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Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are
constructed which exhibit a wide range of properties such as flat-band ferromagnetism and correlation-
induced metallic, half-metallic, or insulating behavior. The properties of these ground states can be tuned
by changing the magnetic flux, local potentials, or electron density.
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Condensed matter systems with macroscopic degenera-
cies react very sensitively on internal or external perturba-
tions and thus give rise to fascinating emergent behavior.
‘Well-known examples are electrons in a magnetic field in
two dimensions [1] and spins on lattices with geometric
frustration [2]. Dispersionless (*‘flat”) electronic bands in
solids also lead to macroscopic degeneracies. Recent ad-
vances in nanotechnology allow for the possibility to de-
sign simple structures, which have flat single-electron
bands, i.e., when electronic correlations are neglected [3—
6]. The controlled setup of optical lattices for cold atoms
using standing wave laser light fields also allows one to
realize a variety of lattice models of interacting fermions
and bosons [7,8]. The ability to generate flat bands by
changing external parameters such as a gate voltage or a
magnetic field would make even a direct manipulation of
macroscopically degenerate systems possible. For ex-
ample, the understanding of ferromagnetism in organic
compounds [5] could be improved, and the tuning of
instabilities or the switching between different phases
would permit direct applications in spintronics.

Most exact flat-band results concern flat lowest-energy
bands, and provide solutions for ground states or the low
temperature thermodynamics [8,9]. For such a case Mielke
and Tasaki proved that ferromagnetism is stabilized at or
near half-filling [10]. Lieb’s ferrimagnetism emerges on a
bipartite lattice with a macroscopically degenerate energ
level exactly in the middle of the spectrum [11]. For the
more general case, when the interaction leads to an effec-
tive flat band above a dispersive band, exact results were
derived for the periodic Anderson model [12], by exact
diagonalization of small clusters and ab initio band-
structure calculations [5], or analytically for the two-
particle problem [6].

In this Letter we concentrate on one of the simplest
lattice electron models, the Hubbard model on a diamond
chain, as found, e.g., in azurite. In the diamond chain flat
bands occur already in the one-electron picture. External
potentials or a magnetic field can give rise to additional flat
bands. For selected parameter sets, and by appropriately
tuning local potentials or the magnetic flux, we construct
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exact many-body ground states on the diamond chain,
which are either insulating or conducting and fully or
partially spin polarized. Our results thus open new routes
for the design of spin-valve devices and gate induced
ferromagnetism.

Figure 1 shows the diamond chain, whose sites are
denoted by i + r,, where i and r; (with sublattice index
s = 1,2, 3 and r; = 0) denote the unit cells and the three
sites inside, respectively. The Bravais vector of the chain is
a, periodic boundary conditions along the chain are as-
sumed. Given N electrons their density is n = N/(3N,},
where N, is the number of unit cells. The Hamiltonian for
the diamond Hubbard chain has the form

3
A= 5 M &el, eone + Ay,

\ (1
Z “-i+rx.]ﬁ-i+rs,1,

where the kinetic and the interaction part are written in k
space and position space, respectively. Here and in the
following sums or products over k and i extend over the

N, vectors enumerating the unit cells, E}J creates an

electron with spin o at site j, the local density is given
by nj, = 6}061-_3, and ¢,y , is the Fourier transformed
sublattice operator. The elements of the symmetric matrix
M, +(k) in the kinetic energy are

FIG. 1. Diamond Hubbard chain. The cross-shaped region
depicts a localized (Wannier) eigenfunction for r; =17 =0
and flux § = #/2 (see text).
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M, =M, =¢ M, =1y,
M=y 23 = 2tcos{lak + (—1)°8]/2}. 2)

M; 5 = 21 cosak,

Here, 7, 1), 1) denote the hopping matrix elements to |

nearest neighbors (NN) and to next NN sites (perpendicu-
lar and parallel to a), respectively. A Peierls phase factor
exp(i6/2) with & = 27® /P accounts for a perpendicular
magnetic field B, ® is the flux threading the unit cell, and
®q = hc/e is the flux quantum. Choosing the vector po-
tential A || a in the field dependent hopping amplitudes
i;.5(B) = ;3 O expl(i2/Pg) [1 A - dl] the magnetic
field does not alter z; and 7. The on site potential € acts
on the sublattices s =1,2. U is the on site Hubbard
repulsion. Below energies will be in units of 2.

The diagonalization of the kinetic energy part in Eq. (1)
leads to a cubic eigenvalue equation for the band dispersion
E(k). With P, =(1+ ri) +cosdcosak and Py =

t)[cosé + cosak + 1, (e — 2y cosak)] the dispersion
E,(k) (v = 1,2,3) is determined by
X3+ X(e— 2t cosak) — XPy = Py, 3)

with X = E — €. Depending on the choice of 7, 7, the
magnetic field, and the potential €, the single-electron band
structure contains one, two, or even three exactly flat bands
(Fig. 2). It should be stressed that these bands lose their
meaning as soon as the interaction is switched on.

Vidal er al. recently presented a detailed study of two
electrons on the diamond Hubbard chain in the limit 1; =
) = € = 0 [6]. They showed that for half a flux quantum
per unit square (8 = 77/2) the excited singlet eigenstates
are localized if U = 0, but become delocalized for U > Q.
Apparently, the interaction U is able to induce subtle
correlations leading to conducting states, which led them
[6] to speculate that such a delocalization also holds for a
finite electron density.

Here we construct exact many-particle ground states for
quite general cases and thereby also resolve some of the
issues raised in [6]. The strategy for deducing exact ground
states was described before in the context of the periodic
Anderson model [12], but has not yet been applied to
Hubbard models. The key steps are to first cast the
Hamiltonian in positive semidefinite form and then to
construct an explicit eigenstate with minimal energy.

E -
— < =
a) b) c)

k

FIG. 2. Single-electron band structure. (a) t; =1y =0, § =
7f2. (b) e= —1, + rIl/Z, & = 77 the upper flat bands are
degenerate for 1,2y = 1/4. (c) 1)y =0, er) cos8 = r; — cos’8.

Solution 1. Flat-band ferromagnetism.—We start with
localized ground states for densitiesn < 1/3,1; =1, =0,
and 6 = /2 (*‘Aharonov-Bohm cage™ [6]), in which case
Eq. (3) provides three flat single-electron bands with en-
ergies E; = €, Es.; = (e ¥ Ve + 4)/2 [see Fig. 2(a)].

Introducing the canonical fermionic operators C,; .,

N 1 N . o)

Corlig ZE[F:‘ O F2F6,) Copo =%, )
with F2 =17 e/Ve'+4, 0 = 0\)(=8) = (2 9),
and Q"§l=l,2)(6) - eAi5/2€i+r,.o' i e+i§/26ifa+r,‘o-a the
Hamiltonian can be written in the form

3
H = Z Z Evél..l.ﬂ'él’,i.ﬂ + fo_ (5)

i,o r=1

Since C;igé‘ng and Hy in Eq. (5) are positive semi-
definite operators, the ground state of N = N, electrons
at U > 0 is obtained by filling up the eigenstates as

N
LN =[]0, 100 (6)
i=1

{0) denotes the vacuum. The ground-state energy is E;. =

E;N. The operators C“:L - create electrons in localized
Wannier eigenstates; an example of their structure (for v =
3) is shown in Fig. 1. For n = 1/3 one obtains a unique,
fully saturated ferromagnetic ground state. For n < 1/3
only the Wannier states with a spatial overlap have the
same spin. The (degenerate) ground states hence consist of
ferromagnetic clusters of arbitrary spin orientation. When
the density is increased to n = 1/3 the clusters touch and
the degeneracy is lifted. Since f;|WL(N)) =0 and the
kinetic part of A is diagonal in real space, the ground state
(6) is localized. This is an explicit realization of Mielke-
Tasaki’s flat-band ferromagnetism [10]. Since the lowest
single-electron band is flat only for 8 = 77/2 and disper-
sive for & = 0, the system is most probably conducting; we
here encounter a metal-insulator transition as a function of
magnetic field.

Solution 1I. Correlated half-metal.—The results of
Ref. [6] suggest that itinerant states are easier to realize
at & # 7/2. To investigate this point we analyze a group of
solutions for flux &6 = 4, density n = 4/3, hopping 1,
#; >0, and local potential € = 1/(2r,) — . Then the
bare band structure consists of two upper flat bands
E,, E,, and a lower dispersive band E;(k} [Fig. 2(b)]. For
simplicity we discuss here only the case 1) 1y = 1/4, which
implies E;=E;=¢€+1t; and E;=¢—1t, —(1—
cosak)/(2¢, ). Electrons in the dispersive single-electron
band are created by the fermionic operators

YV YY) -7 S
ko \/iRk ZIle 3k,

with R, = \/1 + (1 — cosak)/(413). Defining noncanoni-
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cal fermionic operators [13] as
Aty = ilCie ™ Ciru = 216G
Eq. (1) is transformed into positive semidefinite form as

H=Y4,Al, +UP+EL )

6i+r:,a’)]v

El=(e+U+1,)N-N[3U+ 41, +1/t;] is the
ground-state energy. For the positive semidefinite operator
P =53 (Ayqhy, — ftjy — iy + 1) in Eq. (8) to assume
its minimum eigenvalue O there must be at least one
electron at each site. For N = 4N_ electrons (n = 4/3)
the ground state then has the form

PN,y = C[ﬂﬁf_gﬁlg}ﬁilm- (9a)

3
= -oITelko Jo on)
k 5=1

Here £} = [Tile! el

11'-r3“,0' H‘r;i.l
dices s;;, §;, are arbitrary but not equal, creates two
electrons with spin o on arbitrary sites of each unit cell,
¢ is a normalization factor. Since A{ - Creates one more
spin o electron in each unit cell, every lattice site is
occupied by a spin o electron. The electrons with spin
—o are spatially extended, but they are localized in the
thermodynamic limit. This is inferred from the long-
distance behavior of the ground-state expectation value
of the hopping term I, _, = (Ei_géjﬂy_g + H.c.). With
j=i+r, r/fa=m, and N, — oo one finds T, _,
(=D exp(~m/&_,)1//1 + 1/t,. The one-particle lo-

calization length

£, = —{[1 + 21, )* ~ @eyfr)? + 21 (10)

is finite; it increases almost linearly with 1/7, . The ground
state is given by

-], where the sublattice in-

[Py@nD),  an

AN
IW@N, + AND =[] &) 4 s

a=]
where n, can take the values s = 1, 2, 3. Since the opera-
tors &Ia.km— - add plane-wave-type states to |WI(4N,)) the
ground state now contains genuinely itinerant spin —o
electrons [14]. This, together with the fact that §u(N) =
0 [15] for 1 <AN <N, implies that the ground state
[WH(4N,. + AN)) is conducting. The net magnetization
decreases linearly with increasing electron density.
WP (4N, + AN)) remains the ground state up to AN =
N, (n=15/3), where it becomes nonmagnetic. For den-
sities 4/3 <n < 5/3 the ground state therefore corre-
sponds to a correlation-induced half-meial. Namely,
while the 3N, electrons with spin ¢ are completely im-
mobile and N electrons with spin — o are confined to their
localized Wannier function, only the AN —o electrons are
itinerant, leading to a low carrier-density metallic behavior

with a low spin polarization. Since the conduction through
this correlated half-metal involves only electrons of one
spin species, such a system may, in principle, serve as a
spin-valve device, if contacted by metallic reservoirs
[16,17]. Bearing in mind that at U = 0 the electronic
states at the Fermi level are dispersionless and hence
localized, we find that a finite, repulsive Hubbard inter-
action can induce a localization-delocalization transition
towards a half-metal. This is an explicit example for the
correlation-induced conducting state conjectured by Vidal
et al. [6]. At fixed magnetic field it can be realized by
tuning the sublattice potential €. Similar solutions at § =
7 can be deduced also at 71, < 1/4, when the two upper
flat bands are nondegenerate.

Solution III.—We now construct exact ground states
for more general values of the magnetic flux, § €
(— /2, +m/2), including zero flux, for electron densities
n = 5/3. In particular, we will show that, by switching on a
magnetic field, a nonmagnetic ground state may turn into a
nonsaturated ferromagnet. We note that this occurs in the
absence of any Zeeman coupling to the spin and is only due
to the Peierls factor in the kinetic energy. Specifically we
select the parameters zy = 0,7, << 0,b = — cosd/t,, e =
b— b~ In the noninteracting case one obtains a band
structure with one upper flat band at E, = € + 1/b, and
two lower dispersive bands at Eo3 = € — b/2 = (/4 +
13 + cosd cosak)'/? [Fig. 2(c)]. Defining the noncanonical
fermionic operators [13]

A‘ - 1 % b€i+a,u . éi+r3,a'ei(6/2) ‘6i+r1,a'eii(5/2]
*ig b e~ i(8/2) _ EHr Uei(ﬁfl)

V2 1
the ground-state energy follows as EWM = (U + h)N —
N.(3U + 4/b + 2b) and the Hamiltonian in positive semi-
definite form is

bCi,J T Citro

H= > SA, Al ,+UP+ED  (17)
=% io

ll.a. Field induced localized ferromagnetism at n =
5/3.—For N = 5N, the ground state has the general form
[ VY (5N, 8)) = GTET(8)]0), (13)

where GT = G;‘CI’, with G} = | | P ni"il.i.a’ inserts
two clectrons with spin ¢ and two electrons with spin
—o in each unit cell. The first term of the Hamiltonian
(12) therefore annihilates the ground state (13) since
Al ,GT = 0. In order o fulfill also BG1ET(8)[0) = 0,
the operator £7(8) requires a special form, which depends
on the properties of G1: For zero flux (6=0) Gt creates a
double occupancy on each site of the s = 3 sublattice,
where the diamonds touch, thereby blocking any electron
motion along the chain. The operator EY(s = 0), which
adds one more electron to each unit cell, can therefore
place electrons only on sublattices s = 1, 2, i.e., £E1(0) =

ni(“ié;(+r..u;. + BiELr:'Ui_:) with arbitrary numerical co-
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efficients a;, B; and spins o; 1, o; 2. Altogether the ground
state is localized and nonmagnetic with a high spin degen-
eracy and has the form

I‘Ifﬁl(SNC, )—[1—157L (Cl+r ror Sl ,ﬂn, )}E*(O)l(»

For finite flux (6 # 0) GT no longer creates a double
occupancy on each site of the s = 3 sublattice, thus allow-
ing electrons to move. To provide eigenvalue zero for the
first two terms of H, (12), £Y(8 # 0) must be chosen
such that it introduces one electron with fixed spin
(say, 1 ) on each site of the s = 3 sublattice, ie., EY(s #

0) ClT+r e
electron on all sites; ie., these electrons are immobile
(N; = 3N, N, =2N.). For 6 # 0 the ground state for
N = 5N, is therefore a nonsaturated ferromagnet indepen-
dent of & and with a finite one-particle localization length
£, (the proof proceeds as in [14]).

IILb. Field induced itinerant ferromagnetism and
insulator-metal transition at 5/3 < n <2.—The proper-
ties of the ground state at § = 0 remain valid even for N =
5N, + AN with 1 < AN < N, smce the oround state is

now |\I’HI(N 6=0 >_[ (O’ C Bl i+r, 040 )]X

iitr, o)
[PH(5N,,0)). The product is over AN arbitrary sites; the
coefficients «f, B! and spins &y, 0, are arbitrary. Thus,
at 8§ = 0 one obtains again a localized ground state. For
finite flux the ground state is instead

As a consequence there will be one T spin

AN
l—[ noKe 701"??1(5]\(2, 5)>' (14)

[WIN > 5N, 8))

Since the ground state now contains plane-wave-type con-
tributions and 8 (5N, + AN) = 0 for AN > 1, |‘?IgH(N >

N,, 8)) corresponds to a conducting, nonsaturated ferro-
magnetic state with only mobile spin —o electrons and a
magnetization M = (1 — AN/N_) . Hence the magnetic
field induces an insulator-metal transition. In the metallic
state the net magnetic moment decreases linearly with
increasing density.

Solution III therefore has the following properties: At
zero magnetic field, f; = 0, and a sublattice potential € =
t; — 17", but otherwise arbitrary £, <0, U > 0, it repre-
sents a localized nonmagnetic ground state over a continu-
ous range of densities 7 = 5/3. By contrast, at finite mag-
netic field and the potential € = 1) / cos§ — cos8 /1, but
otherwise for the same parameters, a nonsaturated, ferro-
magnetic ground state is obtained. This state is localized at
n = 5/3, but gapless for n > 5/3. For the latter density the
majority spin (o) electrons are immobile and only the
minority spin (—o) electrons are itinerant. Therefore, by
varying the magnetic field and the sublattice potential one
can tune from a localized, nonmagnetic ground state in the
density range n = 5/3 to a nonsaturated ferromagnet,
which is insulating at n = 5/3 and gapless for n > 5/3.

In summary, by constructing exact ground states on the
diamond Hubbard chain in a magnetic field we showed that
this one-dimensional structure displays remarkably com-

. plex physical properties which originate from flat single-

electron bands. The selected solutions describe flat band
ferromagnetism, correlated half-metal behavior with spin-
valve features, and insulator-metal transitions. These prop-
erties do not depend on the Zeeman interaction [18]. The
virtue of tuning fundamentally different ground states
through external magnetic fields or site-selective potentials
thereby points to new possibilities for the design of elec-
tronic devices, which can switch between insulating or
conducting and ferromagnetic or nonmagnetic states.
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