribe to comics has to give prediction accuracy better than the 92% achieved by 
using the naïve predication. This will be difficult in most cases. Table 3 illustrates the 
averages per magazine. 
 
 

Magazine
A priori 
probability 
that client buys 
magazine 

Naïve 
prediction  
Accuracy 

Car
House
Sports
Music
Comic

32.9% 
70.2% 
44.7% 
14.6% 
8.1% 

67.1% 
70.2% 
55.3% 
85.4% 
91.9% 

 
Table 7.2  Naïve predictions 
 

 
 

  It is interesting to see how these averages change when we focus on different 
magazines. For example, we see that the average age of a reader of a car magazine is 
29, which is considerably lower than the average age of the clients – about 47. As was 
too expected, the average age of a comic's reader is the lowest. Other interesting piece 
of information is the number of multiple buyers in sample, and this is illustrated in 
Figure 7.2. 
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Average 

 
  Magazine 

Age Income Credit Car House 
Car 
 

29.3 
 

17.1 27.3 0.48 0.53 

House 
 

48.1 
 

21.1 
 

35.50 
 

0.58 
 

0.76 

Sports 
 

42.2 24.3 31.4 0.70 0.60 
 

Music 
 

24.6 12.8 24.6 0.30 0.45 
 

Comic 
 

21.4 
 

25.5 
 

26.3 0.62 0.60 

 
  Table 7.3  Result of applying a naïve prediction       
  
   Here we see that almost 40% of clients subscribe to only one magazine. However, it is 
interesting to note that 31% subscribe to two magazines, which indicates that there 
might be interesting patterns to discover between groups of multiple and single buyers 
and then to quantifying what is interesting and what is not?. Quite alarming, however, is 
the fact that almost 9% of clients in the sample subscribe to no magazine at all, which 
can only be the result of pollution in the database, and it is essential to investigate how 
this pollution has occurred and what can be done to prevent it in the future. This 
illustrates the developmental nature of DM: an ongoing process by which knowledge 
and understanding of data improves and depends all the time. 
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Figure 7.2 Overview of multiple subscriptions   
 

 We have seen some interesting patterns in the age attributes and we would like to 
concentrate on this to extract more information. In order to demonstrate this process, we 
will investigate the general age structure of our sample. We see that the ages are apart 
from the very young and very old people, almost equally spread over the sample (Figure 
7.3). 
 
  Interesting differences occur when we analyze certain sub-groups. Readers of the car 
magazine cluster around the age class of 30 (Figure 7.3) while readers of the sports 
magazine are spread much more evenly over the population (Figure 7.5). SQL can yield 
detailed information on the structure of a data set and this information can be very 
useful for marketing or other purposes. We have to go through this phase before we can 
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turn our attention to more advanced learning algorithms. Remember, however, that we 
can never judge the performance of an advanced learning algorithm properly if we have 
no information concerning the naïve probabilities of what it is supposed to predict. 

              
 

0
20
40
60
80

100
120
140
160
180
200

10 20 30 40 50 60 70 80 90
Age  of  purchasers (grouped in decades)

N
um

be
r o

f p
ur

ch
as

er
s 

in
 a

ge
 b

ra
ck

et

 
Figure 7.3  Age distribution of readers 
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                            Figure 7.4 Age distribution of readers of the car magazine  
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   Figure 7.5 Age of sports magazine purchasers 
 

 
7.5  Visualization techniques for DMQ 

 
Visualization techniques are a very useful method of discovering patterns in data sets, 
and may be used at the beginning of a DM process to get rough felling of the quality of 
the data set and where patterns are to be found. Interesting possibilities are offered by 
the two and three dimensional tool kits, such as charts, which enable the user to explore 
charts such as pies, points and bar structures interactively. Such techniques are 
developing rapidly: advanced graphical techniques in virtual reality enable people to 
wander through artificial data spaces, while historic development of data seta can be 
displayed as kind of animated movie. For most users, however, these advanced features 
are not accessible, and they have to rely on simple, graphical display techniques that are 
contained in the query tool or DM tools they are using. These simple methods can 
provides us with a wealth of information. An elementary technique that can be of great 
value is so-called scatter diagram; in this technique, information on two attributes is 
displayed in Cartesian space. Scatter diagrams can be used to identify interesting sub-
set of the data sets so that we can focus on the rest of the DM process it could be 
possible as a future work. There is a whole field of research dedicated to the search for 
interesting projections of data sets – this is called projection pursuit. Now we can 
compare how simple visualization techniques can help give a felling for the structure of 
a data set. A much better way to explore a data set is through an interactive three 
dimensional environment. In simple word visualization techniques, helps visualize the 
data so that DM is facilitated. As DM techniques mature, it will be important to 
integrate them with visualization techniques. Figure 7.6 illustrates interactive data 
mining. Here, the database management system, visualization tool, and machine-
learning tool all interact with each other for DM.      
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                                                   Figure 7.6 Interactive DM 
 
 

7.6  Integrating DMQ  with visualization  
 

  We re-exam some issues for integrating DMQ with visualization. We point out four 
possible approaches that were used in visualizing DMQ. One is to use visualization 
techniques to present the results that were obtained from mining the data in databases. 
These results may be in the form of clusters or they could specify correlation between 
the data in the database. The second approach applies DM techniques to visualization; 
this approach leads the assumption to apply DMQ to data in the visual form. Therefore, 
rather than applying the DMQ to large and complex databases, one captures some of the 
essential semantics visually, and then applies the DMQ. The third approach is to use 
visualization techniques to complements the DM techniques. For example, one may use 
DM techniques to obtain correlations between data or detect patterns. However, 
visualization techniques may still be needed to obtain a better understanding of the data 
in database. The fourth approach uses visualization techniques to steer the mining 
process. We can conclude to that visualization tools can be used to display visually the 
responses from the database system directly so that the visual displays can be used by 
the DMQ. On the other hand, the visualization tools can be used to visualize the results 
of the DMQ directly.  
 
 We will consider the third type which will detect all the patterns in the databases. 
Detecting patterns from databases require investigating from the databases to find out 
some existing association rules. Theses rules will be represented in visual form to help 
the user to make some decision. 

     
                     
      

Data Mining 
Visualization Tools 

 
Database Management System (DBMS)
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7.7  User interface aspect 

 
   As in any kind of system, having a good user interface is critical to mining. Note that 
some of the early database management systems had very primitive user interfaces. 
Therefore, users had to spend a great deal of time writing SQL statements and 
application programs. After much work, current database systems have excellent user 
interface tools. The include tools for generating queries, application programs, as well 
as reports. Various multi-modal interfaces are also being provided for database 
management. 
 
   User interface support for current data mining systems (DMS) is fairly primitive. 
Visualization tools are being developed to help with DM, but tools for generating 
queries, application programs to carry out DM, and reports are not sophisticated.  To 
make DM a success we need better user interface tools [76]. Computer scientists and 
technologists are not the only one who should be involved in developing such tools. 
Interactions between technologists, scientists, psychologists, and human computer 
specialists are necessary to develop better tools. Figure 7.7 illustrate an example user 
interface for DMQ. The interface has buttons not only for generating DMQ, 
applications for DM, and reports, but also for selecting the outcomes desired, 
approaches to be followed, and the techniques to utilize.  

 
 

                    
  

 Figure 7.7 Example user interface for DM  
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Chapter 8 

     I-extended Databases 
 
 

  8.1 Motivation  
 

  One of the most challenging problems in data manipulation in the future is to be able 
to efficiently handle very large databases but also multiple induced properties or 
generalizations in that data. Popular examples of useful properties are association rules, 
and inclusion functional dependencies. Our view of a possible approach for this task is 
to specify and query i-extended databases, which are databases that in addition to data 
also contain exceedingly defined generalizations about the data. I-extended database is 
a database that has similar properties then an inductive database [43] in certain scene 
and it could be also an alternative to inductive database. We formalize this concept and 
show how it can be used throughout the whole process of DM due to the closure 
property of the framework. We show that simple query languages can be defined using 
normal database terminology. We demonstrate the use of this framework to model 
typical DM processes. It is then possible to perform various tasks on these descriptions 
like, e.g., optimizing the selection of interesting properties or comparing two processes.  

 
8.2 Introduction  
 

 DM or KDD sets new challenges to database technology: new concepts and methods 
are needed for general purpose query languages [9]. A possible approach is to formulate 
a DM task as locating interesting sentences from a given logic that are true in the 
database.  

 
 Then the task of the user/analyst can be viewed as querying this set, the so called 
theory of the database described in [80].  
  
  Discovering knowledge from data, the so called KDD process, contains several steps: 
understanding the domain, preparing the data set, discovering patterns (i.e., computing a 
theory), post-processing of discovered patterns, and putting the results into use. This is 
a complex interactive and iterative process for which many related theories have to be 
computed: different selection predicates but also different classes of patterns must be 
used [76].  
 
 For KDD, we need a query language that not only enables the user to select subsets of 
the data, but also to specify DM tasks and select patterns from the corresponding 
theories. Our special interest is in the combined pattern discovery and post-processing 
steps via a querying approach. For this purpose, a closure property of the query 
language is desirable: the result of a KDD query should be an object of a similar type 
than its arguments. Furthermore, the user must also be able to cross the boundary 
between data and patterns, e.g., when exceptions to a pattern are to be analyzed. This 
gives rise to the concept of i-extended database, i.e., databases that contain extended 
generalizations about the data, in addition to the usual data. The KDD process can then 
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be described as a sequence of queries on i-extended database. A similar database 
concept has been suggested in [9].  
 
   In i-extended database, we use the simple formalization this form will be described in 
details in next Chapter (Chapter 9). However, the difference is that we considered the 
KDQL rules operator described in Chapter 9 as a possible querying language on mining 
association rules for i-extended database. Here we emphasize the generality of the 
framework and its use for complex KDD process modeling. It leads us to propose a 
research agenda to design general purpose query languages for KDD applications. The 
basic message in this Chapter is very simple: (1) I-extended database consists of a 
normal database associated to a subset of patterns from a class of patterns, and an 
evaluation function that tells how the patterns occur in the data. (2) I-extended database 
can be queried (in principle) just by using normal relational algebra or SQL, with the 
added property of being able to refer to the values of the evaluation function on the 
patterns. (3) Modeling KDD processes as a sequence of queries on i-extended database 
gives rise to chances for reasoning and optimizing these processes.  
 
  This Chapter is organized as follows. In Section 8.3 we define i-extended database 
framework and introduce KDD queries by means of examples. Section 8.4 considers the 
description of KDD processes and the add value of the framework for their 
understanding and their optimization. Section 8.5 is a short remark with open problems 
concerning i-extended database. 

 
8.3 I-extended databases  

 
  The schema of an i-extended database is a pair R = (R, (PR, e, V)), where R is a 
database schema, PR is a collection of patterns, V is a set of result values, and e is the 
evaluation function that defines pattern semantics. This function maps each pair (r, θi) 
to an element of V, where r is a database over R and θi ∈  PR  is a pattern. An instance of 
the schema,  i-extended database (r, s) over the schema R consists of a database r over 
the schema R and a subset s ⊆  PR.  
 
 Example 8.1 If the patterns are Boolean formulae about the database, V is {true, 
false}, and the evaluation function e(r, θ) has value true iff the formula θ is true about r. 
In practice, a user might be interested in selecting from the intentionally defined 
collection of all Boolean formulas, the formulas which are true or the formulas which 
are false.  
 
At each stage of manipulating the i-extended database (r, s), the user can think that the 
value of e(r, θ) is available for each pattern θ which is present in the set s. Obviously, if 
the pattern class is large (as it is the case for Boolean formulas), an implementation can 
not compute all the values of the evaluation function beforehand, rather, only those 
values e(r, θ) that user's queries require to be computed should be computed.  
 
  A typical KDD process operates on both of the components of i-extended database. 
The user can select a subset of the rows or more generally select data from the database 
or the data warehouse. In that case, the pattern component remains the same. The user 
can also select subsets of the patterns, and in the answer the data component is the same 
as before.  
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  The situation can be compared with deductive databases where some form of 
deduction is used to augment fact databases with a potentially infinite set of derived 
facts. However, within i-extended database framework, the intentional facts denote 
generalizations that have to be learned from the data. So far, the discovery of the 
patterns we are interested in can not be described using available deductive database 
mechanisms [78].  
 
  Using the above definition for i-extended database it is easy to formulate query 
languages for them. For example, we can write relational algebra queries, where in 
addition to the normal operations we can also refer to the patterns and the value of the 
evaluation function on the patterns. To refer to the values of e(r,θ) for any θ∈s, we can 
think in terms of object-oriented databases: the evaluation function e is a method that 
encodes the semantics of the patterns.  
 
  In the following, we first illustrate the framework on association (Section 8.3.1), and 
then we generalize the approach and point out key issues for query evaluation in general 
(Section 8.3.2). 

 
8.3.1 Association Rules  

 
  The association rule mining problem has received much attention since its 
introduction in [81]. Given a schema R = {A1,…..,An} of attributes with domain 
{0, 1}, and a relation r over R, an association rule about r is an expression of the 
form X ⇒B, where X ⊆  R and B ∈R \ X. The intuitive meaning of the rule is that 
if a row of the matrix r has a 1 in each column of X, then the row tends to have a 1 
also in column B. This semantics is captured by frequency and confidence values. 
Given W⊆  R, support (W, r) denotes the fraction of rows of r that have a 1 in 
each column of W. The frequency of X ⇒  B in r is defined to be support(X 
∪ {B}, r) while its confidence is support(X ∪  {B}, r)/support(X , r). Typically, 
we are interested in association rules for which the frequency and the confidence 
are greater than given thresholds. Though an exponential search space is 
concerned, association rules can be computed thanks to these thresholds on one 
hand and a safe pruning criterion that drastically reduce the search space on the 
other hand (the so-called apriori trick in  [42]).  
 
  However, the corresponding i-extended database schema defines intentionally all 
the potential association rules. In this case, V is the set [0, 1]2 , and e(r, θ) = (f(r,θ) 
, c(r,θ)), where f(r,θ) and c(r,θ) are the frequency and the confidence of the rule θ 
in the database r. Notice that many other objective interestingness measures have 
been introduced for that kind of patterns (e.g., the J-measure in  [82], the 
conviction [83] or the intensity of implication [84]). All these measures could be 
taken into account by a new evaluation function.  
 
 

 



 88 

            
  
  
  
  
  
  
                                 
  
  
  
  
  
  

 
 
 
 
 
 
 
 
 
 
 
                   Table 8.1 Patterns in three instances of i-extended database 
 

  We now describe the querying approach by using self explanatory notations for 
the simple extension of the relational algebra that fits to our need. Selection of 
tuples and patterns are respectively denoted by σ  andτ . As it is always clear 
from the context, the operation can also be applied on i-extended database 
instances while formally, we should introduce new notations for them. This could 
be a future work. 
   
Example 8.2 Mining association rules is now considered as querying i-extended 
database instances of schema (R, (PR, e, [0, 1] 2 )). Let us consider the data set is 
the instance r0 in table 1 of the relational schema R = {A, B, C}.  
 
 The i-extended database idb = (r0 , s0 ) associates to r0 the association rules on 
the left most table of table 8.1 Indeed, in such an example, the intentionally 
defined collection of all the association rules can be presented. We illustrate (1) 
the selection on tuples, and (2) the selection on patterns in the typical situation 
where the user defines some thresholds for frequency and confidence.  
 

1. σ A≠0 (idb) = (r1 , s1 ) where r1 =σ A≠0 (r0) and s1 contains the association 
rules in the middle table of table 1.  
 
2.  τ e (r0 ).f ≥  0.5 ∧  e(r0 ).c  ≥ 0.7 (idb) = (r2 , s2 ) where r2 = r0 and s2 
contains the association rules from the rightmost table (on the top) of table 
8.1. 

s0 e(r0).f e(r0 ).c 
A ⇒B 0.25 0.33 
A ⇒C 0.50 0.66 
B ⇒A 0.25 0.50 
B ⇒C 0.50 1.00 
C ⇒A 0.50 0.66 
C ⇒B 0.50 0.66 
AB⇒C 0.25 1.00 
AC⇒B 0.25 0.50 
BC⇒A 0.25 0.50 

s1 e(r1 ).f e(r1 ).c 
A⇒B 0.33 0.33 
A⇒C 0.66 0.66 
B⇒A 0.33 1.00 
B⇒C 0.33 1.00 
C⇒A 0.66 1.00 
C⇒B 0.33 0.50 

AB⇒C 0.33 1.00 
AC⇒B 0.33 0.50 
BC⇒A 0.33 1.00 

S2 e(r2 ).f e(r2 ).c  
B⇒C 0.50 1.00  

A B C  
1 0 0  
1 1 1  
1 0 1  
0 1 1  

Instance r0 
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 To simplify the presentation, we have denoted by e(r).f and e(r).c the values for 
frequency and confidence.  
  
  An important feature is that operations can be composed due to the closure 
property.  
 
Example 8.3 Consider that the two operations given in example 8.2 are composed 
and applied to the instance idb = (r0 , s0 ). Now, τ  e(r0 ).f ≥ 0.5 ∧  e(r0 ).c ≥ 0.7 
(σA≠0 (idb) = (r3 , s3 ) where r3 =σ A≠0 (r0) and s3 is reduced to the association 
rule C⇒  A with frequency 0.66 and confidence 1.  
 
 The selection of association rules given in that example is rather classical. Of 
course, a language to express selection criteria has to be defined. It is out of the 
scope of this thesis to provide such a definition. However, let us just emphasize 
that less conventional association rule mining can also be easily specified.  
 
 Example 8.4 Consider an instance idb = (r0 , s0 ). It can be interesting to look for 
rules that have a high confidence and whose right-hand side does not belong to a 
set of very frequent attributes F : τ  e(r0 ).c ≥ 0.9 ∧ e(r0 ).rhs ∉  F (idb)) = (r0 , s1 
).  
 
 The intuition is that rhs denotes the right-hand side of an association rule. The 
rules in s1 are not all frequent (no frequency constraint) but have a rather high 
confidence while their right-hand sides are not very frequent. Indeed, computing 
unfrequent rules will be in practice untractable except if other constraints can help 
to reduce the search space (and are used for that during the mining process).  
 
 The concept of exceptional data w.r.t. a pattern or a set of patterns is interesting 
in practice. So, in addition to the normal algebraic operations, let us introduce the 
so-called apply operation, denoted by α , that enables to cross the boundary 
between data and patterns by removing the tuples in the data set such that all the 
patterns are true in the new collection of tuples.  
 
  In the case of association rules, assume the following definition: a pattern θ  is 
false in the tuple t if its left-hand side holds while its right-hand side does not 
hold; in the other cases a pattern is true. In other terms, an association rule θ  is 
true in a tuple t ∈  r if and only if e ({t},θ ).f = e ({t},θ ).c = 1. Let us define 
α ((r; s)) = (r0, s) where r0 is the greatest subset of r such that s∈∀θ , e( r0,θ ).c 
= 1. Note that ŕ \r is the collection of tuples that are exceptions w.r.t. the patterns 
in s.  
 
 Example 8.5 Continuing example 8.2, assume the instance (r0 ,s4 ) where s4 only 
contains the rule AC⇒  B with frequency 0.25 and confidence 0.5. Let σ ((r0 , s4 
)) = (r4 , s4). Only the tuple 1,0,1  is removed from r0 given s4 since the rule AC 
⇒B is true in the other ones. The pattern AC ⇒B remains the unique pattern (s4 
is unchanged) though its frequency and confidence in r4 are now 0.33 and 1, 
respectively.  



 90 

 
Finally, it is clear that a selected collection of association rules can be materialized in a 
rule database and be queried by available query languages. 

 
 
 

  8.3.2 Generalization to other pattern types  
 

  The formal definition we gave at the beginning of Section 8.3 is very general. In 
this section, we first consider the other example of DM task where i-extended 
database concepts can be illustrated. We also point out crucial issues for query 
evaluation.  

  
  One typical KDD process we studied is the discovery of approximate inclusion 
and functional dependencies in a relational database. It can be useful either for 
debugging purposes, semantic query optimization or even reverse engineering 
[85]. We suppose that the reader is familiar with data dependencies in relational 
databases.  
 
Example 8.6 Assume R = {A, B, C, D} and S = {E, F, G} with the two following 
instances in which, among others, S[<G>] ⊆  R[<A>] is an inclusion  
dependency and AB →C a functional dependency (see table 8.2(a-b)). 
 
Dependencies that almost hold are interesting: it is possible to define natural 

error measures for inclusion dependencies and functional dependencies. For 
instance, let us consider an error measure for an inclusion dependency R[X] 
⊆ S[Y] in r that gives the proportion of tuples that must be removed from r, the 
instance of R, to get a true dependency. 

 
A B C D  
1 2 4 5  
2 2 2 3  
3 1 1 2  
4 2 2 3  

 
        (a)       (b} 
 

Inclusion dependencies Error Functional 
dependencies 

Error 

R[<B>]⊆ S[<E>] 0 B → A 0.5 

R[<D>]⊆ S[<E>] 0.25 C → A 0.25 

S[<E>]⊆R[<B>] 0.33 BC →A 0.25 

R[<C,D>]⊆ S[<E,F>] 0.25 BCD → A 0.25 

 
(c)  

 
           Table 8.2 Tables for examples 8.6 and 8.7 

E F G  
1 2 3  
2 3 4  
3 2 2  
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  With the same idea, let us consider an error measure for functional dependencies 
that gives the minimum number of rows that need to be removed from the instance 
r of R for a dependency R: X → B to hold.  
 
Example 8.7 Continuing example 8.6, a few approximate inclusion and functional 
dependencies are given (see table 8.2(c)). 
 
 It is now possible to consider the two i-extended databases that associate to a 
database all the inclusion dependencies and functional dependencies that can be 
built from its schema. Evaluation functions return the respective error measures. 
When the error is null, it means that the dependency holds. Indeed, here again it is 
not realistic to consider that querying can be carried out by means of queries over 
some materializations of all the dependencies that almost hold.  
 
Example 8.8  Continuing again example 8.6, a user might be interested in “select-
ing” only inclusion dependencies between instances r and s that do not involve 
attribute R.A in their left-hand side and have an error measure lower than 0.3. 
One expects that a sentence like R [<C, D>] ⊆  S [<E, F>] belongs to the 
answer. The “apply” operation can be used to get the tuples that are involved in 
the dependency violation. One can now search for functional dependencies in s 
whose left-hand sides are a right-hand side of a previously discovered inclusion 
dependency. For instance, we expect that a sentence like EF → G belongs to the 
answer. Evaluating this kind of query provides information about potential 
foreign keys between R = {A, B, C, D} and S = {E, F, G}. 
 
 Query evaluation: We already noticed that object-relational query languages can 
be used as a basis for i-extended database query languages such as KDQL. 
However, non-classical optimization schemes are needed since selections of 
properties lead to complex DM phases. Indeed, implementing such query 
languages is difficult because selections of properties are not performed over 
previously materialized collections. First one must know efficient algorithms to 
compute collection of patterns and evaluate the evaluation function on very large 
data sets. But the most challenging issue is the formal study of selection language 
properties for general classes of patterns: given a data set and a potentially infinite 
collection of patterns, how can we exploit an active use of selection criteria to 
optimize the generation/evaluation of the relevant patterns.  
 
Example 8.9 When mining association rules that do not involve a given attribute, 
instead of computing all the association rules and then eliminate those which 
contain that attribute, one can directly eliminate that attribute during the can-
didate generation phase for frequent sets discovery. 
 
  Furthermore, three important questions arise:  

 
1. How to evaluate a class of similar patterns faster than by looking at each of 
them individually? An explicit evaluation of all the patterns of the schema 
against the database (and all databases resulting from it by queries) is not 
feasible for large data sets.  
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2. How to evaluate patterns without looking at the whole data set? This is an 
important issue to reduce dimensionality of the DM task, e.g., via sampling. In 
some cases, it might be also possible not to use the data set and perform a 
simple selection over a previously materialized collection of patterns.  
 
3. How to evaluate operation sequences, e.g., in replays, more efficiently? 
Compiling schemes can be defined for this purpose.  

 
   The complexity of mining frequent association rules mainly consist of finding 
frequent sets. The frequency threshold is used to safely prune the search in the 
exponential space of attribute sets and it leads to algorithms that scale nicely to relations 
containing thousands of columns and tens of millions of rows. The confidence threshold 
or other interestingness measures can then be used to prune search in the exponential 
space of association rules. Provided Boolean constraints over attributes, [86] show how 
to optimize the generation of frequent sets using this kind of constraints during the 
generation/evaluation process. This approach has been considerably extended in [72].    
 
  Other interesting ideas come from the generalization of the Apriori tricks, and it can be 
found in different approach like [41] or [87]. Propose an algorithm that generalizes the 
Apriori trick to the context of frequent atom sets [41]. This typical inductive logic 
programming tool enable to mine association rules from multiple relations but can also 
be used for mining frequent Datalog queries [88]. Consider query flocks that are 
parameterized Datalog queries for which a selection criterion on the result of the queries 
must hold [87]. When the filter condition is related to the frequency of answers and 
queries are conjunctive queries augmented with arithmetic and union, they can propose 
an optimizing scheme.  
 
   The formal study of selection criteria and query optimizing schemes for more pattern 
classes that are more complex than frequent sets and association rules is to be done. A 
framework for object-oriented query optimization when using expensive methods [89] 
can also serve as a basis for optimization strategies. 

 
8.4 I-extended databases and KDD processes  

 
  Already in the case of a unique class of patterns, real life mining processes are complex. 
This is due to the dynamic nature of knowledge acquisition, where gathered knowledge 
often affects the search process, giving rise to new goals in addition to the original ones.  
 
  In the following, we introduce a scenario about telecommunication networks fault 
analysis using association rules. It is a simplified problem of knowledge discovery to 
support offline network surveillance, where a network manager tries to identify and 
correct faults based on sent alarms. A comprehensive discussion on this application is 
available in [90].  
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Alarm 
type 

Alarming 
element 

Element 
Type 

Date Time 
 

Week Alarm 
severity 

Alarm 
Text            

1111 E1.1 ABC 980119 233605 4 1 LINK FAILURE 
2222 E2 CDE 980119 233611 4 3 HIGH ERROR RATE 
3333 A EFG 980119 233627 4 4 CONNECTIONNOT 

ESTABLISHED 
4444 B2.1 GHI 980119 233628 4 2 LINK FAILURE 

 
Table 8.3 Part of i-extended database consisting of data part r0 (upper table) 
and rule part s0 (lower table) 

 
 
  Assume that the schema for the data part of the relevant i-extended database is R = 
(alarm type, alarming element, element type, date, time, week, alarm severity, alarm 
text). By (r, s) we denote i-extended database for association rules where r refers to the 
data part and s refers to the pattern part. With association rules, we consider items as 
equalities between attributes and values, while rule left-hand and right-hand sides are 
sets of items. Notice also that we use in the selection conditions expressions that 
concern subcomponents of the rules. Typically, one wants to select rules with a given 
attribute on the left-hand side (LHS) or on its right-hand side (RHS), or give bounds to 
the number of occurring items. Self-explanatory notations are used for this purpose. A 
sample of an instance of this schema is given in table 8.3.  
 
 
  In table 8.3, the network manager decides to look at association rules derived from r0, 
the data set for the current month. Therefore, he/she "tunes" parameters for the search 
by pruning out all rules that have confidence under 5% or frequency under 0.05% or 
more than 10 items (phase 1 in table 8.4). The network manager then considers that 
attributes "alarm text'' and "time'' are not interesting, and projects them away (phase 2). 
The number of rules in the resulting rule set, s2, is still quite large. The user decides to 
focus on the rules from week 30 and to restrict to 5 the maximum amount of items in 
the rule (phase 3). While browsing the collection of rules s3, the network manager sees 
that a lot of rules concern the network element E. That reminds him/her of maintenance 
operation and he/she decides to remove all rules that contain "alarming element = E or 
its subcomponent" (phase 4). We omit the explanation of dealing with the taxonomy of 
components. The resulting set of rules seems not to show anything special. So, the 
network manager decides to compare the behavior of the network to the preceding 
similar period (week 29) and find out possible differences (phases 5-6). The network 
manager then picks up one rule, s8, that looks interesting and is very strong (confidence 
is close to 1), and he wants to find all exceptions to this rule; i.e. rows, where the rule 
does not hold (phases 7-8). Except for the last phases, the operations are quite 
straightforward. In the comparison operation, however, we must first replay the phases 
3-4.  
 

S0 e(r0).f e(r0).c 
alarm_type=1111 ⇒ element_type=ABC 0.25 1.00 
alarm_type=222 ⇒  alarming_element=E2, element_type=CDE 0.25 1.00 

alarm_ type=1111, element_ type=ABC ⇒ alarm_ text=LINK FAILURE 0.25 1.00 
alarm_type=5555 ⇒  alarm_severity=1 0.00 0.00 
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 This is because we have to remove the field "week'' from the schema we used in 
creating rules for week 30, so that we can compare these rules with the rules from week 
29. Then we create for week 29 the same query (except for the week information), take 
the intersection from these two rule sets, and calculate the frequencies and confidences 
of the rules in the intersection. The search for exceptions is performed using the apply 
operation introduced in Section 8.3.  

 
 

Phase Operation Query and conditions  
1 
 

Selection 
 1Fτ   ((r0,s0)) = (r0,s1 ) 

F1 = e(r0).f ≥ 0.005 ∧ e(r0).c ≥ 0.05 ∧ | LHS| ≤ 10 
2 
 

Projection 
 Tπ  ((r0 ,s1 )) = (r1 , s2) 

T = R\{ alarm text, time} 
3 
 

Selection 
 2Fτ ( σ C 1 ((r1 , s2)))) = (r2,  s3 ) 

C1 = (week = 30) and F2 = |LHS ∪   RHS | ≤  5 

4 
 

Selection 
 3Fτ ((r2 , s3)) = (r2 , s4 ) 

F3 = (alarming element = E *) ∉  {LHS∪  RHS} 
5 
 

Replay 3-4 (week 
30) 

 

3Fτ  (  2Fτ (πU (σC1 ((r1, s2)))))=(r3, s5) 
U = T \ {week}, other conditions as in 3-4 

6 
 

Replay 3-4 (week 
29) 

 

3Fτ  (  2Fτ (πU (σC2 ((r1 , s2)))))=(r4 , s6 ) 
C2 = T \ {week = 29}, other conditions as in 5 

7 
 

Intersection 
 

∩ ((r3,s5),(0,s6))=(r3,s7) 
 

8 
 

Apply 
 

α  ((r3 ,s8 )) = (r5 , s9 ) 
 

 
 Table 8.4 Summary of the phases of the experiment 

 
 
  The network manger system in table 8.3, illustrates a typical real-life DM task. Due to 
the closure property, KDD processes can be described by sequences of operations, i.e., 
queries over relevant i-extended database. In fact, such sequences of queries are abstract 
and concise descriptions of DM processes. An interesting point here is that these 
descriptions can even be annotated by statistical information about the size of selected 
dataset, the size of intermediate collection of patterns etc., providing knowledge for 
further use of these sequences.  

 
8.5 Remarks  
 

   We presented a framework for i-extended database considering that the whole process 
of DM can be viewed as a querying activity. Our simple formalization of operations 
enables the definition of mining processes as sequence of queries, by using the closure 
property. The description of a non-trivial mining process using these operations has 
been given and even if no concrete query language or query evaluation strategy is 
available yet, it is a mandatory step towards general purpose query languages for KDD 
applications.  
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  KDD query language KDQL is a good candidate for i-extended database querying 
though because it is dedicated to Boolean and association rule mining, respectively. 
Simple pattern discovery algebra has been proposed in [91]. It supports pattern 
generation, pattern filtering and pattern combining operations. This algebra allows the 
user to specify discovery strategies, e.g., using different criteria of interestingness but at 
a macroscopic level; implementation issues or add-value for supporting the mining step 
are not considered.  
   
  Recent contributions to the logic programming framework make it suitable for DM 
purposes. Descriptive logic programming (or learning from interpretations [37]) is a 
framework for the discovery of first-order regularities in relational databases.  
 
 We also presented, as an example, i-extended database for association rules, and gave a 
realistic network system in table 8.3 using simple operations. It appears that without 
introducing any additional concepts, standard database terminology enable to carry out 
i-extended database querying and those recent contributions to query optimization 
techniques can be used for i-extended database implementation. A significant question 
is whether i-extended database framework is interesting for a reasonable collection of 
DM problems. We currently study KDD processes that need different classes of 
patterns.  
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Chapter 9 
 

Implementation of 
 Knowledge Discovery Query Language (KDQL) 

 
 

9.1  Motivation of KDQL  
 

  The background of KDQL came from the Structure Query Language   (SQL) since 
several extensions to the SQL have been proposed to serve as a data mining query 
language (DMQL) described in Chapter 6. However, they do not sufficiently address 
how to visualize query results. We will investigate the requirements for a SQL 
describing the graphical representation of Knowledge Discovery Query (KDQ) results 
from the perspective of a large database system. With frequent map output and assesses 
several SQL extensions with respect to their treatment of the graphical representation. It 
concludes that the SQL + DM (rules) = is the appropriate form for this task at the user 
interface. DM (rules) is based on the association rules to interact i-extended database. 
I-extended database or other type of databases such as relational databases can be 
accessed as well. The association rules will be obtained by the use of KDQL rules, and 
the graphically represented in a 2D and 3D charts. The KDQL syntax will be present 
also in the appendix A, and the KDQL visual scripts will be achieved in appendix B but 
these scripts didn’t use the KDQL syntax in their retrieve statements. Moreover, we 
hope that we will write queries in KDQL syntax in the near future.     

 
9.2  Principles of DMQL rules to interact  relational databases 

 
   Interacting relational databases is often necessary to specify the interesting set of data 
to be studied, the kind of rules to be discovered, etc. Moreover, a graphical user 
interface is helpful for interactive mining of association rules because it facilitates 
interactively modification of the environment settings, including output styles and 
formats.  
  
 Besides the specification of the kinds of rules to be discovered, it is also beneficial to 
specify the syntactic forms of the rules to be discovered. For example, to find the 
relationships between the attributes status, gpa and birth place, in relevance to major, 
for the students born in "Hungary", and by using the DMQL described in [12] the 
structure will be as follows. 

 
discover rules in the form  
major(s : student, x) ∧  Q(s, y) → R(s, z)  
from student  
where  birth_place = "Hungary''  

      in relevance to major, gpa, status, and birth place. 
 
 This kind of inclusion of meta-rule forms in the query specification for focusing the 
search is called meta-rule guided mining [92].  
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9.3 Using KDQL to interact i-extended databases  
 

As we know from previous Chapters KDD can be considered as a process that can 
include steps like forming the data set, data transformations, discovery of patterns, 
searching for exceptions to a pattern, zooming on a subset of the data, and post-
processing some patterns. We describe a comprehensive framework in which all these 
steps can be carried out by means of queries over i-extended database. I-extended 
database is a database that in addition to data also contains intentionally defined 
generalizations about the data. We formalize this concept. The i-extended database 
consists of a normal database together with a subset of patterns from a class of patterns, 
and an evaluation function that tells how the patterns occur in the data. Then, looking 
for potential query languages built on top of SQL, we will consider association rule 
mining described in Chapter 5. It is a serious step towards an implementation 
framework for databases, though it addresses only the association rule mining problem 
in this stage and perspectives are then discussed.  
 
  Data mining sets new challenges to database technology and new concepts and 
methods are needed for general purpose query languages [5]. A possible approach is to 
formulate a data mining task as locating interesting sentences from a given logic that 
are true in the database. Then the task of the user/analyst can be viewed as querying this 
set, the so-called theory of the database. Formally, given a language L of sentences (or 
patterns), the theory of the database r with respect to L and a selection predicate q is the 
set Th(r,L, q) = {θ∈  L| q(r ; θ)}. The predicate q indicates whether a sentence of the 
language is interesting. This definition is quite general: asserting q(r, θ) might mean 
that θ is a property that holds, that almost holds, or that defines (in some way) an 
interesting subgroup of r. This approach has been more or less explicitly used for 
various data mining tasks (see [9] for a survey and [93] for a detailed study of this 
setting).  
 
   Discovering knowledge from data can be seen as a process containing several steps: 
understanding the domain, preparing the data set, discovering patterns, post-processing 
of discovered patterns, and putting the results into use [94]. This is an interactive and 
iterative process for which many related theories have to be computed: different 
selection predicates and also classes of patterns might be used. Therefore, a general-
purpose query language should enable the user to select subsets of data, but also to 
specify and select patterns. It should also support crossing the boundary between data 
and patterns, e.g., when exceptions to a pattern are to be analyzed or for sophisticated 
post-processing methods like rule covering [95]. This has motivated the concept of 
inductive databases, i.e., databases that contain inductive generalizations about the data, 
in addition to the usual data [5]. 
 
   The contribution of this dissertation concerns a formalization of this concept of i-
extended database and a first approach for an implementation based on SQL servers. 
The formalization carries a two part basic message:  
     

(i) a particular inductive database consists of a normal database associated to a 
subset of  patterns from a class  of patterns, and an evaluation function that tells 
how the patterns occur in the data; 
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(ii) a particular database can be queried (in principle) just by using a              
straightforward extension of relational algebra, this point of view is also 
considered in [72].  
 

  Searching for solutions based on SQL is motivated by the industrial perspective of 
relational database mining. A huge amount of work has already been done to provide 
efficient and portable implementations of SQL, and KDQL architectures between SQL 
servers and data mining systems. As a starting point, we will apply the KDQL rules 
operator proposed by the author. These rules could be something like the rules in [80, 
96]. 
 

9.4  I-extended databases  
 

  The goal of using i-extended database is to describe a data model that makes it 
possible to view the whole or any part of the KDD process as querying a database 
structured according to the ODBC_KDD (2) model described in Chapter 3. Thus the 
database has to contain both data and generalizations about that data. I-extended 
database was described in the previous Chapter.  This motivates the following definition 
(simplified from the one in [96]).  

 
Schema: The schema of an i-extended database is a pair R = (R, (PR e, V)), where R is a 
database schema, PR is a collection of patterns, V is a set of result values, and e is the 
evaluation function that defines how patterns occur in the data. This function maps each 
pair (r,θi) to an element of V, where r is a database over R and θi is a pattern from PR.  
 
Instance: An instance (r; s) of a i-extended database over the schema R consists of a 
database r over the schema R and a subset s ⊆  PR .  
 
The simple association rule mining problem has received much attention since its 
introduction in [81]. The concept of i-extended database is quite general and is not 
dedicated to this class of patterns. However, for didactic reasons, we use it in our 
examples.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  Instance r0 
 
                    9.1 Patterns in three instances of i-extended database 

s0 e(r0).f e(r0 ).c 
A ⇒B 0.25 0.33 
A ⇒C 0.50 0.66 
B ⇒A 0.25 0.50 
B ⇒C 0.50 1.00 
C ⇒A 0.50 0.66 
C ⇒B 0.50 0.66 
AB⇒C 0.25 1.00 
AC⇒B 0.25 0.50 
BC⇒A 0.25 0.50 

s1 e(r1 ).f e(r1 ).c
A⇒B 0.33 0.33  
A⇒C 0.66 0.66  
B⇒A 0.33 1.00  
B⇒C 0.33 1.00  
C⇒A 0.66 1.00  
C⇒B 0.33 0.50  
AB⇒C 0.33 1.00  
AC⇒B 0.33 0.50  
BC⇒A 0.33 1.00  

A B C  
1 0 0  
1 1 1  
1 0 1  
0 1 1  

s2 e(r2 ).f e(r2 ).c 
B⇒C 0.50 1.00 
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Example 9.1 Given a schema R = {A1,…, An} of attributes with domain {0, 1}, and a 
relation r over R, an association rule about r is an expression of the form X ⇒  B, where 
X ⊆  R and B ∈  R \ X [81]. Intuitively, if a row of the matrix r has a 1 in each column of 
X, then the row tends to have a 1 also in column B. This semantics is captured by 
frequency and confidence values. Given W ⊆  R, freq(W, r) denotes the fraction of rows 
of r that have a 1 in each column of W. The frequency of the rule X ⇒  B in r is defined 
to be freq(X∪   {B}, r) while its confidence is freq(X ∪ {B}, r)/freq(X, r). Typically, we 
are interested in association rules for which the frequency and the confidence are 
greater than given thresholds. However, we can define i-extended database such that PR 
contains all association rules, i.e., PR = {X ⇒B| X ⊆  R, B∈R\ X}. In this case, V is the 
set [0, 1]2, and e(r, θ) = (f(r, θ), c(r, θ)), where f(r, θ) and c(r, θ) are the frequency and 
the confidence of the rule θ in the database r. 
  
 
Queries: A typical KDD process operates on both of the components of i-extended 
database. At each stage of manipulating the database (r, s), the user can think that the 
value of e(r, θ) is available for each pattern θ which is present in the set s. Obviously, if 
the pattern class is large, an implementation will not compute all the values of the 
evaluation function beforehand; rather, only those values e(r, θ) that user's queries 
require to be computed should be computed. Mining association rules as defined in 
example 9.1 is now considered as querying a i-extended database instances of schema 
(R, (PR , e, [0, 1]2 )).   
 
Example 9.2 Assume the dataset is the instance r0 in table 9.1 of the schema R = {A, B, 
C}. The i-extended database ptb = (r0,s0 ) associates to r0 the rules on the leftmost table 
of table 9.1. We illustrate the selection on tuples Q1 and the selection on patterns Q2.  

 
1. (Q1) Select tuples from (r0 ,s0 ) for which the value for A is not 0. The result is a 
new instance (r1 , s1) where the data part r1 does not contain the tuple  (0, 1, 1), and 
the pattern part s1 contains the rules in the second table of  table 9.1, i.e., the rules of 
s0 with updated frequency and confidence values. 
  
2. (Q2 ) Select rules from (r0, s0 ) that exceed the frequency and confidence thresholds 
0.5 and 0.7, respectively. A new instance (r0 , s2 ) is provided where s2 contains the 
rules in the below  table of table 9.1.  

 
  An important feature is that operations can be composed due to the closure property: 
an operation takes an instance of i-extended database and provides a new instance. For 
instance, the query Q2 o Q1 if applied to (r0 , s0 ) gives (r3 , s3 ), where r3 is r1 as defined 
above and s3 is reduced to the association rule C⇒  A with frequency 0.66 and 
confidence 1. 

 
KDQL: Using the above definition for i-extended database it is easy to formulate query 
language for them. For example, we can write relational algebra queries, where in 
addition to the normal operations we can also refer to the patterns and the value of the 
evaluation function on the patterns. To refer to the values of e(r,θ) for any θ∈  s, we can 
think in terms of object-oriented databases: the evaluation function e is a method that 
encodes the behavior of the patterns in the data.  
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 For the association rule example, it motivates the notations e(r).f and e(r).c when 
values for frequency and confidence are needed. Furthermore, it is useful to consider 
that other properties of patterns should be available; as for instance, the values for part 
of them, their lengths, etc. Following an abstract data type approach, we can consider 
operations that provide these properties. Hence, continuing example 9.1, we use body, 
lbody and head to denote respectively the value of the left-hand side, its length and the 
value of the right-hand side of an association rule. More generally, specifying i-
extended database requires the definition of all these properties.  
 
 
 We now give a few queries by using, hopefully, self-explanatory notations for the 
simple extension of the relational algebra that fits to our need. Selection of tuple and 
patterns are respectively denoted by σ and τ  it is clear from the context, the operation 
is also applied on a i-extended database instances, e.g., we write  Cσ  ((r, s)) to denote 
( Cσ  (r), s)).  
 
 
Example 9.3 We now consider association rules in the particular and popular context of 
the basket analysis problem. Assume data is available in an instance of the schema R 
=(Tid, Item, Price, Date). Tid denotes the transaction identifier, Item the product 
purchased, Price its price and finally, Date the date for this transaction. By (r, s) we 
denote i-extended database for association rules between itemsets, s0 denotes the 
intensionally defined collection of all these rules. Table 9.2(a) gives a dataset called r0 
in the result and one sample collection of patterns with their properties and answers in 
r0. Notice that such a collection can typically be stored in a nested relation, e.g., an 
SQL3 table [93].  
 
 
  Consider the following process. First, the user decides to look at association rules 
derived from r0, the dataset for the current month, and he/she wants to prune out all 
rules that have confidence under 30% or frequency under 5% or more than 7 items 
(phase 1 in table 9.2(b)). Then, he/she decides to focus on the rules that hold for the 
data about the last discount day (say Date = 13) and to restrict to 5 the maximum 
amount of items in the rule (phase 2). Then, he/she wants to eliminate all the patterns 
that contain item D in their body. Finally, he/she tries to get association rules that imply 
expensive items (say Price ≥ 7). A lower threshold for frequency (say 1%) is considered 
for phase 4.  
 
 
 
  Different types of KDD processes could be easily described using the notion of i-
extended database. The key is the closure property, which makes the composition of 
queries possible [94].  
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                (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (b) 
 

 Table 9.2  Basket data as  i-extended data  (a) and a few queries (b) 
 
   

9.5  KDQL RULES  operator       
 

   In the following, we provide an overview of the KDQL RULES operator and then 
discuss how it can be related to our work with i-extended database. KDQL rules is a 

Tid Item Price Date  
 1 A 7 1 
 2 A 7 1 
 2 B 5 1 
 2 C 9 1 
 3 A 7 1 
 3 C 9 1 
 4 B 5 1 
 4 C 9 1 

body      head      lbody     e(r0 ).f      e(r0 ).c 
{A}       {B}        1            0.25         0.33 
{A}       {C}        1            0.50         0.66 

{A,B}       {C}        2             0.25         1 
{A,C}       {B}        2             0.25         0.5 

Phase                   Query and conditions 
 

1-  
1Fτ ((r0, s0)) = (r0, s1) 

 F1 = e (r0).f ≥ 0.05 ∧ e (r0).c ≥ 0.3∧  lbody ≤ 6. 
2-   2Fτ (

1Cσ ((r0, s0))) = (r1, s2) 
 C1 = (Date=13) 
 F2 = e (r1).f ≥ 0.05 ∧ e (r1).c ≥ 0.3∧  lbody ≤ 4. 
3-  3Fτ ((r1, s2)) = (r1, s3) 
 F3 = D∉body. 
4-  4Fτ ( 2Cσ ((r1, s0))) = (r2, s4) 
 C2 = (Price ≥ 7) 
 F4 = e (r2).f ≥ 0.01 ∧ e (r2).c ≥ 0.3∧  lbody ≤ 4 ∉∧ D  

body 
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SQL like operator which captures most of the association rule mining tasks that have 
been formulated so far (simple or generalized association rules, association rules with 
item hierarchies, etc). Moreover, there are quite efficient evaluation techniques that 
ensure the possibility of solving these DM tasks. It is not possible here to consider all 
the aspects of such an operator. We introduce it by means of one typical example and 
refer to [95] for other examples and a complete definition of its syntax and operational 
semantics. Given the dataset r1 as defined in table 9.2, phase 4 is defined by the KDQL 
rules statement in table 9.3. The KDQL rules operator takes a relational database and 
produces an SQL3 table [93] in which each tuple denotes a mined rule. Several 
possibilities exist to precisely define the input data. Basically, the whole potential of 
SQL can be used here. The input tables might themselves have been selected using the 
second WHERE clause. Rules are extracted from groups as defined by a GROUP BY 
clause (frequency is related to groups and if the clause is missing, any tuple is a group). 
The schema of the output table is determined by the SELECT clause that defines the 
structure of the rules (here, BODY, HEAD, SUPPORT and CONFIDENCE). 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
           Table 9.3 Phases 1 to 4 of table 2 using KDQL rules 

 
  Sizes of the two components of a rule can be bounded (4 and 1 in our example). The 
keyword DISTINCT specifies that duplicates are not allowed in these components.  

KDQL RULE s1 AS  
SELECT DISTINCT  
  1..6 Item AS BODY,  
  1..1 Item AS HEAD,    
  SUPPORT, CONFIDENCE  
FROM  r0  
GROUP BY Tid  
EXTRACTING RULES WITH  

SUPPORT: 0.05,        
CONFIDENCE: 0.03 
 
 
(Phase 1) 

KDQL RULE s2 AS  
SELECT DISTINCT  
  1..4 Item AS BODY,  
  1..1 Item AS HEAD,    
  SUPPORT, CONFIDENCE  
FROM (SELECT * AS r1 

                      FROM   r0 
              WHERE Date=13  
GTOUP BY Tid  
EXTRACTING RULES WITH  

SUPPORT: 0.05,        
CONFIDENCE: 0.03 
 
 
 
(Phase 2) 

SELECT * AS 
FROM    s2  
WHERE D NOT IN BODY  

 
 
 
 
 
 
 
 
 
(Phase 3) 

KDQL RULE s1 AS  
SELECT DISTINCT  
  1..4 Item AS BODY,  
  1..1 Item AS HEAD,    
  SUPPORT, CONFIDENCE  
WHERE BODY.Item<> D 
FROM (SELECT * AS r2 

                      FROM   r1 
              WHERE Price >=7) 
GTOUP BY Tid  
EXTRACTING RULES WITH  

SUPPORT: 0.01,        
CONFIDENCE: 0.3 
 
 
(Phase 4) 
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Data is encoded such that one gets all possible couples of itemsets (extracted from the 
groups) for the body and the head of a rule. It is possible to express mining conditions 
(first WHERE clause) that limit the tuples involved in this encoding. In our example, 
the mining condition indicates that Item in the body should not be D. An interesting 
feature is that DM conditions can be different for body and head, e.g., BODY.price < 7 
AND HEAD.price >= 7 indicates that one wants association rules with cheap products 
(less than 7) in the body and an expensive product in the head. It is possible to choose 
the types of the elements in the rules (e.g., Price instead of Item) as well as grouping 
attributes. This enables the specification of many different mining tasks over the same 
dataset.  
 
 In fact, most of the association rule mining tasks identified in the literature can be 
specified by means of a KDQL rules statement. 
 
  Data and patterns are then a collection of SQL tables. The phases of the simple 
scenario given in table 9.2(b) are easily translated into KDQL rules queries as given in 
table 9.3. Note that phase 3 is not achieved by means of a KDQL rules statement. 
Instead, we use a query over the materialization of s2.  
 
The mining algorithms that can not be expressed in terms of SQL queries are activated 
by the so-called core operator. The three main components of the architecture are not 
so far from the defined in [97] are:  
 
• Preprocessor: After the interpretation of a KDQL rules statement, preprocessor 

retrieves source data, evaluates the mining, grouping and cluster conditions and 
encodes the data that will appear in the rules: it produces a set of encoded tables that 
are stored in the database. These encoded tables are optimized in the sense that 
mining conditions have been already applied and that unfrequent items do not 
appear anymore. Practically it has to be defined in the future. 

 
•  Core operator: The core operator uses these encoded tables and performs the 

generation of the association rules using known algorithms, e.g., apriori [42]. It then 
provides encoded rules. Basically, from each pair of body and head, elements are 
extracted to form a rule that satisfy DM conditions and both frequency and 
confidence criteria. This is a proposed operation and it will be a good challenge to 
my future work.  

 
•  Post-processor: At the end of the process, the post-processor decodes the rules and 

produces the relations containing the desired rules in a table that is also stored in the 
database. It has to be defied in the future work. 

 
9.6  KDQL in KDD process  

 
  The goal of knowledge discovery is to obtain useful knowledge from large collections 
of data. Such a task is inherently interactive and iterative: one cannot expect to obtain 
useful knowledge simply by pushing a lot of data to a black box. The user of a KDD 
system has to have a solid understanding of the domain in order to select the right 
subsets of data, suitable classes of patterns, and good criteria for interestingness of the 
patterns. Thus KDD systems should be seen as interactive tools, not as automatic 
analysis systems.  
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Discovering knowledge from i-extended database by KDQL should therefore be seen as 
a process containing several steps:  

1. Understanding the domain,  
2. Preparing the data set,  
3. Discovering patterns (DM),  
4. Post-processing of discovered patterns, and  
5. Putting the results into use.  
 

See [5] for a slightly different process model and excellent discussion.  
 
The KDD process is necessarily iterative: the results of a DM step can show that some 
changes should be made to the data set formation step, post-processing of patterns can 
cause the user to look for some slightly modified types of patterns, etc. Efficient support 
for such iteration is one important development topic in KDD.  
 
  Prominent applications of KDD include health care data, financial applications, and 
scientific data [98, 99]. In industry, the success of KDD is partly related to the rise of 
the concepts of data warehousing and on-line analytical processing (OLAP). These 
strategies for the storage and processing of the accumulated data in an organization 
have become popular in recent years. KDD and DM can be viewed as ways of realizing 
some of the goals of data warehousing and OLAP.  
 

9.7  KDQL  algorithms and architecture 
 

9.7.1 Architecture 
 
 

 
 
 

 
 
 

 

 
 
 
 

 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

Sequence 
of simple 
queries 
in SQL  

Result table 

Figure 9.1 KDQL architecture  
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  In figure 9.1, we proposed the architecture of the KDQL which consists of a 
standard SQL query, or an SQL query plus a KDQL rules operation statement. 
Joining the SQL classical statement and the KDQL rules operation together 
requires an encoding/ decoding operation. Encoding /decoding process will 
translate the query and send the request to i-extended database and then to a 
traditional databases via ODBC or JDBC drivers. The encoding / decoding 
process will get the response from the ODBC or JDBC drivers. The answer will 
be passed to the visualization process in a table. The visualization process will 
represent the table in a visualization chart mode. Charts will be appeared in 2D or 
3D mode.        
 
  The encoding / decoding are part of the query system for formulating data 
mining queries such as KDQL. The communication between this system and the 
database can be carried out in ODBC or JDBC.  
 
   Searching for patterns and rules in traditional databases or in i-extended 
database by using KDQL query. KDQL requires some processes such like 
encoding / decoding, using sequence of SQL statements to capture interesting 
dataset such as association mining rules in i-extended database or from traditional 
databases.    

 
9.7.2 Algorithms 
 

  A fairly large class of DM tasks can be described as the search for interesting 
and frequently occurring patterns from the data. That is, we are given a class P of 
patterns or sentences that describe properties of the data, and we can specify 
whether a pattern p ∈  P occurs frequently enough and is otherwise interesting. 
That is, the generic data mining task is to find the set:  
 
                PI(d,P) = {p ∈  P | p occurs sufficiently often in d and p is interesting}. 
  
   A formalism would be to consider KDQL as a language of sentences and view 
DM as the problem of finding the sentences in KDQL that are "sufficiently true" 
in the data and furthermore fulfill the user's other criteria for interestingness. 
  
 This point of view has either implicitly or explicitly been used in discovering 
integrity constraints from databases, in inductive logic programming, and in 
machine learning [55,98,100, 101,102] some theoretical results can be found in 
[103], and a suggested logical formalism in [104].  
 
While the frequency of occurrence of a pattern or the truth of a sentence can 
define rigorously, the interestingness of patterns or sentences seems much harder 
to specify and measure.  
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A general algorithm for finding PI(d, P) is to first compute all frequent patterns by 
the following algorithm for finding all frequent patterns, and then select the 
interesting ones from the output.  
 
 
Algorithm 9.1 Finding all frequent patterns. Assume that there is an ordering < 
defined between the patterns of P.  
1. C := { p ∈  P |  for no q ∈  P we have q <  p};  

 C contains the initial patterns from P; 
2. while C ≠ 0  do  
3.          for each p∈  C  
4.         find the number of occurrences of p in d;  
5.        F := F∪ {p ∈C |  p is sufficiently frequent in d};  
6.              C:= {p∈  P | all q ∈  P with q <  p have been considered already and it   

is possible that p is frequent}; 
7. od;  
8. output F .  

 
 The algorithm proceeds by first investigating the initial patterns with no 
predecessors in the ordering < p. Then, the information about frequent patterns is 
used to generate new candidates, i.e., patterns that could be frequent on the basis 
of the current knowledge.  
 
  In the next Section we show how this algorithm can be used to solve association 
mining problems. If line 6 is instantiated differently, hill-climbing searches for 
best descriptions [105, 98] can also be fitted into this framework. In hill-climbing, 
the set C will contain only the neighbors of the current "most interesting" pattern.  
 The generic algorithm suggests a KDQL architecture system consisting of a 
discovery module and a database management system. The discovery module 
sends queries to the database, and the database answers. The queries are typically 
of the form "How many objects in the database match p'', where p is a possibly 
interesting pattern, the database answers by giving the count.  
 
  If implemented naively, this architecture leads to slow operations. To achieve 
anything resembling the efficiency of tailored solutions, the database management 
system should be able to utilize the strong similarities between the queries 
generated by the discovery module.  
 
  The view of KDQL as locating frequently occurring and interesting patterns 
from data suggests that KDQL can benefit from the extensive research done in the 
area of combinatorial pattern matching (CPM); see, e.g., [106]. One can even 
state the following CPM principle of KDQL:  
 
  It is better to use complicated primitive patterns and simple logical combinations 
than simple primitive patterns and complex logical form.  

 
9.8  Association rules algorithms 

 
  In this Section we discuss using KDQL algorithm to discover DM problems such as 
association rules where the above algorithm can be used.  
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  Given a schema R = {A1,……,Ap} of attributes with domain {0,1}, and a relation r over 
R, an association rule [12] about r is an expression of the form X ⇒B, where X ⊆  R 
and B ∈  R \ X. The intuitive meaning of the rule is that if a row of the matrix r has a 1 
in each column of X, then the row tends to have a 1 also in column B.  
 
Examples of data where association rules might be applicable include the following. 
 
• A student database at a university: rows correspond to students, columns to courses, 

and a 1 in entry (s, c) indicates that the student s has taken course c. 
 
• Data collected from bar-code readers in supermarkets: columns correspond to 

products, and each row corresponds to the set of items purchased at one time.  
 
• A database of publications: the rows and columns both correspond to publications, 

and (p, p') = 1 means that publication p refers to publication p'.  
 
• A set of measurements about the behavior a system, say exchanges in a telephone 

network. The columns correspond to the presence or absence of certain conditions and 
each row correspond to a measurement: if entry (m, c) is 1, then at measurement m 
condition c was present.  

 
  Given W ⊆R, we denote by s (W, r) the frequency of W in r: the fraction of rows of r 
that have a 1 in each column of W. The frequency of the rule X⇒B in r is defined to be 
s(X∪ {B}, r), and the confidence of the rule is s(X ∪ {B}, r)=s(X, r).  
 
  In the discovery of association rules, the task is to find all rules X ⇒  B such that the 
frequency of the rule is at least a given threshold σ and the confidence of the rule is at 
least another threshold θ. In large retailing applications the number of rows might be 
106 or even 108, and the number of columns around 5000. The frequency threshold σ 
typically is around 10-2—10-4. The confidence threshold or hundreds of thousands of 
association rules. (Of course, one has to be careful in assigning any statistical 
significance to findings obtained from such methods.)  
 
  Note that there is no predefined limit on the number of attributes of the left-hand side 
X of an association rule X⇒B, and B is not fixed, either. This is important so that 
unexpected associations are not ruled out before the processing starts. It also means that 
the search space of the rules has exponential size in the number of attributes of the input 
relation. Handling this requires some care for the algorithms, but there is a simple way 
of pruning the search space.  
 
  We call a subset X ⊆R frequent in r, if s(X, r) ≥ σ. Once all frequent sets of r are 
known, finding the association rules is easy. Namely, for each frequent set X and each 
B∈X verify whether the rule X \ {B}⇒B has sufficiently high confidence.  
 
  How can one find all frequent sets X? This can be done in a multitude of ways [5, 77, 
81, 107, 108, 109]. A typical approach [5] is to use that fact that all subsets of a 
frequent set are also frequent. A way of applying the framework of Algorithm find all 
frequent patterns is as follows.  
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  First find all frequent sets of size 1 by reading the data once and recording the number 
of times each attribute A occurs. Then form candidate sets of size 2 by taking all pairs 
{B, C} of attributes such that {B} and {C} both are frequent. The frequency of the 
candidate sets is again evaluated against the database. Once frequent sets of size 2 are 
known, candidate sets of size 3 can be formed, these are sets {B, C, D} such that {B, C}, 
{B, D}, and {C, D} are all frequent. This process is continued until no more candidate 
sets can be formed. 
  
 As an algorithm, the process is as follows.  
 
Algorithm 9.2 Finding frequent sets for association rule.  
1. C := {{A} | A ∈  R};  
2. F := 0;  
3. i := 1;  
4. while C≠0; do  
5.       F':= the sets X ∈  C that are frequent;  
6.       add F' to F ;  
7.     C := sets Y of size i+1 such that  
8.     each subset W of Y of size i is frequent;  
9.     i:=i+1;  
10. od; 
  
  The algorithm has to read the database at most K + 1 times, where K is the size of the 
largest frequent set. In the applications, K is small, typically at most 10, so the number 
of passes through the data is reasonable.  
 
 A modification of the above method is obtained by computing for each frequent set X 
the sub relation rX ⊆ r consisting of those rows t⊆   r such that t [A] = 1 for all A∈  X. 
Then it is easy to see that for example r{A,B,C}= r {A,B}∩  r {B,C} . Thus the relation rX for a 
set X of size k can be obtained from the relations rX'  and  rX''  , where X' = X \{A} and 
X'' = X /{B} for some A, B∈   X with A≠ B. This method has the advantage that rows that 
do not contribute to any frequent set will not be inspected more than once. For 
comparisons of the two approaches, see [92, 97, 110].  
 
  The algorithms described above work quite nicely on large input relations. Their 
running time is approximately O(NF ), where N = np is the size of the input and F is the 
sum of the sizes of the sets in the candidate collection C during the operation of the 
algorithm [104]. This is nearly linear, and the algorithms seem to scale nicely to tens of 
millions of examples. Typically the only case when they fail is when the output is too 
large, i.e., there are too many frequent sets.  
 
  The methods for finding frequent sets are simple: they are based on one nice but 
simple observation (subsets of frequent sets must be frequent), and use straightforward 
implementation techniques.  
 
  A naive implementation of the algorithms on top of a relational   database system 
would be easy: we need to pose to the database management system queries of the form 
" What is s({A1,…..,Ak }, r)?", or in SQL  
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  select count(*) from r t  
  where t[A1 ] = 1 and ……and t[Ak ] = 1  
 
 The number of such queries can be large: if there are thousands of frequent sets, there 
will be thousands of queries. The overhead in performing the queries by an ordinary 
DBMS would probably be prohibitive.  
 
  The customized algorithms described above are able to evaluate masses of such 
queries reasonably efficiently, for several reasons. First, all the queries are very simple, 
and have the same general form, thus there is no need to compile each query 
individually. Second, the algorithms that make repeated passes through the data 
evaluate a large collection of queries during a single pass. Third, the algorithm that 
builds the relations rX for frequent sets X use the results of previous queries to avoid 
looking at the whole data for each query. 
  
 Association rules are a simple formalism and they produce nice results for binary data. 
The basic restriction is that the relation should be sparse in the sense that there are no 
frequent sets that contain more than about 15 attributes.  
 
 Namely, the framework of finding all association rules generates typically at least as 
many rules as there are frequent sets, and if there is a frequent set of size K, there will 
be at least 2K frequent sets.  
 
  The information about the frequent sets can actually be used to approximate fairly 
accurately the confidences and supports of a far wider set of rules, including negation 
and disjunction [111].  
 
 As an example, consider the simple case of mining for association rules in a course 
enrollment database. The user might say that he/she is interested only in rules that have 
the "Data Management" course on the left-hand side. This restriction can be utilized in 
the algorithm for finding frequent sets: only candidate sets that contain "Data 
Management'' need to be considered. 

  
 

9.9  Sampling the results of KDQL 
 

  DM is often difficult for at least two reasons: first, there are lots of data, and second, 
the data is multidimensional. The hypothesis or pattern space is in most cases 
exponential in the number of attributes, so the multidimensionality can actually be the 
harder problem.  
 
 A simple way of alleviating the problems caused by the volume of data (i.e., the 
number of rows) is to use sampling. Even small samples can give quite good 
approximation to the association rules [5, 109] or functional dependencies [113] that 
hold in a relation. See [112] for a general analysis on the relationship between the 
logical form of the discovered knowledge and the sample sizes needed for discovering 
it.  

 
  The problem with using sampling is that the results can be wrong, with a small 
probability. A possibility is to first use a sample and then verify (and, if necessary, 
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correct) the results against the whole data set. For instances of this scheme, see [109, 
113]; also the generic algorithm can be modified to correspond to this approach. We 
give the sample-and-correct algorithm for finding functional dependencies.  
 
 Algorithm 9.3 Finding the keys of a relation by sampling and correcting.  

Input. A relation r over schema R.  
Output. The set of keys of r.  
Method.  

1. s := a sample of r;  
2. K := keys(s);  
3. while there is a set X ∈K such that X is not a key of r do  
4.     add some rows u,v ∈r with u[X]= v[X] to s;  
5.     K := keys(s);  
6. od;  
7. output K.  

 
 
 

9.10 KDQL by examples  
 

  In this Section, we introduce our KDQL operator using KDQL rules, showing its 
application to mining problems based on a practical case. The practical case is i-
extended database and classical database collecting purchase data of a food-market. 
When a customer buys a set of products (also called items), the whole purchase is 
referred to as a transaction having a unique identifier, a date and a customer code. Each 
transaction contains the set of bought items with the purchased quantity and the price. 
The simplest way to organize this data is the table Purchase, depicted in table 9.4. The 
transaction column (tr.) contains the identifier of the customer transaction; the other 
columns correspond to the customer identifier, the type of the purchased item, the date 
of the purchase, the unitary price and the purchased quantity (q.ty).  

 
tr. Customer item   date price q.ty  
1 cust1 milk 12/17/95 140 1  
1 cust1  corn_flaks 12/17/95 180 1  
2 cust2 bread  12/18/95 25     2  
2 cust2 cheese 12/18/95 150 1  
2 cust2 coke 12/18/95 300 1  
3 cust1 coke 12/18/95 300 1  
4 cust2 bread  12/19/95 25     3  
4 cust2 coke 12/19/95 300 2  

  
                              Table 9.4 The Purchase table for a food-market 
 

  Association rules in literature, association rules were introduced in the context of the 
analysis of purchase data, typically organized in a way similar to that of the purchase 
table.  
 
  A rule describes regularities of purchased items in customer transactions. For 
example, the rule.  
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{ cheese, coke} ⇒  bread  
  

States that if cheese and coke are bought together in a transaction, also bread  is 
bought in the same transaction. In this association rules, the body is a set of items and 
the head is a single item. Note that the rule {cheese, coke)⇒  cheese, is not interesting 
because it is a tautology: in fact if the head is implicated by the body the rule does not 
provide new information. This problem has the following formulation:  

 
 KDQL  RULE  Associations AS  
SELECT DISTINCT 1..n  item  AS BODY,  
1..1 item AS HEAD,  
SUPPORT, CONFIDENCE  
FROM Purchase  
GROUP BY transaction  
EXTRACTING RULES WITH SUPPORT: 0.1,  
CONFIDENCE: 0.2  

 
 The KDQL RULE operator produces a new table, called association, where each tuple 
corresponds to a discovered rule. The SELECT clause defines the structure of rules: the 
body is defined as a set of items whose cardinality is any positive integer as specified 
by 1..n; the head is defined as a set containing one single item, as specified by 1..1. The   
annotations 1..n and 1..1 are optional in the syntax of Appendix A this cardinalities are 
assumed by default when they omitted. The DISTINCT keyword states that no 
replications are allowed inside body or head. This keyword is mandatory because rules 
are meant to point out the presence of certain kind of items, independently of the 
number of their occurrences. Furthermore, the SELECT clause indicates that the 
resulting table has four attributes: BODY, HEAD, SUPPORT and CONFIDENCE.  
 
 The KDQL RULE operator inspects data in the Purchase table grouped by transaction, 
as specified by the GROUP BY clause. Table 9.5 shows the purchase table after the 
grouping. Rules are extracted from within groups, their support is the number of groups 
satisfying the rules divided by the total number of groups, and their confidence is the 
number of groups satisfying the rule divided by the number of groups satisfying the 
body.  
 
  The clause EXTRACTING RULES WITH indicates that the operator produces only 
those rules whose support is greater than or equal to the minimum support and the 
confidence is greater than or equal to the minimum confidence. In this case, we have a 
minimum threshold for support of 0.1 and for confidence of 0.2. Table 9.6 shows the 
resulting associations table; observe that if we change the minimum support to 0.3, we 
then loose almost all rules of table 9.6 except those having 0.50 as support.  
 
 Variants of association rules several variants of the basic case of simple association 
rules are possible, in the following, we discuss them.  
 
   If we are interested only in extracting rules from a portion of the source table instead 
of the whole table, a selection on the source table is necessary.  
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tr. Customer Item date   Price q.ty  
customer1 milk 12/17/95 140 1   

1 customer1 corn_flaks 12/17/95 180 1  
customer2 bread  12/18/95 25 2  
customer2 cheese 12/18/95 150 1  

 
2 

customer2 coke 12/18/95 300 1  
3 customer1 coke 12/18/95 300 1  

customer2 bread  12/19/95 25 3   
4 customer2 coke 12/19/95 300 2  

 
   Table 9.5 The Purchase table grouped by transaction 

 
 
 

    BODY HEAD      S.     C.  
{milk} {corn_flaks} 0.25 1  
{corn_flaks} {milk} 0.25 1  
{bread } {cheese} 0.25 0.5  
{bread } {coke} 0.5 1  
{cheese} {bread } 0.25 0.5  
{cheese} {coke} 0.25 1  
{coke} {bread } 0.5 0.66  
{coke} {cheese} 0.25 0.33  
{bread ,cheese} {coke}          0.25          1  
{bread ,coke} {cheese} 0.25 0.5  
{cheese ,coke} {bread } 0.25 1 

  
 

Table 9.6 The associations table containing association rules valid for  
data in purchase table 

 
 Similarly to the classical SQL FROM clause, in our KDQL it is possible to specify an 
optional WHERE clause associated to the FROM clause. This clause creates a 
temporary table by selecting tuples in the source table that satisfy the WHERE clause, 
then, rules are extracted from this temporary table. For example, if we are interested 
only in purchases of items that cost no more than $150, we write:  

 
KDQL RULE Associations AS  
SELECT DISTINCT  1..n  item AS BODY,  
1..1 item AS HEAD, SUPPORT, CONFIDENCE  
FROM Purchase WHERE price <= 150  
GROUP BY transaction  
EXTRACTING RULES WITH SUPPORT: 0.1,   
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                                CONFIDENCE: 0.2  
 

  If rules must be extracted only from within groups with a certain property, it is 
possible to use the classical SQL HAVING clause associated to the GROUP BY clause. 
Inside this clause, either aggregate functions (such as COUNT, MIN, MAX, AVG) or 
predicates on the grouping attributes can be used. For instance, if we like to extract 
rules from purchases of no more than six items, we write:  

 
KDQL  RULE  Associations AS  
SELECT DISTINCT  1..n item AS  BODY,  
 1..1 item AS HEAD, SUPPORT, CONFIDENCE  
FROM Purchase  
GROUP BY transaction  
HAVING COUNT (*) <= 6  
EXTRACTING RULES WITH   SUPPORT: 0.1,  
                                              CONFIDENCE: 0.2  

 
In [110] the case of association rules is extended to generalized association rules, i.e. 
rules with an arbitrary number of elements in the head. Our operator treats also this 
case, by means of a different specification for the cardinality of the head, that becomes 
1..n instead of 1..1.  

 
 KDQL RULE General_Associations AS  
SELECT DISTINCT  item  AS  BODY,  
1..n item AS HEAD, SUPPORT, CONFIDENCE  
FROM Purchase  
GROUP BY transaction  
EXTRACTING RULES WITH SUPPORT: 0.1,  

                                CONFIDENCE: 0.2  
 

  With the KDQL RULE operator it is possible to group the source table by whichever 
attributes; this fact changes the meaning of extracted rules. For example, if the Purchase 
table were grouped by customer instead of the usual transaction, rules would describe 
regularities among customers, independently of the purchase transactions. Thus, we 
analyze the customer behavior with out paying attention to the transactions in which 
items are purchased we will give a simple  example but we are not going to focus on 
clustering  rules in this thesis it will be a future work. The problem is formalized as 
follows:  

 
KDQL RULE Customer Associations AS  
SELECT DISTINCT  item AS BODY,  
1..n item AS HEAD, SUPPORT, CONFIDENCE  
FROM Purchase  
GROUP BY customer  
EXTRACTING RULES WITH SUPPORT: 0.1,  
                                             CONFIDENCE: 0.2  

 
9.11 Condensed  KDQL representations   
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    We remarked in Section 9.6 that KDD is an iterative process.   Once a DM algorithm 
has been used to discover potentially interesting patterns, the user often wants to view 
these patterns in different ways, have a look at the actual data, visualize the patterns, 
etc. A typical phenomenon is also that some pattern p looks interesting, and the user 
wants to evaluate other patterns that closely resemble p. In implementing such queries, 
caching of previous results is obviously useful. Still, having to go back to the original 
data each time the user wants some more information seems somewhat wasteful. 
Similarly, in the KDQL algorithms presented in Section 9.7 the frequency and 
interestingness of each pattern are verified against i-extended database. It would be 
faster to look at some sort of short representation of the data.  
 
 Given a data collection d ∈D, and a class of patterns P, a condensed representation for 
d and P is a data structure that makes it possible to answer queries of the form “How 
many times does p ∈  P occur in d'' approximately correctly and more efficiently than 
by looking at d itself.  
 
A simple example of a condensed representation is obtained by taking a sample from 
the data: by counting the occurrences of the pattern in the sample, one gets an 
approximation of the number of occurrences in the original data. Another, less obvious 
example is given by the collection of frequent sets of a 0-1 valued relation [111]: the 
collection of frequent sets can be used to give approximate answers to arbitrary Boolean 
queries about the data, even though the frequent sets represent only conjunctive 
concepts. The data cube [114] can also be viewed as a condensed representation for a 
class of queries. Similarly, in computational geometry the notion of an 
“approximation” [115] is closely related.  
 
Developing condensed representations for various classes of patterns seems a promising 
way of improving the effectiveness of KDQL algorithms. Whether this approach is 
generally useful is still open.  

 
 

9.12 Visual representation of the KDQL rules 
  
   For effective and interactive mining of i-extended database knowledge, visual 
representation of both data and knowledge has become an important issue for further 
study. Some interesting techniques has been developed for visual representation of 
association rules at a simple concept level using  2D and  3D dimensional feature tables 
such as bar charts, pie charts, or multidimensional curves [116]. There are also some 
interesting studies on the visual representation of association rules, such as using arrow 
width to represent the strength of rule implication [117], etc. visualizing the result table 
must focus on extracting right knowledge data rules and avoiding the redundant rules. 
However, the visual representation of rules at multiple concept levels is still largely an 
open issue for further study.  

 
 

9.12.1 Removal of redundant rules 
  

   Discovering the knowledge's by the use of association rules at i-extended 
database or at the relational databases levels, similar rules could be generated at 
different concept levels in DBMS. Some of these rules can be considered as 



 115 

redundant and can be eliminated from the knowledge base to avoid the inclusion 
of many superfluous rules. An interesting measurement for the generation of only 
interesting rules at mining association rules proposed in [110] is as follows. In 
principle, a rule is considered redundant if it does not convey additional 
information and is less general than another rule. More specifically, a rule is 
considered interesting only if its support is more than (r, s) times the expected 
value or its confidence is more than (r, c) times the expected value, where r is a 
user specified minimum interest ratio. Efficient methods have been developed to 
discover interesting (i.e., non redundant) association rules with non redundant 
values [110]. It seems that a similar measurement can be developed in mining 
other methodology rules at any concept levels. The judgment, detection and 
removal of redundant rules at mining various kinds of rules are an important issue 
for further study. 

 
9.12.2 Data & Knowledge Querying 

 
 One of the reasons attributed to the great success of relational database 
technology has been the existence of a high-level, declarative, query language, 
which allows an application to express what conditions must be satisfied by the 
data it needs, rather than having to specify how to get the required data. Given the 
large number of patterns that may be mined, there appears to be a definite need for 
a mechanism to specify the focus of the analysis. Such focus may be provided in 
at least two ways. First, constraints may be placed on the database (perhaps in a 
declarative language) to restrict the portion of the database to be mined for, e.g. 
[26]. Second, querying may be performed on the knowledge that has been 
extracted by the mining process, in which case a language for querying knowledge 
rather than data is needed. An SQL like querying mechanism has been proposed 
for the KDQL as well details of which are provided in latter. 

 
 

9.13  Visualizing KDQL results 

  The information visualization is a conjunction of a number of fields such as data 
mining, cognitive science, graphic design, and interactive computer graphics. 
Information visualization attempts to use visual approaches and dynamic controls to 
provide understanding and analysis of multidimensional data. The data may have no 
inherent 2D or 3D semantics and may be abstract in nature. There is no underlying 
physical model and much of the data in databases is of this type. The role of 
information visualization first acts as an exploratory tool, useful for identifying subsets 
of the data, structures trends and outliers may be identified, statistical tests tend 
incorporate isolated instances into a broader model as they attempt to formulate global 
features and then there is no requirement for an hypothesis, but the techniques can also 
support the formulation of hypotheses if wanted.  

 
 

9.14 I-extended databases and KDQL scripts  
 

  After we apply DM rules into KDQL empirically it will act like DMQL [12]. We will 
join the results to a visual mode such as in SQL+D [29], the SQL+D could be an 
alternative for visualizing the result in KDQL at this stage. In KDQL mode we will use 
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the classical SQL query language to formulate the query in the program at this level, but 
sooner or later. The program will understand the syntax of KDQL and my future 
challenge is to make it works. KDQL mode has the advantage that they can be 
understood easier than complex ones, and therefore they can provide valuable insight to 
analysts in order to understand i-extended database. Executing the KDQL program we 
will get some interfaces these interfaces are describing in the following scripts. 
 
• Interacting aliases in i-extended database will be issued in this script in figure 9.2. 

 

 
 

Figure 9.2 Integrating i-extended database aliases 
  
• In i-extended database we can also review the images or comments for each 

particular database table see figure 9.3. 
 

            
 
  Figure 9.3. Reviewing the selected table to be retrieved   
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• Applying the KDQL after selecting the target databases table to be retrieve will be 
specify by the KDQL  program, figure 9.4 contains a view of  the KDQL program. 
 

 
 

    Figure 9.4 Retrieving a selected database table in KDQL mode 
 
• Visualizing the retrieved results in 2D charts. See figure 9.5 for more details 
concerning the results. 
 

 
 
         Figure 9.5 2D charts  in KDQL result mode 
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• KDQL have the same visualization results in 3D charts mode, it can be seen in 
figure 9.6. 

 

 

      Figure 9.6.  3D charts in KDQL result mode 
 

• Getting the 2D and 3D results helps the user to demonstrate the differences 
between values but knowing the average could helps him more to make his own 
decision. Figure 9.7 shows the average of the values.   
 

 
 

Figure 9.7. The average decision result  in KDQL mode  
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9.15 Conclusion 

 In this Chapter we described the KDQL RULES operation and their four phases and 
how can the KDQL interact i-extended databases?. The architecture of the KDQL was 
given and some remarkable algorithms such as association rules were shown also. 
Moreover, examples were given as well. In this Chapter there were some problems 
which were not solved yet and one of my future challenges is to solve them. One of 
these problems could be the applying of KDQL RULES syntax operation in the 
program instead of the classical SQL statement .    
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Chapter 10 

Conclusion 
 

   KDD is a rapidly expanding field with promise for great applicability. Knowledge 
discovery became the new database technology for the incoming years. The need for 
automated discovery tools caused an explosion in the number and type of tools 
available commercially and in the public domain. These requirements encouraged us to 
propose a new KDD model so called ODBC_KDD(2).One of the ODBC_KDD(2) 
model requirements is the implementation of a query language that could handle DM 
rules. This query language is called KDQL. KDQL is a companion of two major tasks in 
KDD such as DM and Data Visualization. These requirements motivates us to  think for 
the possibility of joining the two tasks of KDD  commonly known as Data Mining 
(DM) and Data Visualization (DV) together in one single KDD process.  Integrating 
DM and DV requires a new database concept. This database concept is called “i-
extended database“. I-extended database could be retrieved by the use of KDQL. 
KDQL RULES operation was also theoretically proposed and also some examples were 
given. Using KDQL RULES is used only to find out the association rules in i-extended 
database we have.  
 
 The development and results of this thesis would contribute to the data mining and 
visualization fields in several ways. The formulation of a set of heuristics for algorithms 
selection will help to clarify the matching between a specific problem and the set of best 
suited algorithms or techniques (i.e. association rules) for solving it. These guidelines 
are expected to be useful and applicable to real DM projects.  
 
  In addition, in this dissertation work we attempted to show how two different 
approaches (i.e., association rules and visual techniques) can be integrated to discover 
hidden rules. In particular, we pursue the visualization of the application of a DM rules 
to a particular problem, through the creation of new ways of visualizing parameter 
spaces and induced models for DM, and their integration with algorithmic methods. 
This integration will provide support for user navigation and exploration of huge 
parameter spaces and complex induced models.  
 
 Also, in this thesis, we have investigated the role of the visualization paradigm in 
knowledge discovery tasks, and extend of its applicability to parameter selection and 
model exploration problems, where currently only algorithmic approaches have been 
applied, or visualization has been poorly or inadequately applied. Here, we are not 
saying that visualization can replace other methods for knowledge discovery tasks or 
work better than methods from other disciplines, but we are arguing in favor of a useful 
integration of visualization with other approaches, in order to visualize specific DM 
tasks that have a significant impact in the quality of the results of the data mining 
process.  
       
  The conclusion of this dissertation is organized as follow. Section 10.1 presents a 
summary of my thesis work. In Section 10.2 discussion and research direction. Finally, 
in Section 10.3 future research work. 
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10.1 Summary of the thesis work 
 

  In this thesis, we introduced a remote access knowledge discovery in databases (KDD) 
model called ODBC_KDD (2). In ODBC_KDD (2) model we proposed a query 
language called Knowledge Discovery Query Language (KDQL) as well. KDQL was 
suggested to retrieve proposed databases called i-extended database. The KDQL and i-
extended database were theoretically implemented for mining the discovered 
association rules. The discovered association rules can be defined by a set of 
expressions of a First Order Logical (FOL) language. A similar approach to KDQL 
could be Data Mining Query Language (DMQL) which is presented in [12]. Syntax for 
KDQL RULES operation was also proposed in appendix A and some examples were 
shown as well. Visualizing the KDQL results will be presented in appendix B and some 
remarks regarding the program will be given also. Moreover, by using  visualization 
mode  in KDQL  for reviewing the result data chats in  2D and  3D  forms will use the 
same technique as in SQL+D query which was described in [29]. The major 
contributions of my thesis work are summarized as follows: 

 
1. The idea of proposing a new remote access KDD model called ODBC_KDD (2) 

has been introduced in [26]. The goal of proposing this model is to build an 
attractive model that could get results with more detailed description such as 
visualization, scripts, statistical inferences and more. One of the architecture 
components in this model provides a query language the so called Knowledge 
Discovery Query Language (KDQL) in their server side. This query tool plays a 
deterministic role in this thesis work.   

 
 
2. The use of a conceptual KDD remote access model leads to access to a database. 

Accessing a database by a query language such as KDQL in the ODBC_KDD (2) 
model will be issued as well. We proposed a database concept called i-extended 
database (I-ED) to be addressed by the use of KDQL query language. Frameworks 
for i-extended database consider that the whole process of DM can be viewed as a 
querying activity. Our simple formalization of operations enables the definition of 
mining processes as sequence of queries, by using the closure property. The 
description of a non-trivial mining process using these operations has been given 
and even if no concrete query language or query evaluation strategy is available yet, 
it is a mandatory step towards general purpose query languages for KDD 
applications.  

 
     KDD query language such as KDQL is a good candidate for i-extended database 

querying though because it is dedicated to Boolean and association rule mining, 
respectively. A simple Pattern Discovery Algebra has been proposed in [91]. It 
supports pattern generation, pattern filtering and pattern combining operations. This 
algebra allows the user to specify discovery strategies, e.g., using different criteria 
of interestingness but at a macroscopic level; implementation issues or add-value for 
supporting the mining step are not considered.  

 
    Recent contributions to the logic programming framework make it suitable for DM 

purposes. Descriptive logic programming (or learning from interpretations [37]) is a 
framework for the discovery of first-order regularities in relational databases. We 
also presented, as an example, i-extended database for association rules, and gave a 
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realistic network system in table 8.3 using simple operations. It appears that without 
introducing any additional concepts, standard database terminology enables to carry 
out i-extended database querying and those recent contributions to query 
optimization techniques can be used for i-extended database implementation. A 
significant question is whether i-extended database framework is interesting for a 
reasonable collection of DM problems. We currently study KDD processes that 
need different classes of patterns.  

 
 
3. Earlier a DMQL was described in [12]. It was designed to explore and discover 

relations in relational databases. These relations hold interesting patterns or rules. 
These rules or patters could be investigated by the association rules. Mining the 
association rules requires logical foundations in DM tasks. KDQL is similar KDD 
query language to the DMQL, however KDQL discovers only the association rules. 

 
 
4. Applying logical foundation approaches using First Order Logic (FOL) languages 

for the description of such patterns offers DM the opportunity of discovering more 
complex regularities which may be out of reach for attribute-value languages and 
classical statistical algorithms.  Without logical foundation approach we are unable 
to locate the entire supported data item (patters) and then confidence will be 
concluded. Without support and confidence of data item we can not capture any 
associated rule from the database that   that could be mined by KDQL.    

 
 
5. For mining the discovered association rules from i-extended database we have 

described a general foundation of association rules. By theses rules we can mine 
association regarding to the frequent rate of support and confidence in the itemset 
(table 9.6). The main majority of association rules are the measures of the 
confidence and support. With support and confidence of the itemset we could 
compute the interestingness. The interesting itemset in the database led us to mine 
or discover the data that have got the highest priority of support and then the 
confidence. 

 
 
6. In ODBC_KDD (2) model we proposed a query language called Knowledge 

Discovery Query Language (KDQL).  This KDQL is an attractive part of the 
ODBC_KDD (2) model and it was theoretically investigated by us.  In figure 10.1 
we show the KDQL connections in their environments.   
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  In this figure we can see that the KDQL is a part of the ODBC_KDD (2) model. 
KDQL will call i-extended database via ODBC connection. I-extended database will 
call all the requested information from traditional databases via the specific ODBC 
diver for each database. KDQL was implemented to handle DM task. One of the DM 
common tasks is visualization. DM visualization techniques can be maintained to 
visualize interesting association rules discovered from the databases. The visual 
result of the KDQL query will be represented in 2D and 3D charts (i.e. Pie, Bar, 
Points, Lines). In KDQL we use two different techniques of mining or discovering 
the association rules. We use a technique similar to the DMQL in DBMiner system in 
[12]. The second is the visualization techniques. It was also similar to SQL+D visual 
query in [29], which can retrieves and then represents charts, graphs, and images 
stored in the database. The KDQL program was written in Delphi programming 
language. Syntax to the KDQL has been given and some examples were also 
expressed in appendix A. 

 
 

10.2 Discussion and research direction 
 

  The growths of the data in the databases are increased day by day and extracting all 
the interesting data from that database is impossible some times. This challenge 
motivated us to think of a database concept (called i-extended database) that could 
interact to different types of databases and capture all the required information and store 
it temporary to make it accessible for the KDQL. KDQL and the i-extended database 

 

 

  

via 
ODBC 

Via 
ODBC 

Via 
ODBC 
driver 

 

Figure  10.1 The envaroumnets of KDQL  
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are proposed and then located in ODBC_KDD (2) model.  This fact led us to divide this 
framework in this thesis into two main parts i-extended database and KDQL. 

 
1. In the introduction of i-extended database we considered a simple query language 
that could be defined by using normal database terminology. We generally demonstrate 
the use of this framework to model typical DM processes. For modeling DM process we 
use association rules to discover or mine all the frequent and confidence values that 
appear in the itemset. Using only association rules is not the only hope but it could be 
the starting points to several kinds of rules such as   clustering, discriminant, etc in the 
future. The idea behind that is to help the user gather all the requested information in 
one place and then learn the behavior of the information he found. A significant 
question is whether i-extended database framework is interesting for a reasonable 
collection of DM problems. We currently study KDD processes which need different 
classes of patterns. 
 
2. KDQL has two main aspects. The first is to mine or discover association rules from 
the I-extended database. The second is to use this discovered association rules to make 
the information "visible".  
 
 Firstly, mining or discovering association rules from I-extended database was 
proposed. It requires mining frequent association rules that mainly consist of finding 
frequent itemsets. Discovering these frequent sets led us to compute the support and 
confidence itemset and then interestingness of the itemsets that appears in the i-
extended database. We also proposed syntax for the KDQL. The syntax was not 
practically implemented yet but we gave examples for a general aspect. The results also 
are summarized in Appendix A.        
 
  Second, developing a visualization result of mining the association rules in i-extended 
database helps the user to understand the behavior of the information that was laying in 
i-extended database. The visualization mode of the KDQL was designed to view 2D 
and 3D charts in four different types such as pie, line, points and   bars, also an average 
mode is included as well. Results also were presented in Appendix B.    

 
10.3 Future work 

 
  Some inserting future research problems will be presented respectively in this Section. 
The main focus of my future work will be to improve all the related components of the 
ODBC_KDD (2) model which was proposed by Fazekas G. and me in [26]. Moreover, 
my future task will be listed as follows. 

 
1. In the ODBC_KDD (2) model we suggested to develop a special ODBC driver in 

both sides (client / server). This driver is called Extended ODBC driver (EODBC). 
The aim of this driver is to handle the KDQL syntax instead of the classical SQL 
query statements. 

 
2. In the server side in ODBC_KDD (2) model we proposed an interpreter to be the 

interface between the Extended ODBC (EODBC) driver and   the SQL driver. The 
main goal is to translate the KDQL syntax into common SQL syntax and inversely, 
from SQL to KDQL syntax. This interpreter helps the requested KDQL syntax to 
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reach the data safely. SQL is a standard query language that could access any type 
of traditional databases.  

 
3. Regarding to the databases in the server side in ODBC_KDD (2) model the SQL 

application can access only one type of databases which is DBMS. This problem led 
us to propose a new database concept for the model. It is called i-extended database. 
This i-extended database could be placed between DBMS and the SQL application 
to give reliability to the model. It is clear from the context in Chapter 8, that the 
operation can also be applied on i-extended database instances while formally; we 
should introduce new notations for them. This requirement could be identify if we 
add more practical capability to i-extended database by giving i-extended database 
the right to apply one part of the whole KDD process which is extracting all the 
interesting association rules from many other database sources. These rules could be 
temporary stored in i-extended database. The other part of the KDD process will be 
maintained by the KDQL which collects the most interesting rules from i-extended 
database. 

 
4.  I want to implement a new core operator that provides an encoding of association 

rules [42].  
 
 5. If I’ll succeed in implementing a new core operator, then I should design a new 

post-processor to decode the rules and put the relations containing the desired rules 
in the table which is stored in i-extended database. 

 
6. I want also to add more capability to the visualization mode in the KDQL program.  

KDQL program require new implementations such as simplified display 
specifications syntax and instantiation of display elements, implementing of directed 
and undirected graphs as a visualization aid for extracted data, implementation and 
new syntax of charts with categorization, directed and undirected graphs for 
advanced visualization of data and implementation and expanded features for 
temporal presentations with time constraints using simple and intuitive in-the-query 
specifications.  
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APPENDIX   A 
 

 KDQL Syntax 
 

A.1 KDQL syntax  
 
 
 

  This appendix presents the proposed syntax of the KDQL statement rules. In the 
syntax, square brackets denote the optionally. Productions based on the classical SQL 
syntaxes are as follow. 

 
A.1.1 Denotations: 
 

- < FromList > denotes the standard SQL clauses FROM. 
- < WhereClause > denotes the standard SQL clauses WHERE. 
- < TableName > denotes identifiers such as table names. 
- < AttributeName > denotes  identifiers such as attribute  names. 
- < AttributeList  >    denotes   a list of  attributes names to be identifier.  
- < Number > denotes a positive integer. 
- < real > denotes real numbers. 

 
 
 
 

< KDQL_RULES_OP > := KDD RULES < TableName > AS  
SELECT DISTINCT < BodyDescr >, < HeadDescr >  
[,SUPPORT] [,CONFIDENCE]  
[WHERE < WhereClause >]  
FROM < FromList > [WHERE < WhereClause >]  
GROUP BY < Attribute > < AttributeList>  
  [HAVING < HavingClause > ]  
{[CLUSTER BY < Attribute> < AttributeList> (It could be a future work)]} 
[HAVING < HavingClause > ] ]  
EXTRACTING RULES WITH SUPPORT :< real >,  
                      CONFIDENCE:<real> 
 
< Body_Description_KDQL>:=  
 
[< Cardinaly_Sheap > ] < AttrName > < AttrList > AS BODY  
/* default cardinality sheap  for the Body: 1..n */  
 
< Head_Description_KDQL>:= 
 
[< Cardinaly_Sheap > ] < AttrName > < AttrList > AS BODY  
/* default cardinality shaep  for the Head: 1..1 */  
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 < Cardinaly_Sheap >:=< Number>  .. (< Number> | n)  
 <AttributeList>:={,<AttributeName>}  
 
 
 KDQL adopts a DMQL association rules syntax in [12] joining it with SQL+D for a 
graphical representation aspect [29]. KDQL RULES are comparisons of two kinds of 
query syntaxes. One of them is the data mining query language (DMQL) and the other 
is a visual query. KDQL will facilitate both syntaxes for a high level data mining and 
natural integration with relational query language SQL. We will introduce both 
syntaxes.  

 
 

DMQL syntax:- 
 
<DMQL>::=  
 use database <database_name>  
{use hierarchy <hierarchy_name> for 
<attribute>}  
<rule_spec>  
related to <attr_or_agg_list>  
from <relation(s)> 
[where <condition>]  
[order by <order_list>]  
{with [<kinds_of>] threshold = 
<threshold_value>  

[for <attribute(s)>]}  
 
 Mining association rules:  
<rule_spec> ::=  
 
find association rules [as 
<rule_name>]  
 

 
 

SQL+D syntax:-  
 
<query>  <SQL Query>|  <SQL 
Query>  DISPLAY <disp specs> 
 
<disp specs>  panel <id>,   <container 
panels>  
 WITH<disp element>                                
[SHOW <presentation>] 
 [AUTOSKIP <time length>] 
        
<container  panels>                               
<panel list> ON <id>.<loc>[(<layout>)] |  
<panel list> ON <id>.<loc >[(<layout>)], 
<container panels> 
 
 <panel list>  panel <id> |                      
panel <id>, <panel list> 
 
<id>  <alphabetic> | <alphabetic> 
<alphanumeric> 
       
<loc>  North | South | East | West | 
Center. 
  
<layout>  Horizontal | Vertical | 
Overlay. 
 
< chart specs>    (AttrX, AttrY) AS 
<chart elem> ON <id> [<trigger>] |           
(AttrX, AttrY, AttrZ) AS <chart elem> 
ON <id> [<trigger>]  
 
< chart elem>  linechart | barchart | 
piechart | xyscatter. 
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 A.2 Syntax examples 
 

   A.2.1 DMQL example for discovering association rules 
 
Querying the data mining   query system to find strong association relationships 
for those students majoring in computing science and born in “Hungary”, in 
relevance to the attributes gpa, birth_place and address. We are only concerned 
with the structure of the query.    

  
  (DMQL_Q): find association rules  
 related to gpa, birth_place, address  
 from student  
 where major = ``cs'' and birth_place =  “Hungary” 
 with support threshold = 0.05  
 with confidence threshold = 0.7 

 
  

A.2.2 SQL+D example for visual representation   
 

   For charts representation we have to consider a database to keep statistical 
information about the recreational activity preferred by people in different states. 
The schema looks as follows:  
 
          ACTIVITY (state, activity, pop) 
 
 where all the attributes are character strings. To see how the people in Hjdu 
Bihar, spend their free time, we might submit this query, we included both a bar  
chart and a pie chart , to see the different displays that might be obtained with the 
same data. The resulting will be display in a dialog in [29] if we use this tool.   
 

          SELECT 
                        ACTIVITY.activity  
                        ACTIVITY.population 
           FROM 
                        ACTIVITY 
           WHERE 
                        ACTIVITY.state = " Hjdu Bihar" 
           DISPLAY 
                        PANEL main 
           WITH 
                        (activity, pop) AS barchart ON main.West, 
                        (activity, pop) AS piechart ON main.East, 

                       
  "Recreational Activities Preferences" AS boxedtext ON main.North, the query 
will display a bar chart of preferred recreational activities. The two-attribute line 
chart is similar to the bar chart. A categorized chart will group values on AttrZ 
(categories) and   plot all the resulting AttrX, AttrY series in the same xy plane, 
using a different color for each category.                                               
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A.2.3 KDQL example for discovering association rules  

 
   Referring to table no 9.3 in Chapter 9, we are interesting in a rule describes the 
regularities of purchased items in customer transactions, such as {cheese, coke} 
⇒  bread.  This rule states that if cheese and coke are bought together in a 
transaction, also bread is bought in the same transaction. In this association rules, 
the body is a set of items and the head is a single item. Note that the rule {cheese, 
coke)⇒  cheese, is not interesting because it is a tautology: in fact if the head is 
implicated by the body the rule does not provide new information. 
 
 KDQL  RULE  Associations AS  
SELECT DISTINCT 1..n  item  AS BODY,  
1..1 item AS HEAD,  
SUPPORT, CONFIDENCE  
FROM Purchase  
GROUP BY transaction  
EXTRACTING RULES WITH SUPPORT: 0.1,        
                                             CONFIDENCE: 0.2                                                                                    
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 Appendix B                                                       
 
 
 
 

I-extended database & KDQL views 
 

  I-extended database and also the KDQL program was implemented by using Delphi 
programming language version 5.0, the underlying programming language source code 
of Delphi is Pascal Source Code.  
 
  Starting with i-extended database and KDQL to select and retrieve traditional   
databases via ODBC or JDBC we can get the first interface follows in i-extended 
database mode. 

 
• Interface (1): 

 
 
                   Figure B.1 Interface (1)  
 

   In this Interface we get all the database aliases which are located on you local PC 
and by pressing on Get Aliases button   the program will seek for all aliases in the 
local hard disk and listed it in the Aliases list. The user is asked to choose on of the 
database aliases. After choosing the database the name of the chosen database aliases 
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will appear on the top of the list DBDEMOS.  In the table section we can chose any 
table from the list that holds all the tables' name Tables. See interface (2). 

 
• Interface (2): 

 

 
  
    Figure B.2 Interface (2) 
 

In interface(2) the user already selected the database table which is biolife.db in this 
database table we can also see the fields  and we also may know the types of  each 
field by pointing on it and the type will appear below like Common_Name  field the 
type of the field is "ftString". We can also close completely the program by clicking 
on the key Close. But if we click on the button About    we will get interface (3). 

 
• Interface (3): 

 

 
    Figure B.3 Interface (3) 
 

In this interface it shows only the About dialog and if we click on the OK bottom it 
will go back to the interface (2) and in interface (2) again you can to the biolif.db 
database table that you have selected. See interface (4). 
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• Interface (4): 

 

 
   Figure B.4 Interface (4) 
 
 

    In this interface we will get the database table that we have chosen from the list. In 
this database we view all the storage that is related to each   value in the database 
table. In interface (4) we view the values comments and also images for each 
particular value. This will give i-extended database reliability. After viewing the 
contents of the table we can apply the KDQL to retrieve the database table by clicking 
on the bottom KDQL . This will take us to KDQL program which will be achieved in 
interface (5). 

 
• Interface(5): 

 

 
    Figure B.5 Interface (5)    
 
  Interface (5) was called from i-extended database program to retrieve selected 
database and to work with this mode we should see interface (6). 
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• Interface (6): 

 

 
 
    Figure B.6 Interface (6) 
 
  By clicking on the bottom KDQL Text Capture the program will grape the current 
SQL syntax and past it on the KDQL syntax console and then the user can change or 
modify the query the way he/she wants. To execute the query we should see the next 
interface. 
 

• Interface (7): 

 
     Figure B.7 Interface (7) 

 
  To execute a query written on the console all we have to do is to click on the key 
labeled Execute KDQL. After clicking the user can be able to see the results in 
different forms on interface (8). 
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• Interface (8): 

 

 
 
Figure B.8 Interface (8) 

 
  The first result that we can see is the retrieved database table and we can view it only 
if we click on the tabbed sheet labeled KDQL Phase2 (Retrieved Table)  on the top 
of  the notebook tabbed main form of the program. To see visualization data we 
should see the other interfaces. 
 

• Interface (9): 
 

 
    

Figure B.9 Interface (9) 
    

  The results in the retrieved database table will be presented in four different 2D 
charts forms such as Line, Bar, Pie and Points. We can see this 2D charts form by 
clicking on the tabbed sheet labeled KDQL 2D Charts  on the top of  the notebook 
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tabbed main form of the program. We can see the 3D charts which will be viewed in 
Interface 10. 

 
• Interface (10): 

 

 
   Figure B.10 Interface (10) 
 

  The same charts as the 2D can be visualized in the 3D tabbed sheet. These results 
visualize the same data as the 2D did and the only different is that it is in the 3D 
mode. We can see this 3D charts form by clicking on the tabbed sheet labeled KDQL 
3D Charts  on the top of  the notebook tabbed main form of the program. For a 
conclusion to the user we can see the average of the data in the final vision of the 
program in interface (11). 

 
• Interface (11) : 

 

 
      Figure B.11 Interface (11)  

 
 Knowing the average of the data values in the table helps the user to make his own 
decisions regarding the requested data that he is looking for. In interface (11) such an 
average could be calculated and then visualized in 3D mode. 
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