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The results described in the dissertation and in this thesis have
been published in the following three papers: [47], [48], and [49].

Introduction

A function M : Id → I is called a d-variable mean on an
interval I if for all (x1, . . . , xd) ∈ Id, the following so-called
mean value property

min(x1, . . . , xd) ≤M(x1, . . . , xd) ≤ max(x1, . . . , xd)

holds.
The goal of Chapter 1 is to construct a general class of means

based on a Chebyshev system, a measurable family of d-variable
means, and a probability measure. In order to define this class of
means, we recall the notions of Chebyshev system and measur-
able family of d-variable means, respectively.

We say that the pair (f, g) forms a (two-dimensional) Cheby-
shev system on I if, for any distinct elements x, y of I , the deter-
minant

Df,g(x, y) :=

∣∣∣∣f(x) f(y)
g(x) g(y)

∣∣∣∣
is different from zero. If, for x < y, this determinant is positive,
then (f, g) is called a positive system, otherwise we call (f, g) a
negative system.

We say that m : Id × T → I is a measurable family of d-
variable means on I if
(H1) I is a nonvoid open real interval.
(H2) (T,A) is a measurable space, where A is the σ-algebra of

measurable sets of T .
(H3) For all t ∈ T , m(·, t) is a d-variable mean on I .
(H4) For all xxx ∈ Id, the function m(xxx, ·) is measurable over T .
If (H1) and (H3) hold, and additionally we have that

(H2+) T is a topological space and A equals the σ-algebra
B(T ) of the Borel sets of T .
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(H4+) For all xxx ∈ Id, the function m(xxx, ·) is continuous over
T ,

then m : Id × T → I will be called a continuous family of d-
variable means on I .

The following lemma is the key to construct a mean in terms
of a Chebyshev system, a measurable family of means, and a
probability measure.

LEMMA. Let m : Id × T → I be a measurable family of
d-variable means, let µ be a probability measure on (T,A) and
let (f, g) be a Chebyshev system on I . Then, for all xxx ∈ Id, there
exists a unique element y ∈ I such that

(1)
∫
T
Df,g(m(xxx, t), y) dµ(t) = 0.

In addition, if g is positive and f/g is strictly monotone, then

y =

(
f

g

)−1(∫
T f
(
m(xxx, t)

)
dµ(t)∫

T g
(
m(xxx, t)

)
dµ(t)

)
.

The above lemma allows us to define a d-variable mean
Mf,g,m;µ : Id → I . Given xxx ∈ Id, let Mf,g,m;µ(xxx) denote the
unique solution y of equation (1). In the particular case when g
is positive and f/g is strictly monotone, for all xxx ∈ Id, we have
that

(2) Mf,g,m;µ(xxx) :=

(
f

g

)−1(∫
T f
(
m(xxx, t)

)
dµ(t)∫

T g
(
m(xxx, t)

)
dµ(t)

)
.

This mean will be called a d-variable generalized Bajraktarević
mean in the sequel.

In the case whenm is a two-variable family of weighted arith-
metic means, this class of means was introduced and their com-
parison problem was also solved in the paper [34]. When g = 1,
then

Mf,1,m;µ(xxx) = f−1
(∫

T
f
(
m(xxx, t)

)
dµ(t)

)
(xxx ∈ Id),
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which will be termed a d-variable generalized quasi-arithmetic
mean.

To define the d-variable generalized Gini means, let p, q ∈ C
such that either p, q ∈ R or p = q̄ = a+ bi, a, b ∈ R, b 6= 0 (this
holds if and only if p+q and pq are real numbers or, equivalently,
if p and q are the roots of a second degree polynomial with real
coefficients). For x ∈ R+ define
(3)

(f(x), g(x)) :=



(xp, xq) if p, q ∈ R, p 6= q,

(xp log(x), xp) if p = q ∈ R,(
xa sin(b log(x)), xa cos(b log(x))

)
if p = q̄ = a+ bi 6∈ R.

The d-variable generalized Gini mean Gp,q,m;µ is defined now
to be the d-variable generalized Bajraktarević mean Mf,g,m;µ,
where f and g are given by (3). Let I be an open subinterval
of R+ such that I is contained in the open interval

]
exp

(
−

π
2|b|
)
, exp

(
π
2|b|
)[

if p = q̄ = a + bi 6∈ R. Then the d-variable
generalized Gini mean Gp,q,m;µ is of the form:

(∫
T

(
m(xxx, t)

)p
dµ(t)∫

T

(
m(xxx, t)

)q
dµ(t)

) 1
p−q

if p, q ∈ R, p 6= q,

exp

(∫
T

(
m(xxx, t)

)p
log
(
m(xxx, t)

)
dµ(t)∫

T

(
m(xxx, t)

)p
dµ(t)

)
if p = q ∈ R,

exp

(
1

b
arctan

(∫
T

(
m(xxx, t)

)a
sin
(
b log

(
m(xxx, t)

))
dµ(t)∫

T

(
m(xxx, t)

)a
cos
(
b log

(
m(xxx, t)

))
dµ(t)

))
if p = q̄ = a+ bi 6∈ R.
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If q = 0 in the above formula, then we get the definition of d-
variable generalized Hölder means as follows: for all xxx ∈ Rd+,
we get

Hp,m;µ(xxx) :=



(∫
T

(
m(xxx, t)

)p
dµ(t)∫

T dµ(t)

) 1
p

if p ∈ R \ {0},

exp

(∫
T log

(
m(xxx, t)

)
dµ(t)∫

T dµ(t)

)
if p = 0.

The particular cases of these general means have been ex-
tensively investigated by Aczél–Daróczy [1], Daróczy–Losonczi
[13], Losonczi [20], [21], [22], [23], [24], Losonczi–Páles [34],
[35], and Páles [43]. For further reading, we refer to [5], [6], [15],
[16], [19], [25], [36], [41], [45], [50], [51].

Notations

For the sake of convenience and brevity, we introduce the
following notations. The class C0(I) consists of all those pairs of
continuous functions f, g : I → R that form a Chebyshev system
over I .

If n ≥ 1, then we say that the pair (f, g) is in the class Cn(I)
if f, g are n-times continuously differentiable functions such that
(f, g) ∈ C0(I) and the Wronski determinant∣∣∣∣f ′(x) f(x)

g′(x) g(x)

∣∣∣∣ = ∂1Df,g(x, x) (x ∈ I)

does not vanish on I .
For (f, g) ∈ C2(I), the functions Φf,g,Ψf,g : I → R are

defined by

Φf,g :=

∣∣∣∣f ′′ f
g′′ g

∣∣∣∣∣∣∣∣f ′ f
g′ g

∣∣∣∣ and Ψf,g := −

∣∣∣∣f ′′ f ′

g′′ g′

∣∣∣∣∣∣∣∣f ′ f
g′ g

∣∣∣∣ .
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If ϕ : Id×T → R, and for somexxx ∈ Id, the map t 7→ ϕ(xxx, t)
is µ-integrable, then we write

〈ϕ〉µ(xxx) :=

∫
T
ϕ(xxx, t) dµ(t).

For a µ-integrable function ϕ : T → R define ϕ∗ : T → R
by

ϕ∗(t) := ϕ(t)− 〈ϕ〉µ.

For a measurable family of d-variable meansm : Id×T → I ,
for all xxx ∈ Id, we introduce the notations:

m(xxx) := inf
t∈T

m(xxx, t) and m(xxx) := sup
t∈T

m(xxx, t).

Let C1(Id × T ) denote the class of measurable families of d-
variable means m : Id × T → I with the following additional
property:

(H5) For every t ∈ T , the function m(·, t) is continuously
partially differentiable over Id such that, for all ppp ∈ Id,
i ∈ {1, . . . , d}, the function ∂im is of L1-type at ppp.

Analogously, we define C2(Id × T ) to be the following subclass
of C1(Id × T ):

(H6) For every t ∈ T , the function m(·, t) is twice contin-
uously partially differentiable over Id such that, for all
ppp ∈ Id and i, j ∈ {1, . . . , d}, the function ∂im is of
L2-type and ∂i∂jm is of L1-type at ppp.

Similarly, we define C3(Id × T ) to be the following subclass of
C2(Id × T ):

(H7) For every t ∈ T , the function m(·, t) is three times con-
tinuously partially differentiable over Id such that, for
all ppp ∈ Id and i, j, l ∈ {1, . . . , d}, the function ∂im
is of L3-type, ∂i∂jm is of L

3
2 -type, and ∂i∂j∂lm is of

L1-type at ppp.
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For m ∈ C1(Id × T ) and r ∈ {1, . . . , d}, denote

∂∗rm(xxx, t) := ∂rm(xxx, t)− 〈∂rm〉µ(xxx) (xxx ∈ Id, t ∈ T ),

and, for x ∈ I , set

x(d) := (x, . . . , x) ∈ Id.
For the homogeneity problem, we will use the following no-

tations. Given a nonempty open subinterval I of R+ and c > 0,
introduce the following notations:

cI := {cx | x ∈ I} and I/I := {x/y | x, y ∈ I}.
These sets are also open subintervals of R+ and the interval I/I
is logarithmically symmetric with respect to 1, i.e., u ∈ I/I holds
if and only if 1/u ∈ I/I . It is also easy to see that the intersection
Iλ := I∩

(
1
λI
)

is nonempty if and only if λ ∈ I/I . For a function
f : I → R and number λ > 0, the function fλ :

(
1
λI
)
→ R is

defined by
fλ(x) = f(λx).

Finally, for a real parameter p ∈ R, introduce the sine and
cosine type functions Sp, Cp : R→ R by

(
Sp(x), Cp(x)

)
:=


(sin(

√
−px), cos(

√
−px)) if p < 0,

(x, 1) if p = 0,

(sinh(
√
px), cosh(

√
px)) if p > 0.

Comparison problem of generalized Bajraktarević means

The aim of Chapter 2 is to study the global comparison prob-
lem

(4) Mf,g,m;µ(xxx) ≤Mh,k,n;ν(xxx) (xxx ∈ Id)
and also its local analogue. In terms of the Chebyshev systems
(f, g) and (h, k), the measurable families of d-variable means
m : Id × T → I and n : Id × S → I , and the measures µ, ν, we
give necessary conditions (which, in general, are not sufficient)
and also sufficient conditions (that are also necessary in a certain
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sense) for (4) to hold. Our main results generalize that of the
paper by Losonczi and Páles [34] and also many former results
obtained in various particular cases of this problem, cf. [11], [12],
[13], [26], [28], [42], [44].

Our first result offers a necessary as well as a sufficient con-
dition for the local comparison of means. Given two d-variable
means M,N : Id → I , we say that M is locally smaller than N
at x0 ∈ I if there exists a neighborhood U ⊆ I of x0 such that

M(xxx) ≤ N(xxx)

holds for all xxx ∈ Ud. The case d = 1 being trivial, we always
assume that d ≥ 2 holds in the subsequent considerations.

THEOREM. Let M,N : Id → I be d-variable means such
that M is locally smaller than N at a point x0 ∈ I . Assume that
M andN are partially differentiable at the diagonal point x(d)0 =
(x0, . . . , x0) ∈ Id. Then, for x = x0 and for all i ∈ {1, . . . , d},

(5) ∂iM
(
x(d)

)
= ∂iN

(
x(d)

)
.

If, in addition, M and N are twice differentiable at x(d)0 ∈ Id,
then the symmetric (d− 1)× (d− 1)-matrix

(6)
(
∂i∂jN

(
x
(d)
0

)
− ∂i∂jM

(
x
(d)
0

))d−1
i,j=1

is positive semidefinite.
On the other hand, if, for some x0 ∈ I , the equality (5) holds

for all i ∈ {1, . . . , d} and for all x in a neighborhood of x0,
furthermore, M and N are twice continuously differentiable at
x
(d)
0 and the symmetric (d − 1) × (d − 1)-matrix given by (6) is

positive definite, then M is locally smaller than N at x0.

COROLLARY. Let (f, g), (h, k) ∈ C1(I), let m ∈ C1(Id×T )
and n ∈ C1(Id × S) be measurable families of means, and let µ
and ν be probability measures on the measurable spaces (T,A)
and (S,B), respectively. Suppose thatMf,g,m;µ is locally smaller
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than Mh,k,n;ν at x0 ∈ I . Then, there exists a neighborhood U ⊆
I of x0 such that for x ∈ U and for all i ∈ {1, . . . , d},

(7) 〈∂im〉µ
(
x(d)

)
= 〈∂in〉ν

(
x(d)

)
.

If, in addition, (f, g), (h, k) ∈ C2(I), m ∈ C2(Id × T ), and
n ∈ C2(Id×S), then the (d− 1)× (d− 1)-matrix whose (i, j)th
entry is given by
(8)〈
∂∗i n∂

∗
jn
〉
ν

(
x
(d)
0

)
Φh,k(x0) + 〈∂i∂jn〉ν

(
x
(d)
0

)
−
〈
∂∗im∂∗jm

〉
µ

(
x
(d)
0

)
Φf,g(x0)− 〈∂i∂jm〉µ

(
x
(d)
0

)
for i, j ∈ {1, . . . , d− 1} is positive semidefinite.

On the other hand, if (f, g), (h, k) ∈ C2(I), m ∈ C2(Id×T ),
n ∈ C2(Id×S), and (7) holds for all i ∈ {1, . . . , d} and for all x
in a neighborhood of x0 and the (d− 1)× (d− 1)-matrix whose
(i, j)th entry is given by (8) is positive definite, then Mf,g,m;µ is
locally smaller than Mh,k,n;ν at x0 ∈ I .

In the special setting when T = [0, 1], d = 2, m is given by
m((x, y), t) := tx+(1−t)y, the above corollary simplifies to the
result of [34, Theorem 5]. Now we consider the particular case
when the families of means m and n as well as the measures µ
and ν coincide.

COROLLARY. Let (f, g), (h, k) ∈ C2(I), let m ∈ C2(Id×T )
be a measurable family of means, and let µ be a probability
measure on the measurable space (T,A). Let x0 ∈ I and as-
sume that there exists i ∈ {1, . . . , d − 1} such that, the map
t 7→ ∂im(x

(d)
0 , t) is not µ-almost everywhere constant on T . If

Mf,g,m;µ is locally smaller than Mh,k,m;µ at x0 ∈ I , then

(9) Φf,g(x0) ≤ Φh,k(x0).

On the other hand, if the functions

t 7→ ∂im(x
(d)
0 , t)− 〈∂im〉µ

(
x
(d)
0

)
(i ∈ {1, . . . , d− 1})



11

are µ-linearly independent and (9) holds with strict inequality,
then Mf,g,m;µ is locally smaller than Mh,k,m;µ at x0 ∈ I .

Now we consider the case when µ = ν and m = n. In
what follows, we give a condition containing two independent
variables for the comparison problem which does not involve the
measure µ and assumes first-order continuous differentiability of
the Chebyshev system. In the special setting when T = [0, 1],
d = 2, m is given by m((x, y), t) := tx+ (1− t)y, the following
theorem simplifies to the result of [34, Theorem 6].

THEOREM. Let (f, g), (h, k) ∈ C1(I) be Chebyshev systems,
let T be a compact and connected topological space and let m :
Id × T → R be a continuous family of d-variable means. Define
the set Um by

Um : = {(u, v) | ∃xxx ∈ Id : u, v ∈ [m(xxx),m(xxx)]}

=
⋃
xxx∈Id

[m(xxx),m(xxx)]2.

The following three assertions are equivalent:
(i) For all Borel probability measures µ on T ,

Mf,g,m;µ(xxx) ≤Mh,k,m;µ(xxx) (xxx ∈ Id).

(ii) There exists a nullsequence (γj) of positive numbers in [0, 1]
such that, for all t0, t ∈ T and for all j ∈ N,

Mf,g,m;(1−γj)δt0+γjδt(xxx) ≤Mh,k,m;(1−γj)δt0+γjδt(xxx) (xxx ∈ Id).

(iii) For all (u, v) ∈ Um,

Df,g(u, v)

∂1Df,g(v, v)
≤

Dh,k(u, v)

∂1Dh,k(v, v)
.

In the next result we offer 6 equivalent conditions for the
comparison of d-variable generalized quasi-arithmetic means.
The interesting feature of this result is the equivalence of the
global and local comparability.
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THEOREM. Let f, h : I → R be twice continuously dif-
ferentiable functions with non-vanishing first derivatives, and let
m ∈ C2(Id × T ) be a measurable family of d-variable means.
Let µ0 be a probability measure such that, for all x0 ∈ I , there
exists i ∈ {1, . . . , d − 1} such that t 7→ ∂im(xxx0, t) is not µ0-
almost everywhere constant on T . The following assertions are
equivalent:

(i) For all Borel probability measures µ on T ,

Mf,1,m;µ(xxx) ≤Mh,1,m;µ(xxx) (xxx ∈ Id).

(ii)

Mf,1,m;µ0(xxx) ≤Mh,1,m;µ0(xxx) (xxx ∈ Id).

(iii) For all x0 ∈ I , there exists a neighborhood U ⊆ I of x0
such that

Mf,1,m;µ0(xxx) ≤Mh,1,m;µ0(xxx) (xxx ∈ Ud).

(iv) For all x ∈ I ,

f ′′(x)

f ′(x)
≤ h′′(x)

h′(x)
.

(v) The function h ◦ f−1 is convex (concave) on f(I) provided
that f is increasing (decreasing).

(vi) For all (u, v) ∈ I2,

f(u)− f(v)

f ′(v)
≤ h(u)− h(v)

h′(v)
.

As an immediate consequence, we obtain the characterization
of the comparison among generalized Hölder means.

COROLLARY. Let I ⊆ R+, p, q ∈ R, and letm ∈ C2(Id×T )
be a measurable family of d-variable means. Let µ0 be a prob-
ability measure such that, for all x0 ∈ I , there exists i ∈
{1, . . . , d − 1} such that t 7→ ∂im(xxx0, t) is not µ0-almost every-
where constant on T . The following assertions are equivalent:
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(i) For all Borel probability measures µ on T ,

Hp,m;µ(xxx) ≤ Hq,m;µ(xxx) (xxx ∈ Id).

(ii)
Hp,m;µ0(xxx) ≤ Hq,m;µ0(xxx) (xxx ∈ Id).

(iii) For all x0 ∈ I , there exists a neighborhood U ⊆ I of x0
such that

Hp,m;µ0(xxx) ≤ Hq,m;µ0(xxx) (xxx ∈ Ud).

(iv) p ≤ q.

Equality and homogeneity of generalized Bajraktarević
means

In Chapter 3, we study the equality and the homogeneity
problems of these means, i.e., to find conditions for the gener-
ating functions (f, g) and (h, k), for the family of means m, and
for the measure µ such that the functional equation

Mf,g,m;µ(xxx) = Mh,k,m;µ(xxx) (xxx ∈ Id)

and the homogeneity property

Mf,g,m;µ(λxxx) = λMf,g,m;µ(xxx) (λ > 0, xxx, λxxx ∈ Id),

respectively, be satisfied. Our main results generalize that of the
paper by Losonczi and Páles [35], Losonczi [33] and also many
former results obtained in various particular cases of this prob-
lem, cf. [1], [7], [8], [10], [24], [26], [27], [28], [29], [30], [31],
[32], [37], [46].

The following theorem characterize the equality of general-
ized Bajraktarević means under 3 times differentiability assump-
tions.

THEOREM. Let (f, g), (h, k) ∈ C3(I), letm ∈ C3(Id×T ) be
a measurable family of means, and let µ be a probability measure
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on the measurable space (T,A). Assume that, there exists a dense
subset D ⊆ I such that, for all x ∈ D,
(10)
µ
({
t ∈ T | ∂∗1m

(
x(d), t

)
= · · · = ∂∗dm

(
x(d), t

)
= 0
})

< 1,

and there exist i, j, l ∈ {1, . . . , d} such that〈
∂∗im∂∗jm∂∗lm

〉
µ

(
x(d)

)
6= 0.

Then the following assertions are equivalent:
(i) For all xxx ∈ Id,

(11) Mf,g,m;µ(xxx) = Mh,k,m;µ(xxx).

(ii) There exists an open set U ⊆ Id containing the subdiagonal
{x(d) | x ∈ D} such that, for all xxx ∈ U , the equality (11)
holds.

(iii) The two identities

Φf,g = Φh,k and Ψf,g = Ψh,k

hold.
(iv) The pairs (f, g) and (h, k) are equivalent.

In the next corollary, we consider the particular case of the
previous theorem when the measurable family m is given in the
form

(12) m(xxx, t) = ϕ1(t)x1 + · · ·+ ϕd(t)xd (xxx ∈ Id, t ∈ T ).

COROLLARY. Let (f, g), (h, k) ∈ C3(I), let µ be a proba-
bility measure on the measurable space (T,A), let ϕ1, . . . , ϕd :
T → [0, 1] be µ-measurable functions with ϕ1+· · ·+ϕd = 1 and
define the measurable family m : Id × T → R by (12). Assume
that

(13) µ
({
t ∈ T | ϕ∗1(t) = · · · = ϕ∗d(t) = 0

})
< 1,

and there exist i, j, l ∈ {1, . . . , d} such that〈
ϕ∗i ϕ

∗
j ϕ
∗
l

〉
µ
6= 0.
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Then the following assertions are equivalent:

(i) For all xxx ∈ Id, the equality (11) holds.
(ii) There exists a dense subset D ⊆ I and an open set U ⊆ Id

containing the subdiagonal {x(d) | x ∈ D} such that, for
all xxx ∈ U , the equality (11) holds.

(iii) The pairs (f, g) and (h, k) are equivalent.

The next corollary concerns the case when T = [0, 1] and µ
is a probability measure on the sigma algebra of Borel subsets of
[0, 1]. In this setting, define µ̂1 to be the first moment and µn to
be the nth centralized moment of the measure µ by

µ̂1 :=

∫
[0,1]

tdµ(t), µn :=

∫
[0,1]

(t− µ̂1)n dµ(t) (n ∈ N).

COROLLARY. Let (f, g), (h, k) ∈ C3(I) such that g and k
do not vanish on I . Let µ be a probability measure on the sigma
algebra of Borel subsets of [0, 1] with µ2 6= 0 and µ3 6= 0. Then
the following assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality

(14)

(
f

g

)−1( ∫
[0,1] f

(
tx+ (1− t)y

)
dµ(t)∫

[0,1] g
(
tx+ (1− t)y)

)
dµ(t)

)

=

(
h

k

)−1( ∫
[0,1] h

(
tx+ (1− t)y

)
dµ(t)∫

[0,1] k
(
tx+ (1− t)y)

)
dµ(t)

)
holds.

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2

containing the subdiagonal {(x, x) | x ∈ D} such that, for
all (x, y) ∈ U , the equality (14) holds.

(iii) The pairs (f, g) and (h, k) are equivalent.

The next corollary concerns the equality of nonsymmetric
weighted two-variable Bajraktarević means.
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COROLLARY. Let (f, g), (h, k) ∈ C3(I) such that g and k
do not vanish on I . Let s ∈]0, 12 [∪]12 , 1[. Then the following
assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality(
f

g

)−1(sf(x) + (1− s)f(y)

sg(x) + (1− s)g(y)

)
=

(
h

k

)−1(sh(x) + (1− s)h(y)

sk(x) + (1− s)k(y)

)
holds.

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2

containing the subdiagonal {(x, x) | x ∈ D} such that, for
all (x, y) ∈ U , the above equality holds.

(iii) The pairs (f, g) and (h, k) are equivalent.

In the following results, we are going to characterize the
equality of generalized quasi-arithmetic means in various set-
tings.

THEOREM. Let f, g : I → R be twice continuously differ-
entiable functions such that f ′ and g′ do not vanish on I . Let
m ∈ C2(Id × T ) be a measurable family of means, and let µ be
a probability measure on the measurable space (T,A). Assume
that, there exists a dense subset D ⊆ I such that, for all x ∈ D,
condition (10) holds. Then the following assertions are equiva-
lent:

(i) For all xxx ∈ Id,

f−1
(∫

T
f
(
m(xxx, t)

)
dµ(t)

)
= g−1

(∫
T
g
(
m(xxx, t)

)
dµ(t)

)
.

(ii) There exists an open set U ⊆ Id containing the subdiagonal
{x(d) | x ∈ D} such that, for all xxx ∈ U , the above equality
holds.

(iii) The functions f ′′/f ′ and g′′/g′ are identical on I .
(iv) There exist real constants a, b such that g = af + b.
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COROLLARY. Let f, g : I → R be twice continuously dif-
ferentiable functions such that f ′ and g′ do not vanish on I ,
let µ be a probability measure on the measurable space (T,A),
let ϕ1, . . . , ϕd : T → [0, 1] be µ-measurable functions with
ϕ1 + · · · + ϕd = 1 such that condition (13) holds. Then the
following assertions are equivalent:

(i) For all (x1, . . . , xd) ∈ Id,

f−1
(∫

T
f
(
ϕ1(t)x1 + · · ·+ ϕd(t)xd)

)
dµ(t)

)
= g−1

(∫
T
g
(
ϕ1(t)x1 + · · ·+ ϕd(t)xd

)
dµ(t)

)
.

(ii) There exists an open set U ⊆ Id containing the subdiagonal
{x(d) | x ∈ D} such that, for all (x1, . . . , xd) ∈ U , the
above equality holds.

(iii) There exist real constants a, b such that g = af + b.

The following consequence of the previous corollary has
been dealt with in the paper [37, Theorem 7]. There f and g
are assumed only to be continuous, however, the equivalence to
condition (ii) is missing.

COROLLARY. Let f, g : I → R be twice continuously differ-
entiable functions such that f ′ and g′ do not vanish on I . Let µ
be a probability measure on the sigma algebra of Borel subsets of
[0, 1] with µ2 6= 0. Then the following assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality

f−1
(∫

T
f
(
tx+ (1− t)y

)
dµ(t)

)
= g−1

(∫
T
g
(
tx+ (1− t)y

)
dµ(t)

)
holds.
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(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2

containing the subdiagonal {(x, x) | x ∈ D} such that, for
all (x, y) ∈ U , the above equality holds.

(iii) There exist real constants a, b such that g = af + b.

The next statement is related to the equality problem of
weighted two-variable quasi-arithmetic means. We note that the
equivalence of conditions (i) and (iii) can be obtained under the
assumption of continuity of the generating functions f and g. For
further and important particular cases of the previous corollary,
we refer to the examples elaborated in the paper [37].

COROLLARY. Let f, g : I → R be twice continuously dif-
ferentiable functions such that f ′ and g′ do not vanish on I . Let
s ∈]0, 1[. Then the following assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality

f−1(sf(x) + (1− s)f(y)) = g−1(sg(x) + (1− s)g(y))

holds.
(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2

containing the subdiagonal {(x, x) | x ∈ D} such that, for
all (x, y) ∈ U , the above equality holds.

(iii) There exist real constants a, b such that g = af + b.

In the second part of Chapter 3, we characterize the ho-
mogeneity of generalized Bajraktarević and generalized quasi-
arithmetic means under 3 times and 2 times differentiability as-
sumptions, respectively.

A d-variable mean M : Id → R is called homogeneous if,
for all λ ∈ I/I and for all xxx ∈ Idλ,

M(λxxx) = λM(xxx).

THEOREM. Let (f, g) ∈ C3(I), let m ∈ C3(Id × T ) be a
homogeneous measurable family of means, and let µ be a proba-
bility measure on the measurable space (T,A). Assume that there
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exists a point x0 ∈ I such that
(15)
µ
({
t ∈ T | ∂∗1m

(
x
(d)
0 , t

)
= · · · = ∂∗dm

(
x
(d)
0 , t

)
= 0
})

< 1,

and there exist i, j, l ∈ {1, . . . , d} such that〈
∂∗im∂∗jm∂∗lm

〉
µ

(
x
(d)
0

)
6= 0.

Then the following assertions are equivalent:

(i) Mf,g,m;µ is homogeneous.
(ii) For all λ ∈ I/I and for all xxx ∈ Idλ,

Mf,g,m;µ(xxx) = Mfλ,gλ,m;µ(xxx).

(iii) For all λ ∈ I/I , the pairs (f, g) and (fλ, gλ) are equivalent
on the interval Iλ.

(iv) For all λ ∈ I/I and for all x ∈ Iλ,

Φf,g(x) = Φfλ,gλ(x) and Ψf,g(x) = Ψfλ,gλ(x).

(v) There exist two real numbers α, β such that y = f and
y = g are solutions of the second-order linear differential
equation

y′′(x) =
α

x
y′(x) +

β

x2
y(x) (x ∈ I).

(vi) There exists a pair (p, q) ∈ {(z, w) ∈ C2 | z +w, zw ∈ R}
such that Mf,g,m;µ is equal to the d-variable generalized
Gini mean Gp,q,m;µ.

THEOREM. Let f : I → R be a twice continuously differ-
entiable function such that f ′ does not vanish on I . Let m ∈
C2(Id × T ) be a homogeneous measurable family of means, and
let µ be a probability measure on the measurable space (T,A).
Assume that condition (15) holds. Then the following assertions
are equivalent:

(i) Mf,1,m;µ is homogeneous.
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(ii) For all λ ∈ I/I and for all xxx ∈ Idλ,

Mf,1,m;µ(xxx) = Mfλ,1,m;µ(xxx).

(iii) For all λ ∈ I/I , there exist real constants aλ, bλ such that
fλ(x) = aλf(x) + bλ holds for all x ∈ Iλ.

(iv) For all λ ∈ I/I , the functions f ′′/f ′ and f ′′λ/f
′
λ are identi-

cal on Iλ.
(v) There exists a real number α such that y = f is a solution

of the second-order linear differential equation

y′′(x) =
α

x
y′(x) (x ∈ I).

(vi) There exists a real number p such that Mf,1,m;µ is equal to
the d-variable generalized Hölder mean Hp,m;µ.

Invariance equation

Given three strict means M,N,K : R2
+ → R+, we say that

the triple (M,N,K) satisfies the invariance equation if

K(M(x, y), N(x, y)) = K(x, y) (x, y ∈ R+)

holds. If this equation is valid, then we say that K is invariant
with respect to the mean-type mapping (M,N). The easiest ex-
ample when the invariance equation is satisfied is the well-known
identity

√
xy =

√
x+ y

2
· 2xy

x+ y
(x, y ∈ R+).

The last identity means that

G(x, y) = G(A(x, y), H(x, y)) (x, y ∈ R+),

where A, G, and H are the two-variable arithmetic, geometric,
and harmonic means, respectively.

In Chapter 4, we investigate the invariance of the arithmetic
mean with respect to two weighted Bajraktarević means, i.e., to
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solve the functional equation
(16)(
f

g

)−1( tf(x) + sf(y)

tg(x) + sg(y)

)
+

(
h

k

)−1(sh(x) + th(y)

sk(x) + tk(y)

)
= x+ y,

where f, g, h, k : I → R are unknown continuous functions such
that g, k are nowhere zero on I , the ratio functions f/g, h/k are
strictly monotone on I , and t, s ∈ R+ are constants different from
each other. By the main result of this chapter, the solutions of the
above invariance equation can be expressed either in terms of hy-
perbolic functions or in terms of trigonometric functions and an
additional weight function. For the necessity part of this result,
we will assume that f, g, h, k : I → R are four times continu-
ously differentiable.

The invariance equation in more general classes of means
has been studied by several authors in a large number of papers.
The invariance equation of Hölder mean solved completely by
Daróczy and Páles [14]. The more general invariance equation
for quasi-arithmetic means was first solved under infinitely many
times differentiability by Sutô [52], [53] and later by Matkowski
[38] under twice continuous differentiability. Without impos-
ing unnecessary regularity conditions, this problem was finally
solved by Daróczy and Páles [14].

Burai [9] and Jarczyk-Matkowski [18] studied the invariance
equation involving three weighted arithmetic means. Jarczyk [17]
solved this problem without additional regularity assumptions.
The invariance of the arithmetic mean with respect to Lagrangian
mean has been investigated by Matkowski (cf. [40]). The invari-
ance of the arithmetic, geometric, and harmonic means has been
studied by Matkowski [39].

Baják and Páles [3] describes the invariance of the arithmetic
mean with respect to generalized quasi-arithmetic means. Re-
cently, Baják and Páles [2], [4] have solved the invariance equa-
tions of two-variable Gini and Stolarsky means, respectively.
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Now we are in the position to formulate the main result of
this chapter.

THEOREM. Let p ∈ R, let ϕ : I → R+ be a positive contin-
uous function and let (f, g), (h, k) ∈ C0(I) such that
(17)
(f, g) ∼ (Sp/ϕ,Cp/ϕ) and (h, k) ∼ (Sp · ϕ,Cp · ϕ).

Then, for all s, t ∈ R+, the invariance equation (16) holds.
Conversely, let (f, g), (h, k) ∈ C4(I) and t, s ∈ R+ with

t 6= s such that the functional equation (16) be valid. Then there
exist a positive 4 times continuously differentiable function ϕ :
I → R+ and a real parameter p ∈ R such that the equivalences
(17) are satisfied.

As a consequence of the previous theorem, Głazowska
Dorota in the 56th International Symposium on Functional
Equations presented the invariance of the two-variable quasi-
arithmetic mean with respect to two weighted Bajraktarević
means, i.e., to solve the functional equation
(18)
Aψ ◦

(
Bf,g((x, y), (t, s)), Bh,k((x, y), (s, t))

)
= Aψ(x, y),

where, x, y ∈ I , or equivalently,

ψ
(
Bf,g((x, y), (t, s))

)
+ ψ

(
Bh,k((x, y), (s, t))

)
=ψ(x) + ψ(y).

COROLLARY. Let p ∈ R, let ϕ : I → R+ be a positive con-
tinuous function, let ψ : I → R be a continuous strictly monotone
function, and let (f, g), (h, k) ∈ C0(I) such that

(19)
(f, g) ∼

(
(Sp/ϕ) ◦ ψ, (Cp/ϕ) ◦ ψ

)
,

(h, k) ∼
(
(Sp · ϕ) ◦ ψ, (Cp · ϕ) ◦ ψ

)
.

Then, for all s, t ∈ R+, the invariance equation (18) holds.
Conversely, let ψ : I → R be a 4 times continuously differen-

tiable function, let (f, g), (h, k) ∈ C4(I) and t, s ∈ R+ with t 6= s
such that the functional equation (18) be valid. Then there exist a
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positive 4 times continuously differentiable function ϕ : I → R+

and a real parameter p ∈ R such that the equivalences (19) are
satisfied.
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to quasiarithmetic means, 16th International Student
Conference on Analysis Síkfőkút, Hungary, February
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