DEBRECENI EGYETEM

Hankóczy Jenő Növénytermesztési, Kertészeti és Élelmiszertudományok Doktori Iskola

Doktori Iskola vezető: Dr. Hodossi Sándor professor emeritus, az MTA doktora

Témavezető: **Dr. Győri Zoltán egyetemi tanár, az MTA doktora**

KÖZELI INFRAVÖRÖS SPEKTROSZKÓPIA ALKALMAZÁSA BÚZA MINTÁK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATÁRA

Készítette: **Kónya Éva** doktorjelölt

> Debrecen 2015

KÖZELI INFRAVÖRÖS SPEKTROSZKÓPIA ALKALMAZÁSA BÚZA MINTÁK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATÁRA

Értekezés a doktori (PhD) fokozat megszerzése érdekében a Növénytermesztési, Kertészeti és Élelmiszertudományok tudományágban

Írta: Kónya Éva, okleveles biomérnök

Készült a Debreceni Egyetem Hankóczy Jenő Növénytermesztési, Kertészeti és Élelmiszertudományok doktori iskolája (Élelmiszeranalitika, élelmiszerbiztonság doktori programja) keretében

Témavezető: Dr. Győri Zoltán

A doktori szigorlati bizottság:

	név	fokozat	
elnök:			
tagok:			
A doktori szigo	orlat időpontja: 20		
Az értekezés b	írálói:		
	név	fokozat	aláírás
A híráláhizotta	ha:		
A UIIalouizous	ag.	fokozet	aláírás
elnök:	nev	IOKOZat	alallas
tagok:			
ugon			
titkár			

Az értekezés védésének időpontja: 20....

Tartalomjegyzék

Rövidítések jegyzéke	4
1. BEVEZETÉS	5
2. IRODALMI ÁTTEKINTÉS	7
2.1. A búza általános jellemzése	7
2.2. A búza minősítése és a minőségi paraméterek meghatározási módszerei	9
2.2.1. Reológiai tulajdonságokat meghatározó módszerek a búzaminősítésben	12
2.2.2. Kis mintaigényű, dagasztáson alapuló lisztminősítő mikromódszerek	15
2.3. A közeli infravörös spektroszkópia	16
2.3.1. Az infravörös spektroszkópia kialakulása	16
2.3.2. A közeli infravörös spektroszkópia alapjai	17
2.3.3. A közeli infravörös készülékek felépítése és működése	18
2.3.4. A közeli infravörös technika előnyei és hátrányai	20
2.4. Spektrumok feldolgozása – kemometriai módszerek	21
2.5. A közeli infravörös spektroszkópia alkalmazási lehetőségei a búza minősítésb	oen
	28
3. ANYAG ES MODSZER	33
3.1. Minták eredete	33
3.2. A lisztek reológiai jellemzőinek vizsgálata	34
3.3. Közeli infravörös spektroszkópiai mérések	35
3.4. A laboratóriumi és spektroszkópiai mérések eredményeinek kiértékelési	
módszerei	35
3.4.1. A spektrumok minőségi értékelése – főkomponens analízis	35
3.4.2. A spektrumok és laboratóriumi eredmények összekapcsolása	36
3.4.2.1. Matematikai előkezelések	36
3.4.2.2. Módosított részleges legkisebb négyzetek módszere (mPLS)	36
4. EREDMENYEK	38
4.1. Kisparcellás tartamkísérletek fajtákkal 2008-ban	38
4.1.1. Reológiai tulajdonságok meghatározása	38
4.1.1.1. Valorigráf alkalmazása	38
4.1.1.2. Alveográf alkalmazása	39
4.1.1.3. Extenzográf alkalmazása	39
4.1.2. Közeli infravörös spektroszkópiai módszerfejlesztés	40
4.1.2.1. Meglévő kalibrációs modellel kapott eredmények	40
4.1.2.2. Főkomponens analízis eredményei	41
4.1.2.3. Módosított részleges legkisebb négyzetek módszere	45
4.2. Fajtakísérletek eltérő termőhelyeken 2009-ben	55
4.2.1. Reológiai tulajdonságok meghatározása	55
4.2.1.1. Valorigráf alkalmazása	55
4.2.1.2. Alveográf alkalmazása	55
4.2.2. Közeli infravörös spektroszkópiai módszerfejlesztés	56
4.2.2.1. Főkomponens analízis	56
4.2.2.2. Módosított részleges legkisebb négyzetek módszere	59
4.3. Fajtakísérletek eltérő termőhelyeken 2010-ben	66
4.3.1. Reológiai tulajdonságok meghatározása	66
4.3.1.1. Valorigráf alkalmazása	66
4.3.1.2. Alveográf alkalmazása	66
4.3.2. Közeli infravörös spektroszkópiai módszerfejlesztés	67
4.3.2.1. Főkomponens analízis	67

4.3.2.2. Módosított részleges legkisebb négyzetek módszere	70
4.4. Fajtakísérletek eltérő termőhelyeken 2009-ben és 2010-ben	74
4.4.1. Reológiai tulajdonságok meghatározása	74
4.4.1.1. Valorigráf alkalmazása	74
4.4.1.2. Alveográf alkalmazása	74
4.4.2. Közeli infravörös spektroszkópiai módszerfejlesztés	75
4.4.2.1. Főkomponens analízis	75
4.2.2.2 Módosított részleges legkisebb négyzetek módszere	79
5. KÖVETKEZTETÉSEK, JAVASLATOK	
6. ÚJ ÉS ÚJSZERŰ TUDOMÁNYOS EREMDÉNYEK	
7. ÖSSZEFOGLALÁS	
8. SUMMARY	
9. PUBLIKÁCIÓS JEGYZÉK (felhasznált irodalom)	
10. PUBLIKÁCIÓK AZ ÉRTEKEZÉS TÉMAKÖRÉBEN	
MELLÉKLETEK	
Köszönetnyilvánítás	
Nyilatkozat	
Nyilatkozat	

Rövidítések jegyzéke

NIR	near infrared spectroscopy, közeli infravörös spektroszkópia
MSC	multiplicative scatter correction, többszörös szóródási korrekció
SNV	standard normal variate, sztenderd normál változó
1-4-4-1	első derivált, kapu nagyság: 4, rés nagyság: 4
1-8-8-1	első derivált, kapu nagyság: 8, rés nagyság: 8
2-2-2-1	második derivált, kapu nagyság: 2, rés nagyság: 2
PCA	principal component analysis, főkomponens analízis
PQS	polar qualification system, polár minősítő rendszer
PLS	partial least squares regression, részleges legkisebb négyzetek módszere
mPLS	modified partial least squares regression, módosított részleges legkisebb
	négyzetek módszere
ANN	artifical neural network, mesterséges neurális hálózat
R^2	lineáris korrelációs koefficiens
RPD	residual predictive derivation, a szórás és a becslés sztenderd hibájának
	hányadosa
SEP	standard error of prediction, becslés sztenderd hibája
SEC	standard error of calibration, kalibráció sztenderd hibája
SECV	standard error of cross-validation, keresztvalidálás sztenderd hibája

1. BEVEZETÉS

A búza minősítése, minőségi csoportba sorolása sokrétű feladat. A termesztők, a feldolgozók és a fogyasztók más-más igényeket támasztanak a búza minőségét illetően. Mind a hazai, mind a nemzetközi gyakorlatban a búza minősítésére fizikai, kémiai (beltartalmi) és technológiai paraméterek átfogó értékelését alkalmazzák. Ezen jellemzők meghatározásához sokszor nagy mintamennyiségre van szükség, a mérések idő-, és költségigényesek. Az utóbbi évtizedekben egyre nagyobb az igény, egyre jobban elterjednek olyan technikai megoldások, melyek rövid időn belül megfelelő pontossággal megadják a kívánt minőségi paramétert.

A közeli infravörös spektroszkópia (near infrared spectroscopy, NIR) is egy gyors, roncsolásmentes analitikai eljárás, melyet széles körben alkalmaznak a különböző iparágakban (pl. mezőgazdaság, élelmiszer-, gyógyszeripar). A közeli infravörös spektroszkópia az 1960-as évektől Karl Norris révén van jelen a mezőgazdaságban a termények beltartalmi értékeinek vizsgálatára. Napjainkban már olyan megoldásokkal is találkozunk, ahol akár a szántóföldön lehetőség nyílik a betakarított termés elemzésére.

A búzalisztek minőségi csoportokba történő besorolásában a fizikai, kémiai paraméterek vizsgálata mellett fontos szerepe van a lisztből és vízből készített tészta reológiai tulajdonságainak meghatározásának is. A 20. század végétől a közeli infravörös spektroszkópiai kutatásokban a búza minőségi paramétereinek meghatározására szolgáló kalibrációs modellek között megjelentek olyanok is, melyek a reológiai tulajdonságokat becsülik. Ezek a modellek változó pontosságúak, még fejlesztést igényelnek.

A doktori dolgozatomban leírt munka során a következő célkitűzéseket fogalmaztam meg:

 Célom volt kisparcellás tartamkísérletből származó minták esetén reológiai vizsgálatok elvégzése, valamint a genotípus és műtrágyázás esetleges hatásának vizsgálata a közeli infravörös spektrumokra, illetve hogy ezen tényezők hatnak-e a kalibrációs modellek robosztusságára.

- Különböző termőhelyekről érkezett minták esetén reológiai tulajdonságokat kívántam vizsgálni, valamint a termőhely esetleges hatásának megjelenését a közeli infravörös spektrumokra és a kalibrációs modellek robosztusságára.
- 3. Célom volt kalibrációs modellek készítése különböző matematikai előkezelések kombinációit alkalmazva valorigráfos vízfelvétel, alveográfos deformációhoz szükséges energia (W) és P/L hányados, valamint amennyiben lehetőségem adódik extenzográfos nyújtáshoz szükséges energia értékeinek (45, 90, 135 percnél mért) becslésére az egyes mintacsoportok esetén.

2. IRODALMI ÁTTEKINTÉS

2.1. A búza általános jellemzése

A világ egyik legértékesebb és legnagyobb területen termesztett gabonaféléje a búza, vetésterülete 218 millió hektár (713 millió tonna) körül van a világon. Népélelmezési jelentőségét csak a rizs és a kukorica közelíti meg (FAO, 2013).

A búza a pázsitfűfélék (*Gramineae*) családjába és a búzanemzetségbe (*Triticum*) tartozik. A búzanemzetségbe számos fajt sorolnak, de ezek közül csak néhányat termesztenek; a többi búzafajnak csak a búzanemesítésben van jelentősége.

A búzafajok – kromoszómaszámuk alapján – három csoportba sorolhatók:

- diploid alakor búza (*T. monococcum*);
- tetraploid tönke (*T. dicoccon*) és durum búza (*T. durum*);
- hexaploid tönkölybúza (T. spelta), kenyérbúza (T. aestivum).

A búza széleskörű elterjedését a búzafajok és fajták változatos éghajlati igénye és jó alkalmazkodóképessége tette lehetővé, ezért a trópusok, a sivatagok és a sarkvidékek kivételével szinte mindenütt termesztik. A közönséges búza (*T. aestivum*) a legelterjedtebb búzafaj a világon, mely Délnyugat-Ázsia területéről terjedt el világszerte több mint 5000 évvel ezelőtt, és vált alapélelmiszerré Európában, Nyugat-Ázsiában, Észak-Afrikában (Csajbók, 2012; Curtis, 2002).

A búzafajták növekedési vagy vegetációs időszaka alapján megkülönböztetnek őszi és tavaszi búzát. Az őszi búzát nagyobb területen termesztik, mert termésmennyisége több, mint a tavaszi búzáé, ezért azokban az országokban, ahol a klimatikus viszonyok lehetővé teszik, nagyobbrészt őszi búzát vetnek. Emellett használnak a szemkeménység, valamint a magok színe alapján történő csoportosítást is. A szemkeménység alapján kemény és puha szemű, a szín alapján pedig fehér és vörös szemű búzák különíthetők el.

A szemtermés alakja, színe, nagysága, összetétele (beltartalma) a fajtákra jellemző és igen változatos. A búzaszem szerkezeti felépítése és részei az 1. ábrán láthatóak, beltartalmi összetételét az 1. táblázat foglalja össze. Az endospermium, amely az egész búzaszem több mint 80%-át adja, főként keményítőt tartalmaz, de itt találhatóak meg a sütőipari minőség szempontjából fontos tartalékfehérjék is (Láng, 1976).

1. ábra: A búzaszem részei (Fennema, 1985)

	arány %	fehérje	keményítő	szénhidrát	cellulóz	pentozán	zsír	hamu
		szárazanyag %-ában						
teljes szem	100,0	16,1	63,1	4,3	2,8	8,11	2,2	2,2
endospermium	81,6	13,0	78,8	3,5	0,2	2,7	0,7	0,5
csíra	3,3	37,6	-	26,1	2,5	9,7	16,0	5,3
héj + aleuron	15,1	28,8	-	4,1	16,2	33,6	7,7	10,5

1. táblázat: A búzaszem kémiai összetétele (Láng, 1976)

A búza élelmiszerként történő felhasználása főleg őrlemények (lisztek és dara) formájában történik. Nagyobbrészt kenyeret készítenek belőle, de ezen kívül még számos sütő-, tészta- és cukrászipari termék előállításához alkalmazzák. A búzát állati takarmányozásban, valamint a 20. század végétől energetikai területen és bioüzemanyagok előállításában is hasznosítják (Csajbók, 2012; Curtis, 2002).

A búza egy állandó fogyasztási cikk, mely esetében a fogyasztás mennyiségét nem befolyásolja a saját vagy a búzát helyettesítők (mint rizs, kukorica és zab) ára. Az elmúlt húsz évben a búzafogyasztás világszerte átlagosan 1 %-kal nőtt évente. A teljes fogyasztás közel 595 millió tonna/év, és várhatóan ez még növekedni fog az elkövetkezendő években. Ez a szám mind a táplálkozásra szánt, mind a takarmányozási célra használt mennyiséget magában foglalja.

A búza minőségét elsősorban a genetika határozza meg, melynek érvényre jutása környezeti tényezőktől függ. Örökletesen jó minőségű búzafajtáktól várhatunk megfelelő termést, de csak akkor, ha a termesztési feltételek kedvezőek. Nem csak a területek

éghajlati adottságai, a hely időjárása, a tábla talaja és fekvése, a tápanyag-utánpótlás, de akár a táblán belüli talajfolt, a tőtávolság is együttesen jelentik a növény környezetét, mely befolyásolja a későbbi termés minőségét. Az éghajlatot, időjárást, domborzati adottságokat nem lehet befolyásolni, de megfelelő agrotechnikával (talajmunka, vetésidő, fajtaválasztás, vetőmag, műtrágyázás, növényvédelem) a termesztők is beavatkozhatnak (Láng és mtsai, 1996; Carcea és mtsai, 2006; Pechanek és mtsai, 1997; Mikhaylenko és mtsai, 2000; Wooding és mtsai, 2000; Johansson és mtsai; 2001; Zhu és Kahn; 2001, 2004; Pepó és Győri, 2005; Tanács ás mtsai; 2005; Pepó és mtsai; 2005; Wieser és Seilmeier, 1998; Haglund és mtsai, 1998).

2.2. A búza minősítése és a minőségi paraméterek meghatározási módszerei

A búza minőségi csoportba sorolása mindig a feldolgozás, felhasználás függvénye. Más-más követelményei vannak a termesztőknek, a feldolgozóknak, a fogyasztóknak, ha élelmezési, takarmányozási vagy energetikai célú a búza használata. A termesztő számára fontos a fajta stabil hozama, betegségekkel szembeni ellenállósága, télállóság, meghatározott áron történő átvétel. A kereskedők, molnárok tiszta, homogén, előírásoknak megfelelő nedvességtartalmú, egyenletes fehérjetartalmú búzatételt várnak el. A pékeknek lényeges a búza tápértéke, hogy a lehető legjobb minőségű végterméket tudjanak előállítani, a lisztből készült tészta vízfelvevő képessége, hogy rugalmas, jól nyújtható, alaktartó legyen, a belőle készült kenyér és egyéb termékek állaga, színe megfelelő legyen. A fogyasztó egyenletesen jó minőségű és megbízható terméket vár el, melyet megfizethető áron tud megvásárolni (Kent, 1994). Ennek köszönhetően nem elegendő a minőséget egyetlen jellemzővel megadni, hanem több jellemző egymás melletti, összevont értékelését kell elvégezni. A tulajdonságok között fizikai, kémiai (beltartalmi), technológiai (un. reológiai) jellemzők találhatók meg. Ezek mellett megjelennek a mikrobiológiai állapotra, az esetleges szennyezettségek kimutatására vonatkozó vizsgálatok, melyek kiegészítik a fentieket, átfogóbb képet adva az adott tételről. A minősítés nem más, mint e különböző módszerekkel meghatározott paraméterek alapján a megfelelőség elbírálása. Az alapvetően meghatározandó tisztasági állapotra vonatkozó adatok és hektolitertömeg, a nedvesség-, fehérje-, sikér-, hamutartalom mellett, az α-amiláz aktivitásra utaló Hagberg-féle esésszám, Zelenyszedimentációs index, a farinográfos (magyar változatban valorigráfos) értékszám és vízfelvevő képesség, alveográfos deformációhoz szükséges energia (W) és görbe alaki hányados (P/L) érték, extenzográfos energia és nyújthatóság, mint reológiai paraméterek jellemezhetik a liszt minőségét, határozzák meg felhasználási módjait. Több magyar és nemzetközi szabvány valamint előírás vonatkozik ezen paraméterek meghatározási módszereire. A különböző országok más-más kritériumokat támasztanak az egyes tulajdonságokra vonatkozólag a búzával szemben (Győri és Győriné, 1998).

A jelenleg Magyarországon érvényben lévő MSZ 6383:2012 búza szabvány rögzíti a hazai követelményeket a búzalisztek minőségi csoportjait illetően. A szabvány megkülönböztet prémium, malmi I, II valamint durum búzát. A korábbi szabványhoz képest a valorigráfos értékszám mellett ebben már megjelennek olyan reológiai paraméterekre, mint alveográfos W és P/L, extenzográfos energia (E_{135}) és $R_{m, 135}/E_{135}$ arányára vonatkozó előírások is (2. táblázat).

	közöl	közönséges búza			
		malmi búza		durumbúza	
Minosegi jellemzok	premium buza	I.	II.		
	Minőségi követelmények				
Tisztasági kritériumok					
Magszennyező anyagok, legfeljebb % (m/m)	2,0	2,0	3,0	2,0	
ezen belül: vegyes szennyezőanyagok, legfeljebb % (m/m)	0,5	0,5	0,5	0,5	
héj, legfeljebb % (m/m)	0,5	0,5	0,5	0,5	
Magszennyező anyagon felül még megengedett:					
törött szem, legfeljebb % (m/m)	2,0	2,0	5,0	2,0	
csírázott szem, legfeljebb % (m/m)	2,0	2,0	4,0	2,0	
egyéb gabonafélék (rozs), legfeljebb % (m/m)	2,0	2,0	2,0		
összezsugorodott szemek, legfeljebb % (m/m)	2,0	2,0	2,0	3,0	
poloskaszúrt szem, legfeljebb % (m/m)	0,0	1,0	3,0	2,0	
elszíneződött csírájú szemek és foltos szemek, legfeljebb % (m/m)				5,0	
közönséges búzaszem a durumbúzában, legfeljebb % (m/m)				3,0	
Acélos búzaszem a durumbúzában, legalább % (m/m)				60	
Sárgapigment-tartalom a durumbúzában, legalább % (m/m)				5,0	
A szemtermés fizikai és összetételi jellemzői					
Nedvességtartalom, legfeljebb % (m/m)	14,5	14,5	14,5	14,5	
Nyers fehérjetartalom, , legalább % (m/m)	14,0	12,5	11,5	12,5	
Nedves sikér mennyisége, , legalább % (m/m)	34,0	30,0	26,0	30,0	
Hektolitertömeg, legalább kg/100 l	80,0	77,0	74,0	78,0	
Esésszám, legalább másodperc	300,0	250,0	220,0	250,0	
Szedimentációs érték, Zeleny szerint, legalább ml	45,0	35,0	30,0		
A laboratóriumi búzalisztből készült tészta reológiai tulajdonságai					
Farinográfos vagy valorigráfos értékek					
 sütőipari érték szerinti minőségi csoport 	А	В			
- vízfelvétel 14%-os lsiztre, legalább % (m/m)	60,0	55,0	55,0		
- stabilitás, legalább perc	10,0	6,0	4,0		
Alveográfos érékek (ALV)					
- deformációs munka (W), legalább 10 ⁻⁴ Joule	280,0	200,0	150,0		

2. táblázat: MSZ 6383:2012 szabvány minőségi követelményei

- P/L arány, legfeljebb	1,0	1,5	1,5	
Extenzográfos értékek (EXT)				
- energia 135 (E135) percnél, legalább, cm ²	100,0	75,0	60,0	
- R _{m, 135} /E ₁₃₅ arány	2,0 - 5,0	min. 2,0	min. 1,5	

Az élelmezési célra szánt búza esetén a legfontosabb mutatók a sütőipari tulajdonsággal kapcsolatosak. A sütőipari lisztminőséget elsősorban a beltartalmi összetétel (nedvesség-, fehérjetartalom) befolyásolják, másrészt viszont a fehérjeminőségnek van fontos szerepe. A fehérjeminőség alatt a liszt sikértartalmára kell gondolni, mely főként a búza tartalékfehérjéiből áll. A sikér alacsony molekulatömegű gliadinból és nagy molekulatömegű gluteninből (összesen mintegy 82%-át adják) felépülő, képlékeny, rugalmas, nem vízoldható anyag, de emellett még keményítőt, egyéb fehérjéket, lipideket, cukrokat tartalmaz (Uri és mtsai, 2006). A gliadinok egyszerű polipeptid láncokból állnak, melyeket intramolekuláris diszulfid kötések kapcsolnak össze, míg a glutenin tartalékfehérjék több polipeptid láncból épülnek fel és intermolekuláris diszulfidkötéseket is tartalmaznak (Lásztity, 1996). A sikér a lisztből készült tészta viszkoelasztikus viselkedéséért felelős (MacRitchie és Lafiandra, 1997; Weegels és mtsai, 1996). A búza tartalékfehérjéinek tulajdonságai befolyásolják a sütőipari tulajdonságokat és teszik alkalmassá a búzát kenyérkészítésre (Shewry és mtsai, 1992; Zhu és Kahn, 2001; Antes és Wieser, 2001; Cuniberti és mtsai, 2003; Gupta és mtsai, 1992). A tartalékfehérjék kölcsönhatásba lépnek a vízzel és keményítővel, létrehozva egy egybefüggő fehérjefázist, mely olyan kohéziós és elasztikus tulajdonságot kölcsönöz a tésztának, hogy abból kelesztett, kovászolt kenyér készíthető. Különböző faktorok játszanak szerepet a sikér reológiai tulajdonságainak és az egész komplex karakterének kialakításában. Ezek közül a tartalékfehérjék két fő tényezőcsoport révén befolyásolják a sikér reológiai tulajdonságait:

- a sikérkomplexet alkotó fehérjekomponensek minőségi és mennyiségi jellege által,
- a sikérkomplexben lévő fehérjefrakciók közötti kölcsönhatások útján.

Az alacsony és nagy molekulatömegű alegységek arányát vizsgálták azzal kapcsolatban, hogy milyen hatással vannak a búza és a liszt sütőipari tulajdonságaira. A gliadin és glutenin frakciók aránya bizonyult a legfontosabb faktornak a sikér és a tészta reológiai tulajdonságaink kialakításában. A sütési minőség szempontjából a korai vizsgálódások azt mutatták, hogy a frakciók 1:1 arányú megoszlása az optimális. Későbbiekben azt találták, hogy a sikérfehérjék oldhatósága és molekulatömeg-eloszlása is fontos tényezők a sikér minőségének megállapításában (Lásztity, 1996).

A sikér mennyisége mellett a sikérterülést és a sikérindexet is meg szokták határozni. A sikérterülés mértéke arra utal, hogy a sikér mennyire tudja megtartani a formáját. A sikérindexet egy speciális szitán történő centrifugálással határozzák meg, ahol a fennmaradó és átmenő anyag arányát határozzák meg. Minél nagyobb a sikérindex, annál jobb a sikér minősége (Győri és Győriné, 1998).

2.2.1. Reológiai tulajdonságokat meghatározó módszerek a búzaminősítésben

A búza feldolgozás-technológiai értékét elsősorban a reológiai tulajdonságok határozzák meg. Reológia alatt az anyagok áramlási és deformációs viselkedését és ennek tanulmányozását értjük. A reológiai tulajdonságok meghatározása során az anyagot adott igénybevételnek tesszük ki és bizonyos idő elteltével vizsgáljuk az adott igénybevételre adott választ. Ebből következtetni lehet az anyag rugalmasságára, merevségére, nyúlékonyságára, ellenálló-képességére. Általánosságban a reológiai mérések célja a különböző anyagok mechanikai tulajdonságainak mennyiségi leírása, az anyag összetételére és molekuláris szerkezetére vonatkozó információ nyerésére, valamint az anyagok viselkedésének jellemzése és szimulálása a feldolgozás során. A reológiai módszerek alapvetően két csoportba sorolhatóak. Beszélünk leíró empirikus módszerről és fundamentális vizsgálatokról. Az empirikus mérések kivitelezéséhez olyan készülékek tartoznak, mint a penetrométer, állományvizsgáló, konzisztométer, amilográf, farinográf, mixográf, extenzográf, alveográf. Ezek а könnyen kivitelezhetőek, a feldolgozást szimulálják, így értékelhető a későbbi feldolgozás során várható viselkedés. A vizsgálatok tisztán leíró jellegűek, és a készülék típusától, a minta méretétől és a speciális körülményektől függenek. Az empirikus vizsgálatokkal szemben a fundamentális mérési módszereknél a készülékek drágák, a mérés hosszú ideig tart, nehezebb az eredményeket ipari környezetben kivitelezni, és az eredményeket értelmezni. A legjellemzőbb fundamentális módszerek közé tartozik az áramlásos viszkozimetria, kúszás-relaxáció deformáció vizsgálata (Dobraczyk és Morgenstern, 2003).

A valorigráf – farinográffal szinte azonos, néhány részletében eltérő – magyar fejlesztésű tésztavizsgáló készülék, mely Hankóczy Jenő ötlete nyomán készült el 1927ben Karl Brabender által (2. ábra). Eltérés a valorigráf és a farinográf között, hogy amíg a farinográf a meghajtó tengelyre gyakorolt nyomatékot méri, amely a csésze és a karok között lép fel, addig a valorigráfnál a csésze mozdul el, és az arra ható forgatónyomatékot méri a dinamométer. A regisztrált görbe (farinogram, illetve valorigram) a tészta konzisztenciájának keverés hatására bekövetkező változását szemlélteti (2. ábra). A készülékkel meghatározható a liszt vízfelvevő képessége, melyből a valorigramról leolvasható paraméterekkel (tészta-kialakulás időtartama, tészta stabilitása és ellágyulása, planimetrált terület) együtt meghatározható a sütőipari minőség (Győri és Győriné, 1998).

2. ábra: Valorigráf és valorigram

Az **alveográf**ot szintén Hankóczy Jenő ötlete alapján Marcel Chopin szerkesztette meg az 1920-as években (3. ábra). A vizsgálat során a lisztből készült tésztából korongokat szaggatnak, melyekből buborékot fújva kéttengelyű nyújtásnak teszik ki azt a tészta elszakadásáig. A folyamat lefutását az alveogram rögzíti (3. ábra), melyre leolvashatóak a P (a tészta deformációjához szükséges maximális nyomás, mm), L (nyújthatóság, mm), G (duzzadási index, ml), P/L hányados és W (a tészta deformációjához szükséges energia, 10⁻⁴ Joule) paraméterek (Faridi és Rasper, 1987).

Az **extenzográf**os vizsgálat során a tészta egytengelyű nyújtásnak van kitéve. Az extenzográf alkalmas a tészta nyújtással szembeni ellenállásának (rezisztencia) és nyújthatóságának meghatározására, így megbízható információt szolgáltat a tészta sütési viselkedésére. Egy extenzográf berendezést és egy jellemző extenzogramot mutat a 4. ábra. Az extenzogramról leolvasható paraméterek a következőek: standard nyújtással szembeni ellenállás (a tészta 5 cm-es megnyúlásakor mért ellenállás), nyújtással szembeni legnagyobb ellenállás (a görbe maximuma), görbe alatti terület (energia),

standard nyújtással szembeni ellenállás / nyújthatóság aránya, nyújtással szembeni legnagyobb ellenállás / nyújthatóság aránya (Rasper és Preston, 1991).

3. ábra: Alveográf és alveogram

4. ábra: Extenzográf és extenzogram

A **mixográf** hasonló elven működik, mint a farinográf, és a farinogramhoz hasonló keverési görbét ad. Lényeges különbség a keverés mechanizmusában van: a "tűkkel" való keverés során egy nyújtás-hajtás-szakítás mechanizmusú igénybevétel történik. 3-4 forgó és velük szemben elhelyezkedő 2-4 álló tű keveri a tésztát. A készülék a tűk forgásából adódó, a keverőedényre gyakorolt nyomatékot regisztrálja. A műszert főleg az Egyesült Államokban, Kanadában és Ausztráliában használják (Belderok és mtsai, 2000).

A 2000-es évek fejlesztése a **Mixolab** készülék, mely olyan mérést tesz lehetővé, ami egyszeri vizsgálattal ad információt a keverési tulajdonságokról (vízfelvevő képsség, keverési idő, stabilitás, ellágyulás), a keményítő gélesedéséről, az enzimaktivitásról és a

kemény retorgradációról. A készülék egyszerre detektálja a keverés és a hómérséklet hatására bekövetkező változásokat (Chopin, 2006).

2.2.2. Kis mintaigényű, dagasztáson alapuló lisztminősítő mikromódszerek

A búza minták fentebb vázolt minősítésében számos vizsgálatot kell elvégezni, melyeknél a minta mennyisége limitáló faktor. A mintamennyiség csökkentése a hagyományos műszerek, illetve eljárások analógiájára készült, ún. mikrokészülékek, mikromódszerek alkalmazásával valósult meg.

A **2g-mixográf** működési elve egyezik a hagyományos műszerrel, de 10 g minta helyett csak 2 g-ra van szükség a vizsgálathoz, mely jól alkalmazható nemesítési programokban és az eredmények jól korrelálnak a hagyományos módszer eredményeivel (Gras és O'Brien, 1992)

A **mikro-valorigráf** magyar (Budapesti Műszaki Egyetem) és ausztrál (Commonwealth Scientific and Industrial Research Organization) kutatók közös munkájaként valósult meg. A csökkentett lisztmennyiséggel dolgozó készülékkel kapott görbék teljesen hasonlóak a hagyományos valorigráf görbéhez. A kis mixerrel mért vízabszorpciós értékek egyeznek a valorigráffal kapott eredményekkel. A kisméretű készülék állandó, 4g mintamennyiséget követel meg (Tömösközi és mtsai, 2012)

A **micro Z-arm mixer**t a hagyományos Z-karú keverők alapján fejlesztették ki. Ez a készülék mind a keverésre, mind a vízfelvételre szolgáltat információt, míg a méréshez szükséges mintamennyiség 4 g-ra csökkenthető. Ezt az új berendezést sikerrel alkalmazták a keverési paraméterek és a hozzáadott víz mennyisége közötti összefüggések vizsgálatára, valamint a fehérjetartalom és összetétel módosításának hatására a keverési tulajdonságokban és a vízfelvételben bekövetkező változások nyomon követésére (Haraszi és mtsai, 2004; Tömösközi és mtsai, 2002).

A **micro-doughLAB** egy kis léptékű szigma-karos keverő prototípusa. A készülék segítségével a vízfelvétel, keverési paraméterek, valamint elasztikus tulajdonságok mérhetők. A kis mennyiségű (4 g) mintaszükséglet teszi a nemesítők és kutatók számára jól alkalmazhatóvá a micro-doughLAB készüléket. Ideális olyan esetekben, mikor a minta mennyisége, vagy a technikai és mérési idő limitált. A programozható keverési sebesség által vizsgálni lehet a tészta valamilyen stresszhatásra vagy különböző összetevők változtatására adott válaszát, változását, valamint a programozható hőmérsékletnek köszönhetően a tészta melegedési és gélesedési tulajdonságainak

mérésére is alkalmas. A gyártó (Newport Sicentific, ma Perten) munkatársai egy szabványos és egy mikro készülékkel méréseket végeztek a két módszer összehasonlítására. Az eredmények alapján a micro-doughLAB készülék a tészta tulajdonságainak mérésére kapott elfogadható ismételhetőségi érték alapján jól használható rutin mérések során például nemesítési programokban (Dang és mtsai, 2007)

2.3. A közeli infravörös spektroszkópia

2.3.1. Az infravörös spektroszkópia kialakulása

A spektroszkópia története Sir Isaac Newtonnal (1642–1727) kezdődik. Ő volt az első, aki pontosan leírta, hogy a fehér fényt több komponens (szín) alkotja. Kísérleteit ablakának zsaluin átszűrődő fény útjába helyezett prizmával végezte. A prizma az ibolya színt hajlította el leginkább, míg a vöröset a legkevésbé (5. ábra).

Sir Frederic William Herschel (1738–1822) nevéhez fűződik az infravörös tartomány leírása. Elképzelése szerint a fehér fénynek a látható tartományon kívül is léteznek komponensei. Herschel feltevésének igazolásához a látható tartományon kívüli régiókat valahogy észlelnie kellett, hiszen azok szabad szemmel nem voltak megfigyelhetőek. Egy hőmérő befeketített tartályát helyezte a fény útjába és vizsgálta a hőmérsékletváltozást. A későbbiekben egy üvegcsében kútvíz mintát tett a fényútba. A referencia és a vizsgált minta hőmérséklete közti különbség az infravörös fény abszorpciójának volt köszönhető (Gergely, 2005).

5. ábra: Sir Isaac Newton kísérlete, illetve az infravörös fény helye az elektromágneses sugárzásban (Gergely, 2005)

2.3.2. A közeli infravörös spektroszkópia alapjai

A szerves anyagok atomokból, főként C, H, N, O, P, S és egyéb elemekből épülnek fel. Ezekből az atomokból kovalens és ionos kötések révén alakulnak ki a molekulák. A kötések természete, a molekulák elektrosztatikus töltése miatt a molekulás állandó mozgásban vannak. Egy N atomos molekula esetén a rezgési állapotok száma 3N-6. A molekulák vibrációs kötéseit két csoportba sorolhatjuk. Egyrészt megkülönböztetünk vegyértékrezgéseket és deformációs rezgéseket. A vegyérték rezgés esetén a kötésben lévő két atom közötti kötés nyúlik illetve rövidül mely lehet szimmetrikus és aszimmetrikus. A deformációs rezgések esetén a kötéstávolság nem változik, csak a kötésszög. Ezek lehetnek az ollózó (síkbeli aszimmetrikus), kaszáló (síkbeli szimmetrikus), bólogató (síkra merőleges szimmetrikus), torziós (síkra merőleges aszimetrikus). Az elektromágneses sugárzás közeli infravörös régiójában (800-2500 nm között) adott hullámhosszon a molekulák adott frekvencián rezegnek. Ha egy molekulát külső energiaforrással sugározunk, a molekulák az infravörös sugárzást abszorbeálni tudják, az energiaszintjük megváltozik. Ezen változásokhoz jellegzetes vibrációs és rotációs kvantumszámok tartoznak. Az anyagban lévő molekulák általánosságban a legalacsonyabb energiaszinten, az alapállapotban vannak. Külső sugárzás (pl. wolfrám vagy halogén lámpa) hatására a molekulák egy része fotonokat köt meg és magasabb energiaszintre ugrik (felharmónikusok). A spektrum a szerves molekulákban előforduló kötések különböző hullámhosszoknál való fény abszorpciójának eredményeképp jön létre, azaz kémiai kötések reagálnak a gerjesztő fénynyalábra. Az alaprezgés (0. energiaszintről 1. energiaszintre) mellett a spektrumban kisebb intenzitással, de a felharmonikusok (0. energiaszintről magasabb energiaszintre) és azok kombinációi is ielentkeznek.

A közeli infravörös tartományban azok a rezgések tudnak abszorbeálni, melyek dipólusmomentuma megváltozik. Legnagyobb mértékben a normálrezgések, kisebb mértékben a felharmónikusok. (Murray és Williams, 1987)

A közeli infravörös spektroszkópiában tehát az infravörös fény és az anyag közötti kölcsönhatásokat használják fel: a fénykvantum hatására a molekulák rezgési és forgási állapotai gerjesztődnek, eközben a fotonok egyik része elnyelődik (abszorpció), másik része áthalad a mintán (transzmisszió), és bizonyos része más utat jár be (6. ábra).

6. ábra: Az infravörös fény és az anyag kölcsönhatásai A – reflexió, B – diffúz reflexió, C – abszorpció, D – transzmisszió, E – elhajlás, F – szóródás (Gergely, 2005)

Az ábrán látható kölcsönhatások közül a közeli infravörös technika két fő működési elvének alapjaként a transzmissziót és a diffúz reflexiót alkalmazzák. Általában transzmissziós méréseknél a 800-1100 nm-es, reflexiós méréseknél az 1100-2500 nm-es régiót használják (Osborne, 2001)

2.3.3. A közeli infravörös készülékek felépítése és működése

A berendezések felépítésénél általánosan elmondható, hogy tartalmaznak egy fényforrást, valamilyen optikai elemet, mintatartó egységet és detektor (Bácskai és mtsai, 1984). Emellett a spektrumok rögzítése és kiértékelése a készülékekhez csatlakoztatott számítógép és alkalmas szoftver segítségével történik.

- Fényforrásként kevert polikromatikus fényű, nagy energiájú, jó hullámhossz stabilitású [közeli infravörös (pl. wolfrám-halogén izzó); középső infravörös (pl. Globar, Nerst izzó)] lámpákat használnak.
- Optikai elem lehet interferenciaszűrő (ék, diszkrét), mozgó diffrakciós rács (holografikus), közeli infravörös tartományban emittáló diódák, interferométer (pl. Michelson-féle), akuszto-optikusan hangolt szűrők.
- Mintakezelő egységként megkülönböztetünk küvettát (pépek, zagyok, folyadékok), nyitható hasáb mintatartót (granulátumok, szemes anyagok), reflexiós mintatartót (őrlemények, porok), száloptikát, speciális mintarögzítőket (pl. egy-szem anyagok, tabletták), transzflexiós mintakezelést (nagy sűrűségű, nehezen kezelhető "folyadékok").

- Detektorok is többfélék lehetnek, mint az infravörös termikus (termoelem), illetve az infravörös foton (félvezetők, pl. PbS, InGaAs)
- Működési mód szerint transzmissziós, reflexiós, transzmissziós és reflexiós elrendezés lehetséges.

A 7. ábrán látható a közeli infravörös tartományban használatos transzmissziós és reflexiós készülékek elvi felépítése.

7. ábra: Transzmissziós (balra) és reflexiós (jobbra) mérési elrendezés (Gergely, 2005)

A transzmissziós elven működő berendezésekben a fénynyaláb áthatol a mintán. Ehhez általában a kisebb hullámhosszú, de nagyobb energiájú fényt (800-1100 nm) alkalmazzák.

Legyen a mintát érő beeső sugárzás intenzitása I_0 , míg a mintát elhagyó sugárzásé I_t . Az áthaladt és az eredeti fény intenzitásának aránya a transzmittancia:

$$T = \frac{I_t}{I_0}$$

A transzmittancia nem lineárisan, hanem logaritmikusan változik a koncentrációval, így célszerűbb a transzmittancia negatív tízes alapú logaritmusát használni, amit abszorbanciának nevezünk:

$$A = -\lg T = \lg \frac{1}{T}$$

Ha a mérendő minták zavarosak, átlátszatlanok vagy túl nagy mértékben abszorbeálják a rajtuk áteső fényt, egy másik, ún. diffúz reflektancia megközelítés használható. A diffúz reflektancia esetén a beeső fénysugár a felszínre merőlegesen éri a mintát. A fény behatol a mintába, és minden irányba visszaverődik. Kísérletek alapján arra a következtetésre jutottak, hogy a mintára 90°-ba beeső fénysugárral 45°-ot bezáró irány

mentén elhelyezett detektor méri a legnagyobb mennyiségű diffúzan visszavert fényt. A reflexiós mérés során a fénysugár a minta 1-4 mm mélységéig hatol be, így a detektorra jutó elektromágneses sugárzás információtartalma is erre a mintarétegre vonatkozik. A reflexióra definiálható a reflektancia fogalma. Ez a mintáról diffúzan visszavert fény intenzitásának (I_r), és egy nem abszorbeáló standard felületről (általában fehér kerámia, BaSO₄, Al₂O₃ vagy MgO lapról) diffúzan visszavert fény intenzitásának (I_{st}) aránya:

$$R = \frac{I_r}{I_{st}}$$

Ebben az esetben az abszorbancia a következő alakban írható fel:

$$A = -\lg R = \lg \frac{1}{R}$$

Az itt definiált paraméterek és arányossági tényezők egy adott λ hullámhosszra (azaz monokromatikus sugárzásra) vonatkoznak (Pokol és mtsai, 2011).

2.3.4. A közeli infravörös technika előnyei és hátrányai

A közeli infravörös technika előnyei:

- A spektrumok komplex információk hordozói, és így több összetevő egyidejű meghatározására adnak lehetőséget.
- A minták fő kémiai alkotóelemein túl azok minor komponensei (pl. klorofill, pigment, rost), valamint fizikai jellemzői (pl. részecskeméret, keménység) is mérhetőek.
- A mérés időigénye jelentősen lecsökken (néhány perc vagy kevesebb), így folyamatok monitorozására is lehetőség nyílik.
- Minta-előkészítésre nincs szükség (pl. teljes szem vizsgálata), így a mérés a mintavétel helyszínén is elvégezhető.
- A vizsgálat roncsolásmentes, vegyszermentes: nagyon kis mértékben avatkozunk be a mintában lejátszódó folyamatokba, így alkalom nyílhat arra, hogy fiziológiai folyamatokat kövessük nyomon, illetve élő rendszereket vizsgálhassunk (Salgó és Gergely, 2012; Salgó és mtsai, 2005).
- A spektrum fizikai és kémiai információk hordozója, a minták egyfajta "ujjlenyomatát" adja.

A közeli infravörös technika hátrányai:

- A mennyiségi meghatározás a módszer indirekt volta miatt minden esetben kalibrációt igényel. A mérés pontossága nagymértékben függ a kalibrációs adatok – azaz a hagyományos analízis – mérési pontosságától, ugyanis a közeli infravörös spektroszkópiai spektrumok kiértékelése egy előzetesen validált laboratóriumi eljárás eredményeire épül.
- A sokkomponensű, összetett minták közeli infravörös spektrumai bonyolultak, "zsúfoltak", ezért gyakran előfordul az, hogy az egyik alkotóelem csoportrezgéseinek (lokális) abszorbancia maximuma egybeesik egy másikéval, és az intenzitások arányától függően többé-kevésbé elfedik egymást. A spektrum tehát általában burkológörbe jellegű a csatolt széles sávok miatt. A hiteles mérések kivitelezése és kiértékelése ezért elképzelhetetlen statisztikai módszerek, illetve megfelelő kemometriai szoftverek használata nélkül.
- Reflexiós mérés esetén a mintatartóban levő minta felülete szolgáltatja az adatokat az adott mintáról, így az inhomogenitás, mintaszerkezet, felületi nedvesség stb. jelentős mértékben befolyásolja a mért adatokat (Gergely, 2005).

2.4. Spektrumok feldolgozása – kemometriai módszerek

A NIR kalibrációk "sikeressége", pontossága gyakran a regressziós módszer előtt, a spektrális adatokon alkalmazott előkezeléstől függ. Az előkezelések célja egyrészt a véletlen zajok kiszűrése, a különböző szemcseméretből adódó fizikai hatások csökkentése, a gyenge abszorpciós sávok erősítése, az előző fejezetben leírt átlapoló csúcsok problémájának megoldása.

Ezen transzformációk mindegyike azon additív és multiplikatív különbségeket próbálja eltávolítani, melyek a fizikai méretbeli eltérésekből adódnak, nem pedig a kémiai összetételből (Delwiche és Graybosch, 2003).

Az elmúlt évtizedekben – főként a megoldandó problémák jellege és a számítástechnika fejlődésének köszönhetően – számos matematikai módszer került be a közeli infravörös spektroszkópia adatfeldolgozási módszereinek területére. Napjainkban a lineáris regresszióval dolgozó technikáktól kezdve, a főkomponens analízisen át, a nemlineáris feladatok kidolgozására alkalmas mesterséges neurális hálózatokig megannyi lehetőség közül választhatunk.

Többszörös szóródási korrekció

A többszörös szóródási korrekció (multiplicative scatter correction, MSC) egy lineáris transzformáció, mely azon a tényen alapszik, hogy a fény szóródásának hullámhosszfüggése van és ez különbözik a kémiai alapú fényabszorpciótól. Az MSC transzformáció a spektrumot egy átlag spektrum értékeihez korrigálja. (Ozaki és mtsai, 2007)

Sztenderd normál változó

A sztenderd normál változó (standard normal variate, SNV) olyan módszer, mely a spektrum egy adatpontját a spektrum adatpontjainak átlagával korrigáljuk, majd az adatpontok szórásával osztjuk (Barnes és mtsai, 1989).

Az SNV transzformáció kiegészíthető a detrend opcióval, mely minden SNV transzformált spektrumhoz képez egy négyzetes polinomot, mely által úgy alakítja ki az új spektrumot, hogy az az SNV transzformált spektrum és a polinom különbsége legyen (Delwiche és Graybosch, 2003).

Deriválás

Különböző fokú derivált spektrum képzése az alap spektrumból a legelterjedtebb transzformációs művelet, mivel alapvonal-eltolódás gyakran előfordul. A deriválást azért végezzük, hogy jobban kiemeljük a spektrumrészleteket, elkülönítsük az abszorpciós csúcsokat, kiküszöböljük a részecskeméret egyenetlenségeit. Hátránya, hogy felerősíti a zajokat, s alkalmazása akkor sem célszerű, ha pl. a szemcseméret meghatározása a cél.

Az első derivált spektrumnak ott van lokális maximuma, ahol az eredeti spektrum felfelé irányuló meredeksége maximumot ér el. Ahol az eredeti függvény lefelé irányuló meredeksége maximumot mutat, ott kapjuk a derivált spektrum lokális minimumát. Nulla értéket vesz föl az első derivált spektrum az eredeti spektrum lokális minimumai és maximumai helyén.

Az eredeti (alap) spektrum kétszeri deriválása után kapjuk a második derivált spektrumokat. Ennek eredményeképp ahol az alap spektrumban csúcs volt, az a második derivált esetében völgyként jelentkezik, és viszont. Ezzel az eljárással az alap spektrumban átlapoló csúcsok szétválaszthatóak, és a korábban nem észrevehető csúcsvállak és inflexiós pontok láthatóvá válnak. A második derivált képzéssel a függőleges alapvonal-eltolódás is kiküszöbölhető, mely a szemcseméret-eltérés

(búzaszem geometriája) következménye vagy akár a búzaszem színének hatása lehet. Ennek következtében a második derivált spektrumokban jobban előtérbe kerülnek a kémiai vagy beltartalmi tulajdonságok okozta változékonyságok.

A deriválás pozitív tulajdonságai ellenére nem érdemes magasabb rendű deriváltak alkalmazása, mivel ez a kezelés felnagyítja a zajt és fokozza a spektrum összetettségét, romlik a jel-zaj arány (Osborne és Fearn, 1986).

A deriváltak képzésénél néhány fogalom definiálandó:

- kapu (segment) meghatározza azoknak az adatpontoknak a számát,
 - melyet a deriválás előtt átlagolni kell
- rés (gap) meghatározza azoknak az adatpontoknak a számát, melyet a deriválás során a kapuk között ki kell hagyni (Vision Manual, 2000)

A fogalmak jelentését szemlélteti a 8. ábra.

8. ábra: Második derivált számítása kapu = 3 adatpont, rés = 0 adatpont esetén

A zaj növekedése miatt sokszor a deriválást valamilyen más transzformációval (pl. simítással) kombinálják. Általában ennek is ára van: mivel legtöbbször valamilyen átlagképzést használnak, ezért veszteség léphet fel azokban az információkban, amelyek a spektrumrégiók finom struktúrájában rejlenek (Osborne és Fearn, 1986).

Főkomponens analízis

A spektrumok elemzésének első lépéseként adatredukciós módszerként főkomponens analízis (Principal Component Analysis, PCA) végezhető. A PCA során a spektroszkópiai adatmátrix meghatározott számú (itt: adatpontok száma) korrelált változója (oszlopa) közötti összefüggések vizsgálatának megkönnyítésére az eredeti változókat egy olyan transzformációnak veti alá, mely új, korrelálatlan változókat eredményez. Ezek az új változók a főkomponensek, amelyek az eredeti változók lineáris kombinációi, és úgy vannak sorba rendezve, hogy elől állnak azok, amelyek az eredeti változók együttes varianciájának legnagyobb részéért felelősek. (9. ábra)

9. ábra: Az eredeti adatmátrix transzformálása transzmissziós spektrum esetén

A PCA-val lehetőség nyílik arra, hogy az adatokat kevesebb dimenzióban képezzük le, hogy új korrelálatlan változók keletkeznek. Az adatok kevesebb dimenzióban történő leképzése alapvető fontosságú, hiszen N>3 dimenziós adatkészlet az ember mintázatfelismerő képessége számára felfoghatatlan, míg 1, 2 vagy 3 dimenzióban az emberi agy mintázatfelismerő képessége nagyon jó; a kapcsolatok, hasonlóságok, különbségek könnyen észrevehetők. Ezek alapján a főkomponenseket úgy tekinthetjük, mint egy új (derékszögű) koordináta-rendszer tengelyeit, értékeit pedig az eredeti adatmátrixban lévő oszlopvektor elemeinek ezekre a tengelyekre történő vetítéseit.

A főkomponensek sorrendjét az határozza meg, hogy minden soron következő főkomponens annak a varianciának a legnagyobb részét írja le, amelyet nem magyaráznak az előző főkomponensek. Így az adatokban lévő variancia legnagyobb részét az első főkomponens hordozza. A másodikban több információ van, mint a harmadikban, és így tovább. Ha az összes főkomponenst használnánk, a teljes variancia 100%-át magyaráznánk meg. A főkomponens analízis során a célunk az, hogy minél kevesebb faktort használjunk. Az egyes főkomponensek csökkenő mértékben járulnak hozzá a teljes variancia leírásához, így egy adott főkomponenstől kezdve viszonylag kicsi egyéni hozzájárulást látunk; ezeket már elhanyagoljuk (Füstös, 2009).

A főkomponens elemzés eredményeinek láthatóvá tételét rendszerint a főkomponensegyüttható (loading) és főkomponens (score) ábrákkal oldhatjuk meg. A főkomponensegyüttható ábrából az eredeti tulajdonság-változók hasonlóságaira, korrelációira lehet következtetni. A főkomponens ábrák hasonlóak a főkomponens-együttható ábrákhoz, de skálájuk eltér: a főkomponens-együttható értéke -1 és 1 közé esik, míg a főkomponensek nem szorítható határok közé (Héberger és Rajkó, 2001).

Polár minősítő rendszer

A polár minősítő rendszer (polar qualification system, PQS) egy olyan módszer, melynek segítségével a Descartes koordináta-rendszerben lévő spektrum átalakítható polár koordinátarendszerbelivé. A sugár a spektrumérték, míg a szög a hullámhossz függvénye. Adott hullámhosszhoz tartozó abszorpciós értékek mindkét rendszerben megegyeznek. A minta spektrumát a kétdimenziós "minőségsíkon" ábrázoljuk. Az így keletkező spektrum középpontja a "minőségpont", mely jellemző az adott mintára. A különböző minták minőségpontjai közötti távolságjellemzésére a "polár távolság" használható (10. ábra).

10. ábra: Eredeti és polár koordináta rendszerben ábrázolt spektrumok

A minőségpont koordinátáinak meghatározására három lehetőség van. Az ún. "pont módszer" alkalmazása egy olyan rendszer tömegközéppontjának meghatározását jelenti, ahol az egyes spektrumpontokban egységnyi tömegeket helyeztünk el. Az ún. "vonal módszer" egy a spektrum alakjára hajlított huzal tömegközéppontjának meghatározását jelenti, míg az ún. "felület módszer" alkalmazásakor a minőségpont a spektrum által körülzárt terület tömegközéppontja (Kaffka és Gyarmati, 1998) (11. ábra).

11. ábra: A minőségpont koordinátáinak meghatározási módszerei

Részleges legkisebb négyzetek módszere

Az (előkezelt) spektrumok és a referencia eredmények birtokában különböző matematikai és statisztikai eszközökkel megvizsgálhatjuk az összefüggést a két adathalmaz (spektroszkópiai, illetve fizikai és/vagy kémiai adatkészlet) között.

A PLS (partial least squares, PLS, részleges legkisebb négyzetek) egy olyan regressziós módszer, mely megengedi számos hullámhossz – akár széles szegmensek, akár az egész spektrum – használatát, mialatt elkerüli a kollinearitás problémáját. (Ha két vagy több hullámhossznál mért abszorbancia-értéket használunk a kalibrációhoz, akkor előfordulhat, hogy azok nem függetlenek egymástól.)

A hagyományos legkisebb négyzetek módszereitől eltérően a PLS nem azt tételezi fel, hogy a spektrum adatok pontosak, és az összes hiba a referencia értékekben van. A spektrum és a referencia adatokat egyidejűleg modellezi, egyfajta iteratív úton: minden lépésben az adatkészletből kivonja a spektrum és a referencia adatok egy részét, maradékokat képezve ezáltal. A modell a látens változók (vagy faktorok) számának növelésével egyre nagyobb mértékben írja le az adathalmaz változékonyságát. A PLS ezekre a faktorokra – spektrumoknál ún. loading-okra, illetve a referencia adatoknál az ún. score-okra – részleges kalibrációkat alkalmaz a variancia összegének modellezésére, amelyeket a művelet végén egy átfogó kalibrációs egyenletbe gyűjt össze.

Általában több PLS faktor kerül kiszámításra, mint ahány a végső kalibrációhoz kell. Az optimális faktorszám meghatározása a PLS kalibráció fontos része: túl kevés faktor esetén a kalibráció kevés információt hordoz és nagy predikciós hibával dolgozik, míg túl sok faktor alkalmazásakor a modell túlilleszti a kalibrációs adatokat, és elveszítve így a modell robosztusságát, stabilitását. Az optimális faktorszámot rendszerint keresztvalidálással vagy a kalibráció mintapopulációtól független, predikciós mintasereg segítségével határozzuk meg. A folyamat során faktoronként kell elvégezni a súlyfüggvény (loading) vizsgálatát (ISI Version 3.00 User Manual, 1992).

Módosított részleges legkisebb négyzetek módszere

Munkám során a spektrumok és a referencia tulajdonságok kapcsolatát a részleges legkisebb négyzetek módszeréből származtatható a módosított részleges legkisebb négyzetek módszerével (Modified PLS = mPLS) vizsgáltam. Az mPLS módszer az előbbiekben leírttól annyiban tér el, hogy amikor a maradékok képzése történik egy faktor kiszámítása után, a maradékot elosztja az átlag maradék-értékkel (normalizálás) mielőtt a következő faktor számítására sor kerülne. Az mPLS módszer stabilabb és nagyszámú (50 felett) mintapopuláció esetén biztonságosan használható a végső kalibrációs egyenlet eléréséhez (Vision Manual, 2000).

Keresztvalidálás

A keresztvalidálás során a kalibráló mintapopulációt alcsoportokba osztjuk. Ezen alcsoportok közül egyet visszatartunk addig, míg a maradék mintákkal megtörténik a kalibráció. Az így nyert kalibrációs egyenlet alapján úgy elemeztetjük a visszatartott alcsoportot, mintha független, ismeretlen minták lennének benne. A statisztikai értékelés után a visszatartott alcsoport visszakerül a kalibráló mintaseregbe. A keresztvalidálás során az előbbiekben ismertetett műveletsor a többi alcsoporttal megismétlődik, majd az alcsoportokra kapott részeredmények összegződnek (Vision Manual, 2000).

Mesterséges neurális hálózatok

A mesterséges neurális hálózat (Artifical Neural Networks, ANN) egy hatékony módszer kalibrációs modell fejlesztésére, amikor nagy (mintaszám több ezer) és komplex (több évjárat, több fajta, több termőterület, többféle készülékkel történő spektrumfelvétel) mintasereg áll rendelkezésre. Az ANN képes kezelni egy ilyen nemlineáris mintasereget. A módszer alapja az emberi agyban lévő neuronhálózat működéséből ered. A bemenő neuronok a rögzített spektrumokat jelképezik. A bemenő adatpontokat súlyozzák, így képezve a rejtett rétegeket. A későbbiekben ezeket alakítják át nem-lineáris transzformációval. Az ANN esetén a hálózat gyakorol/tanul és szisztematikusan változtatja a súlyozásokat, hogy egy ismeretlen minta adott paraméterét becsülni tudja (Nørgaard és mtsai, 2013).

2.5. A közeli infravörös spektroszkópia alkalmazási lehetőségei a búza minősítésben

A szakirodalomban számos tanulmány mutatja be a közeli infravörös spektroszkópia alkalmazhatóságát a búza minősítésében. A publikációk széleskörűen foglalkoznak a búza minősítésével és annak különböző aspektusaival. A búza fizikai, kémiai tulajdonságaitól kezdve, a technológiai jellemzők meghatározásán át, az esetleges szennyezettség (toxinok) kimutatásáig találunk publikációkat. A búzából készült termékek osztályozására, valamint beltartalmi vizsgálatára is készültek NIR kalibrációs modellek.

A búza NIR technikával történő vizsgálata már a szántóföldi betakarításkor megtörténhet, mivel ma már lehetőség van olyan hordozható készülékek használatára, melyek az aratás helyén és idejében tudják a búza egyes paramétereit (nedvesség-, fehérjetartalom) becsülni (Perten Instruments, 2014; Long és mtsai, 2008; Long és mtsai, 2013; Maertens és mtsai, 2004).

Zhao és mtsai (2013) kutatásukban arra keresték a választ, hogy a NIR spektroszkópia alkalmas-e a termőhely szerint azonosításra. Munkájuk Kína 4 fő termőterületéről származó minták alapján állítottak fel olyan modellt, mely képest megkülönböztetni a minták eredetét.

A kutatások egy része egy-szem analízisen alapuló vizsgálatokat mutat be (Wang és mtsai, 1999a; Wang és mtsai, 1999b; Maghirang és Dowell, 2003; Pasikatan és Dowell, 2004; Dowell és mtsai, 2009; Peiris és mtsai, 2010; Peiris és Dowell, 2011). Wang és mtsai (1999a, 1999b) két publikációban mutatják be az egy-szem analízissel meghatározható szín és méret paraméterek becslésére vonatkozó modelleiket. Szemkeménység becslésére állított fel modellt Maghirang és Dowell (2003). Egy-szem analízist használtak búzaminták osztályozására a fehérje-tartalom alapján Pasikatan és Dowell (2004). Dowell és mtsai 2009-ben szintén egy-szem vizsgálati modelleket készítettek amilózmentes (waxy) búza minták kiszűrésére, valamint amilózmentes vagy részleges csökkentett amilóz mennyiséget tartalmazó illetve az átlagos búza minták (általános amilóz-amilopektin arány) megkülönböztetésére. Fuzárium által károsodott búzaszemeket vizsgáltak egy-szem analízissel (Peiris és mtsai, 2010; Peiris és mtsai, 2011) a deoxynivalenol (DON) szennyezettség, valamint a nedvességtartalom változásának becslésére.

Blažek és mtsai (2005) arra keresték a választ, hogy a NIR spektroszkópia alkalmas-e a búzából őrölt liszt őrlési tulajdonságainak vizsgálatára. Négy őrlési tulajdonságot (dara kihozatali arány, darakihozatal, liszt kihozatali arány, Mohse index) vizsgáltak, melyeket megfelelő megbízhatósággal tudtak becsülni.

Publikációk alapja sokszor a búza nedvesség- és fehérje-tartalmának meghatározása közeli infravörös spektroszkópiával. Ez a két paraméter már a betakarításkor fontos szerepet játszik a búza további felhasználhatóságát tekintve. A nedvesség- és fehérjetartalom két jól prediktálható beltartalmi érték, mivel a közeli infravörös spektrumban jól meghatározott hullámhosszokon adnak egyértelmű csúcsot. Williams és Sobering (1993) munkájuk során reflexiós és transzmissziós módban működő készüléket hasonlítottak össze különböző gabonafélék beltartalmi paramétereinek becslésére. A beltartalmi értékek közül a nedvesség-, fehérje-, olajtartalom, valamint szemkeménység értékének becslésére készítettek függvényeket. Munkájuk során MLR (multiple linear regression), PCR (principal component regression), és PLS (partial least square) regressziót, valamint hullámhossz optimalizálást, keresztvalidálást és tesztvalidálást használtak. A függvényeket a korrelációs koefficiens (R^2) , a becslés sztenderd hibája (SEP), valamint az RPD hányados alapján értékelték. Az RPD (residual predictive derivation) hányados az adatok szórásának és a becslés sztenderd hibájának hányadosaként áll elő. Az RPD-t először Williams 1987-ben definiálta, mint a kalibráció jóságát jellemző egyik paraméter. Az RPD értékére vonatkozóan megállapították, hogy ha az RPD nagyobb, mint 10, akkor a kalibráció kitűnő, alkalmazható a folyamatok nyomonkövetésében, fejlesztésekben, alkalmazott kutatásokban. 5 és 10 közötti érték esetén a modell minőségellenőrzésre alkalmas, míg 2,5 és 5 közötti érték esetén a kalibráció nemesítési programok vizsgálatára használható. Eredményeik alapján a transzmissziós és reflexiós módban működő készülékekre hasonló pontosságú kalibrációkat kaptak a fenti a paraméterek becslésére. Delwiche és mtsai 1998-as tanulmányukban búzafajták fehérjetartalmát, fehérjealegységeit, valamint mixográfos reológiai tulajdonságait határozták meg mind klasszikus módszerekkel, mind közeli infravörös technikával. Ekkor ők úgy ítélték, hogy egyes paraméterekre készített kalibrációk megfelelőek a nemesítési programokhoz, de az albumin, globulin valamint a pentozán mennyiségének meghatározása még nem elég pontos. Nedvesség-, és fehérjetartalom meghatározásra készítettek modelleket Büchmann és mtsai (2001), akik PLS (partial least square) kalibrációk mellett az ANN (articifal neural network) modelleket is készítettek. Tapasztalataik alapján az ANN modellek pontosabbak, mint a

PLS kalibrációk, és jobban alkalmazhatóak a kiszolgáló (slave) készülékeken. Delwiche és Graybosch (2003) munkájukban számos előkezelés hatását vizsgálta a PLS kalibrációk pontosságára. Cikkük alapjául olyan kutatás szolgált, ahol búza minták fehérjetartalmának és SDS (sodium dodecyl sulphate) szedimentációs indexének értékét becsülték közeli infravörös spektroszkópiával és a spektrum-előkezelése kombinációit alkalmazták. Búza minták nyers fehérje- és nedves sikértartalmát, valamint SDS szedimentációs indexét vizsgálta Cozzolino és mtsai (2006). A közeli infravörös mérésekhez reflexiós készülék állt rendelkezésükre. A felvett spektrumokat nyers formában valamint második derivált képzéssel dolgozták fel PLS regressziót alkalmazva. Az RPD értékét itt a szórás és a keresztvalidálás sztenderd hibájának hányadosaként adták meg és kritikus értéknek a 3-at vették, mely felett a modell megfelelő mezőgazdasági minták vizsgálatára. Eredményeik alapján a nyers fehérjetartalmat csak közepes pontossággal, míg a nedves sikértartalmat és az SDS szedimentációt csak alacsony megbízhatósággal tudják becsülni. Bár az R² értékek megfelelőek lennének, de az RPD értéke nyers fehérjetartalom esetén 1,8 valamint 2,2 (nyers spektrumok, második derivált), míg nedves sikártartalom esetén 1,1 valamint 1,2 (nyers spektrumok, második derivált) és SDS szedimentációnál 1,4 valamint 1,3 (nyers spektrumok, második derivált). Başlar és Ertugay (2011) szintén fehérje-, valamint sikértartalmat és Zeleny indexet vizsgáltak a technikával. Első és második derivált spektrumokkal, MLR és mPLS regresszióval értek el magas korrelációs koefficienssel $(r_{fehérje} = 0.985, r_{sikér} = 0.976, r_{Zeleny} = 0.924$ jellemezhető modelleket. Wesley és mtsai (2001) a búza tartalékfehérjéit vizsgálták reflexiós közeli infravörös spektroszkópiával. A gliadin és glutenin mennyiségi meghatározására készítettek kalibrációkat. Céljuk az volt, hogy a mérési eredmények függetlenek legyenek az összfehérje-tartalomtól, s csak az egyes fehérjekomponensek mennyiségét akarták meghatározni. A görbeillesztéses módszerrel kapott R^2 értékek a következőképpen alakultak $R^2_{glutenin} = 0,71$, $R^{2}_{gliadin} = 0.46$; míg a részleges legkisebb négyzetek módszerével kapott R^{2} értékek $R^2_{glutenin} = 0.83$, $R^2_{gliadin} = 0.78$ voltak.

Hrušková és mtsai 2001-es munkájában reológiai paraméterek becslésére készített kalibrációkat, melyek a farinográfos és extenzográfos mutatókat foglalták magukba két termesztési évre vonatkozóan. SNV és első derivált képzéssel (1-4-4-1, 1-8-8-1) mPLS regresszióval változó pontosságú modelleket kaptak. Az 1998-as évre $r_{vizfelvétel} = 0,277$, $r_{E45} = 0,729$, $r_{E90} = 0,748$ $r_{E135} = 0,773$, míg az 1999-es évre $r_{vizfelvétel} = 0,789$, $r_{E45} = 0,383$, $r_{E90} = 0,289$ $r_{E135} = 0,372$.

Hrušková és Šmejda 2003-ben szintén reológiai paraméterekre vonatkozó eredményeit publikálta, de itt alveográfos vizsgálatot hajtottak végre a búzamintákon. SNV és első derivált képzéssel (1-4-4-1, 1-8-8-1) mPLS regresszióval változó pontosságú modelleket kaptak, ahol a P/L értékre r=0,183, r=0,545, r=0,015, r=0,000, r=0,916, a W értékre r=0,167, r=0,000, r=0,574, r=0,295, r=0,032 adódott.

Miralbes 2003-ban és 2004-ben is publikált olyan átfogó tanulmányt, melyben bemutatja, hogy beltartalmi és reológiai tulajdonságokra egyaránt fejlesztett becslési modellt. 2003-as munkájában a nedvesség-, fehérje-, nedves és száraz sikértartalomra kapott modelljeit ítélte megfelelő pontosságúaknak (R^2 =0,99, 0,99, 0,95, és 0,96). 2004-es tanulmányában már a reológiai paraméterekre (farinográf, alveográf) is megfelelő pontosságú modelleket mutatott be. A farinográfos vízfelvétel értékére a modell R^2 =0,98, az alveográfos P/L értékre R^2 =0,70, W értékre R^2 =0,92.

Dowell és mtsai (2006) munkájukban négy különböző mérési elven működő készüléket hasonlítottak össze. Búzaszemek és lisztek fizikai, beltartalmi valamint technológiai paramétereit (összesen 46 paraméter) tanulmányozták a technikával. A kalibrációkat Savitzky-Golay első derivált képzéssel PLS regresszióval készítették. A számos kalibrációs modell különböző pontossággal becsüli az egyes paramétereket. Nedvesség, fehérje, sikértartalmat jó pontossággal (0,80<R²), technológiai paraméterek változó pontosság tudtak becsülni (0,10<R²<0,95).

Jirsa és mtsai (2008) reflexiós közeli infravörös technikát használtak különböző búzafajták minősítésére. A kalibrációk készítéséhez a nagyszámú mintasereg referencia paramétereit több módszerrel mérték: végeztek klasszikus analitikai meghatározásokat, Zeleny-tesztet, alveográfos mérést, illetve sütési próbát. A kapott kalibrációs modellekkel a fehérjetartalom, a Zeleny-szám jól prediktálható: $R^2_{fehérjetartalom} = 0,987$, $R^2_{Zeleny-szám} = 0,703$, de a tészta alveográfos nyújtáshoz szükséges energia csak közepes megbízhatósággal $R^2_W = 0,535$.

2011-ben publikálta eredményeit Mutlu és mtsai (2011), akik búza minták nedvesség-, fehérjetartalmát, Zeleny indexét, farinográfos és alveográfos reológiai tulajdonságait mérték, majd ANN modellt állítottak fel a becslésükre. A 14 általuk mért paraméter közül 6-ot tudtak jó pontossággal ($0.8 < R^2$) becsülni: nedvesség-, fehérjetartalom, alveográf P és P/G érték, Zeleny index és vízfelvétel.

Arazuri és mtsai (2012) búzaminták alveográffal mért paramétereit vizsgálták laboratóriumi klasszikus módszerrel valamint közel infravörös reflexiós technikával. Négy alveográfos paraméterre (P, L, W, P/L) készítettek kalibrációs modelleket. A spektrumok elemzésénél első és második deriváltképzést és PLS regressziót használtak keresztvalidálással. A modellek értékelésénél szintén használták az RPD hányadost, de ennek számítása eltér a Williams és Sobering (1993) cikkében leírtaktól, mivel itt a szórás és a keresztvalidálás sztenderd hibájának hányadosa adja az RPD-t. Az L értékre az első derivált képzéssel kapott modellt ítélték a legjobbnak, mivel bár az R² értéke az alap és második derivált spektrumokat felhasználó modelleknél is elég nagy volt (0,8<R²), de az RPD értéke itt volt a legmagasabb és a hibák a legkisebbek. A W érték és P/L hányados esetében az alap spektrumokkal kapott modell volt jó pontosságú a hibák valamint az R² figyelembevételével. A P érték becslésére a második derivált spektrumokkal kapott modellt emelték ki. Az RPD hányados nagyságára Nicolaï és mtsai (2007) ajánlását használták, akik szerint ha az RPD értéke 1,5 és 2 között van, akkor a modell az alacsonyabb értéket tudja megkülönböztetni a magas értéktől. Ha az RPD értéke 2 és 2,5 között akkor csak közelítőleg ad jó eredményt a modell, míg 2,5 vagy a feletti RPD esetén a modell pontossága jó vagy kitűnő.

Komplex liszt-osztályozási feladatra készítettek modellt Cocchi és mtsai (2005). Céljuk volt, hogy olyan komplex rendszert alkossanak, mellyel a búza mintákat minőségi csoportokba (Frumento di Forza (FF) – javító, Frumento Panificabile Superiore (FPS) – magas minőségű kenyérliszt, Frumento Panificabile (FP) – átlagos kenyérliszt, Frumento da Biscotto (FB) – kekszhez használható liszt) lehet sorolni az Olaszországban érvényben lévő ISQ (Indice Sintetico di Qualit`a, ISQ) rendszer alapján. A rendszer minősítő paraméterei között a hektolitertömeg, esésszám, fehérjetartalom, alveográfos P/L és W érték, valamint a farinográfos stabilitás szerepel.

Kínai kutatók (Liu és He, 2008) instant tészták márka alapján történő osztályozását tűzték ki célul, hogy a hat fő kínai tésztagyártó terméket meg lehessen különböztetni.

Sørensen 2009-ben olyan kutatási eredményeket publikált, ahol a kész kenyerek beltartalmi értékeire készített kalibrációs függvényeket. A beltartalmi értékek magukba foglalták a fehérje-, zsír-, diétás rost-, cukor-, hamutartalmat valamint a zsírsavösszetételt is. Eredményei alapján jó megbízhatósággal becsülhetőek kenyerekből ezek az értékek.

3. ANYAG ÉS MÓDSZER

3.1. Minták eredete

A vizsgálataimat több termesztési évből származó őszi búza mintákon végezhettem. Kísérleti minták elemzése történt a 2008-as betakarítási évből. A Debreceni Egyetem Agrártudományi Központ látóképi kísérleti területén mintegy három évtizede beállított kisparcellás tartamkísérletből származó mintákkal dolgozhattam. A kísérlet alkalmas arra, hogy több évjárat, fajta, agrotechnika hatását, de az előveteményként alkalmazott kukorica mintákat is vizsgálni lehessen (Szilágyi, 2000, Tóth és Győri, 2004; Tóth és mtsai, 2005 és 2007; Sipos és mtsai, 2005; Sipos és mtsai, 2010; Szabó és Pepó, 2010; Boros, 2011; Boros és mtsai, 2013). A Dr. Pepó Péter professzor úr által irányított kísérletbe 18 fajtát vontak be, 5 trágyázási szinten kontroll csoporttal együtt, hogy a genotípus és a műtrágyázás hatását vizsgálják. A kísérletben szereplő fajták közül az alábbi 16 fajtából volt elegendő mennyiségű minta a vizsgálatok elvégzéséhez: GK Öthalom, Lupus, Lupus*, Saturnus, Saturnus*, Sixtus*, Biotop, Biotop*, KG Széphalom, GK Kapos, GK Békés, GK Csillag, GK Petur, MV Suba, MV Verbunkos, MV Mazurka. A látóképi kísérletben az alábbi kezeléseket alkalmazták: kontroll (trágyázatlan), 30 kg ha⁻¹ nitrogén, 22,5 kg ha⁻¹ P₂O₅ és 26,5 kg ha⁻¹ K₂O és ezen adagok kétszeresét, háromszorosát, négyszeresét, és ötszörösét. Kezelésenként négy minta állt a rendelkezésemre. A csillaggal jelölt fajták esetében szárrövidítő szert is alkalmaztak. Ebből a kísérletből összesen 384 db minta állt rendelkezésemre. A méréseim során a genotípus és a műtrágyázás esetleges hatását vizsgáltam a közeli infravörös spektrumokra.

Méréseimben szerepeltek még a 2009-es és 2010-es évből származó búza minták is, melyek vizsgálatára a termőhely különbözősége (genotípustól függetlenül) miatt került sor. Ezek a minták Magyarország különböző régióiból kerültek betakarításra. A termőhelyek az alábbiak voltak 2009-ben: Gesztely, Látókép, Kisújszállás, Tápió, Tiszavasvári, Jánoshalma, Somogyszil, Csorvás, Körösszegapáti, Harta, Komádi, Dombóvár, Hajdúböszörmény, Pápa. A 2009-es évből 257 db minta elemzésére került sor. A termőhelyek az alábbiak voltak 2010-ben: Harta, Somogyszil, Mezőkövesd, Jánoshalma, Nádudvar, Gesztely, Kapuvár, Tápió, Iregszemcse, Látókép, Csorvás. Ebből a termőévből 274 db mintán tudtam a vizsgálatokat elvégezni.

3.2. A lisztek reológiai jellemzőinek vizsgálata

A búza minták őrlése a valorigráfos és extenzográfos vizsgálatokhoz LABOR MIM FQC 109 típusú laboratóriumi malmon történt (MSZ 6367/9:1989), 250 μm-es szitával. Az alveográfos vizsgálathoz szükséges lisztet Chopin Laboratory Mill CD 1 (Tripette & Renaud, Villeneuve-la-Garenne, France) típusú malmon állítottuk elő, 160 μm-es szitával.

A liszt minták reológiai tulajdonágainak vizsgálata három módszerrel történt. Valorigráfos vizsgálat keretében a lisztből és vízből készült tészta vízfelvevőképességét MSZ ISO 5530-3:1995 szerint, Valorigraf FQA 205 (METEFÉM, Budapest, Magyarország) készülék segítségével határoztam meg 50 g liszt felhasználásával.

Az alveográfos mérések AACC (American Association of Cereal Chemists International, AACC) No. 54-30A módszer szerint Chopin alveográffal (Tripette & Renaud, Villeneuve La Garevne, France) történtek 250 g lisztből. Az alveográfos vizsgálatból kapott reológiai jellemzők: P (a tészta deformációjához szükséges maximális nyomás, mm), L (nyújthatóság, mm), G (duzzadási index, ml), P/L hányados és W (a tészta deformációjához szükséges energia, 10⁻⁴ Joule).

A lisztminták reológiai vizsgálata a 2008-as évből származó minták esetében extenzográfos vizsgálattal is kiegészült. Mivel az extenzográfos méréshez 300 g mintára van szükség, ezért a többi vizsgálat elvégzése mellett csak kisebb mintacsoporton (72 db minta) lehetett ezt a vizsgálatot elvégezni. Az extenzográfos jellemzőket AACC No. 54-10 módszer szerint Brabender extenzográffal (Brabender GmbH & Co. KG, Duisburg, Germany) határoztam meg. Az extenzográfos mutatók az alábbiak voltak: nyújthatóság (mm), standard (5 cm-es megnyúláskor mért ellenállás) nyújtással szembeni ellenállás (BU), legnagyobb nyújtással szembeni ellenállás (BU) és görbe alatti terület nagysága, energia (cm²). Az extenzográfos vizsgálat három időpontban történik, a pihentetési időtől függően a 45. perchez, a 90. perchez és a 135. perchez tartozó eredményeket kapunk.

Az éves betakarítási időszak előtt a laboratórium lisztvizsgáló készülékein hitelesített (Certified Reference Material) liszt mintákkal ellenőrző méréseket végeztünk, illetve az

adott készülékek szervíze is megtette a megfelelő karbantartást és a készülékek ilyen mintákkal történő ellenőrzését.

3.3. Közeli infravörös spektroszkópiai mérések

A minták közeli infravörös spektrumának felvételéhez FOSS Infratec 1241 Grain Analyzer egészszem vizsgáló készülék állt a rendelkezésemre (12. ábra). A készülék transzmissziós üzemben működik. A spektrumfelvétel a 850-1048 nm közötti régióban történt búzaszemekből 2 nm-es lépésközzel, az alminták száma 2 volt. A készüléket az ISW v. 3.10 szoftver vezérli, a búza néhány paraméterének (nedvesség, fehérje, sikértartalom, Zeleny-index, alveográf W) vizsgálatára a WH062008 modell áll rendelkezésre.

A spektrumok kiértékeléséhez WinISI II. v. 1.50 (Infrasoft International, LLC., 2000) szoftvert alkalmaztam.

12. ábra: FOSS Infratec 1241 Grain Analyzer

3.4. A laboratóriumi és spektroszkópiai mérések eredményeinek kiértékelési módszerei

Az adatok táblázatos megjelenítéséhez és diagramok készítéséhez a Microsoft Excel (Microsoft Office, 2007), a hisztogramok elkészítéséhez OriginPro 8.6 (OriginLab Corporation, 2011) programot használtam.

3.4.1. A spektrumok minőségi értékelése – főkomponens analízis

A spektrumok elemzésének első lépéseként adatredukciós módszerként főkomponens analízist (PCA) végeztem. A főkomponens analízis elvégzéséhez a WinISI II. (Infrasoft International, LLC., 2000) szoftvert használtam. Az egyes mintacsoportok esetében
más-más indokkal végeztem a főkomponens analízist. A 2008-as kisparcellás tartamkísérlet mintáinál a fajták és a műtrágyázási szint esetleges hatásának vizsgálatára, míg a 2009-es és 2010-es minták esetében a termőterület esetleges hatásának megállapítására végeztem el a PCA-t, majd pedig az összevont mintasereg esetében az évjárat esetleges hatásának megjelenésére. A PCA-t az alap spektrumokra és a második derivált spektrumokra is elkészítettem. A főkomponens analízis során a szoftver a Mahalanobis távolság alapján szűri ki a kívüleső (outlier) mintákat. Az algoritmus minden spektrum esetén kiszámolja a Mahalanobis távolságot, mely az adott spektrum és a mintasereg átlagspektruma közötti távolság. A szoftver által ajánlott beállítás itt 3, melyet mezőgazdasági minták esetén használnak (Pérez-Marin és mtsai, 2007).

3.4.2. A spektrumok és laboratóriumi eredmények összekapcsolása

3.4.2.1. Matematikai előkezelések

A spektrumok vizsgálatához matematikai előkezelésként az SNV és SNV+Detrend transzformációkat, valamint deriváltképzést választottam. A deriváltaknál első és második deriváltakat használtam, és az első deriváltaknál két különböző kapu-rés nagyságot állítottam be (1-4-4-1 és 1-8-8-1). A második deriváltnál a 2-2-2-1 beállítással dolgoztam. Az eredeti és transzformált spektrumokkal így 12 kombináció eredményeként kapott modellek statisztikai jellemzőit tudtam vizsgálni.

3.4.2.2. Módosított részleges legkisebb négyzetek módszere (mPLS)

A kalibrációk készítése az mPLS módszerrrel a WinISI II. (Infrasoft International, LLC., 2000) szoftverrel történt. A reológiai paraméterek közül a valorigráfos vízfelvételre, az alveográfos P/L és W értékre, valamint ahol lehetőségem volt, ott az extenzográfos nyújtáshoz szükséges energia értékekre is készítettem kalibrációs modelleket.

A modelleket különböző statisztikai jellemzők alapján értékeltem. Egyrészt megnéztem, hogy az elkészült kalibrációs modell az eredeti mintaszámhoz képest hány spektrumot használt fel, illetve mennyit szűrt ki, melyet százalékos arányban adok meg. Ez az érték nem haladhatja meg a 10%-ot. A kalibráció sztenderd hibáját (SEC), a becslés sztenderd

hibáját (SEP) és a keresztvalidálás sztenderd hibáját (SECV) szintén megadtam. Ezek mellett a kalibráció jóságának jellemzésére másik két paraméter az R^2 és RPD is kiszámításra került. Az R^2 (lineáris korrelációs koefficiens) értéke megmutatja, hogy a becsült adatok és a mért (referencia) adatok egymás függvényében történő ábrázolásakor a pontok mennyire illeszkednek a 0 tengelymetszetű, 1-es meredekségű egyenesre. Az RPD (residual predictive derivation) értékét a referencia adatok szórásának és a SECV hányadosából kapjuk. Akkor beszélhetünk megfelelő pontosságú kalibrációs modellről, ha 0,70< R^2 és 2,5<RPD (Nikolaï és mtsai, 2007).

4. EREDMÉNYEK

4.1. Kisparcellás tartamkísérletek fajtákkal 2008-ban

A következőkben a kisparcellás tartamkísérletből származó minták reológiai vizsgálatokkal kapott eredményeit, valamint a valorigráfos, alveográfos, extenzográfos paraméterek becslésére felállított modelleket mutatom be. A reológiai vizsgálatok eredményeit az 1. Melléklet tartalmazza.

4.1.1. Reológiai tulajdonságok meghatározása

4.1.1.1. Valorigráf alkalmazása

A 3. táblázatban a laboratóriumban végzett valorigráfos mérések összefoglaló eredményeit mutatom be. A minták széles vízfelvétel tartományt fednek le (54,4-71,0%), mely abból adódik, hogy a kísérletbe több fajta és különböző műtrágyázási szintek lettek bevonva. A 13. ábra a vízfelvétel adatok eloszlását mutatja.

3. tábl	3. táblázat: Valorigráfos vízfelvétel statisztikai adatai											
	Mintaszám (db)	Minimum	Maximum	Átlag	Szórás							
Vízfelvétel (%)	384	54,4	71,0	63,7	3,2							

13. ábra: Valorigráfos vízfelvétel értékek eloszlása

38

4.1.1.2. Alveográf alkalmazása

Az alveográfos vizsgálat eredményeit a 4. táblázat foglalja össze. Mind a P/L görbe alaki hányados, mind pedig a W nyújtáshoz szükséges energia tekintetében a minták széles tartományt fednek le: P/L esetén 0,35–2,72, és W esetén 90–470 10⁻⁴J. Az alveogárfos P/L és W értékek eloszlását mutatja a 14. ábra. Az ábra bal oldalán a P/L érétkek esetén megfigyelhető, hogy a mintaseregben van néhány minta, melyeknek kimagasló a P/L értékük, ezek a csoport kevesebb, mint 7%-át teszik ki.

	Mintaszám (db)	Minimum	Maximum	Átlag	Szórás
P/L	368	0,35	2,72	0,98	0,46
W (10 ⁻⁴ J)	368	90	470	284	65

4. táblázat: Alveográfos P/L és W értékek statisztikai adatai

 P/L
 368
 0,35
 2,72
 0,98
 0,46

 W (10⁻⁴ J)
 368
 90
 470
 284
 65

14. ábra: Alveográfos P/L és W értékek eloszlása

4.1.1.3. Extenzográf alkalmazása

Az extenzográfos vizsgálat eredményeit az 5. táblázat foglalja össze. Az extenzográfos vizsgálat esetén csak 72 db minta vizsgálatára volt lehetőség, mivel nem állt rendelkezésre megfelelő mennyiségű minta. A minták 45, 90, 135 perchez szükséges nyújtási energia értékei (E45, E90, E135) az alábbi tartományokat fedik le: 25–125, 17–129, 29–145 cm², az eloszlásokat pedig a 15. ábra mutatja.

	Mintaszám (db)	Minimum	Maximum	Átlag	Szórás
$E_{45} (cm^2)$	72	25	125	68	19
$E_{90} (cm^2)$	72	17	129	79	25
$E_{135} (cm^2)$	72	29	145	75	23

5. táblázat: Extenzográfos energia értékek (45, 90, 135 percnél mért) statisztikai adatai

15. ábra: Extenzográfos energia értékek (45, 90, 135 percnél mért)

4.1.2. Közeli infravörös spektroszkópiai módszerfejlesztés

4.1.2.1. Meglévő kalibrációs modellel kapott eredmények

A NIR mérésekhez használt Infratec 1241 Grain Analyzer készüléken meglévő kalibrációs modell eredményeit is értékeltem. A WH062008 modellben található az alveográfos W érték becslésére kalibrációs egyenlet. A modellel mért eredmények alapján elmondható, hogy a referencia adatok és a becsült adatok között közepes a korreláció, ugyanakkor a modell negatív értékeket is adott, mely értelmezhetetlen (16. ábra). A modell a GK Öthalom és a GK Petur fajták trágyázatlan kontroll mintáira adott negatív értéket. A többi fajta kontroll mintáihoz képest ezen minták fehérje- és sikértartalma, valamint Zeleny-indexe alatta marad és a liszt minősége is a malmi II,

vagyis B2 kategóriába sorolható. Ezen két fajta esetén a kontroll mintáknál a talaj alaptrágyázottsága illetve a fajta genetikája okozhat olyan beltartalmi összetételt, mely miatt a spektrum értékekből ilyen becslést adott a készülékben lévő modell.

16. ábra: WH062008 modellel kapott eredmények és a laboratóriumi eredmények korrelációja

4.1.2.2. Főkomponens analízis eredményei

A minták reológiai vizsgálatával párhuzamosan azok közeli infravörös spektrumait is felvettem, ennél a mintaseregnél 378 db minta spektrumát tudtam felvenni (mintánként két alminta). A spektrumok kiértékelésénél főkomponens analízist hajtottam végre, hogy a fajtahatás és a trágyázás hatása megjelenik-e a spektrumokban, és ezek okoznak-e a mintacsoportban kisebb szubpopulációkat, melyeket a későbbiekben külön kell kezelni. Az alap spektrumokra elvégezett PCA-val kapott első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 6. táblázat tartalmazza. A táblázat adatai alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 99%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponens analízis 11 db mintát jelzett outlier-ként (kiugró érték), melyeket a későbbiekben eltávolítottam a mintaseregből.

6. táblázat: Alap spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített varianca

		egyedi	összesített
PC1	PC1	96,86	96,86
PC2	PC1+PC2	3,06	99,92
PC3	PC1+PC2+PC3	0,05	99,97

A főkomponens analízis során kapott eredményeket egy háromdimenziós kocka vetületeiként mutatom be, melyek a főkomponens score értékekből adódnak.

A 17. ábrán külön színnel jelöltem az egyes fajtákat. A fajták hatását vizsgálva megállapítottam, hogy az egyes fajták mintáihoz tartozó spektrumok egy csoportot alkotnak, de az egyes fajták csoportjai nem különülnek el élesen egymástól.

A 18. ábrán külön színnel jelöltem az azonos műtrágya mennyiséggel trágyázott mintákat. A különböző műtrágya mennyiségeket kapott minták sem mutatnak éles elválást a nagy mintapopulációban.

Az alap spektrumokon elvégzett főkomponens analízis eredményei alapján sem a fajták különbözősége, sem az adagolt műtrágya mennyisége nem indokolja, hogy külön csoportokat, szubpopulációkat alakítsak ki a mintaseregen belül. A mintasereget egészében felhasználhattam a későbbiekben a mennyiségi kalibrációk fejlesztéséhez.

17. ábra: PCA eredmények az alap spektrumok esetén a fajták jelölésével: piros – GK Öthalom, kék – Lupus, zöld – Lupus*, lila – Saturnus, sárga – Saturnus*, szürke – Sixtus*, levendula – Biotop, türkiz – Biotop*, szilvakék –KG Széphalom, narancs – GK Kapos, barna – GK Békés, tengerzöld – GK Csillag, fekete – GK Petur, világoszöld – MV Suba, zöldessárga – MV Vervbunkos, rosé – MV Mazurka

18. ábra: PCA eredmények az alap spektrumok esetén a trágyázási szint jelölésével: piros - kontroll, kék - egyszeres, zöld - kétszeres, lila - háromszoros, sárga - négyszeres, szürke – ötszörös műtrágya adag

A főkomponens analízist elvégeztem a második derivált spektrumokra; az első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 7. táblázat tartalmazza. Eredményeim alapján az első három főkomponens a mintaseregben lévő teljes variancia több, mint 96%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponens analízis 13 db mintát jelzett outlier-ként, melyeket a későbbiekben eltávolítottam a mintaseregből.

7. táblázat: Második derivált spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített variancia

		egyedi	összesített
PC1	PC1	84,59	84,59
PC2	PC1+PC2	9,46	94,05
PC3	PC1+PC2+PC3	2,56	96,61

A második derivált spektrumokon elvégzett főkomponens analízis eredményét a 19. és 20. ábra mutatja. A 19. ábrán a korábbiakhoz hasonlóan a fajták vannak külön színnel jelölve, míg a 20. ábrán az egyes műtrágyázási szintekhez tartozó minták. A fajták jelölésénél látható, hogy a kék színnel jelölt Lupus és a pirossal jelölt GK-Öthalom különálló csoportot képeznek. Ezek kivételével a második derivált spektrumokra újra elvégeztem a mennyiségi kalibrációk készítését. A műtrágyázási szint jelölésénél szintén látható egy csoport, melynek tagja elkülönülnek az egész mintaseregtől. Ezek a piros színnel jelölt kontroll csoport tagjai, melyeket viszont nem távolítok el a mintaseregből, mivel ezek azok a minták, melyek nem lettek trágyázva.

19. ábra: PCA eredménye a második derivált spektrumok esetén a fajták jelölésével: piros – GK Öthalom, kék – Lupus, zöld – Lupus*, lila – Saturnus, sárga – Saturnus*, szürke – Sixtus*, levendula – Biotop, türkiz – Biotop*, szilvakék –KG Széphalom, narancs – GK Kapos, barna – GK Békés, tengerzöld – GK Csillag, fekete – GK Petur, világoszöld – MV Suba, zöldessárga – MV Vervbunkos, rosé – MV Mazurka

20. ábra: PCA eredménye a második derivált spektrumok esetén a trágyázási szintek jelölésével: piros - kontroll, kék - egyszeres, zöld - kétszeres, lila - háromszoros, sárga - négyszeres, szürke – ötszörös műtrágya adag

4.1.2.3. Módosított részleges legkisebb négyzetek módszere

A vizsgált reológiai paramétereknek, vagyis a valorigráffal kapott vízfelvétel értékének, az alveográffal kapott P/L és W értékének, az extenzográffal kapott 45, 90, 135 perchez tartozó energia értékének becsléséhez készítettem kalibrációs modelleket.

A kalibrációs modellek készítésénél irodalmi hivatkozások alapján választottam matematikai előkezeléseket, mint az első és második derivált képzés – ezen belül is a kapu/rés nagyság változtatása – és az SNV, SNV+Detrend kezeléseket.

Az előkezelések spektrumokra gyakorolt hatásait, eredményét mutatja a 18. ábra. Az ábrákon jól látszik a deriválás eredménye, az alapvonal eltolódást kiküszöböli és szétválasztja és láthatóvá teszi az átlapoló csúcsokat. A SNV és SNV+D hatása az alap spektrumok esetén a legmarkánsabb.

21. ábra: Az alkalmazott elkezelések spektrumokra gyakorolt hatása

A valorigáfos vízfelvétel értékének becslésére kapott modellek statisztikai jellemzőit tartalmazza a 8. táblázat.

Azokat a kalibrációs modelleket értékeltem, melyeknél a kiejtett minták száma az eredeti mintaszám 10%-át nem haladta meg. A valorigráfos vízfelvétel esetében nem volt olyan modell, amit figyelmen kívül kellett volna hagyni. Ennél a paraméternél nem tapasztaltam nagy eltéréseket a statisztikai jellemzőkben. A két legmegbízhatóbbnak ítélet modell az előkezelés nélküli, alap spektrumok valamint az SNV transzformáció után az alap spektrumok felhasználásával készült. Mindkét esetben a korrelációs koefficiens értéke R²=0,87 és az RPD hányados is meghaladja a 2,5-t. Ez a magas korrelációs érték azt mutatja, hogy ezekkel a modellekkel megfelelően becsülhető a valorigráfos vízfelvétel értéke.

Az alveográfos P/L és W értékének becslésére kapott modellek statisztikai jellemzőit tartalmazza a 9. és 10. táblázat.

A P/L értékre (görbe alaki hányadosa) készített modellek közül több esetben is a minták több mint 10%-a került ki a kalibrációhoz felhasznált spektrumok közül. Az alap spektrumok SNV transzformáció utáni felhasználása R²=0,77 korrelációs koefficiens értéket adott és ennek a modellnek a statisztikai jellemzői jobbak a többi modellhez

képest. Ugyanakkor az RPD hányados értéke 2,1, mely szerint a modell megközelítőleg ad jó eredményt.

Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	744	710	4,57	54,2	73,7	64,0	3,3	1,2	1,2	1,6	2,7	0,87
-	1-4-4-1	744	708	4,84	54,3	73,7	64,0	3,2	1,2	1,2	1,6	2,6	0,86
-	1-8-8-1	744	706	5,11	54,4	73,7	64,1	3,2	1,2	1,2	1,6	2,6	0,85
-	2-2-2-1	744	729	2,02	54,4	73,6	64,0	3,2	1,4	1,5	1,9	2,2	0,81
SNV	0-0-1-1	744	702	5,65	54,7	73,5	64,1	3,1	1,1	1,2	1,5	2,7	0,87
SNV	1-4-4-1	744	699	6,05	54,8	73,5	64,1	3,1	1,2	1,2	1,6	2,6	0,85
SNV	1-8-8-1	744	698	6,18	54,9	73,4	64,2	3,1	1,2	1,2	1,6	2,6	0,85
SNV	2-2-2-1	744	713	4,17	55,0	73,3	64,2	3,0	1,3	1,4	1,8	2,2	0,81
SNV+D	0-0-1-1	744	692	6,99	55,2	73,3	64,3	3,0	1,2	1,2	1,6	2,5	0,84
SNV+D	1-4-4-1	744	678	8,87	55,5	73,2	64,3	3,0	1,1	1,2	1,5	2,6	0,85
SNV+D	1-8-8-1	744	669	10,08	55,5	73,2	64,4	3,0	1,1	1,1	1,5	2,6	0,86
SNV+D	2-2-2-1	744	708	4,84	55,1	73,3	64,2	3,0	1,3	1,3	1,7	2,3	0,83

8. táblázat: Vízfelvétel becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

9. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	610	518	15,08	0	2,01	0,92	0,36	0,17	0,17	0,22	2,1	<u>0,78</u>
-	1-4-4-1	610	508	16,72	0	1,99	0,91	0,35	0,17	0,17	0,22	2,1	<u>0,78</u>
-	1-8-8-1	610	520	14,75	0	2,02	0,92	0,37	0,17	0,18	0,23	2,1	<u>0,77</u>
-	2-2-2-1	610	570	6,56	0	2,42	1,02	0,47	0,23	0,24	0,32	1,9	0,75
SNV	0-0-1-1	610	566	7,21	0	2,39	1,01	0,46	0,22	0,22	0,29	2,1	0,77
SNV	1-4-4-1	610	560	8,20	0	2,35	1,00	0,45	0,22	0,22	0,28	2,1	0,77
SNV	1-8-8-1	610	573	6,07	0	2,40	1,01	0,46	0,24	0,24	0,31	2,0	0,74
SNV	2-2-2-1	610	518	15,08	0	2,05	0,93	0,37	0,16	0,17	0,22	2,2	<u>0,81</u>
SNV+D	0-0-1-1	610	512	16,07	0	2,06	0,93	0,38	0,17	0,17	0,22	2,3	<u>0,81</u>
SNV+D	1-4-4-1	610	567	7,05	0	2,37	1,01	0,46	0,23	0,23	0,3	2,0	0,75
SNV+D	1-8-8-1	610	514	15,74	0	2,03	0,92	0,37	0,16	0,16	0,21	2,3	<u>0,80</u>
SNV+D	2-2-2-1	610	515	15,57	0	2,03	0,92	0,37	0,16	0,17	0,22	2,2	<u>0,81</u>

A W értékére (nyújtáshoz szükséges energia) kapott kalibrációk között szintén nem volt olyan, ahol a minták több mint 10%-a került elhagyásra. A közel azonos korrelációs koefficienssel rendelkező modellek közül az előkezelés nélküli, alap spektrumokat felhasználót a korrelációs koefficiens értéke R^2 =0,74 alapján megfelelőnek találnám, de

az RPD hányados kisebb, mint 2,0, a keresztvalidáció hibája magas a W értékek szórásához képest, így a modell nem alkalmas a paraméter megfelelő becslésére.

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	610	584	4,26	95	470	282	62	32	33	42	1,9	0,74
-	1-4-4-1	610	599	1,80	91	475	283	64	35	35	45	1,8	0,70
-	1-8-8-1	610	599	1,80	91	475	283	64	35	35	46	1,8	0,69
-	2-2-2-1	610	590	3,28	99	470	284	62	33	34	44	1,8	0,71
SNV	0-0-1-1	610	601	1,48	90	476	283	64	36	36	47	1,8	0,69
SNV	1-4-4-1	610	599	1,80	91	474	283	64	35	35	46	1,8	0,69
SNV	1-8-8-1	610	601	1,48	90	476	283	64	36	36	47	1,8	0,68
SNV	2-2-2-1	610	590	3,28	98	472	285	62	34	35	45	1,8	0,70
SNV+D	0-0-1-1	610	595	2,46	97	473	285	63	35	35	46	1,8	0,69
SNV+D	1-4-4-1	610	592	2,95	98	472	285	62	34	35	45	1,8	0,70
SNV+D	1-8-8-1	610	592	2,95	98	472	285	62	35	35	45	1,8	0,69
SNV+D	2-2-2-1	610	587	3,77	99	469	284	62	34	34	45	1,8	0,70

10. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Az extenzográfos energia (45, 90, 135 percnél mért) értékének becslésére kapott modellek statisztikai jellemzőit tartalmazza a 11., 12., 13. táblázat. Az extenzográfos energia értékekre kapott kalibrációs modellek statisztikai jellemzői széles skálán mozognak. Bár nem kaptam olyan modelleket, ahol túl sok minta kihagyásra kerülne, de a korrelációs koefficiens értéke 0,33 és 0,67 között változott. A 45 perchez tartozó energia érték becslésére az előkezelés nélküli első derivált alkalmazása (kapu és rés nagyság: 8) adott jobb eredményt (R²=0,67). A 90 perchez tartozó energia esetén az előkezelés nélküli két különböző kapunagyságot alkalmazó első derivált spektrumokkal készült modell statisztikai jellemzői jobbak (R²=0,47) a többi modellhez viszonyítva.

Az extenzográfos energia értékek prediktálása ezen modellek alapján nem megfelelő, az összefüggések csak látszólagosak. A NIR technika alkalmazhatóságának javítása további munkát igényel. Irodalmi hivatkozások is ehhez hasonló eredményről számolnak be (Hruskova és mtsai, 2001).

Előkezelés	Derivált	N ₀	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	111	108	2,70	13	121	67	18	13	13	17	1,3	0,46
-	1-4-4-1	111	105	5,41	15	120	67	17	11	11	15	1,6	0,61
-	1-8-8-1	111	106	4,50	13	120	67	18	10	12	15	1,5	0,67
-	2-2-2-1	111	105	5,41	19	117	68	16	12	12	16	1,4	0,46
SNV	0-0-1-1	111	107	3,60	15	120	68	18	12	12	16	1,5	0,52
SNV	1-4-4-1	111	107	3,60	15	120	68	18	12	12	16	1,4	0,54
SNV	1-8-8-1	111	109	1,80	13	121	67	18	13	14	18	1,3	0,44
SNV	2-2-2-1	111	109	1,80	13	121	67	18	14	14	19	1,3	0,36
SNV+D	0-0-1-1	111	109	1,80	13	121	67	18	14	14	18	1,3	0,41
SNV+D	1-4-4-1	111	109	1,80	13	121	67	18	13	13	18	1,3	0,45
SNV+D	1-8-8-1	111	109	1,80	13	121	67	18	14	14	18	1,3	0,43
SNV+D	2-2-2-1	111	109	1,80	13	121	67	18	14	14	19	1,3	0,36

11. táblázat: Extenzográfos energia (45. perc) becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

12. táblázat: Extenzográfos energia (90. perc) becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

		1											
Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	111	104	6,31	11	148	80	23	16	16	21	1,4	0,54
-	1-4-4-1	111	105	5,41	14	146	80	22	16	17	22	1,3	0,46
-	1-8-8-1	111	105	5,41	14	146	80	22	16	16	21	1,3	0,50
-	2-2-2-1	111	105	5,41	14	146	80	22	16	16	21	1,4	0,47
SNV	0-0-1-1	111	111	0,00	3	154	79	25	20	20	26	1,3	0,37
SNV	1-4-4-1	111	111	0,00	3	154	79	25	21	21	27	1,2	0,33
SNV	1-8-8-1	111	111	0,00	3	154	79	25	20	21	27	1,2	0,35
SNV	2-2-2-1	111	107	3,6	13	149	81	23	18	19	24	1,2	0,36
SNV+D	0-0-1-1	111	107	3,6	13	149	81	23	18	18	23	1,3	0,38
SNV+D	1-4-4-1	111	111	0,00	3	154	79	25	20	20	26	1,2	0,36
SNV+D	1-8-8-1	111	107	3,6	13	149	81	23	17	18	23	1,3	0,42
SNV+D	2-2-2-1	111	107	3,6	13	149	81	23	18	19	24	1,2	0,35

Előkezelés	Derivált	N ₀	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	111	107	3,60	12	137	75	21	15	16	20	1,3	0,46
-	1-4-4-1	111	107	3,60	12	137	75	21	15	16	21	1,3	0,47
-	1-8-8-1	111	107	3,60	12	137	75	21	15	16	20	1,3	0,47
-	2-2-2-1	111	105	5,41	15	133	74	20	15	15	19	1,3	0,44
SNV	0-0-1-1	111	110	0,90	9	140	74	22	16	16	21	1,4	0,44
SNV	1-4-4-1	111	109	1,80	11	137	74	21	16	16	21	1,3	0,39
SNV	1-8-8-1	111	109	1,80	11	137	74	21	16	16	21	1,3	0,35
SNV	2-2-2-1	111	109	1,80	11	137	74	21	17	17	23	1,2	0,37
SNV+D	0-0-1-1	111	106	4,50	15	134	74	20	15	15	19	1,3	0,42
SNV+D	1-4-4-1	111	107	3,60	4	135	75	20	16	16	20	1,3	0,40
SNV+D	1-8-8-1	111	108	2,70	13	136	74	21	16	16	21	1,3	0,40
SNV+D	2-2-2-1	111	109	1,80	9	139	74	22	16	17	23	1,3	0,43

13. táblázat: Extenzográfos energia (135. perc) becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A második derivált spektrumokkal végzett főkomponens analízis eredményeként a Lupus és GK Öthalom fajtákhoz tartozó minták elkülönülő csoportot alkottak, így azokat kivettem a mintaseregből. Az így visszamaradt mintákra újra elvégeztem a kalibrációs modellek fejlesztését, de már csak a második derivált spektrumok esetén.

A redukált mintaseregen a valorigráfos vízfelvételre készített kalibrációk statisztikai jellemzőit foglalja össze a 14. táblázat. A korábbi modellekhez képest az előkezelés nélküli és csak SNV transzformációt alkalmazó modellek esetén javult a kalibráció, míg az SNV+Detrend transzformáció nem javított a kalibráción. Mindhárom modellel megfelelő pontossággal becsülhető a vízfelvétel.

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	690	671	2,75	54,3	73,9	64,1	3,3	1,3	1,4	1,8	2,4	0,84
SNV	2-2-2-1	690	649	5,94	55,0	73,5	64,3	3,1	1,2	1,3	1,6	2,5	0,85
SNV+D	2-2-2-1	690	653	5,36	54,9	73,6	64,2	3,1	1,2	1,3	1,7	2,5	0,85

14. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A redukált mintaseregen az alveográfos P/L és W értékre készített kalibrációk statisztikai jellemzőit foglalja össze a 15. és 16. táblázat. A P/L esetén csak az előkezelés nélküli spektrumoknál javított a modellen a minták eltávolítása, de a kiszűrt minták aránya meghaladja a 10%-ot. A W esetén az előkezelés nélküli és az SNV+D transzformációkkal kapott modell hozott jobb eredményeket. Az előkezelés nélküli spektrumok második deriváltjainak használatával a korábbi modell 0,71 korrelációs

koefficiens értékkel jellemezhető, mely most 0,80-nak adódott. Az SNV+D transzformáció használatával 0,70 helyett most 0,71-et kaptam az R² értékére.

ese	eseten (N_0 : eredeti spektrumszam, N: kalibraciohoz felhasznalt spektrumok szama)														
Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ		
-	2-2-2-1	557	465	16,52	0	2,10	0,96	0,38	0,17	0,17	0,22	2,2	<u>0,80</u>		
SNV	2-2-2-1	557	526	5,57	0	2,46	1,05	0,47	0,23	0,24	0,31	1,9	0,76		
SNV+D	2-2-2-1	557	468	15,98	0	2,09	0,96	0,38	0,17	0,17	0,22	2,2	<u>0,80</u>		

15. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

16. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	557	539	3,23	98	464	281	61	35	35	46	1,7	0,80
SNV	2-2-2-1	557	545	2,15	91	467	279	63	34	36	46	1,8	0,70
SNV+D	2-2-2-1	557	540	3,05	96	463	280	61	33	35	45	1,8	0,71

A redukált mintaseregen az extenzográfos energia értékekre készített kalibrációk statisztikai jellemzőit foglalja össze a 17., 18., 19. táblázat. Az E45 esetén az mintaredukció rontott a modellek pontosságán, az E90 esetén az SNV és SNV+D transzformációk esetén javított, míg az E135 esetén csak az SNV transzformációnál javított. Az E90 esetén ugyan magasabb R^2 értékeket kaptam, de a modellek így sem tudják megfelelően becsülni a paramétert.

17. táblázat: Extenzográfos energia (45. perc) becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N_0 : eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	57	57	0	28	99	64	12	10	10	13	1,2	0,27
SNV	2-2-2-1	57	57	0	28	99	64	12	10	10	13	1,2	0,31
SNV+D	2-2-2-1	57	57	0	28	99	64	12	10	10	13	1,2	0,31

18. táblázat: Extenzográfos energia (90. perc) becslésére készített modellek statisztikai jellemzői a	L
redukált mintasereg esetén (No: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok szám	a)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
	2-2-2-1	57	55	3,51	37	99	68	10	8	9	11	1,2	0,33
SNV	2-2-2-1	57	55	3,51	37	99	68	10	8	8	11	1,2	0,38
SNV+D	2-2-2-1	57	55	3,51	37	99	68	10	8	8	11	1,2	0,38

· · ·			(-	.0				,						2-01-
	Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
	-	2-2-2-1	57	57	0	28	101	64	12	10	10	13	1,2	0,34
	SNV	2-2-2-1	57	57	0	28	101	64	12	10	10	13	1,2	0,38
	SNV+D	2-2-2-1	57	57	0	28	101	64	12	10	10	14	1,2	0,38

19. táblázat: Extenzográfos energia (135. perc) becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A kisparcellás tartamkísérletből származó minták reológiai tulajdonságainak becslésére fejlesztett modellekről összességében az eredmények alapján elmondható, hogy változó az alkalmazhatóságuk.

A valorigráfos vízfelvétel becslésére megfelelő pontosságú modellt értem el az alap spektrumokon elvégzett PCA után. Az előkezelés nélküli alap és SNV transzformált alap spektrumok felhasználásával olyan modellekhez jutottam, melyek korrelációs koefficiens értéke 0,87 és RPD hányadosa 2,7. Hasonló pontosságú modellt (R²=0,83) értek el Mutlu és mtsai (2011).

Az alveográfos P/L alaki hányados becslésére kapott modellek pontosságát pozitívan befolyásolta a második derivált spektrumokon elvégzett PCA által kiszűrt két fajta kivétele. A 0,80-as korrelációs koefficienssel jellemezhető modell eléréséhez az alap spektrumokat illetve a SNV+D transzformációt követő második derivált spektrumokat használtam, viszont sok mintát eltávolított a regressziós módszer és az RPD<2,5. Irodalmi publikációk változó pontosságú modelleket közölnek, mely közül a leghasználhatóbbról (R²=0,86, RPD=5,9) Arazuri és mtsai (2012) számolnak be, viszont második derivált spektrumok alkalmazásával az általuk fejlesztett modell alacsonyabb R² és RPD értékkel bír (0,64 valamint 2,0). Dowell és mtsai (2006) tájékoztató jellegű modelleket kaptak a P/L becslésére (R²=0,47).

Az alveográfos W érték esetén a modellek pontosságát pozitívan befolyásolta a második derivált spektrumokon elvégzett PCA által kiszűrt két fajta kivétele. Így az előkezelés nélküli második derivált spektrumokat felhasználó modell R² értéke 0,80 lett, de a keresztvalidálás magas hibája (RPD=1,7) nem teszi lehetővé a paraméter megfelelő becslését. Arazuri és mtsai (2012) ezen paraméter becslésére is megfelelő pontosságú modellt ért el (R²=0,79, RPD=2,5) szintén a második derivált spektrumok használatával. Az extenzográfos energia értékek becslésére a modellek különböző pontosságúak. A második derivált spektrumokon elvégzett PCA által kiszűrt minták eltávolítása csak az E135 esetén tudott pozitívan változtatni a modell pontosságán, de az még így sem megfelelő, csak látszólagos az összefüggés. Hruskova és mtsai (2001) extenzográfos

paraméterekre becslésére készítettek kalibrációkat két mintaseregre, illetve az ebből összevont mintacsoportra. Az így kapott modellek pontossága az általam kapott modellek pontosságával azonos.

A második derivált spektrumokon elvégzett PCA által kiszűrt két fajta kivétele ugyan javít egyes paraméterek meghatározhatóságának pontosságának, ugyanakkor nem javasolnám a mintaseregből való eltávolításukat, mivel ezek régóta köztermesztésben lévő fajták. A PCA jelzett elválásokat a második derivált spektrumok esetén, de a fajták vagy a műtrágyázási szintek nem jelennek meg egyértelmű, elkülönülő csoportokként. A kiemelt kalibrációs modelleket szemlélteti az egyes paraméterek esetén a 22. ábra.

22. ábra: Összefüggések a kisparcellás tartamkísérletből származó minták reológiai tulajdonságai és a kapott NIR modellek által becsült értékek között

4.2. Fajtakísérletek eltérő termőhelyeken 2009-ben

A munkám során felhasznált második mintasereg olyan búza mintákat tartalmazott, melyek Magyarország több termőhelyéről származtak genotípustól függetlenül. A minták laboratóriumi vizsgálata kiterjedt a valorigráfos és alveográfos reológiai tulajdonságok meghatározására, melyek eredményeit a 2. Melléklet tartalmazza.

4.2.1. Reológiai tulajdonságok meghatározása

4.2.1.1. Valorigráf alkalmazása

A 20. táblázatban a laboratóriumban végzett valorigráfos mérések összefoglaló eredményeit mutatom be. A minták széles vízfelvétel tartományt fednek le (52,0–73,0%). A vízfelvétel értékek eloszlása a 23. ábrán látható.

20. táblázat: Valorigráfos vízfelvétel statisztikai adatai

23. ábra: Valorigráfos vízfelvétel értékek eloszlása

4.2.1.2. Alveográf alkalmazása

Az alveográfos vizsgálat eredményeit a 21. táblázat foglalja össze. Mind a P/L görbe alaki hányados, mind pedig a W nyújtáshoz szükséges energia tekintetében a minták széles tartományt fednek le: P/L esetén 0,16–3,31, és W esetén 43–446 10⁻⁴J. Az

értékek eloszlását mutatja a 24. ábra. Ennél a csoportnál is tapasztalható volt kiugró P/L értékek, melyek viszont a teljes mintasereg csak kevesebb, mint 5%-át adják.

21. táblázat: Alveográfos P/L és W statisztikai jellemzői

	Mintaszám (db)	Minimum	Maximum	Átlag	Szórás
P/L	257	0,16	3,31	1,05	0,56
$W(10^{-4} J)$	257	43	446	242	85

24. ábra: Alveográfos P/L és W értékek eloszlása

4.2.2. Közeli infravörös spektroszkópiai módszerfejlesztés

4.2.2.1. Főkomponens analízis

A minták közeli infravörös spektrumait 244 db minta esetén tudtam felvenni (mintánként két alminta). A főkomponens analízist erre a mintaseregre is elvégeztem. Ezeknél a mintáknál a termőhely esetleges hatását vizsgáltam a spektrumokra.

A PCA-val kapott első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 22. táblázat tartalmazza. A táblázat adatai alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 99%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponens analízis 7 db mintát jelzett outlier-ként, melyeket a későbbiekben eltávolítottam a mintaseregből.

A 25. ábrán látható a PCA eredménye, ahol az egyes termőterületekről származó mintákat jelöltem azonos színnel. Az egyes termőhelyekhez tartozó minták közel esnek egymáshoz és átfedések vannak a mintacsoportok között. A Kisújszállás területhez tartozó mintacsoport (zöld színnel jelölt) láthatóan elkülönül a többi mintától, így az

ehhez a termőterülethez tartozó mintákat a későbbiekben eltávolítottam a mintaseregből.

	Vallall	cia	
		egyedi	összesített
PC1	PC1	98,38	98,38
PC2	PC1+PC2	1,54	99,92
PC3	PC1+PC2+PC3	0,05	99,97

22. táblázat: Alap spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített

25. ábra: PCA eredmények az alap spektrumok esetén a termőhely jelölésével: piros – Gesztely, kék – Látókép, zöld – Kisújszállás, lila – Tápió, sárga – Tiszavasvári, szürke – Jánoshalma, levendula – Somogyszil, türkiz – Csorvás, szilvakék – Körösszegapáti, narancs – Harta, barna – Komádi, tengerzöld – Dombóvár, fekete – Hajdúböszörmény, világoszöld –Pápa

A főkomponens analízist elvégeztem a második derivált spektrumokra; az első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 23. táblázat tartalmazza. A táblázat adatai alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 95%-át leírja, nem szükséges további

főkomponenseket figyelembe venni. A főkomponens analízis 3 db mintát jelzett outlierként, melyeket a későbbiekben eltávolítottam a mintaseregből.

	es obszesitett	variationa			
		egyedi	összesített		
PC1	PC1	60,51	60,51		
PC2	PC1+PC2	31,95	92,46		
PC3	PC1+PC2+PC3	3,4	95,86		

23. táblázat: Második derivált spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített variancia

A második derivált spektrumokon elvégzett főkomponens analízis eredményét a 26. ábra mutatja, ahol az egyes termőhelyeket ismét külön színnek jelöltem. Ennél a mintaseregnél is tapasztaltam különálló mintacsoportot, amelyek a lila színnel jelzett Tápió és a sárgával jelzett Tiszavasvári voltak. Ezt a két csoportot eltávolítva újra elkészítettem a második derivált spektrumokra a mennyiségi kalibrációkat.

4.2.2.2. Módosított részleges legkisebb négyzetek módszere

A főkomponens analízis elvégzése után a valorigráfos vízfelvétel, az alveográfos W és P/L érték becsléséhez készítettem kalibrációs modelleket. A modellek készítésekor itt is a módosított részleges legkisebb négyzetek módszerét alkalmaztam különböző matematikai előkezelésekkel kombinálva.

A valorigráfos vízfelvétel értékének becslésére a modellek korrelációs koefficiens értéke meghaladja minden esetben a 0,70 értéket (24. táblázat). A statisztikai jellemzők tekintetében az előkezelés nélküli alap spektrumokkal valamint első deriválttal (1-4-4-1) készített modellek emelkedtek ki a többi modell közül. Mindkét esetben a korrelációs

koefficiens 0,80-ra adódott, viszont az RPD értéke 2,1; a SECV magas a referencia adatok szórásához képest.

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	480	461	3,96	53,5	73,7	63,6	3,4	1,5	1,6	2,1	2,1	0,80
-	1-4-4-1	480	456	5,00	53,6	73,5	63,6	3,3	1,5	1,5	2,0	2,2	0,80
-	1-8-8-1	480	447	6,88	53,6	73,6	63,6	3,3	1,5	1,5	2,0	2,2	0,79
-	2-2-2-1	480	458	4,58	53,4	73,5	63,6	3,3	1,5	1,6	2,1	2,0	0,79
SNV	0-0-1-1	480	463	3,54	53,2	73,8	63,5	3,4	1,6	1,6	2,1	2,1	0,78
SNV	1-4-4-1	480	458	4,58	53,4	73,6	63,5	3,4	1,6	1,6	2,1	2,1	0,78
SNV	1-8-8-1	480	459	4,38	53,6	73,6	63,6	3,3	1,6	1,6	2,1	2,0	0,76
SNV	2-2-2-1	480	456	5,00	53,6	73,5	63,5	3,3	1,5	1,7	2,2	2,0	0,79
SNV+D	0-0-1-1	480	460	4,17	53,4	73,6	63,5	3,4	1,6	1,7	2,2	2,0	0,77
SNV+D	1-4-4-1	480	467	2,71	53,3	73,7	63,5	3,4	1,8	1,8	2,3	1,9	0,73
SNV+D	1-8-8-1	480	462	3,75	53,6	73,5	63,5	3,3	1,7	1,7	2,3	1,9	0,73
SNV+D	2-2-2-1	480	463	3,54	53,7	73,4	63,6	3,3	1,7	1,8	2,3	1,8	0,74

24. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

25. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	480	415	13,54	0	2,14	0,93	0,40	0,20	0,21	0,27	2,0	<u>0,75</u>
-	1-4-4-1	480	431	10,21	0	2,29	0,96	0,44	0,22	0,23	0,29	2,0	<u>0,75</u>
-	1-8-8-1	480	448	6,67	0	2,39	0,98	0,47	0,25	0,26	0,34	1,8	0,71
-	2-2-2-1	480	441	8,13	0	2,32	0,97	0,45	0,24	0,26	0,34	1,8	0,71
SNV	0-0-1-1	480	441	8,13	0	2,31	0,97	0,45	0,25	0,25	0,32	1,8	0,69
SNV	1-4-4-1	480	437	8,96	0	2,35	0,97	0,46	0,23	0,23	0,31	2,0	0,75
SNV	1-8-8-1	480	424	11,67	0	2,20	0,94	0,42	0,22	0,22	0,29	1,9	<u>0,73</u>
SNV	2-2-2-1	480	447	6,88	0	2,36	0,98	0,46	0,26	0,27	0,35	1,7	0,69
SNV+D	0-0-1-1	480	435	9,38	0	2,24	0,95	0,43	0,24	0,25	0,32	1,7	0,69
SNV+D	1-4-4-1	480	422	12,08	0	2,14	0,92	0,41	0,22	0,22	0,29	1,8	<u>0,70</u>
SNV+D	1-8-8-1	480	429	10,63	0	2,2	0,94	0,42	0,24	0,24	0,31	1,8	<u>0,68</u>
SNV+D	2-2-2-1	480	445	7,29	0	2,35	0,98	0,46	0,25	0,26	0,34	1,7	0,70

Az alveográfos P/L görbe alaki hányados meghatározására készített modellek között itt több esetben is az elhagyott minták aránya meghaladta az eredeti mintaszám 10%-át (25. táblázat). A modellek közül a korrelációs koefficiens tekintetében jó eredményt adott az SNV transzformációt követően az első derivált spektrumokat felhasználó modell. A korrelációs koefficiens értéke $R^2=0,75$, az RPD értéke 2,0. Az alapadatok szórásához képest magas a keresztvalidálás hibája, a modell nem megfelelő pontosságú. Az alveográfos W, nyújtáshoz szükséges energia értékének becslésére magasabb R^2 értékekkel rendelkező modelleket kaptam, mint a P/L esetében (26. táblázat). Itt az előkezelés nélküli első derivált spektrumokkal készített modell kiemelkedő ($R^2=0,77$, RPD=2,08), de több modell is hasonló pontossággal adja meg a W értékét.

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	480	457	4,79	0	490	242	83	41	41	53	2,0	0,76
-	1-4-4-1	480	451	6,04	0	488	241	82	37	40	52	2,1	0,77
-	1-8-8-1	480	459	4,38	0	492	242	83	42	42	54	2,0	0,75
-	2-2-2-1	480	460	4,17	0	490	242	82	44	45	59	1,8	0,71
SNV	0-0-1-1	480	457	4,79	0	490	242	83	41	41	54	2,0	0,75
SNV	1-4-4-1	480	454	5,42	0	486	241	82	40	40	52	2,0	0,76
SNV	1-8-8-1	480	452	5,83	0	484	241	81	39	40	52	2,1	0,76
SNV	2-2-2-1	480	465	3,13	0	491	241	83	46	47	61	1,8	0,69
SNV+D	0-0-1-1	480	464	3,33	0	492	242	83	45	45	59	1,8	0,71
SNV+D	1-4-4-1	480	458	4,58	0	492	243	83	42	43	56	1,9	0,74
SNV+D	1-8-8-1	480	458	4,58	0	493	243	83	42	43	56	1,9	0,74
SNV+D	2-2-2-1	480	465	3,13	0	492	242	84	47	47	61	1,8	0,69

26. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A főkomponens analízis által elkülönülő mintacsoportot adó Kisújszállás területről származó mintacsoportot kivettem a mintaseregből. Újra elkészítettem az eddig alkalmazott transzformációk és deriváltak kombinációival a kalibrációs modelleket mindhárom reológiai paraméterre.

A valorigráfos vízfelvétel esetében elmondható, hogy a modellek korrelációs értékei javultak (27. táblázat). A teljes mintaseregre készített kalibrációs modellekhez képest itt a matematikai transzformáció nélküli, második derivált spektrumokat alkalmazó modell adata a legjobb eredményt (R²=0,82), az RPD értéke 2,2. A modell megközelítőleg jó megbízhatóságú.

Előkezelés	Derivált	N ₀	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	454	426	6,17	53,5	73,7	63,6	3,4	1,5	1,5	2	2,2	0,81
-	1-4-4-1	454	437	3,74	53,0	74,0	63,5	3,5	1,6	1,6	2,1	2,2	0,8
-	1-8-8-1	454	435	4,19	53,3	73,8	63,5	3,4	1,6	1,6	2,1	2,1	0,79
-	2-2-2-1	454	431	5,07	53,2	73,8	63,5	3,4	1,5	1,6	2,0	2,2	0,82
SNV	0-0-1-1	454	431	5,07	53,0	73,9	63,5	3,5	1,5	1,6	2,0	2,2	0,81
SNV	1-4-4-1	454	436	3,96	53,0	73,9	63,5	3,5	1,6	1,6	2,1	2,2	0,79
SNV	1-8-8-1	454	433	4,63	53,4	73,7	63,5	3,4	1,6	1,6	2,1	2,1	0,78
SNV	2-2-2-1	454	434	4,41	53,3	73,7	63,5	3,4	1,5	1,7	2,2	2,0	0,8
SNV+D	0-0-1-1	454	432	4,85	53,1	73,8	63,4	3,4	1,6	1,6	2,1	2,1	0,79
SNV+D	1-4-4-1	454	436	3,96	53,2	73,7	63,4	3,4	1,7	1,7	2,2	2,0	0,76
SNV+D	1-8-8-1	454	436	3,96	53,2	73,7	63,5	3,4	1,7	1,7	2,3	2,0	0,74
SNV+D	2-2-2-1	454	436	3,96	53,2	73,7	63,4	3,4	1,6	1,7	2,3	2,0	0,78

27. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Az alveográfos P/L esetében az elkülönülő mintacsoport kivétele nem befolyásolta a modellek pontosságát (28. táblázat). Az így kapott modellek közül az előkezelés nélküli, első derivált spektrumokkal készült modell R^2 értéke nagyobb (0,71), mint a többi modellnél, de még így is alacsonyabb, mint a kisújszállási minták kivétele előtt (0,75).

05	01011(140.	ereact	i spen	u unioz	uni, 14.	. Kulloi	uelono	Z Termusz	sinun 5	Jona am	OK 52u	muj	
Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	454	404	11,01	0	2,25	0,95	0,44	0,24	0,24	0,31	1,9	<u>0,70</u>
-	1-4-4-1	454	430	5,29	0	2,47	0,99	0,49	0,27	0,28	0,36	1,8	0,71
-	1-8-8-1	454	432	4,85	0	2,46	0,99	0,49	0,28	0,28	0,37	1,7	0,68
-	2-2-2-1	454	413	9,03	0	2,26	0,95	0,44	0,25	0,26	0,34	1,7	0,69
SNV	0-0-1-1	454	419	7,71	0	2,36	0,97	0,46	0,25	0,26	0,34	1,8	0,70
SNV	1-4-4-1	454	408	10,13	0	2,29	0,95	0,44	0,23	0,23	0,3	1,9	<u>0,74</u>
SNV	1-8-8-1	454	422	7,05	0	2,38	0,98	0,47	0,26	0,27	0,35	1,8	0,68
SNV	2-2-2-1	454	421	7,27	0	2,34	0,97	0,46	0,25	0,28	0,36	1,7	0,70
SNV+D	0-0-1-1	454	406	10,57	0	2,22	0,94	0,43	0,24	0,24	0,31	1,8	<u>0,69</u>
SNV+D	1-4-4-1	454	431	5,07	0	2,45	0,99	0,49	0,29	0,29	0,38	1,7	0,66
SNV+D	1-8-8-1	454	418	7,93	0	2,31	0,96	0,45	0,27	0,27	0,35	1,7	0,64
SNV+D	2-2-2-1	454	432	4,85	0	2,46	1,00	0,49	0,27	0,3	0,39	1,6	0,69

28. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén(N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Az alveográfos W meghatározhatóságának pontossága pozitívan változott (29. táblázat). Míg a csoport kivétele előtt az elérhető korrelációs koefficiens értéke 0,77 volt (előkezelés nélkül, első derivált 1-4-4-1), addig most ez az érték 0,79-ra nőtt szintén az előkezelés nélkül, első derivált 1-4-4-1 valamint az SNV transzformáció utáni első derivált 1-4-4-1 esetében.

030	1000	cicuci	і зрек	u umsz	sam, r	v. Kant	nacion	JZ Temas	Sznan s	рскиш	IOK 52	anna)	
Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	454	438	3,52	0	492	241	84	43	41	54	2,0	0,74
-	1-4-4-1	454	426	6,17	0	491	241	84	39	38	50	2,2	0,79
-	1-8-8-1	454	433	4,63	0	488	240	83	39	40	52	2,1	0,77
-	2-2-2-1	454	438	3,52	0	491	241	83	44	45	58	1,9	0,72
SNV	0-0-1-1	454	438	3,52	0	489	240	83	41	41	53	2,1	0,76
SNV	1-4-4-1	454	433	4,63	0	492	241	84	39	39	51	2,2	0,79
SNV	1-8-8-1	454	434	4,41	0	488	240	83	40	40	52	2,1	0,77
SNV	2-2-2-1	454	438	3,52	0	488	240	83	44	45	58	1,9	0,72
SNV+D	0-0-1-1	454	439	3,30	0	494	241	84	43	43	56	2,0	0,75
SNV+D	1-4-4-1	454	432	4,85	0	485	239	82	42	42	55	2,0	0,74
SNV+D	1-8-8-1	454	437	3,74	0	495	242	84	42	42	55	2,0	0,75
SNV+D	2-2-2-1	454	437	3,74	0	493	240	84	42	44	57	1,9	0,75

29. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A második derivált spektrumokkal végzett főkomponens analízis eredményeként a Tápió és Tiszavasvári területekhez tartozó minták elkülönülő csoportot alkottak, így azokat kivettem a mintaseregből. Az így visszamaradt mintákra újra elvégeztem a kalibrációs modellek fejlesztését, de már csak a második derivált spektrumok esetén. A redukált mintaseregen a valorigráfos vízfelvételre készített kalibrációk statisztikai jellemzőit foglalja össze a 30. táblázat. Az így elkészített modellek pontossága nem javult, bár a korrelációs koefficiens értékek magasak, mindhárom esetben $0,75 < R^2$.

Előkezelés	Derivált	N ₀	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	429	410	4,43	53,7	73,5	63,6	3,3	1,5	1,6	2,1	2,1	0,80
SNV	2-2-2-1	429	414	3,50	53,5	73,6	63,5	3,3	1,6	1,8	2,3	1,9	0,76
SNV+D	2-2-2-1	429	408	4,90	53,8	73,4	63,6	3,3	1,6	1,7	2,2	2,0	0,76

30. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A redukált mintaseregen az alveográfos P/L és W értékre készített kalibrációk statisztikai jellemzőit foglalja össze a 31. és 32. táblázat. A P/L esetén mind az előkezelés nélküli spektrumoknál, mind pedig az SNV és SNV+D transzformált spektrumoknál javított a modellen a minták eltávolítása. A W esetén viszont egyik

transzformációnál sem hozott jobb eredményeket a két mintacsoport eltávolítása. A modellek megbízhatósága megfelelőbb a csoportok kivétele nélkül.

	$(N_0: erec$	ieti sp	ektrur	nszam	I, IN: Ka	allbrac	ionoz i	einaszna	iit sper	trumok	szama	l)	
Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	429	391	8,86	0	2,39	0,99	0,47	0,25	0,26	0,34	1,8	0,72
SNV	2-2-2-1	429	394	8,16	0	2,37	0,99	0,46	0,25	0,26	0,34	1,8	0,71
SNV+D	2-2-2-1	429	390	9,09	0	2,35	0,99	0,46	0,25	0,26	0,34	1,8	0,70

31. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői a redukált mintaseregen (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

32. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői a redukált mintaseregen (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N ₀	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	429	415	3,26	0	494	244	83	47	47	61	1,8	0,69
SNV	2-2-2-1	429	409	4,66	0	492	243	83	44	45	58	1,9	0,72
SNV+D	2-2-2-1	429	412	3,96	0	492	243	83	45	46	60	1,8	0,71

A 2009-es termőévből származó mintákra valorigráfos vízfelvétel és alveográfos P/L valamint W érték becslésére készült modell. Mind az alap spektrumokon, mind pedig a második derivált spektrumokon elvégzett PCA elkülönülő alcsoportokat mutatott, így azokat eltávolítva újra elvégeztem a modellek fejlesztését. A főkomponens analízis eredményeként elmondható, hogy bár volt olyan termőterület, melyről származó minták spektrumai külön váltak, de a termőterület nem mutatott markáns hatást sem az alap, sem a második derivált spektrumokra.

A valorigráfos vízfelvétel becslésére az alap spektrumokon elvégzett PCA által kiszűrt minták kivételével megbízhatóbb modellt értem el. A modellhez az előkezelés nélküli, második derivált spektrumokat használtam, mellyel kapott korrelációs koefficiens értéke 0,82, az RPD hányados pedig 2,2 lett, megközelítőleg jó becslést adva erre a reológiai tulajdonságra. A Dowell és mtsai 2006-os publikációjában szerepel az általam is használt készülékre vízfelvétel érték becslésére készített modell, mely ott viszont 0,65 korrelációs koefficiens értéket adott.

Az alveográfos P/L esetén az elvégzett PCA-k által kiszűrt minták eltávolítása negatívan befolyásolta az elérhető modell pontosságát, így az eredeti mintasereg SNV transzformálást követő 1-4-4-1 első derivált spektrumokkal dolgozó modell adott R^2 =0,75 értéket, de az RPD hányados 1,95, amivel a modell csak tájékoztató jellegű eredményt ad a P/L becslésére. A modell korrelációs koefficiens értéke hasonló az irodalomban is leírt értékekkel (Arazuri és mtsai, 2012), de az RPD hányados alacsony.

Az alveográfos W becslésére készített modelleknél az alkalmazhatóságon javított az alap spektrumokon elvégzett PCA által kiszűrt mintacsoport kivétele. Az előkezelés nélküli valamint az SNV transzformációt követő első deriváltakat felhasználó modell korrelációs koefficiens értéke 0,79 és RPD értéke 2,18 valamint 2,15. A modellek megközelítőleg jól becsülik a W értékét. Dowell és mtsainak (2006) Savtizky-Golay első derivált képzéssel 0,69-es korrelációs koefficiens érték adódott.

A kiemelt kalibrációs modelleket szemlélteti az egyes paraméterek esetén a 27. ábra.

27. ábra: Összefüggések a 2009-es termőévből származó minták reológiai tulajdonságai és a kapott NIR modellek által becsült értékek között

4.3. Fajtakísérletek eltérő termőhelyeken 2010-ben

A munkám során felhasznált harmadik mintasereg szintén olyan búza mintákat tartalmazott, melyek Magyarország több termőhelyéről származtak, genotípustól függetlenül csak a termőterület hatását vizsgáltam. A minták laboratóriumi vizsgálata kiterjedt a valorigráfos és alveográfos reológiai tulajdonságok meghatározására, melyek eredményeit a 3. Melléklet tartalmazza.

4.3.1. Reológiai tulajdonságok meghatározása

4.3.1.1. Valorigráf alkalmazása

A 33. táblázatban a laboratóriumban végzett valorigráfos mérések összefoglaló eredményeit mutatom be. A minták széles vízfelvétel tartományt fednek le (48,9-69,4%). A vízfelvétel értékek eloszlását a 28. ábra mutatja.

33. táblázat: Valorigráfos vízfelvétel statisztikai adatai

28. ábra: Valorigráfos vízfelvétel értékek eloszlása

4.3.1.2. Alveográf alkalmazása

Az alveográfos vizsgálat eredményeit a 34. táblázat foglalja össze. Mind a P/L görbe alaki hányados, mind pedig a W nyújtáshoz szükséges energia tekintetében a minták szűkebb tartományt fednek le. P/L esetén 0,13-1,22, és W esetén 19-314 10⁻⁴ J. Az értékek eloszlása a 29. ábrán látható.

5-	tublazati 1	iiveogiulos i	L L CS W Stu	tisztikul udu	tui
	Mintaszám	Minimum	Manimum	Átlag	Saáráa
	(db)	Minimum	Maximum	Atlag	Szoras
P/L	274	0,13	1,22	0,45	0,21
W (10 ⁻⁴ J)	274	19	314	168	54

34. táblázat: Alveográfos P/L és W statisztikai adatai

29. ábra: Alveográfos P/L és W értékek eloszlása

4.3.2. Közeli infravörös spektroszkópiai módszerfejlesztés

4.3.2.1. Főkomponens analízis

Ennél a mintaseregnél 251 db minta spektrumát tudtam felvenni (mintánként két alminta). A főkomponens analízist erre a mintaseregre is elvégeztem. Ezeknél a mintáknál is a termőhely esetleges hatását vizsgáltam a spektrumokra.

A PCA-val kapott első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 35. táblázat tartalmazza. A táblázat adatai alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 99%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponens analízis 12 db mintát jelzett outlier-ként, melyeket a későbbiekben eltávolítottam a mintaseregből.

A 30. ábrán látható a PCA eredménye, ahol az egyes termőterületekről származó mintákat jelöltem azonos színnel. Az egyes termőhelyekhez tartozó minták közel esnek egymáshoz és átfedések vannak a mintacsoportok között, de nincsenek különálló csoportok.

		egyedi	összesített
PC1	PC1	96,04	96,04
PC2	PC1+PC2	3,88	99,92
PC3	PC1+PC2+PC3	0,05	99,97

35. táblázat: Alap spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített variancia

30. ábra: PCA eredmények az alap spektrumok esetén a termőhely jelölésével: piros – Harta, kék – Somogyszil, zöld – Mezőkövesd, lila – Jánoshalma sárga – Nádudvari, szürke – Gesztely, levendula – Kapuvár, türkiz – Tápió, szilvakék – Iregszemcse, narancs – Látókép barna – Csorvás

A főkomponens analízist elvégeztem a második derivált spektrumokra; az első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 36. táblázat tartalmazza. A táblázat adatai alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 96%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponens analízis 4 db mintát jelzett outlier-ként, melyeket a későbbiekben eltávolítottam a mintaseregből.

	•••••••••••••••••••••••••••••••••••••••		
		egyedi	összesített
PC1	PC1	63,4	63,4
PC2	PC1+PC2	30,16	93,56
PC3	PC1+PC2+PC3	2,59	96,15

36. táblázat: Második derivált spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített variancia

A főkomponens analízis eredményét a 31. ábra mutatja, ahol az egyes termőhelyeket ismét külön színnek jelöltem. Ennél a mintaseregnél egyértelműen megkülönböztethető két alcsoport, amelyek a barna színnel jelzett csorvási és a narancssárgával jelzett látóképi minták egy része volt. A látóképi területről két csoport minta érkezett; egyik csoport a tartamkísérletből, másik pedig egyéb kísérleti részről. Ez utóbbi minták spektrumai váltak el. A két csoportot eltávolítva újra elkészítettem a második derivált spektrumokra a mennyiségi kalibrációkat.

31. ábra: PCA eredmények a második derivált spektrumok esetén a termőhely jelölésével: piros – Harta,
 kék – Somogyszil, zöld – Mezőkövesd, lila – Jánoshalma, sárga – Nádudvar, szürke – Gesztely, levendula
 – Kapuvár, türkiz – Tápió, szilvakék – Iregszemcse, narancs – Látókép barna – Csorvás

4.3.2.2. Módosított részleges legkisebb négyzetek módszere

A valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzőit a 37. táblázat foglalja össze. A 2009-es mintaseregnél kapott modellek pontosságához képest, itt kevésbé használható összefüggéseket kaptam. Az alap spektrumokra, SNV transzformációval előállított modell hozta a legmagasabb R² értéket, de ez is csak 0,62-nek adódott.

	- P	• 11 01 011	11020411	,	4110144	Tomon	Terrado	nane op ei		in ollarine	~)		
Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	489	471	3,68	52,2	69,3	60,7	2,9	1,9	1,9	2,5	1,47	0,54
-	1-4-4-1	489	469	4,09	52,2	69,3	60,7	2,9	2,0	2,0	2,6	1,45	0,53
-	1-8-8-1	489	473	3,27	52,1	69,3	60,7	2,9	2,0	2,1	2,7	1,40	0,51
-	2-2-2-1	489	468	4,29	52,2	69,3	60,7	2,9	2,0	2,0	2,6	1,41	0,53
SNV	0-0-1-1	489	457	6,54	52,5	69,2	60,8	2,8	1,7	1,8	2,3	1,58	0,62
SNV	1-4-4-1	489	454	7,16	52,5	69,1	60,8	2,8	1,8	1,8	2,3	1,57	0,60
SNV	1-8-8-1	489	469	4,09	52,2	69,3	60,8	2,8	2,0	2,0	2,6	1,45	0,53
SNV	2-2-2-1	489	464	5,11	52,2	69,3	60,7	2,8	1,9	2,0	2,6	1,45	0,55
SNV+D	0-0-1-1	489	464	5,11	52,2	69,4	60,8	2,9	1,8	1,9	2,5	1,51	0,59
SNV+D	1-4-4-1	489	460	5,93	52,4	69,3	60,8	2,8	1,8	1,8	2,4	1,55	0,59
SNV+D	1-8-8-1	489	463	5,32	52,3	69,2	60,7	2,8	1,9	1,9	2,5	1,47	0,54
SNV+D	2-2-2-1	489	469	4,09	52,2	69,5	60,8	2,9	1,8	1,9	2,5	1,48	0,59

37. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A valorigráfos vízfelvételhez hasonló pontossággal becsülhető az alveográfos P/L értéke (38. táblázat). Az R²=0,62 értéket az előkezelés nélküli első derivált (1-4-4-1) spektrumokkal kaptam. Az alveográfos W értéke valamivel jobb, R²=0,67 pontossággal prediktálható, melyet az SNV transzformáció és első derivált (1-4-4-1) kombinációval értem el (39. táblázat).

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	489	463	5,32	0	0,97	0,42	0,18	0,11	0,11	0,15	1,6	0,61
-	1-4-4-1	489	455	6,95	0	0,94	0,42	0,18	0,11	0,1	0,14	1,7	0,62
-	1-8-8-1	489	463	5,32	0	0,97	0,42	0,18	0,11	0,11	0,15	1,6	0,61
-	2-2-2-1	489	473	3,27	0	0,99	0,43	0,19	0,13	0,13	0,17	1,5	0,54
SNV	0-0-1-1	489	467	4,5	0	0,98	0,42	0,18	0,12	0,12	0,15	1,6	0,59
SNV	1-4-4-1	489	470	3,89	0	0,98	0,43	0,19	0,12	0,12	0,16	1,5	0,57
SNV	1-8-8-1	489	462	5,52	0	0,97	0,42	0,18	0,12	0,12	0,15	1,6	0,60
SNV	2-2-2-1	489	479	2,04	0	1,01	0,43	0,19	0,13	0,14	0,18	1,4	0,52
SNV+D	0-0-1-1	489	473	3,27	0	1,00	0,43	0,19	0,13	0,13	0,17	1,5	0,53
SNV+D	1-4-4-1	489	471	3,68	0	0,99	0,43	0,19	0,13	0,13	0,17	1,5	0,54
SNV+D	1-8-8-1	489	469	4,09	0	0,99	0,43	0,19	0,13	0,13	0,17	1,5	0,54
SNV+D	2-2-2-1	489	471	3,68	0	0,98	0,43	0,19	0,13	0,13	0,17	1,4	0,51

38. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

39. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	489	450	7,98	24	311	167	48	28	28	37	1,7	0,65
-	1-4-4-1	489	455	6,95	23	311	167	48	29	29	38	1,6	0,63
-	1-8-8-1	489	472	3,48	15	321	168	51	33	33	42	1,6	0,59
-	2-2-2-1	489	452	7,57	24	309	167	48	30	30	39	1,6	0,6
SNV	0-0-1-1	489	458	6,34	21	314	167	49	29	29	38	1,7	0,65
SNV	1-4-4-1	489	454	7,16	22	313	168	49	28	28	37	1,7	0,67
SNV	1-8-8-1	489	465	4,91	19	316	168	49	30	30	39	1,6	0,63
SNV	2-2-2-1	489	470	3,89	19	318	169	50	34	34	44	1,5	0,54
SNV+D	0-0-1-1	489	465	4,91	17	317	167	50	32	32	42	1,5	0,58
SNV+D	1-4-4-1	489	460	5,93	19	313	166	49	32	32	41	1,5	0,58
SNV+D	1-8-8-1	489	464	5,11	18	316	167	50	32	32	42	1,6	0,58
SNV+D	2-2-2-1	489	473	3,27	18	320	169	50	34	35	45	1,5	0,53

A második derivált spektrumokkal végzett főkomponens analízis eredményeként a csorvási és a látóképi területekhez tartozó minták egy része elkülönülő csoportot alkottak, így azokat kivettem a mintaseregből. Az így visszamaradt mintákra újra elvégeztem a kalibrációs modellek fejlesztését, de már csak a második derivált spektrumok esetén.

A redukált mintaseregen a valorigráfos vízfelvételre készített kalibrációk statisztikai jellemzőit foglalja össze a 40. táblázat. Az így elkészített modellek pontossága mindhárom esetben (előkezelés nélkül, SNV, SNV+D) pozitívan változott.
mintaser	eg eseten	(1,0,0)	licuci	I SPCK	lumsz	am, 19	. Kanoi	acionoz	Temasz	znan spo	-Ku un	IOK SZA	maj
Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	410	398	2,93	51,7	69,6	60,7	3,0	1,8	1,9	2,5	1,5	0,62
SNV	2-2-2-1	410	400	2,44	51,6	69,8	60,7	3,0	1,8	1,9	2,5	1,6	0,66
SNV+D	2-2-2-1	410	401	2,2	51,6	69,9	60,7	3,1	1,9	2,0	2,6	1,5	0,62

40. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A redukált mintaseregen az alveográfos P/L és W értékre készített kalibrációk statisztikai jellemzőit foglalja össze a 41. és 42. táblázat. A P/L esetén egyik transzformációnál sem hozott jobb eredményeket a két mintacsoport eltávolítása. A W esetén viszont az SNV és SNV+D transzformált spektrumok esetén szintén pozitívan befolyásolta az eredményeket a két mintacsoport eltávolítása, de még így is az eredeti mintaseregen végzett módszerfejlesztéssel kaptam használhatóbb modelleket.

41. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	410	390	4,88	0	1,01	0,46	0,18	0,13	0,14	0,18	1,4	0,46
SNV	2-2-2-1	410	394	3,9	0	1,02	0,46	0,19	0,14	0,14	0,18	1,3	0,46
SNV+D	2-2-2-1	410	401	2,2	0	1,04	0,47	0,19	0,14	0,14	0,19	1,3	0,45

42. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	410	379	7,56	29	313	171	47	30	30	39	1,6	0,60
SNV	2-2-2-1	410	393	4,15	20	322	171	50	34	34	44	1,5	0,55
SNV+D	2-2-2-1	410	383	6,59	26	316	171	48	32	32	41	1,5	0,57

A 2010-es termőévből származó mintákra valorigráfos vízfelvétel és alveográfos P/L valamint W érték becslésére készült modell. A második derivált spektrumokon elvégzett PCA elkülönülő alcsoportokat mutatott, így azokat eltávolítva újra elvégeztem a modellek fejlesztését. A PCA alapján nincs egyértelmű hatása a termőterületnek, az egyes termőterületekről származó minták spektrumai nem különülnek el egymástól.

A valorigráfos vízfelvétel becslésére kapott modellt pozitívan befolyásolta a második derivált spektrumokon elvégzett PCA által kiszűrt minták eltávolítása. Az SNV transzformált második derivált spektrumokkal olyan modellhez jutottam, mely bár magasabb R^2 (0,66) és RPD (1,6) értékkel bír, mint az eredeti mintaseregre adódó

modell, de a paraméter becslésére csak tájékoztató jelleggel megfelelő. Így a modell az irodalmi adatok alatt marad (Mutlu és mtsai, 2011).

Ennél a mintaseregnél sem a P/L, sem pedig a W érték becslésére kidolgozott modell statisztikai jellemzőin nem változtatott pozitívan a PCA által kiszűrt minták kivétele és a modellek is alul maradnak a korábbiakhoz képest. Irodalmi adatokkal összevetve bár található rosszabbul teljesítő P/L becslésére R²=0,47-tel jellemezhető modell (Dowell és mtsai, 2006), de az általam kapott eredmények alapján a modellek csak tájékoztató értékeket adnak.

A kiemelt kalibrációs modelleket szemlélteti az egyes paraméterek esetén a 32. ábra.

Második derivált spektrumokon végzett PCA után, Csorvás és Látókép egy része kivétel, SNV, második derivált spektrumok (2-2-2-1), R²=0,66

32. ábra: Összefüggések a 2010-es termőévből származó minták reológiai tulajdonságai és a kapott NIR modellek által becsült értékek között

4.4. Fajtakísérletek eltérő termőhelyeken 2009-ben és 2010-ben

Az összesített mintaseregbe azon termőterületeket vontam be, melyekről mindkét évben (2009 és 2010) érkeztek minták: Gesztely, Látókép, Tápió, Jánoshalma, Somogyszil, Csorvás, Harta.

Ennél a mintaseregnél is a valorigráfos és alveográfos paramétereket használtam fel.

4.4.1. Reológiai tulajdonságok meghatározása

4.4.1.1. Valorigráf alkalmazása

A 43. táblázatban a laboratóriumban végzett valorigráfos mérések összefoglaló eredményeit mutatom be. A minták széles vízfelvétel tartományt fednek le (48,9–73,0%), az aleoszlást a 33. ábra személteti.

43. táblázat: Valorigráfos vízfelvétel statisztikai adatai

33. ábra: Valorigráfos vízfelvétel értékek eloszlása

4.4.1.2. Alveográf alkalmazása

Az alveográfos vizsgálat eredményeit a 44. táblázat foglalja össze. Mind a P/L görbe alaki hányados, mind pedig a W nyújtáshoz szükséges energia tekintetében a minták széles tartományt fednek le: P/L esetén 0,13–3,31, és W esetén 25–446 10⁻⁴J. Itt is

megjelennek azok a magas P/L értékek, melyeket a 2009-es év mintáinál tapsztaltam, de ezek a minták a mintasereg csak kis százalékát (kevesebb, mint 5%) adják (34. ábra).

44	. tadiazat: A	liveografos i	P/L es w sta	uszukai ada	tai
	Mintaszám	Minimum	Maximum	Átlag	Szórás
	(db)			υ	
P/L	354	0,13	3,31	0,76	0,57
W (10 ⁻⁴ J)	354	25	446	206	80

34. ábra: Alveográfos P/L és W értékek eloszlása

4.4.2. Közeli infravörös spektroszkópiai módszerfejlesztés

4.4.2.1. Főkomponens analízis

Az összevont mintasereg esetén 338 db minta spektruma állt rendelkezésemre (mintánként két alminta). A főkomponens analízist erre az összesített mintaseregre is elvégeztem. Az összesített mintasereg esetén az évjárat illetve a termőhely esetleges hatásának kimutatására használtam a főkomponens analízist. A PCA-val kapott első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 45. táblázat tartalmazza. A táblázat adatai alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 99%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponenes analízis 12 db mintát jelzett outlier-ként, melyeket a későbbiekben eltávolítottam a mintaseregből.

A 35. ábrán látható a PCA eredménye, ahol az egyes évjáratokhoz tartozó mintákat jelöltem azonos színnel. A két évjáratból származó minták nem különülnek el egymástól. A 36. ábrán pedig az egyes termőterületekhez tartozó minták színe egyezik

meg. Az egyes termőhelyekhez tartozó minták közel esnek egymáshoz és átfedések vannak a mintacsoportok között.

	varialicia													
		egyedi	összesített											
PC1	PC1	97,49	97,49											
PC2	PC1+PC2	2,41	99,9											
PC3	PC1+PC2+PC3	0,06	99,96											

34 32 30 érték • PC1 28 26 24 22 0,2 0,3 0,5 0,1 0,4 érték • PC3 34 3,5 32 érték • PC2 30 érték • PC1 28 2,5 26 24 22 1,5 2,5 0,1 0,2 0,3 0,4 0,5 1,5 3,5 érték • PC2 érték • PC3

35. ábra: PCA eredmények az alap spektrumok esetén az évjárat jelölésével: piros – 2009, kék – 2010

45. táblázat: Alap spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített variancia

36. ábra: PCA eredmények az alap spektrumok esetén a termőhely jelölésével: piros – Gesztely 2009, kék – Látókép 2009, zöld – Tápió 2009, lila – Jánoshalma 2009, sárga – Somogyszil 2009, szürke – Csorvás 2009, levendula – Harta 2009, türkiz – Harta 2010, szilvakék – Somogyszil 2010, narancs – Jánoshalma 2010, barna – Gesztely 2010, tengerzöld – Tápió 2010, fekete – Látókép 2010

A főkomponens analízist elvégeztem a második derivált spektrumokra; első három főkomponenshez tartozó egyedi és összesített varianciákat százalékos formában a 46. táblázat tartalmazza. Az eredmények alapján az első három főkomponens a mintaseregben lévő teljes variancia több mint 95%-át leírja, nem szükséges további főkomponenseket figyelembe venni. A főkomponense analízis 3 db mintát jelzett outlier-ként, melyeket a későbbiekben eltávolítottam a mintaseregből.

	es osszesnen	variancia	-
		egyedi	összesített
PC1	PC1	57,85	57,85
PC2	PC1+PC2	33,36	91,21
PC3	PC1+PC2+PC3	3,93	95,14

46. táblázat: Második derivált spektrumokra elvégzett PCA első három főkomponense által leírt egyedi és összesített variancia

A második derivált spektrumokra elvégzett főkomponens analízis eredményét a 37. ábra mutatja, ahol az egyes termőhelyeket ismét külön színnek jelöltem. Ennél a mintaseregnél is egyértelműen megkülönböztethető két alcsoport, amelyek a világoszöld színnel jelzett csorvási és a feketével jelzett látóképi minták egy része volt, melyek megegyeztek a 2010-es évben különváló mintacsoportokkal. Ezt a két csoportot eltávolítva újra elkészítettem a második derivált spektrumokra a mennyiségi kalibrációkat.

37. ábra: PCA eredmények a második derivált spektrumok esetén a termőhely jelölésével: piros – Gesztely 2009, kék – Látókép 2009, zöld – Tápió 2009, lila – Jánoshalma 2009, sárga – Somogyszil 2009, szürke – Csorvás 2009, levendula – Harta 2009, türkiz – Harta 2010, szilvakék – Somogyszil 2010, narancs – Jánoshalma 2010, barna – Gesztely 2010, tengerzöld – Tápió 2010, fekete – Látókép 2010

Az összevont mintaseregen is elvégeztem kalibrációk fejlesztését a három reológiai paraméterre. A vízfelvétel becslésére kapott modellek eredményei láthatóak a 47. táblázatban. A csak a 2009-es mintákra vonatkozó kalibrációkhoz ($R^2=0,82$) képest negatívan, míg a 2010-es minták kalibrációjához ($R^2=0,62$) képest pozitívan változott a meghatározhatóság pontossága ($R^2=0,69$).

	-r-			-,									
Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	664	604	9,04	52,2	72,3	62,2	3,4	1,9	2,0	2,6	1,7	0,67
-	1-4-4-1	664	645	2,86	52,2	72,3	62,2	3,4	1,9	2,0	2,6	1,7	0,66
-	1-8-8-1	664	641	3,46	52,2	72,2	62,2	3,3	2,0	2,0	2,6	1,7	0,65
-	2-2-2-1	664	644	3,01	52,2	72,1	62,2	3,3	2,0	2,0	2,7	1,6	0,65
SNV	0-0-1-1	664	633	4,67	52,2	72,3	62,3	3,3	1,9	1,9	2,4	1,8	0,69
SNV	1-4-4-1	664	643	3,16	52,2	72,3	62,2	3,3	1,9	2,0	2,5	1,7	0,66
SNV	1-8-8-1	664	640	3,61	52,2	72,2	62,2	3,3	1,9	2,0	2,6	1,7	0,66
SNV	2-2-2-1	664	632	4,82	52,3	72,1	62,2	3,3	1,9	1,9	2,5	1,7	0,68
SNV+D	0-0-1-1	664	636	4,22	52,4	72,1	62,2	3,3	2,0	2,0	2,6	1,7	0,64
SNV+D	1-4-4-1	664	619	6,78	52,6	71,8	62,2	3,2	1,8	1,8	2,4	1,7	0,68
SNV+D	1-8-8-1	664	646	2,71	52,1	72,3	62,2	3,4	2,1	2,1	2,8	1,6	0,60
SNV+D	2-2-2-1	664	644	3,01	52,2	72,2	62,2	3,3	2,0	2,1	2,7	1,6	0,63

47. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Az alveográfos paraméterek közül a P/L értékre csak olyan modellt tudtam készíteni, mely a minták több mint 10%-át kiszűrte, ellenben a korrelációs koefficiens értéke magas volt (0,75< R^2) (48. táblázat). A csak a 2009-es mintákra vonatkozó kalibrációkhoz (R^2 =0,79) képest rosszabb pontossággal adható meg a W, míg a 2010-es minták kalibrációjához (R^2 =0,67) képest javult a pontosság (R^2 =0,75) (49. táblázat).

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	664	571	14,01	0	1,66	0,59	0,36	0,16	0,16	0,21	2,2	<u>0,81</u>
-	1-4-4-1	664	569	14,31	0	1,64	0,59	0,35	0,15	0,16	0,20	2,2	<u>0,81</u>
-	1-8-8-1	664	582	12,35	0	1,69	0,60	0,36	0,17	0,17	0,22	2,1	<u>0,78</u>
-	2-2-2-1	664	575	13,40	0	1,68	0,60	0,36	0,16	0,17	0,22	2,2	<u>0,80</u>
SNV	0-0-1-1	664	585	11,90	0	1,72	0,61	0,37	0,17	0,17	0,23	2,1	<u>0,78</u>
SNV	1-4-4-1	664	587	11,60	0	1,72	0,61	0,37	0,18	0,18	0,23	2,1	<u>0,78</u>
SNV	1-8-8-1	664	585	11,90	0	1,69	0,60	0,36	0,17	0,18	0,23	2,1	<u>0,77</u>
SNV	2-2-2-1	664	584	12,05	0	1,74	0,61	0,38	0,17	0,18	0,23	2,1	<u>0,79</u>
SNV+D	0-0-1-1	664	574	13,55	0	1,66	0,59	0,36	0,17	0,17	0,22	2,1	<u>0,77</u>
SNV+D	1-4-4-1	664	579	12,80	0	1,69	0,60	0,36	0,18	0,18	0,23	2,0	<u>0,76</u>
SNV+D	1-8-8-1	664	575	13,40	0	1,66	0,59	0,36	0,18	0,18	0,23	2,0	<u>0,75</u>
SNV+D	2-2-2-1	664	590	11,14	0	1,76	0,61	0,38	0,18	0,19	0,24	2,0	<u>0,77</u>

48. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

49. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	0-0-1-1	664	623	6,17	0	418	202	72	37	37	49	1,9	0,73
-	1-4-4-1	664	620	6,63	0	416	202	72	36	37	48	2,0	0,74
-	1-8-8-1	664	619	6,78	0	420	203	72	37	37	48	2,0	0,74
-	2-2-2-1	664	628	5,42	0	422	203	73	38	40	51	1,9	0,73
SNV	0-0-1-1	664	627	5,57	0	421	203	73	37	36	47	2,0	0,74
SNV	1-4-4-1	664	621	6,48	0	415	201	71	36	36	46	2,0	0,75
SNV	1-8-8-1	664	629	5,27	0	423	204	73	37	37	48	2,0	0,75
SNV	2-2-2-1	664	621	6,48	0	417	202	72	38	38	50	1,9	0,73
SNV+D	0-0-1-1	664	624	6,02	0	419	203	72	37	37	48	1,9	0,73
SNV+D	1-4-4-1	664	628	5,42	0	49	202	72	38	38	49	1,9	0,73
SNV+D	1-8-8-1	664	626	5,72	0	418	203	72	38	38	49	1,9	0,72
SNV+D	2-2-2-1	664	621	6,48	0	416	201	71	38	38	50	1,9	0,72

A második derivált spektrumokkal végzett főkomponens analízis eredményeként a 2010-es csorvási és a látóképi területekhez tartozó minták egy része elkülönülő csoportot alkottak, így azokat kivettem a mintaseregből. Az így visszamaradt mintákra újra elvégeztem a kalibrációs modellek fejlesztését, de már csak a második derivált spektrumok esetén.

A redukált mintaseregen a valorigráfos vízfelvételre készített kalibrációk statisztikai jellemzőit foglalja össze az 50. táblázat. Az így elkészített modellek pontossága mindhárom esetben (előkezelés nélkül, SNV, SNV+D) pozitívan változott.

mintasei	eg eseten	(1,0,1)	licuci	л эрск	li unisz	am, 19	. Kanoi	acionoz	Temasz	Linan spo	, Ku un	IOK SZA	maj
Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	582	566	2,75	52,2	72,6	62,4	3,4	1,8	1,9	2,4	1,8	0,72
SNV	2-2-2-1	582	560	3,78	52,2	72,5	62,3	3,4	1,8	1,9	2,4	1,8	0,73
SNV+D	2-2-2-1	582	564	3,09	52,2	72,5	62,3	3,4	1,8	1,9	2,4	1,8	0,71

50. táblázat: Valorigráfos vízfelvétel becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

A redukált mintaseregen az alveográfos P/L és W értékre készített kalibrációk statisztikai jellemzőit foglalja össze az 51. és 52. táblázat. A P/L esetén egyik transzformációnál sem hozott jobb eredményeket a két mintacsoport eltávolítása. A W esetén viszont az előkezelés nélküli, SNV és SNV+D transzformált spektrumok esetén is jobb eredményekkel szolgált a két mintacsoport eltávolítása.

51. táblázat: Alveográfos P/L becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	N	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	582	519	10,82	0	1,94	0,70	0,41	0,20	0,20	0,26	2,1	<u>0,78</u>
SNV	2-2-2-1	582	505	13,23	0	1,80	0,67	0,38	0,19	0,19	0,25	2,0	<u>0,76</u>
SNV+D	2-2-2-1	582	504	13,40	0	1,80	0,67	0,38	0,19	0,19	0,25	2,0	<u>0,76</u>

52. táblázat: Alveográfos W becslésére készített modellek statisztikai jellemzői a redukált mintasereg esetén (N₀: eredeti spektrumszám, N: kalibrációhoz felhasznált spektrumok száma)

Előkezelés	Derivált	N_0	Ν	%	Min	Max	Átlag	Szórás	SEC	SECV	SEP	RPD	RSQ
-	2-2-2-1	582	544	6,53	0	425	209	72	35	36	47	2,0	0,76
SNV	2-2-2-1	582	549	5,67	0	426	209	72	36	37	48	1,9	0,76
SNV+D	2-2-2-1	582	552	5,15	0	424	208	72	36	38	50	1,9	0,74

Az összevont csoport mintáinak valorigráfos vízfelvétel és alveográfos P/L valamint W érték becslésére készítettem modelleket. A második derivált spektrumokon elvégzett PCA elkülönülő alcsoportokat mutatott (megegyezett a 2010-s mintáknál is kiszűrt csoporttal), így azokat eltávolítva újra elvégeztem a modellek fejlesztését.

A valorigráfos vízfelvétel becslésére itt sem kaptam megfelelő pontosságú modellt. A második derivált spektrumokon elvégzett PCA által kiszűrt minták eltávolítása ugyan pozitív hatással volt az R² értékére, de a modell alkalmazhatóságán ez nem változtatott. Hasonló eredményeket írtak le Dowell és mtsai (2006), akik a vízfelvétel becslésére R²=0,65 értékkel rendelkező modellt kaptak, ami nálam R²=0,66-ra adódott.

Az alveográfos P/L esetén a regresszió itt is a minták több mint 10%-át elhagyta, de $R^2=0,81$ korrelációs koefficienssel és RPD=2,2 értékkel jellemezhető modellt értem el az eredeti mintasereg előkezelés nélküli alap valamint 1-4-4-1 első derivált spektrumok alkalmazásával, mely megközelítőleg jó becslést ad a P/L-re. A modell statisztikai

jellemzői az irodalomban található modellekhez képest magasabbak (Miralbes, 2004; Dowell és mtsai, 2006). Az alveográfos W esetén R²=0,76 korrelációs koefficiens értékkel és RPD=2,0 valamint 1,9 értékkel jellemezhető modellhez jutottam a második derivált spektrumokon elvégzett PCA által kiszűrt minták kivételével az előkezelés nélküli valamint SNV transzformált második derivált spektrumok használatával. A modell statisztikai jellemzői alatta maradnak a Arazuri és mtsai (2012) által fejlesztett modellekéhez képest, de felette vannak a Dowell és mtsai (2006) valamint Jirsa és mtsai (2008) által kidolgozott modellekénél.

A kiemelt kalibrációs modelleket szemlélteti az egyes paraméterek esetén a 38. ábra.

Második derivált spektrumokon végzett PCA után, 2010 - Csorvás és Látókép egy része kivétel, SNV, második derivált spektrumok (2-2-2-1), R²=0,73

38. ábra: Összefüggések az összevont csoport mintáinak reológiai tulajdonságai és a kapott NIR modellek által becsült értékek között

5. KÖVETKEZTETÉSEK, JAVASLATOK

A doktori munkám során több mintacsoportra végeztem közeli infravörös spektroszkópiai módszerfejlesztést. Búza minták reológiai tulajdonságainak, mint valorigráfos vízfelvétel, alveográfos P/L görbe alaki hányados és W deformációhoz szükséges energia, valamint kisebb csoportra extenzográfos 45, 90, 135 perchez tartozó nyújtáshoz szükséges energia vizsgálatára került sor. A minták NIR spektrumainak felvétele után a felsorolt paraméterekre készítettem kalibrációs modelleket. A mintaseregben lévő esetlegesen elkülönülő alcsoportokat a főkomponens analízis tárta fel mind alap spektrumokra elvégezve, mind pedig második derivált spektrumok esetében. A főkomponens analízis során azt tapasztaltam, hogy az egyes fajtákhoz tartozó minták, az ugyanazon műtrágya adagokat kapó minták, valamint az egy termőterületről származó minták spektrumai közel vannak egymáshoz, a csoportok között átfedések vannak. Bár jelentkeztek különálló csoportok, de eredményeim alapján összességében nem befolyásolta a spektrumokat a fajta, a műtrágyázási szint vagy a termőhely.

A kalibrációk készítésénél különböző matematikai előkezeléseket (SNV, SNV+D) és deriválást (első: 1-4-4-1 és 1-8-8-1, második derivált) valamint ezek kombinációit alkalmaztam és a módosított részleges legkisebb négyzetek módszerét választottam keresztvalidálással.

Az elkészült kalibrációs modellek különböző pontossággal becsülik az egyes paramétereket. Ígéretes modelleket kaptam a valorigráfos vízfelvétel becslésére. A modellek statisztikai jellemzőit tekintve bár sok esetben magas korrelációs koefficiens értéket kaptam, de az RPD hányados értéke alul maradt a kívánatosnak, vagyis a keresztvalidálás sztenderd hibája magas volt az adott paraméter eredményinek szórásához képest. Csak a valorigráfos vízfelvétel értékének becslésére adódott olyan modell, mely mind a korrelációs koefficienst tekintve, mind az RPD értéket megbízható pontossággal adja meg ezen reológiai tulajdonság értékét. Az alveográfos P/L és W paraméterek becslése tájékoztató jellegú lehet az elért modellekkel, viszont az extenzográfos energia értékek előre jelzésére a modellek nem megfelelőek, gyenge összefüggéseket kaptam.

A jövőbeni munkára vonatkozóan javasolnám további minták reológiai tulajdonságainak vizsgálatát. A kiválasztásnál érdemes lehet célzott kísérleti mintasereg

előnyben részesítése, ahol ismert a genotípus, a termesztésnél alkalmazott agrotechnika, akár különböző termőterületek és több évjárat bevonása valamint lisztek spektrumainak felvétele, azok vizsgálata és így kalibrációs modellek fejlesztése. Egy ilyen kísérlet kivitelezése, a jól összehangolt mintabegyűjtés megnehezíti a munkát, de részletesebb képet adnának és jobban vizsgálható lenne az egyes tényezők hatása. A közeli infravörös spektroszkópiai módszerfejlesztések rövid és hosszú távon is a mesterséges neurális hálózatok alkalmazása felé mutatnak, melyekkel nem-lineáris mintahalmazon több ezres mintaszámmal lehet dolgozni. Az ANN kiépítéséhez és tanításához már nemzetközi kapcsolatrendszer is szükséges, hogy megfelelő globális kalibrációs modelleket lehessen kapni.

6. ÚJ ÉS ÚJSZERŰ TUDOMÁNYOS EREMDÉNYEK

- 1. Új módszert dolgoztam ki közeli infravörös spektroszkópia segítségével búzaminták valorigráfos vízfelvétel értékének becslésére, mellyel előre meghatározható ez a sütőipari jellemző. A modellfejlesztés során arra az eredményre jutottam, hogy a valorigráfos vízfelvételre készített modelleknél egyaránt használható kalibrációkat kaptam az előkezelés nélküli, a sztenderd normál változó transzformációt alkalmazó, derivált képzés nélküli modellek esetén és a sztenderd normál változó+detrend transzformációt alkalmazó, második derivált spektrumokat feldolgozó modellek esetén, azaz ennél a paraméternél nem befolyásolta a kalibráció pontosságát az előkezelési módszerek alkalmazása. Ugyanakkor a főkomponens analízis eredményeként megjelenő mintaseregbeli szétválások kiszűrése nagyobb hatást gyakorolt a meghatározhatóság pontosságára.
- 2. Új módszert dolgoztam ki közeli infravörös spektroszkópiával búzaminták alveográfos P/L (görbe alaki hányados) értékének becslésére. Az alveográfos P/L értékre készített modellek esetén a főkomponens analízissel kapott különváló csoportok kivétele csak egy esetben eredményezett jobb statisztikai jellemzőkkel rendelkező modellt. Megállapítottam, hogy az előkezelés nélküli alap és második derivált spektrumokat feldolgozó modell közel azonos pontosságú, mint a sztenderd normál változó transzformált első derivált spektrumokat felhasználó modell; a főkomponens analízis hatása nagyobb, mint az előkezelések és deriválások. A kapott összefüggések ugyanakkor gyengék, csak tájékoztató jellegű becslés végezhető.
- 3. Új módszert dolgoztam ki közeli infravörös spektroszkópiával búzaminták alveográfos W (deformációhoz szükséges energia) értékének becslésére. A kapott modellekkel ez a reológiai tulajdonság tájékoztató jelleggel becsülhető. Az alveográfos W értékének becslésére készített modellek pontosságát a főkomponens analízis által kapott különválások kiszűrése befolyásolta. Eredményeim alapján a modellek fejlesztésénél akkor kaptam a legjobb eredményt, ha első (1-4-4-1) és második derivált-képzést alkalmaztam.
- 4. Új módszereket dolgoztam ki közeli infravörös spektroszkópiával az extenzográffal meghatározható nyújtáshoz szükséges energia értékek (E45,

 E_{90} , E_{135}) becslésére. Eredményeim alapján az elkészült modellek pontossága változó, a 45, 90 és 135 perchez tartozó nyújtáshoz szükséges energia értékek meghatározhatóságának pontossága rossz, csak látszólagosak az összefüggések.

7. ÖSSZEFOGLALÁS

Doktori munkám során célom volt, hogy a fajta, a műtrágyázás, a termőhely hatását vizsgáljam a közeli infravörös spektrumokra, valamint búza minták reológiai tulajdonságainak becslésére kalibrációs modelleket állítsak fel.

Kisparcellás tartamkísérletből (2008) származó minták közeli infravörös spektrumain kívántam vizsgálni a genotípus és a műtrágyázás esetleges hatásait. Két másik mintacsoport (2009 és 2010) esetén pedig a fajtától függetlenül a termőhely esetleges hatását tanulmányoztam a NIR spektrumokra, valamint a két mintacsoport összevonásával az évjárat esetleges hatását is.

Klasszikus, szabványos módszerekkel vizsgáltam a búzából őrölt lisztek reológiai tulajdonságait. Valorigráffal a vízfelvétel értékét, alveográffal a P/L és deformációs energia (W) értékét, valamint kisebb mintacsoporton extenzográffal a nyújtáshoz szükséges energia 45, 90, 135 perchez tartozó értékét határoztam meg.

FOSS Infratec 1241 Grain Analyzer állt rendelkezésemre a spektrumok felvételére és hozzá tartozó kemometriai szoftver a spektrumok kiértékelésére és kalibrációs módszerfejlesztésre.

A spektrumkiértékelés első lépéseként főkomponens analízist hajtottam végre, hogy a mintacsoportban lévő lehetséges különválásokat kiszűrjem. Főkomponens analízissel vizsgáltam a kisparcellás tartamkísérlet mintáiból felvett spektrumokon a genotípus és a műtrágyázási szintek hatását. Az alap spektrumoknál nem, de a második derivált spektrumokon elvégzett PCA eredményeként egyrészt két fajtához tartozó minták spektrumait, másrészt a kontroll csoporthoz tartozó minták spektrumait kellett kivenni a mintaseregből. A PCA jelzett elválásokat a második derivált spektrumok esetén, de a fajták vagy a műtrágyázási szintek nem jelennek meg egyértelmű, elkülönülő csoportokként. Ugyan volt olyan termőterület, melyről származó minták különváló csoportot alkottak, de a termőhely nem mutatott erőteljes hatást a spektrumokra. Az összevont mintasereg esetén az évjárat hatása nem jelent meg a PCA során.

A mennyiségi kalibrációk elvégzéséhez különböző spektrum transzformációs műveletet illetve ezek kombinációit alkalmaztam. Az SNV és SNV+D valamint első és második deriváltak képzését választottam, de vizsgáltam az előkezelés nélküli spektrumokat is. Az első deriváltak esetén két kapu-rés nagyságot állítottam be (1-4-4-1 és 1-8-8-1). Regressziós módszerként a módosított részleges legkisebb négyzetek módszerét

használtam, és az elkészült modelleket statisztikai jellemzők, mint a korrelációs koefficines értéke, az RPD hányados vagy a SECV alapján értékeltem.

A 2008-as termőévből származó minták esetén valorigráfos vízfelvétel, alvoegráfos P/L és W, valamint extenzográfos 45, 90, 135 perchez tartozó energia értékek becslésére készítettem kalibrációs modelleket. A valorigráfos vízfelvétel becslésére megfelelő pontosságú modelleket kaptam függetlenül attól, hogy milyen előkezelést alkalmaztam. A meghatározhatóság pontosságát a PCA által kiszűrt minták kivétele pozitívan befolyásolta. Az alveográfos P/L és W értéke is megközelítőleg becsülhető a kapott modellek segítségével, bár a P/L esetén számos esetben sok mintát kidobott a módszerfejlesztés során a regressziós módszer. A P/L érték esetén a második derivált spektrumokon elvégezett PCA által kiszűrt minták kivétele javított a modellek statisztikai jellemzőin. A W érték esetén a modellek megbízhatósága javult, mikor a második deriváltak spektrumokon elvégzett PCA után két fajta eltávolításra került.

A 2009-es évből származó minták esetén valorigráfos vízfelvétel és alveográfos P/L és W érték becslésére készítettem modelleket. A valorigráfos vízfelvétel becslésénél mind az alap spektrumokon, mind a második derivált spektrumokon elvégzett PCA után kivett mintacsoport kivétele jobb statisztikai jellemzőkkel rendelkező modellt eredményezett. A leghasználhatóbb modelleket az előkezelés nélküli második derivált spektrumok felhasználásával értem el, ahol a korrelációs koefficiens értéke magas, de az RPD alapján a modell közelítőleg ad jó eredményt. Az alveográfos P/L érték becslésénél szintén több esetben a minták több mint 10%-át elhagyta a modell, és megfelelő pontosság nem adódott. Az elvégzett PCA-k egyik esetben sem adtak használhatóbb modelleket, mint az eredeti mintaseregen elvégzett módszerfejlesztés, ahol az SNV transzformáció és az 1-4-4-1 első derivált képzés volt megfelelő. Az alveográfos W értékre készített modellek eredményei alapján elmondható, hogy a paraméter szintén közelítőleg becsülhető. A modellekre az alap spektrumokon elvégzett PCA alapján kiszűrt mintacsoport kivétele volt pozitív hatással. Ennél a paraméternél is az SNV transzformáció és 1-4-4-1 első derivált spektrumokkal készített modell a leghasználhatóbb.

A 2010-es évből származó minták esetén is valorigráfos vízfelvétel és alveográfos P/L és W érték becslésére készítettem modelleket. A paraméterek becslésére kapott modellek statisztikai jellemzői a 2009-es évi minták modelljeihez képest alatta maradtak. A valorigráfos vízfelvétel becslésére a második derivált spektrumokra elvégzett PCA által kiszűrt mintacsoportok kivétele jó hatással volt. A SNV előkezelés bizonyult megfelelőnek. Az alveográfos P/L és W érték becslésére kapott modelleket negatívan befolyásolta a második derivált spektrumokon elvégzett PCA által kiszűrt mintasereg eltávolítása. Az eredeti mintaseregre P/L esetén az alap spektrumokkal, W esetén SNV transzformációval, de mindkét esetben az 1-4-4-1 első derivált használata volt a megfelelő. A 2010-es évből származó mintákra a modellek pontossága nem megfelelő.

Az összevont mintaseregen is elvégeztem a főkomponens analízist, a második derivált spektrumokon végzett PCA szűrt ki eltávolítandó mintacsoportokat. A valorigráfos vízfelvétel becslésére készített modelleket pozitívan befolyásolta a mintacsoport kivétele és az SNV transzformáció adott megfelelő eredményt. Az alveográfos P/L esetén nem javultak a modellek statisztikai paraméterei a mintacsoportok eltávolításával, így az eredeti mintaseregen előkezelés nélküli alap spektrumokra és 1-4-1 első derivált spektrumokra elvégzett módszerfejlesztés adott megközelítőleg jó pontosságot. Az alveográfos W érték becslésénél a mintacsoportok eltávolítása, majd az SNV előkezelés alkalmazása jó hatással volt a modellek pontosságára. Az összevont mintasereg esetén az alveográfos P/L és W érték becslésére olyan modell adódott, melyek gyenge összefüggést mutatnak.

8. SUMMARY

In my PhD work my aim was to examine the possible effect of the varieties, fetilizer amount and growing place on the NIR spectra and develop calibration equations for prediction of rheological properties of wheat samples.

I purposed to examine the possible effect of genotype and fertilization wheat samples from a small parcel experiment on the near infrared spectra. In case of two other sample set (2009 and 2010) I investigated the possible effect of the growing area (without reference to genotype) on NIR spectra, and the possible effect of the harvest year for a merged sample set from the year of 2009 and 2010.

I examined the rheological properties of the wheat flours by classical standard methods. I determined the water absorption by valorigraph, the P/L ratio and deformation energy (W) by alveograph and on a smaller sample set the energy value for 45, 90, 135 min by extensigraph.

FOSS Infratec 1241 Grain Analyzer was available for collecting spectra and a chemometric software to evaluate the spectra and develop calibration equations.

As a first step in evaluation of spectra I applied principal component analysis (PCA) to screen the possible subgroups in the whole sample set. I examined some effect of the genotype and fertilizer amount on the spectra of the small parcel experiment. In case of second derivative spectra I found samples belonging to two varieties and samples for control group to form separate subgroups which I had to take out from the sample set. The PCA showed some separation in case second derivative spectra, but neither the varieties nor the fertilization levels do not show direct, separate groups. However there was such growing area which samples formed separate group, but the growing area has no significant effect on the spectra. The effect of the harvest year was not appeared in the PCA.

I applied different math treatments and their combination in developing calibration equations. I chose SNV and SNV+D, first and second derivative, and I also examined the raw spectra as well. At first derivative I applied two segment-gap set-ups (1-4-4-1 and 1-8-8-1). I used modified partial least squares as a regression method and I evaluated the models by their statistical parameters such as correlation coefficient, RPD ratio or SECV.

For the samples from year 2008 I developed calibration equations for the valorigraph water absorption, the alveograph P/L and W, the extensigraph energy for 45, 90, 135

min. For prediction of water absorption I developed models with good accuracy independently from the math treatment. Removal of the sample set according to PCA had a positive influence on the determination accuracy. The alveograph P/L and W could be predicted with good accuracy, though the mPLS removed many samples during the regression. In case of P/L the removal of the samples according to the PCA with second derivative spectra had positive effect on the models' statistical parameters. In case of W the removal f the two varieties' spectra according to PCA with the second derivative spectra the model had better accuracy.

With spectra from the samples of 2009 I developed models for prediction of valorigraph water absorption, alveograph P/L and W. For prediction of water absorption the removal of sample set according to both PCA on raw spectra and second derivative spectra resulted models with better statistical parameters. The most useable models were achieved by second derivative spectra with no transformation where the correlation coefficient is high, but according to the RPD ratio coarse quantitative prediction is possible. The development method of models for prediction of alveograph P/L remove more than 10% of the sample set in many cases, and the accuracy of the prediction was not enough. Removal of samples according to the PCAs gave not more useable models, than the model developed on the original sample set, where I applied SNV transformation and 1-4-4-1 first derivative. According to the results of models for prediction of alveograph W these parameter could be predicted with approximate accuracy. The removal of sample set according to PCA on raw spectra had positive effect on the models. The most useable model was developed by SNV transformation and 1-4-4-1 derivative.

With spectra from the samples of 2010 I developed models for prediction of valorigraph water absorption, alveograph P/L and W. The statistical parameters of models for prediction of the rheological properties are lower than resulted for the samples of 2009. The removal of sample set according to the PCA on second derivative spectra has positive effect on the accuracy of prediction in case of water absorption and the SNV transformation was proved suitable. The removal of the sample set according to PCA on second derivative spectra has negative effect on the models' accuracy for prediction P/L and W value. In case of P/L use of raw spectra and in case of W use of SNV corrected spectra with 1-4-4-1 first derivative was suitable. The model for these year's samples has not enough accuracy.

I carried out PCA on the merged sample set as well, and PCA on second derivative spectra showed separate subgroups to remove. The removal of these sample groups has positive influence on the accuracy of the prediction model for water absorption and SNV treatment was suitable. The removal of sample groups has not positive effect on the accuracy of the model for P/L prediction, thus model development on the original sample set's raw and 1-4-4-1 first spectra resulted approximate accuracy. The removal of sample groups positively influenced the accuracy of the prediction models for W and SNV treatment was suitable. The models for prediction of P/L and W show weak correlations.

9. PUBLIKÁCIÓS JEGYZÉK (felhasznált irodalom)

AACC International: 1983. Alveograph Method for Soft and Hard Wheat Flour (No. 54-30A)

AACC International: 2000. Extensigraph Method, General (No. 54-10)

Antes S. – Wieser H.: 2001. Effects of high and low molecular weight glutenin subunits on rheological dough properties and breadmaking quality of wheat. Cereal Chemistry. 78. 2: 157-159.

Arazuri S. – Arana J. I. – Arias N. – Arregui L. M. – Gonzalez-Torralba J. – Jaren C.: 2012. Rheological parameters determination using Near Infrared technology in whole wheat grain. *Journal of Food Engineering*. 111. 115–121.

Bácskai G. – Piláth K. – Pungor A.: 1984. INFRAPID Instruments Based ont he NIR technique. Hungarian Scientific Instruments. 58. 3-6.

Başlar M. – Ertugay M. F.: 2011. Determination of protein and gluten quality-related parameters of wheat flour using near-infrared reflectance spectroscopy (NIRS). *Turkish Journal of Agriculture and Forestry*. 35. 139-144.

Barnes R. J. – Dhanoa M. S. – Lister S. J.: 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy. 43. 5: 772-777.

Belderok B. – Mesdag J. – Donner D. A.: 2000. Dough properites. [In: Donner D. A. (szerk.) Bread-Making Quality of Wheat: A Century of Breeding in Europe.] Springer Science & Business Media, Dordrecht, 78.

Blažek J. – Jirsa O. – Hrušková M.: 2005. Prediction of wheat milling characteristics by near-infrared spectroscopy. *Czech Journal of Food Sciences.* 23. 4: 145-151.

Boros N.: 2011. Extenzográf alkalmazása lisztvizsgálatokban. Doktori értekezés. Debreceni Egyetem.

Boros N. – Kónya É. – Győri Z.: 2013. Comparison of rheological characteristic of winter wheat cultivars determined by extenzograph and alveograph. *Acta Alimentaria*. 42. 338–348.

Büchmann N. B. – Josefsson H. – Cowe I. A.: 2001. Performance of European Artificial Neural Network (ANN) Calibrations for Moisture and Protein in Cereals Using the Danish Near-Infrared Transmission (NIT) Network. *Cereal Chemistry*. 78. 5: 572–577.

Carcea M. – Salvatorelli S. – Turfani V. – Mellara F.: 2006. Influence of growing conditions on the technological performance of bread wheat (*Triticum aestivum* L.). *International Journal of Food Science and Technology.* 41. 2: 102-107.

Chopin Applications Laboratory: 2006. Mixolab applications Handbook (Rheological and enzymatic applications). Chopin Technologies.

Cocchi M. – Corbellini M. – Foca G. – Lucisano M. – Pagani M. A. – Tassi L. – Ulrici A.: 2005. Classification of bread wheat flours in different quality categories by a wavelet-based feature selection/classification algorithm on NIR spectra. *Analytica Chimica Acta*. 544. 100–107.

Cozzolino D. – Delucchi I. – Kholi M. – Vázquez D.: 2006. Use of near infrared reflectance to evaluate quality characteristics in whole-wheat grain. *Agricultura Téchnica*. 66. 4: 370-375.

Cuniberti M. B. – Roth M. R. – MacRitchie F.: 2003. Protein composition-functionality relationships for a set of Argentinean wheats. *Cereal Chemistry.* 80. 2: 132-134.

Curtis B. C.: 2002. Wheat in the world.

www.fao.org/DOCREP/006/Y4011E/y4011e04.htm#bm04 – hozzáférési dátum: 2015. május *Csajbók, J.:* 2012. Szántóföldi növények termesztése és növényvédelme. Jegyzet, Debreceni Egyetem, Növénytudományi Intézet.

Dang J. M. C. – Bason M. L. – Booth R. I.: 2007. Studies of mixing characteristics and elasticity of dough using the Newport Scientific micro-doughLAB. In *Cereals 2007.* Proceedings of 57th Australian Cereal Chemistry Conference, Eds. Panozzo J. F. and Black C. K., Melbourne, Victoria, 163–167.

Delwiche S. R. – Graybosch R. A. – Peterson C.J.: 1998. Predicting protein composition, biochemical properties, and dough-handling properties of hard red winter wheat flour by near-infrared reflectance. *Cereal Chemistry.* 75. 4: 412–416.

Delwiche S. R. – Graybosch R. A.: 2003. Examination of Spectral Pretreatments for Partial Least-Squares Calibrations for Chemical and Physical Properties of Wheat. *Applied Spectroscopy*. 57. 12: 1517-1527.

Dobraczyk B. J. – Morgenstern M. P.: 2003. Rheology and breadmaking process. Review. Journal of Cereal Science. 38. 229-245.

Dowell F. E. – Maghirang E. B. – Xie F. – Lookhart G. L. – Pierce R. O. – Seabourn B.
W. – Bean S. R. – Wilson J. D. – Chung O. K.: 2006. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chemistry. 83. 5: 529–536.

Dowell F. E. – Maghirang E. B. – Graybosch R. A. – Berzonsky W. A. – Delwiche S. R.: 2009. Selecting and Sorting Waxy Wheat Kernels Using Near-Infrared Spectroscopy. *Cereal Chemistry.* 86. 3: 251–255.

Faridi H. A. – Rasper V. F.: 1987. The Alveograph Handbook. American Association of Cereal Chemists, St. Paul, Minnesota, USA.

FAO statisztikai adat (2013-as évre vonatkozó):
<u>http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor</u> – hozzáférési dátum: 2015. május

Fennema O. R.: 1985. Characteristics of edible plant tissues. [In: Fennema O. R. (szerk.) Food Chemistry.] Marcel Dekker Inc., New York, 875.

Füstös L.: 2009. Főkomponens-elemzés. [In: Fürtös L., Szalma I. (szerk.) Módszertani füzetek 2009/1., Sokváltozós adatelemzés módszerei.] MTA Szociológiai Kutatóintézete, Társadalomtudományi Elemzések Akadémiai Műhelye (TEAM), Budapest, 256.

Gergely Sz.: 2005. Gabonák nyersanyag minősítése: közeli infravörös spektroszkópia. Jegyzet, BME, Biokémiai és Élelmiszertechnológiai Tanszék, Budapest. <u>www.muszeroldal.hu/measurenotes/gabonakNIR.pdf</u> – hozzáférési dátum: 2015. május

Gras P. W. – O'Brien L.: 1992. Application of a 2-gram mixograph to earls generation selection for dough strength. *Cereal Chemistry*. 69. 3: 254–257.

Gupta R. B. – Batey I. L. – MacRitchie F.: 1992. Relationships between protein composition and functional properties of wheat flours. *Cereal Chemistry.* 69. 2: 125-131.

Győri Z. – Győriné Mile I.: 1998. A búza minősége és minősítése. Mezőgazdasági Szaktudás Kiadó, Budapest.

Haglund Å. – *Johansson L.* – *Dahlstedt L.:* 1998. Sensory evaluation of wholemeal bread from ecologically and conventionally grown wheat. *Journal of Cereal Science*. 27. 199-207.

Haraszi R. – Gras P. W. – Tömösközi S. – Salgó A. – Békés F.: 2004. Application of a micro Z-arm mixer to characterize mixing properties and water absorption of wheat flour. *Cereal Chemistry.* 81. 5: 555–560.

Héberger K. – Rajkó R.: 2001. Faktoranalízis, főkomponens-elemzés és változataik. [In: Horvai Gy. (szerk.) Sokváltozós adatelemzés (kemometria)]. Nemzeti Tankönyvkiadó Rt., Budapest, 84–88.

Hrušková M. – Bednářová M. – Novotný F.: 2001. Wheat Flour Dough Rheological Characteristics Predicted by NIRSystems 6500. *Czech Journal Food Science*. 19. 6: 213–218.

Hrušková M. – Šmejda P.: 2003. Wheat Flour Dough Alveograph Characteristics Predicted by NIRSystems 6500. *Czech Journal Food Science*. 21. 1: 28–33.

ISI Version 3.00 User Manual: 1992. Infrasoft International, LLC.

Jirsa O. – Hrušková M. – Švec I.: 2008. Near-infrared prediction of milling and baking parameters of wheat varieties. *Journal of Food Engineering*. 87. 21–25.

Johansson E. – Prieto-Linde M. L. – Jönsson J. Ö.: 2001. Effects of wheat cultivar nad nitrogen application on storage protein composition and breadmaking quality. Cereal *Chemistry*. 78. 1: 19-25.

Kaffka K. J. – Gyarmati L. S.: 1998. Investigating the polar qualification system. Journal of Near Infrared Spectroscopy, 6. 191-200.

Kent N. L. – Evers A. D.: 1994. Technology of cereals. An introduction for students of food science and agriculture. Fourth Edition. BPC Wheatons Ltd., Exeter.

Láng G.: 1976. Szántóföldi növénytermesztés. Mezőgazdasági Kiadó, Budapest.

Láng L. – Bedő Z. – Vida Gy.: 1996. A sikértartalom és ami mögötte van... *Agrofórum*. VII. 6.

<u>http://vetomag.elitmag.hu/cikk/1/a_sikertartalom_es_ami_mogotte_van</u>... – hozzáférés dátuma: 2015. május

Lásztity R.: 1996. The chemistry of cereal proteins. CRC Press, Boca Raton.

Liu F. – He Y.: 2008. Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics. *Food Research International*. 41. 562–567.

Long D. S. – Engel R. E. – Siemens M. C.: 2008. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agronomy Journal. 100. 2: 247-252.

Long D. S. – McCallum J. D. – Scharf P. A.: 2013. Optical-mechanical system for oncombine segregation of wheat by grain protein concentration. *Agronomy Journal.* 105. 6: 1529-1535.

MacRitchie F. – Lafiandra D.: 1997. Structure–function relationships of wheat proteins. [In: Damodaran S., Paraf A. (szerk.) Food Proteins and their applications.]. Marcel Dekker, New York, 293–323.

Maertens K. – Reyns P. – De Baerdemaeker J.: 2004. On-line measurement of grain quality with NIR technology. Transactions of the American Society of Agricultural Engineers. 47. 4: 1135-1140.

Maghirang E. B. – Dowell F. E.: 2003. Hardness Measurement of Bulk Wheat by Single-Kernel Visible and Near-Infrared Reflectance Spectroscopy. *Cereal Chemistry*. 80. 3: 316–322.

Mikhaylenko G. G. – Czuchajowska Z. – Baik B. K. – Kidwell K. K.: 2000. Environmental influences of on flour composition, dough rheology, and baking quality of spring wheat. *Cereal Chemistry.* 77. 4: 507-511.

Miralbes C.: 2003. Prediction chemical composition and alveograph parameters on wheat by near-infrared transmittance spectroscopy. *Journal of Agricultural and Food Chemistry.* 51. 21:6335–6339.

Miralbes C.: 2004. Quality control in the milling industry using near infrared transmittance spectroscopy. *Food Chemistry.* 88. 621–628.

MSZ 1989. Élelmezési, takarmányozási, ipari magvak és hántolt termények vizsgálata. A búzaliszt laboratóriumi előállítása (No. 6367-9) *MSZ* 2012. Búza (No. 6383)

MSZ ISO 1995. Búzaliszt. Atészta fizikai jellemzői. 3. rész: a vízfelvevő képesség és a reológiai tulajdonságok meghatározása valorigráffal. (No. 5530-3)

Murray I. – Williams P. C.: 1987. Chemical principles of near-infrared technology. [In: Williams P., Norris K. (szerk.) Near-infrared technology in the agricultural and food industries.] American Association of Cereal Chemists, Inc., St. Paul, Minnesota. 17–31.

Mutlu A. C. – Boyaci I. H. – Genis H. E. – Ozturk R. – Basaran-Akgul N. – Sanal T. – Evlice A. K.: 2011. Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. European Food Research and Technology. 233. 267–274.

Nicolaï B. M. – Beullens K. – Bobelyn E. – Peirs A. – Saeys W. – Theron K. I. – Lammertyn J.: 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology. 46. 99– 118.

Nørgaard L. – Lagerholm M. – Westerhaus M.: 2013. Artifical neural networks and near infrared spectroscopy – A case study on protein content in whole wheat grain. <u>http://www.foss.dk/-/media/242657904d734ce9b0652c3d885776ae.ashx</u> - hozzáférés dátuma: 2015. május

Osborne B. G.: 2001. Near-infrared spectroscopy in food analysis. [In: Meyers R.A. (szerk.) Encyclopedia of analytical chemistry.]. John Wiley & Sons Ltd, Chichester. 1–14.

Osborne B. G. – Fearn T.: 1986. Physics of the interaction of radiation with matter. [In: Osborne B. G., Fearn T. (szerk.) Near Infrared Spectroscopy in Food Analysis. Longman Scientific & Technical, Harlow, 43-56.

Ozaki Y. – Morita S. – Du Y.: 2007. Spectral analysis. [In: Ozaki Y., McClure W. F., Christy A. A., (szerk.) Near-Infrared Spectroscopy in Food Science and Technology.]. John Wiley & Sons, Inc, Hoboken, New Jersey, 54..

Pasikatan M. C. – Dowell F. E.: 2004. High-Speed NIR Segregation of High- and Low-Protein Single Wheat Seeds. *Cereal Chemistry*. 81. 1: 145–150.

Pechanek U. – Karger A. – Gröger S. – Charvat B. – Schöggl G. – Lelley T.: 1997. Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmaking quality of wheat. *Cereal Chemistry.* 74. 6: 800-805.

Peiris K. H. S. – Dowell F. E.: 2011. Determining Weight and Moisture Properties of Sound and Fusarium-Damaged Single Wheat Kernels by Near-Infrared Spectroscopy. *Cereal Chemistry.* 88. 1: 45–50.

Peiris K. H. S. – Pumphrey M. O. – Dong Y. – Maghirang E. B. – Berzonsky W. – Dowell F. E.: 2010. Near-Infrared Spectroscopic Method for Identification of Fusarium Head Blight Damage and Prediction of Deoxynivalenol in Single Wheat Kernels. Cereal Chemistry. 87. 6: 511–517.

Pepó P. – Győri Z.: 2005. A study of the yield stability of winter wheat varieties. Cereal Research Communications. 33. 4: 769-776.

Pepó P. – Sipos P. – Győri Z.: 2005. Effects of fertilizer application on the baking quality of winter wheat varieties in a long term experiment under continential climate conditions in Hungary. *Cereal Research Communications*. 33. 4: 825-832.

Perten Instruments: 2014. Inframatic 8800 NIR Grain Analyzer. Perten Instruments.

Pérez-Marín D. – Garrido-Varo A. – De Pedro E. – Guerrero-Ginel J. E.: 2007. Chemometric utilities to achieve robustness in liquid NIRS calibrations: Application to pig fat analysis. *Chemometrics and Intelligent Laboratory Systems.* 87. 241-246. Pokol Gy. – Gyurcsányi E. R. – Simon A. – Bezúr L. – Horvai Gy. – Horváth V. – Dudás
K. M.: 2011. Spektroszkópia. [In: Pokol Gy. (szerk.) Analitikai kémia. Typotex Kiadó,
Budapest. 132–301.

Rasper F. R. – Preston K. R.: 1991. The Extensigraph Handbook. American Association of Cereal Chemists, St Paul, Minnesota, USA.

Salgó A. – Gergely Sz. – Juhász R.: 2005. Characterizing the maturation and germination processes in wheat by NIR methods. *Proceedings of the 12th International ICC Cereal and Bread Congress*, 24–26th May, 2004, Harrogate, UK. A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition, 2005, pp. 212–219.

Salgó A., – Gergely Sz.: 2012. Analysis of wheat development using NIR spectroscopy. Journal of Cereal Science. 56. 31-38.

Shewry P. R. – Halford N. G. – Tatham A. S.: 1992. High molecular weight subunits of wheat glutenin. Journal of Cereal Science. 15. 2: 105-120.

Sipos P. – Tóth Á. – Győri Z.: 2005. Az őszi búza minőségének változása az érés során. Agrártudományi Közlemények. 16. 105-112.

Sipos P. – Nógrádi S. – Győri Z.: 2010. A potenciális etanol hozam előrejelzésének vizsgálata kukoricafermentálási kísérletben. In. Mezőgazdasági Technika Különszám. Fenntartható bioenergia-termelés "fiatal kutatók a bioenergetikában" konferencia. 51. 19-21.

Sørensen L. K.: 2009. Application of reflectance near infrared spectroscopy for bread analyses. *Food Chemistry*. 113. 1318–1322.

Szabó É. – Pepó P.: 2010 A tápanyagellátás hatása az őszi búza néhány sütőipari tulajdonságára. Agrártudományi Közlemények. 41. 105–110.

Szilágyi Sz.: 2000. A műtrágyázás hatása a búzaliszt minőségére, összefüggésvizsgálatok a minőségi mutatók között. Doktori értekezés. Debreceni Egyetem.

Tanács L. – Matuz J. – Gerő L. – Petróczi I.: 2005. Effects of herbicides and crop years on the quality of winter wheat varieties. *Cereal Research Communications*. 33. 4: 801-808.

Tóth Á. – Győri Z.: 2004. A termőhely hatása a 2002/2003-as őszi búzafajták minőségére. *Agrártudományi Közlemények.* 13. 100-107.

Tóth Á. – Sipos P. – Győri Z.: 2005. Az évjárat és a műtrágyázás hatása a GK Öthalom őszi búzafajta alveográfos minőségére. *Agrártudományi Közlemények.* 16. 126-133.

Tóth Á. – Sipos P. – Győri Z.: 2007. Őszi búzafajták alveográfos minősítésének jelentősége aszályos, csapadékos és átlagos időjárási körülmények között. *Élelmiszervizsgálati Közlemények.* 53. 3: 156-165.

Tömösközi S. – Békés F. – Haraszi R. – Gra P. W. – Varga J. – Salgó A.: 2002. application of micro Z-arm dough mixer in wheat research – effect of protein addition on mixing properties of wheat dough. *Periodica Polytechnica Ser. Chem. Eng.* 46. 31-38.

Tömösközi S. – Szendi Sz. – Bagdi A. – Harasztos A. – Balázs G. – Diepeveen D. – Appels R. – Békés F.: 2012. New possibilities in micro-scale wheat quality characterization: Micro-gluten determination and starch isolation. In. Proceedings of 11^{th} International Gluten Workshop. Eds. He Z. and Wang D. Beijing, China.123–127.

Uri Cs. – Tóth Á. – Sipos P. – Borbélyné Varga M. – Győri Z.: 2006. A sikérfehérjék összetétele, hatásuk a sikér reológiai tulajdonságaira. *Agrártudományi Közlemények.* 23. 124–129.

Vignia L. M. – Durantea C. – Focab G. – Ulricib A. – Jespersenc B. P. M. – Broc R. – Cocchi M.: 2010. Wheat flour formulation by mixture design and multivariate study of its technological properties. *Journal of Chemometrics*. 24. 523–533.

Vision® Manual: 2008. Theory FOSS NIRSystems

Wang D. – Dowell F. E. – Lacey R. E.: 1999a. Single Wheat Kernel Color Classification by Using Near-Infrared Reflectance Spectra. *Cereal Chemistry*. 76. 1: 30–33.

Wang D. – Dowell F. E. – Lacey R. E.: 1999b. Single Wheat Kernel Size Effects on Near-Infrared Reflectance Spectra and Color Classification. *Cereal Chemistry*. 76. 1: 34–37.

Weegels P. L. – van der Pijpekamp A. M. – Graveland A. – Hamer R. J. – Schofield J. D.: 1996. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters. *Journal of Cereal Science*. 23. 103–111.

Wesley I. J. – Larroque O. – Osborne B. G. – Azudin N. – Allen H. – Skerritt J. H.: 2001. Measurement of Gliadin and Glutenin Content of Flour by NIR Spectroscopy. Journal of Cereal Science. 34. 125–133.

Wieser H. – Seilmeier W.: 1998. The influence of nitrogen fertilisation on quantities and proportions of different protein types in wheat flour. *Journal of the Science of Food and Agriculture*. 76: 49-55.

Williams P.C.: 1987. Variables affecting near-infrared reflectance spectroscopic analysis. [In: Williams P., Norris K. (szerk.) Near Infrared Technology in the Agriculture and Food Industries. 1st Ed.] American Association of Cereal Chemists, St. Paul, Minnesota. 143-167.

Williams P. C. – Sobering D. C.: 1993. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. *Journal of Near Infrared Spectroscopy*. 1. 25–32.

Wooding A. R. – Kavale S. – MacRitchie F. – Stoddard F. L. – Wallace A.: 2000. Effects of nirtogen and sulfur fertilizer on protein composition, mixing requirements, and dough strength of flour wheat cultivars. *Cereal Chemistry*. 77. 6: 798-807.

Zhao H. – Guo B. – Wei Y. – Zhang B.: 2013. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. *Food Chemistry.* 138. 1902-1907.

Zhu J. – Kahn K.: 2001. Effects of genotype and environment on glutenin polymers and breadmaking quality. *Cereal Chemistry.* 78. 2: 125-130.

Zhu J. – Kahn K.: 2004. Characterization of glutenin polymer fractions from sequential extraction of hard red spring wheats of different breadmaking quality. *Cereal Chemistry.* 81. 6: 681-685.

10. PUBLIKÁCIÓK AZ ÉRTEKEZÉS TÉMAKÖRÉBEN

Nyilvántartási szám: Tárgy: DEENK/134/2015.PL PhD Publikációs Lista

Jelölt: Kónya Éva Neptun kód: JPN898 Doktori Iskola: Hankóczy Jenő Növénytermesztési, Kertészeti és Élelmiszertudományok Doktori Iskola

A PhD értekezés alapjául szolgáló közlemények

Magyar nyelvű tudományos közlemény(ek) hazai folyóiratban (3)

- Kónya É., Győri Z.: Búza reológiai tulajdonságok vizsgálata közeli infravörös spektroszkópiával. Agrártud. Közl. [Debrecen]. 50, 99-104, 2012. ISSN: 1587-1282.
- Kónya É., Kovács G., Győri Z.: Búza minták közeli infravörös spektrumainak minőségi vizsgálata. Agrártud. Közl. [Debrecen]. 48, 97-100, 2012. ISSN: 1587-1282.

 Kónya É., Győri Z.: Új lehetőség a búza minőségi paramétereinek meghatározásához közeli infravörös spektroszkópiával. *Agrártud. Közl. [Debrecen].* 41, 65-69, 2010. ISSN: 1587-1282.

Idegen nyelvű tudományos közlemény(ek) hazai folyóiratban (1)

 4. Boros, N., Kónya, É., Győri, Z.: Comparison of rheological characteristics of winter wheat cultivars determined by extensograph and alveograph. *Acta Aliment.* 42 (3), 338-348, 2013. ISSN: 0139-3006. DOI: http://dx.doi.org/10.1556/AAlim.2012.0007 IF:0.427

Cím: 4032 Debrecen, Egyetem tér 1. ° Postacím: 4010 Debrecen, Pf. 39. ° Tel.: (52) 410-443 E-mail: <u>publikaciok@lib.unideb.hu</u> ° Honlap: <u>www.lib.unideb.hu</u>

DEBRECENI EGYETEM Egyetemi és Nemzeti Könyvtár

Magyar nyelvű konferencia közlemény(ek) (1)

 Kónya É., Boros N., Győri Z.: Közeli infravörös spektroszkópia alkalmazása búza minták reológiai tulajdonságainak vizsgálatára.
 In: Aktualitások a táplálkozástudományi kutatásokban című V. PhD konferencia Összefoglalói. Magyar Táplálkozástudományi Társaság, Budapest, 22, 2015. ISBN: 9789638810885

Idegen nyelvű konferencia közlemény(ek) (5)

 Kónya, É., Kovács, G., Győri, Z.: Examination of rheological properties of wheat samples by near infrared spectroscopy.

In: Proceedings of 6th Central European Congress on Food. University of Novi Sad, Novi Sad, 582-586, 2012.

 Kónya, É., Tarján, Z., Boros, N., Győri, Z.: Near-infrared spectroscopy for prediction of wheat rheological properties.
 In: 10th European Young Cereal Scientists and Technologists Workshop : Book of abstracts

[elektronikus dokumentum]. University of Helsinki, Helsinki, [1], 2011.

 Kónya, É., Győri, Z.: Prediction of rheological properties of wheat samples by near-infrared spectroscopy.

In: 9th European Young Cereal Scientists and Technologists Workshop : Book of abstracts. Budapest University of Technology and Economics Department of Applied Biotechnology and Food Science, Budapest, 39, 2010.

 Nógrádi, S., Sipos, P., Kónya, É., Börjesson, T., Andrén, H.: New application possibilities of the nir-spectroscopy in the grain and bioethanol industries.

In: Gazdaságosság és/vagy biodiverzitás" 52. Georgikon napok. Kivonat-kötet : Az elhangzó és poszter előadások rövid kivonatainak gyűjteménye. Szerk.: Lukács Gábor, Sűrű Béla, Pannon Egyetem, Georgikon Kar, Keszthely, 6-11, 2010. ISBN: 9789639639393

 Boros, N., Kónya, É., Fórián, S., Győri, Z.: The effect of climatic change on the rheological properties of winter wheat doughs. *Agrártud. Közl. [Debrecen].* 10 (Supplement), 96-100, 2010. ISSN: 1587-1282.

Cím: 4032 Debrecen, Egyetem tér 1. ° Postacím: 4010 Debrecen, Pf. 39. ° Tel.: (52) 410-443 E-mail: <u>publikaciok@lib.unideb.hu</u> ° Honlap: <u>www.lib.unideb.hu</u>

További Közlemények

Idegen nyelvű konferencia közlemény(ek) (1)

 Boros, N., Sipos, P., Tarján, Z., Kónya, É., Borbély, M., Győri, Z.: Effects of protein content and gluten properties of wheat flour on extersograph characteristics of dough.
 In: 5th International Congress FLOUR - BREAD '09 and 7th Croatian Congress of Cereal Technologists. Ed.: Ugarcic-Hardi, Zaneta, Faculty of Food Technology, Departmen of Cereal Processing Technologies, Osijek, 54, 2009.

A közlő folyóiratok összesített impakt faktora: 0,427 A közlő folyóiratok összesített impakt faktora (az értekezés alapjául szolgáló közleményekre): 0,427

A DEENK a Jelölt által az iDEa Tudóstérbe feltöltött adatok bibliográfiai és tudománymetriai ellenőrzését a tudományos adatbázisok és a Journal Citation Reports Impact Factor lista alapján elvégezte.

Debrecen, 2015.06.26.

Cim: 4032 Debrecen, Egyetem tér 1. \circ Postacim: 4010 Debrecen, Pf. 39. \circ Tel.: (52) 410-443 E-mail: publikaciok@lib.unideb.hu \circ Honlap: www.lib.unideb.hu
MELLÉKLETEK

Mintakód	Fajtanév	Vízfelvétel	P/L	W (10-4J)	E45 (cm ²)	E90 (cm ²)	E135 (cm ²)
B08/129/1	GK Öthalom	58,4	0,53	149	40	55	55
2	GK Öthalom	59,7	0,81	196	48	65	72
3	GK Öthalom	60,0	0,64	192	34	58	68
4	GK Öthalom	54,4	0,90	90	38	45	39
5	GK Öthalom	59,0	0,83	225	42	59	54
6	GK Öthalom	60,8	0,53	253	64	83	61
7	GK Öthalom	60,0	0,60	223	57	60	62
8	GK Öthalom	61,0	0,93	199	39	60	58
9	GK Öthalom	62,8	0,73	308	68	80	67
10	GK Öthalom	62,6	0,48	319	74	93	94
11	GK Öthalom	62,0	0,66	306	60	72	75
12	GK Öthalom	62,0	0,69	248	58	75	60
13	GK Öthalom	63,2	0,58	280	29	21	29
14	GK Öthalom	60.2	0.49	261	25	17	52
15	GK Öthalom	61.0	0.44	302	22	23	47
16	GK Öthalom	61.6	0.41	289	96	85	76
17	GK Öthalom	61.4	0.69	309	85	118	105
18	GK Öthalom	61.4	0.39	331	92	100	89
19	GK Öthalom	60.2	0.44	289	94	92	93
20	GK Öthalom	60.8	0.82	298	84	110	96
21	GK Öthalom	61.4	0.67	323	91	122	107
22	GK Öthalom	61.6	0.57	348	80	104	97
23	GK Öthalom	62.2	0,66	287	64	72	69
23	GK Öthalom	62.4	0.50	315	70	72	70
B08/129/25	Lupus	58.6	1 31	168	36	71	78
26	Lupus	59,0	0.98	229	42	57	70
20	Lupus	58,6	1.06	224	42	85	87
28	Lupus	58,6	1,00	185	46	71	99
20	Lupus	61.2	0.74	302	40	71	87
30	Lupus	63.6	0.73	297	85	115	116
31	Lupus	64.0	0,73	345	59	78	75
32	Lupus	62.2	0,79	293	51	95	96
32	Lupus	61.2	0,75	383	80	125	106
34	Lupus	63.4	0,75	425	87	125	110
35	Lupus	64.4	0,70	264	63	102	92
35	Lupus	62.0	0,07	341	88	102	103
37	Lupus	65.4	0.42	411	82	85	97
38	Lupus	62.2	0.85	330	93	124	104
30	Lupus	63.2	0,83	393	93	124	145
40	Lupus	63.2	0,62	398	118	135	126
40	Lupus	63.8	0,07	367	125	127	115
41	Lupus	62.8	0,57	350	115	127	115
42	Lupus	64.4	0,50	350	99	115	96
43	Lupus	64.6	0,50	378	92	113	95
44	Lupus	64.6	0,40	361	80	87	78
45	Lupus	64.0	0,64	436	107	128	118
40	Lupus	64.4	0,50	380	86	1120	110
	Lupus	65.6	0,74	363	61	7/	Q1
+0 B08/120/40	Lupus*	57.8	1 32	185	68	67	71
50 50	Lupus*	51,0	1,52	105	41	61	/1
50	Lupus"	60.4	1,10	230	41	52	10
51	Lupus*	60.9	0,88	105	41	52	48
52	Lupus*	61.0	0,62	260	50	50	25 70
55	Lupus*	61.2	0,91	200	27)Y 06	/0
54	Lupus*	62.4	0,71	212	66	90 77	70
33	Lupus	02,4	0,01	515	00	· · / ·	00

56	Lupus*	61,8	0,82	290	60	61	54
57	Lupus*	62,4	0,84	366	57	59	60
58	Lupus*	64,0	0,62	389	90	86	77
59	Lupus*	63,6	0,50	336	76	76	79
60	Lupus*	62,8	0,62	308	69	72	65
61	Lupus*	63,6	0,92	278	60	66	56
62	Lupus*	65,0	0,56	364	57	65	54
63	Lupus*	64,8	0,63	376	61	62	58
64	Lupus*	64,0	0,55	332	82	76	85
65	Lupus*	64,2	0,62	335	78	72	81
66	Lupus*	64,4	0,62	372	65	86	62
67	Lupus*	64,4	0,53	357	70	78	71
68	Lupus*	64,6	0,49	337	65	64	64
69	Lupus*	64,4	0,46	337	68	77	64
70	Lupus*	64,6	0,52	351	71	83	64
71	Lupus*	64,0	0,52	346	69	59	68
72	Lupus*	64,4	0,48	412	75	80	68
B08/129/73	Saturnus	62,2	1,26	244			
74	Saturnus	65,0	1,06	273			
75	Saturnus	62,4	1,33	246			
76	Saturnus	62,6	1,82	188			
77	Saturnus	63,6	0,99	312			
78	Saturnus	64,0	0,92	348			
79	Saturnus	64,4	0,99	306			
80	Saturnus	64,2	1,11	289			
81	Saturnus	64,8	1,05	299			
82	Saturnus	66,6	0,79	328			
83	Saturnus	65,0	0,80	318			
84	Saturnus	64,4	0,62	330			
85	Saturnus	66,0	0,76	329			
86	Saturnus	66,4	0,74	337			
87	Saturnus	64,4	0,71	336			
88	Saturnus	65,4	0,71	331			
89	Saturnus	66,0	0,81	336			
90	Saturnus	65,0	0,91	349			
91	Saturnus	66,4	0,65	346			
92	Saturnus	66,8	0,72	289			
93	Saturnus	67,0	0,73	337			
94	Saturnus	67,6	0,73	348			
95	Saturnus	65,0	0,74	342			
96	Saturnus	65,8	0,73	343			
B08/129/97	Saturnus*	62,0	1,62	202			
98	Saturnus*	65,0	1,30	240			
99	Saturnus*	62,8	1,23	231			
100	Saturnus*	62,0	1,/1	182			
101	Saturnus*	62,0	0,98	283			
102	Saturnus*	62,0	0,92	320			
103	Saturnus*	03,0	0,03	302			
104	Saturnus*	04,0	0,95	320			
105	Saturnus*	64.2	0,67	200			
100	Saturnus*	04,2	0,02	205			
10/	Saturnus*	04,0 64.0	0,/1	290			
100	Saturnus*	64.0	0,03	200			
109	Saturnus*	64.2	0,72	200			
110	Saturnus*	04,2 65 A	0,00	270			
111	Saturnus*	64.0	0,89	219			
112	Saturnus*	64,0	0,71	299			
113	Saturnus*	64.2	0,88	290			
114	Saturnus*	04,2	0,68	314	1		

115	Saturnus*	64,4	0,55	292
116	Saturnus*	64,8	0,73	299
117	Saturnus*	64,4	0,76	335
118	Saturnus*	64,8	0,65	293
119	Saturnus*	63,0	0,81	266
120	Saturnus*	63,4	0,84	315
B08/129/145	Sixtus*	59,0	1,85	159
146	Sixtus*	60,0	1.82	180
147	Sixtus*	60.4	1.90	147
148	Sixtus*	60.4	1.08	198
149	Sixtus*	59.4	1.37	208
150	Sixtus*	60.4	1.04	268
151	Sixtus*	60.0	0.80	256
152	Sixtus*	60.0	1.07	238
152	Sixtus*	60.4	1,07	213
153	Sixtus*	60.4	1,01	273
155	Sixtus*	61.0	1,00	215
155	Sixtus*	61.4	0.80	202
150	Sixtus*	61.2	0,09	275
15/	Sixtus*	61 /	1.05	202
150	Sixtus*	01,4	1,05	213
159	Sixtus*	63,6	0,78	250
160	Sixtus*	62,0	0,78	304
161	Sixtus*	63,6	0,64	276
162	Sixtus*	63,6	0,87	240
163	Sixtus*	63,2	0,60	247
164	Sixtus*	63,6	0,67	237
165	Sixtus*	63,0	0,76	264
166	Sixtus*	63,0	1,07	247
167	Sixtus*	63,0	0,68	256
168	Sixtus*	63,0	0,76	275
B08/129/169	Biotop	63,0	1,47	259
170	Biotop	62,2	1,37	274
171	Biotop	62,2	1,11	251
172	Biotop	62,2	1,12	306
173	Biotop	62,0	1,18	315
174	Biotop	63,0	1,04	355
175	Biotop	62,8	0,87	288
176	Biotop	63,2	1,77	227
177	Biotop	63,2	1,36	318
178	Biotop	64,0	0,98	393
179	Biotop	65,0	1,43	324
180	Biotop	67,2	0,90	374
181	Biotop	65,0	0,72	383
182	Biotop	64,6	1,09	379
183	Biotop	65,0	0,86	419
184	Biotop	64,8	0,82	373
185	Biotop	67,0	0,78	378
186	Biotop	66,0	0,77	371
187	Biotop	66,0	0,79	412
188	Biotop	65,6	1,07	360
189	Biotop	66,6	0,80	420
190	Biotop	67,4	0,68	422
191	Biotop	66,0	0,52	355
192	Biotop	66,2	0,96	345
B08/129/193	Biotop*	62,2	1,81	213
194	Biotop*	60,8	1,17	254
195	Biotop*	62,0	1,33	210
196	Biotop*	60,4	1,94	190
197	Biotop*	63,2	1,17	308

198	Biotop*	62,0	0,78	335
199	Biotop*	62,8	0,78	317
200	Biotop*	63,0	0,95	319
201	Biotop*	63,0	0,99	320
202	Biotop*	65,0	0,91	357
203	Biotop*	64,8	0,99	324
204	Biotop*	63,2	1,07	328
205	Biotop*	62,8	1,02	305
206	Biotop*	63,4	0,75	300
207	Biotop*	64,4	0,89	359
208	Biotop*	63,0	0,65	335
209	Biotop*	65,4	0,82	347
210	Biotop*	64,2	0,85	339
211	Biotop*	64,6	0,88	339
212	Biotop*	64,8	0,94	330
213	Biotop*	64,4	0,89	375
214	Biotop*	64,6	1,00	361
215	Biotop*	64,2	0,91	313
216	Biotop*	64,8	0,84	348
B08/129/217	KG Széphalom	62,4	1,37	170
218	KG Széphalom	62,2	1,72	167
219	KG Széphalom	62,2	0,90	178
220	KG Széphalom	61,8	1,07	154
221	KG Széphalom	63,0	0,87	257
222	KG Széphalom	63,0	0,79	274
223	KG Széphalom	62,8	0,74	226
224	KG Széphalom	63,2	0,61	228
225	KG Széphalom	64,4	0,93	286
226	KG Széphalom	63,0	0,62	256
227	KG Széphalom	65,2	1,03	240
228	KG Széphalom	64,6	0,72	252
229	KG Széphalom	65,2	0,83	279
230	KG Széphalom	64,6	0,81	290
231	KG Széphalom	64,6	0,62	235
232	KG Széphalom	64,6	0,73	247
233	KG Széphalom	64,6	0,63	297
234	KG Széphalom	65,4	0,94	324
235	KG Széphalom	64,4	0,35	234
236	KG Széphalom	65,0	0,88	281
237	KG Széphalom	65,4	0,98	301
274	GK Kapos	65,2	2,57	278
279	GK Kapos	64,8	1,63	227
280	GK Kapos	64,2	1,45	202
281	GK Kapos	65,0	1,66	278
282	GK Kapos	64,4	1,59	274
283	GK Kapos	64,0	1,81	241
284	GK Kapos	65,0	1,77	240
285	CK Kapos	64.6	1,//	248
280	CK Kapos	64,0	1,60	233
207	GK Kapos	67.2	1,07	220
200 B08/120/280	GK Pálzás	62.4	0.06	204
200	GK Rélée	67.0	1 98	202
290	GK Bélvés	70.0	1,90	335
291	GK Békés	63.0	0.88	193
292	GK Békés	68.0	1 28	382
293	GK Bélvés	69.6	0.94	429
294	GK Bélvés	68.0	0.85	343
295	GK Békés	65.2	0.74	236
	CIT Denes	00,2	0,7 1	200

298 GK Békés 68,2 0,66 358 299 GK Békés 69,4 0,80 189 300 GK Békés 69,0 1,35 323 301 GK Békés 67,6 2,15 470 302 GK Békés 63,2 1,85 209 303 GK Békés 69,2 0,92 259 304 GK Békés 68,8 1,04 398 305 GK Békés 69,4 0,98 357 306 GK Békés 69,4 0,98 357 306 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
299 GK Békés 69,4 0,80 189 300 GK Békés 69,0 1,35 323 301 GK Békés 67,6 2,15 470 302 GK Békés 63,2 1,85 209 303 GK Békés 69,2 0,92 259 304 GK Békés 68,0 0,82 292 305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 66,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
300 GK Békés 69,0 1,35 323 301 GK Békés 67,6 2,15 470 302 GK Békés 63,2 1,85 209 303 GK Békés 69,2 0,92 259 304 GK Békés 68,0 0,82 292 305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 66,8 0,90 315 310 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
301 GK Békés 67,6 2,15 470 302 GK Békés 63,2 1,85 209 303 GK Békés 69,2 0,92 259 304 GK Békés 68,0 0,82 292 305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 66,8 1,05 290 310 GK Békés 65,2 2,20 199 311 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
302 GK Békés 63,2 1,85 209 303 GK Békés 69,2 0,92 259 304 GK Békés 68,0 0,82 292 305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 66,8 1,05 290 310 GK Békés 65,2 2,20 199 311 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
303 GK Békés 69,2 0,92 259 304 GK Békés 68,0 0,82 292 305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
304 GK Békés 68,0 0,82 292 305 GK Békés 68,0 0,82 292 305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 68,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
305 GK Békés 68,8 1,04 398 306 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,8 1,05 290 309 GK Békés 66,8 0,90 315 310 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
306 GK Békés 69,4 0,98 357 307 GK Békés 69,4 0,98 357 307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 68,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
307 GK Békés 65,6 0,89 242 308 GK Békés 68,4 0,79 294 309 GK Békés 68,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
308 GK Békés 68,4 0,79 294 309 GK Békés 68,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
309 GK Békés 68,8 1,05 290 310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
310 GK Békés 66,8 0,90 315 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
310 GK Békés 65,0 6,00 313 311 GK Békés 65,2 2,20 199 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
311 GK Bekes 63,2 2,20 177 312 GK Békés 68,2 0,78 268 B08/129/313 GK Csillag 63,0 1,71 199
312 OK BCKS 08,2 0,78 208 B08/129/313 GK Csillag 63,0 1,71 199
B00/129/313 OK Csinag 03,0 1,71 199
414 1 1 1 1 1 1 1 1 1 1
314 OK Csillag 0.0 1,/1 199 315 GK Csillag 64.2 1.10 172
315 OK CSIIIag 04,2 1,19 1/2 316 CK Ceillag 62.2 1.10 172
310 OK CSIIIag 02,2 1,19 1/2 317 CK Ceilleg 45.4 1.01 020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
318 OK Csillar (8.0 0.00 208
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
320 GK Csillag 60,8 0,60 208 221 GK Csillag 60,8 0,04 220
321 GK Csinag 68,0 0,94 329
322 GK Csillag 69,0 0,81 312 323 CK Csillag 62.4 0.61 202
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
324 GK Csillag 66,8 0,61 210
325 GK Csillag 68,0 0,76 274
326 GK Csillag 68,4 0,76 274
327 GK Csillag 68,0 0,61 235
328 OK Csillar (9.4 0.85 204
329 GK Csinag 08,4 0,85 504
330 OK Csillag 09,0 0,08 230
331 OK Csillag 60.0 0.61 209
332 OK Csillag 68.4 0.84 280
333 GK Csillag 68.4 0.84 289
335 GK Csillag 68.8 0.57 233
336 GK Csillag 68.8 0.57 233
350 OK Comag 00,0 0,07 255 B08/129/361 GK Petur 55.0 0.94 148
362 GK Petur 56.2 0.70 195
363 GK Petur 56.0 1.04 1.65
364 GK Petur 57.0 0.60 177
365 GK Petur 58.2 110 167
366 GK Petur 61.2 0.93 234
367 GK Petur 58.0 0.46 224
368 GK Petur 57.0 0.55 191
369 GK Petur 57.8 0.46 242
370 GK Petur 58.0 0.41 236
371 GK Petur 58.0 0.94 170
372 GK Petur 58.0 0.55 213
373 GK Petur 61,2 0,58 299
374 GK Petur 61.8 0.74 195
375 GK Petur 58.4 0.48 230
376 GK Petur 58,8 0,58 199
377 GK Petur 59.0 0.52 265
378 GK Petur 58.8 0.62 184
379 GK Petur 60,0 0,53 302

381 GK Petur 60,0 0,45 235 382 GK Petur 60,0 0,43 261 383 GK Petur 61,2 0,57 246 384 GK Petur 59,8 0,48 246 384 GK Petur 59,8 0,48 246 386 MV Suba 66,0 2,72 256 387 MV Suba 65,6 2,39 231 388 MV Suba 66,0 1,88 301 390 MV Suba 65,6 2,45 207 392 MV Suba 65,6 2,45 207 393 MV Suba 66,6 2,05 348 394 MV Suba 66,0 2,08 309 393 MV Suba 68,0 2,08 309 394 MV Suba 68,0 2,28 335 400 MV Suba 68,4 1,72 310 398 MV Suba 68,4	380	GK Petur	60,0	0,41	233
382 GK Petur 60,0 0,43 261 383 GK Petur 61,2 0,57 246 384 GK Petur 59,8 0,48 246 384 GK Petur 59,8 0,48 246 386 MV Suba 66,0 2,72 256 387 MV Suba 66,0 2,72 256 388 MV Suba 67,6 1.88 301 390 MV Suba 65,0 2,45 207 392 MV Suba 65,2 2,05 348 394 MV Suba 66,6 2,05 348 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 335 400 MV Suba 68,0 2,28 335 400 MV Suba 68,4 1,72 310 402 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2	381	GK Petur	60,0	0,45	235
383 GK Petur 61,2 0,57 246 384 GK Petur 59,8 0,48 246 386 MV Suba 66,0 2,72 256 387 MV Suba 65,6 2,39 231 388 MV Suba 67,6 1,88 301 390 MV Suba 65,0 2,45 207 392 MV Suba 65,0 2,45 207 393 MV Suba 65,0 2,45 207 393 MV Suba 66,6 2,05 348 394 MV Suba 66,6 2,05 348 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 309 397 MV Suba 68,0 2,28 335 400 MV Suba 68,4 1,72 310 402 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,0	382	GK Petur	60,0	0,43	261
384 GK Petur 59,8 0,48 246 B08/129/385 MV Suba 66,0 2,72 256 386 MV Suba 66,0 2,72 256 387 MV Suba 65,6 2,39 231 388 MV Suba 67,6 1.88 301 390 MV Suba 65,0 2,45 207 392 MV Suba 65,0 2,45 207 393 MV Suba 65,0 2,45 207 393 MV Suba 66,0 2,05 348 394 MV Suba 68,0 2,08 309 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,28 335 400 MV Suba 68,4 1,72 310 402 MV Suba 68,4 2,10 337 403 MV Suba 68,4 2,01 337 404 MV Suba 68,4	383	GK Petur	61,2	0,57	246
B08/129/385 MV Suba 66,0 2,72 256 386 MV Suba 65,6 2,39 231 388 MV Suba 67,6 1,88 301 389 MV Suba 67,6 1,88 301 390 MV Suba 66,0 2,45 207 392 MV Suba 65,0 2,45 207 393 MV Suba 65,2 2,05 348 394 MV Suba 66,6 2,05 348 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 400 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,10 337 404 MV Suba 68,6 1,91 346 408 MV Suba 68,6 <	384	GK Petur	59,8	0,48	246
386 MV Suba 66,0 2,72 256 387 MV Suba 65,6 2,39 231 388 MV Suba 67,6 1,88 301 390 MV Suba 68,0 1,88 301 391 MV Suba 65,0 2,45 207 392 MV Suba 65,2 2,05 348 394 MV Suba 66,6 2,05 348 395 MV Suba 66,0 2,08 309 396 MV Suba 68,0 2,08 309 397 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,10 337 405 MV Suba 68,2 1,78<	B08/129/385	MV Suba	66,0	2,72	256
387 MV Suba 65,6 2,39 231 388 MV Suba 68,4 2,39 231 389 MV Suba 66,0 1,88 301 390 MV Suba 66,0 1,88 301 391 MV Suba 65,6 2,45 207 392 MV Suba 65,6 2,45 207 393 MV Suba 66,6 2,05 348 394 MV Suba 68,0 2,08 309 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 400 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,07 316 404 MV Suba 68,4 2,12<	386	MV Suba	66,0	2,72	256
388 MV Suba 68,4 2,39 231 389 MV Suba 67,6 1,88 301 390 MV Suba 68,0 1,88 301 391 MV Suba 65,0 2,45 207 392 MV Suba 65,2 2,05 348 394 MV Suba 66,6 2,05 348 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 309 397 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,0 2,10 337 404 MV Suba 68,0 2,10 337 405 MV Suba 68,0 2,10 337 406 MV Suba 68,0 2,12<	387	MV Suba	65.6	2.39	231
389 MV Suba 67,6 1,88 301 390 MV Suba 68,0 1,88 301 391 MV Suba 65,0 2,45 207 392 MV Suba 65,6 2,45 207 393 MV Suba 66,6 2,05 348 394 MV Suba 68,0 2,08 309 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 309 397 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,10 337 405 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,0 2,12<	388	MV Suba	68.4	2.39	231
300 MV Suba 68,0 1.88 301 391 MV Suba 65,0 2,45 207 392 MV Suba 65,6 2,45 207 393 MV Suba 65,6 2,45 207 393 MV Suba 66,6 2,05 348 394 MV Suba 68,0 2,08 309 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 309 397 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,6 1,91<	389	MV Suba	67.6	1.88	301
391 MV Suba 65,0 2,45 207 392 MV Suba 65,6 2,45 207 393 MV Suba 65,2 2,05 348 394 MV Suba 66,6 2,05 348 395 MV Suba 68,0 2,08 309 396 MV Suba 68,0 2,08 296 398 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 406 MV Suba 68,4 2,07 316 407 MV Suba 68,2 1,17 346 408 MV Suba 68,4 2,12 255 410 MV Verbunkos 68,0	390	MV Suba	68.0	1.88	301
392 MV Suba 65.6 2.45 207 393 MV Suba 65.2 2.05 348 394 MV Suba 66,6 2.05 348 395 MV Suba 68,0 2.08 309 396 MV Suba 68,4 2.08 309 397 MV Suba 68,6 2.36 343 399 MV Suba 68,6 2.36 343 399 MV Suba 68,0 2.28 335 400 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 406 MV Suba 68,2 1,78 366 407 MV Suba 68,2 1,78 366 408 MV Verbunkos 69,0 1,55 287 410 MV Verbunkos 68,0	391	MV Suba	65.0	2.45	207
393 MV Suba 65.2 2.05 348 394 MV Suba 66.6 2.05 348 395 MV Suba 68.0 2.08 309 396 MV Suba 68.0 2.08 309 397 MV Suba 68.0 2.08 296 398 MV Suba 68.0 2.28 335 400 MV Suba 68.0 2.28 335 401 MV Suba 68.4 1.72 310 402 MV Suba 68.4 1.72 310 403 MV Suba 68.4 2.10 337 404 MV Suba 68.2 2.04 339 405 MV Suba 68.2 2.04 339 406 MV Suba 68.2 1.78 366 98/129/409 MV Verbunkos 68.4 2.12 255 410 MV Verbunkos 68.4 2.12 255 411 MV Verbunkos 69.0<	392	MV Suba	65.6	2 45	207
394 MV Suba 66.6 2.05 348 395 MV Suba 68.0 2.08 309 396 MV Suba 68.0 2.08 296 397 MV Suba 68.0 2.08 296 398 MV Suba 68.0 2.28 335 400 MV Suba 68.0 2.28 335 401 MV Suba 68.4 1.72 310 402 MV Suba 68.4 1.72 310 403 MV Suba 68.4 2.10 337 404 MV Suba 68.4 2.10 337 405 MV Suba 68.4 2.04 339 406 MV Suba 68.6 1.91 346 407 MV Suba 68.6 1.91 346 408 MV Suba 68.6 1.91 346 408 MV Suba 68.0 2.12 255 410 MV Verbunkos 69.0	393	MV Suba	65.2	2,15	348
395 M Y Suba 68,0 2,03 336 396 MV Suba 68,4 2,08 309 397 MV Suba 68,0 2,08 296 398 MV Suba 68,0 2,08 296 398 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 405 MV Suba 68,2 1,78 366 408 MV Suba 68,2 1,78 366 808/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 1,55 287 413 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos <t< th=""><th>394</th><th>MV Suba</th><th>66.6</th><th>2,05</th><th>348</th></t<>	394	MV Suba	66.6	2,05	348
336 MY Suba 68,4 2,08 309 337 MV Suba 68,0 2,08 296 398 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 405 MV Suba 68,2 2,04 339 406 MV Suba 68,2 1,78 366 808/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos	395	MV Suba	68.0	2,05	309
397 MV Suba 68,0 2,08 296 398 MV Suba 68,6 2,36 343 399 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 405 MV Suba 68,2 2,04 337 406 MV Suba 68,2 1,78 366 808/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 1,55 287 411 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 68,8 1,29 242 415 MV Verbunkos	395	MV Suba	68.4	2,08	309
397 MV Suba 68,0 2,06 290 398 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 406 MV Suba 68,2 2,04 339 406 MV Suba 68,2 1,78 366 407 MV Suba 68,4 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 1,55 287 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos <	390	MV Suba	68.0	2,08	296
3.90 MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 405 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos<	337	MV Suba	68.6	2,00	270
MV Suba 68,0 2,28 335 400 MV Suba 68,0 2,28 335 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,2 2,04 339 405 MV Suba 68,4 2,07 316 407 MV Suba 68,2 1,78 366 98/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 1,55 287 413 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 69,0 1,08 208 415 MV Verbunkos 69,0 1,50 262 416 MV Verbunkos 6	300	MV Suba	68.0	2,30	335
400 MV Suba 68,0 2,28 3.33 401 MV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,4 2,10 337 405 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 1,55 287 411 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 68,8 1,33 226 416 MV Verbu	400	MV Suba	68.0	2,28	225
HV Suba 68,4 1,72 310 402 MV Suba 68,4 1,72 310 403 MV Suba 68,4 2,10 337 404 MV Suba 68,0 2,10 337 405 MV Suba 68,2 2,04 339 406 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 69,0 1,68 208 414 MV Verbunkos 69,0 1,50 266 417 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos	400	MV Suba	68.4	2,20	333
402 MV Suba 68,4 1,72 510 403 MV Suba 68,4 2,10 337 404 MV Suba 68,0 2,10 337 405 MV Suba 68,2 2,04 339 406 MV Suba 68,2 2,04 339 406 MV Suba 68,2 1,78 366 407 MV Suba 68,6 1.91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,0 2,12 255 411 MV Verbunkos 68,0 1,55 287 413 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 68,0 1,55 287 415 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 68,8 1,29 242 420 MV Verbun	401	MV Suba	68.4	1,72	210
403 MV Suba 68,4 2,10 337 404 MV Suba 68,0 2,10 337 405 MV Suba 68,2 2,04 339 406 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,4 2,12 255 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 68,8 1,33 226 415 MV Verbunkos 69,0 1,50 262 416 MV Verbunkos 68,8 1,29 242 419 MV Verbunkos 68,8 1,29 242 420 <td< th=""><th>402</th><th>MV Suba</th><th>68.4</th><th>2.10</th><th>227</th></td<>	402	MV Suba	68.4	2.10	227
404 MV Suba 68,0 2,10 337 405 MV Suba 68,2 2,04 339 406 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 68,0 1,55 287 414 MV Verbunkos 69,0 1,50 266 414 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 68,8 1,29 242 410 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 69,4 1,67 297 421	403	MV Suba	68.0	2,10	227
405 MV Suba 68,2 2,04 539 406 MV Suba 68,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,08 208 415 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,2 1,65 282 422 MV Verbunkos 69,2 1,65 282 424	404	MV Suba	68,0	2,10	337
400 MV Suba 66,4 2,07 316 407 MV Suba 68,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,08 208 415 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 69,2 1,65 282 421 MV Verbunkos 69,2 1,65 282 422 </th <th>405</th> <th>MV Suba</th> <th>68,2</th> <th>2,04</th> <th>339</th>	405	MV Suba	68,2	2,04	339
407 MV Suba 66,6 1,91 346 408 MV Suba 68,2 1,78 366 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,55 287 415 MV Verbunkos 69,0 1,68 208 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 68,8 1,33 226 418 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,2 1,65 282 422 MV Verbunkos 69,2 1,65 282	400	MV Suba	68.6	2,07	246
406 MV Suba 66,2 1,78 306 B08/129/409 MV Verbunkos 68,0 2,12 255 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 69,0 1,55 287 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,08 208 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,2 1,65 282 422 MV Verbunkos 69,2 1,65 282 423 MV Verbunkos 69,2 1,65 282	407	MV Suba	68,6	1,91	340
B08/129/409 MV Verbunkos 66,0 2,12 235 410 MV Verbunkos 68,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 68,8 2,08 212 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,55 287 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,8 1,33 226 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,2 1,65 282 422 MV Verbunkos 69,2 1,65 282 423 MV Verbunkos 69,0 1,33 293	408	MV Suba	68,2	1,78	300
410 MV Verbunkos 66,4 2,12 255 411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 68,8 2,08 212 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,55 287 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 68,8 1,33 226 418 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,2 1,65 282 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,0 1,33 293 <t< th=""><th>BU8/129/409</th><th>MV Verbuikos</th><th>68,0</th><th>2,12</th><th>255</th></t<>	BU8/129/409	MV Verbuikos	68,0	2,12	255
411 MV Verbunkos 69,0 2,08 212 412 MV Verbunkos 68,8 2,08 212 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 69,0 1,55 287 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 69,0 1,50 262 417 MV Verbunkos 68,8 1,33 226 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 69,4 1,67 297 421 MV Verbunkos 69,2 1,65 282 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,0 1,33 293 <t< th=""><th>410</th><th>MV Verbunkos</th><th>60,0</th><th>2,12</th><th>233</th></t<>	410	MV Verbunkos	60,0	2,12	233
412 MV Verbunkos 66,8 2,06 212 413 MV Verbunkos 69,0 1,55 287 414 MV Verbunkos 68,0 1,55 287 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,4 1,44 331 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 70,0 1,48 262 429 MV Verbunkos 70,0 1,96 272 <t< th=""><th>411</th><th>MV Verbunkos</th><th>69,0</th><th>2,08</th><th>212</th></t<>	411	MV Verbunkos	69,0	2,08	212
413 MV Verbunkos 69,0 1,33 287 414 MV Verbunkos 68,0 1,55 287 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,4 1,44 331 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,2 1,65 282 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,0 1,48 262 427 MV Verbunkos 70,2 1,48 262 428 MV Verbunkos 70,0 1,96 272 <t< th=""><th>412</th><th>MV Verbunkos</th><th>60.0</th><th>1.55</th><th>212</th></t<>	412	MV Verbunkos	60.0	1.55	212
414 MV Verbunkos 66,0 1,03 237 415 MV Verbunkos 69,0 1,08 208 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,4 1,44 331 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,0 1,33 293 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 70,2 1,48 262 427 MV Verbunkos 70,2 1,48 262 428 MV Verbunkos 70,0 1,96 272 <t< th=""><th>413</th><th>MV Verbunkos</th><th>68.0</th><th>1,55</th><th>287</th></t<>	413	MV Verbunkos	68.0	1,55	287
413 MV Verbunkos 69,0 1,06 206 416 MV Verbunkos 68,8 1,33 226 417 MV Verbunkos 69,0 1,50 262 418 MV Verbunkos 68,4 1,44 331 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,2 1,65 282 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 70,0 1,48 262 427 MV Verbunkos 70,2 1,48 262 428 MV Verbunkos 70,0 1,96 272 430 MV Verbunkos 70,0 1,96 272 <t< th=""><th>414</th><th>MV Verbunkos</th><th>69.0</th><th>1,55</th><th>207</th></t<>	414	MV Verbunkos	69.0	1,55	207
410MV Verbunkos66,31,33220417MV Verbunkos69,01,50262418MV Verbunkos68,41,44331419MV Verbunkos68,81,29242420MV Verbunkos68,81,29242421MV Verbunkos69,41,67297422MV Verbunkos67,41,71252423MV Verbunkos69,21,65282424MV Verbunkos69,21,65282425MV Verbunkos69,01,33293426MV Verbunkos69,41,48285427MV Verbunkos70,01,48262428MV Verbunkos70,21,48262430MV Verbunkos70,01,96272431MV Verbunkos70,81,14297432MV Verbunkos70,81,14297B08/129/433MV Mazurka62,80,82268434MV Mazurka65,00,75320	415	MV Verbunkos	68.8	1,08	208
417 MV Verbunkos 60,0 1,00 202 418 MV Verbunkos 68,4 1,44 331 419 MV Verbunkos 68,8 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,4 1,65 282 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 70,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,0 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,8 1,14 297 <t< th=""><th>410</th><th>MV Verbunkos</th><th>69.0</th><th>1,55</th><th>220</th></t<>	410	MV Verbunkos	69.0	1,55	220
410MV Verbunkos60,41,443.51419MV Verbunkos68,81,29242420MV Verbunkos68,81,29242421MV Verbunkos69,41,67297422MV Verbunkos67,41,71252423MV Verbunkos69,21,65282424MV Verbunkos69,21,65282425MV Verbunkos69,01,33293426MV Verbunkos69,41,48285427MV Verbunkos70,01,48262428MV Verbunkos70,21,48262430MV Verbunkos70,01,96272431MV Verbunkos70,41,14297432MV Verbunkos70,81,14297B08/129/433MV Mazurka62,80,82268434MV Mazurka65,00,75320	417	MV Verbunkos	68.4	1,50	331
419 MV Verbunkos 66,6 1,29 242 420 MV Verbunkos 68,8 1,29 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 69,4 1,67 297 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 70,2 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268	410	MV Verbunkos	68.8	1,44	242
420 MV Verbunkos 60,0 1,27 242 421 MV Verbunkos 69,4 1,67 297 422 MV Verbunkos 67,4 1,71 252 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 70,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 432 MV Verbunkos 70,8 1,14 297 434 MV Mazurka 62,8 0,82 268	41)	MV Verbunkos	68.8	1,29	242
421 MV Verbunkos 60,4 1,67 257 422 MV Verbunkos 67,4 1,71 252 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 70,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	420	MV Verbunkos	69.4	1,29	297
422 MV Verbunkos 60,4 1,11 252 423 MV Verbunkos 69,2 1,65 282 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 71,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	421	MV Verbunkos	67.4	1,07	252
425 MV Verbunkos 69,2 1,65 262 424 MV Verbunkos 69,2 1,65 282 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 71,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 434 MV Mazurka 62,8 0,82 268	423	MV Verbunkos	69.2	1,65	282
424 MV Verbunkos 60,2 1,65 262 425 MV Verbunkos 69,0 1,33 293 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 71,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 432 MV Verbunkos 70,8 1,14 297 434 MV Mazurka 62,8 0,82 268	423	MV Verbunkos	69.2	1,65	282
426 MV Verbunkos 69,4 1,43 235 426 MV Verbunkos 69,4 1,48 285 427 MV Verbunkos 71,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	425	MV Verbunkos	69.0	1,33	293
420 MV Verbunkos 50,4 1,40 205 427 MV Verbunkos 71,0 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	426	MV Verbunkos	69.4	1,33	285
429 MV Verbunkos 70,2 1,48 262 428 MV Verbunkos 70,2 1,48 262 429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	427	MV Verbunkos	71.0	1,18	262
429 MV Verbunkos 70,2 1,96 272 430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,0 1,96 272 432 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	428	MV Verbunkos	70.2	1 48	262
430 MV Verbunkos 70,0 1,96 272 431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	429	MV Verbunkos	70.2	1.96	2.72
431 MV Verbunkos 70,4 1,14 297 432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	430	MV Verbunkos	70.0	1.96	272
432 MV Verbunkos 70,8 1,14 297 B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	431	MV Verbunkos	70.4	1.14	297
B08/129/433 MV Mazurka 62,8 0,82 268 434 MV Mazurka 65,0 0,75 320	432	MV Verbunkos	70,8	1,14	297
434 MV Mazurka 65,0 0,75 320	B08/129/433	MV Mazurka	62,8	0,82	268
· · · · · · · · · · · · · · · · · · ·	434	MV Mazurka	65,0	0,75	320
435 MV Mazurka 64,0 0,62 305	435	MV Mazurka	64,0	0,62	305
436 MV Mazurka 63,6 0.62 229	436	MV Mazurka	63,6	0.62	229
437 MV Mazurka 64.0 0.73 307	437	MV Mazurka	64.0	0.73	307
438 MV Mazurka 66,2 0,58 308	438	MV Mazurka	66,2	0,58	308

439	MV Mazurka	65,0	0,63	328
440	MV Mazurka	65,6	0,60	305
441	MV Mazurka	66,4	0,62	311
442	MV Mazurka	67,0	0,60	413
443	MV Mazurka	65,6	0,53	371
444	MV Mazurka	66,0	0,55	396
445	MV Mazurka	65,6	0,45	352
446	MV Mazurka	65,0	0,57	341
447	MV Mazurka	65,8	0,60	348
448	MV Mazurka	66,2	1,48	431
449	MV Mazurka	68,2	0,68	413
450	MV Mazurka	67,0	0,51	315
451	MV Mazurka	67,6	0,42	331
452	MV Mazurka	67,2	0,68	291
453	MV Mazurka	68,0	0,74	313
454	MV Mazurka	65,0	0,62	377
455	MV Mazurka	67,6	0,61	300
456	MV Mazurka	67,0	0,72	347

2. melléklet

Mintakód	Város	Vízfelvétel (%)	P/L	W (10 ⁻⁴ J)
K09/606/1	Gesztely	68,8	2,88	202
K09/606/2	Gesztely	59,8	0,58	207
K09/606/3	Gesztely	67,6	1,75	365
K09/606/4	Gesztely	60,4	0,88	260
K09/606/5	Gesztely	65,6	1,27	313
K09/606/6	Gesztely	63,6	1,18	284
K09/606/7	Gesztely	65,6	2,17	221
K09/606/8	Gesztely	66,0	0,82	296
K09/606/9	Gesztely	63,4	2,17	198
K09/606/11	Gesztely	59,0	1,32	200
K09/606/12	Gesztely	62,2	1,41	128
K09/606/13	Gesztely	58,4	0,78	170
K09/606/14	Látókép- KITE	61,2	1,72	123
K09/606/15	Látókép- KITE	62,6	1,13	192
K09/606/16	Látókép- KITE	61,6	1,05	260
K09/606/17	Látókép- KITE	64,2	1,52	252
K09/606/18	Látókép- KITE	62,0	1,43	216
K09/606/19	Látókép- KITE	63,8	0,91	322
K09/606/20	Látókép- KITE	60,4	1,18	168
K09/606/21	Látókép- KITE	60,6	1,17	260
K09/606/22	Látókép- KITE	62,0	0,95	324
K09/606/23	Látókép- KITE	61,0	1,15	291
K09/606/24	Látókép- KITE	62,0	0,90	347
K09/606/25	Látókép- KITE	61,6	1,58	265
K09/606/26	Látókép- KITE	58,6	1,68	126
K09/606/27	Látókép- KITE	62,0	1,32	274
K09/606/28	Látókép- KITE	62,2	1,30	243
K09/606/29	Látókép- KITE	62,0	0,91	288
K09/606/30	Látókép- KITE	62,4	2,59	221
K09/606/31	Látókép- KITE	64,2	1,50	263
K09/606/32	Látókép- KITE	64,0	1,45	354
K09/606/33	Látókép- KITE	64,0	1,68	375
K09/606/34	Látókép- KITE	67,0	0,99	427
K09/606/35	Látókép- KITE	64,0	1,10	395
K09/606/36	Látókép- KITE	62,0	1,87	200
K09/606/37	Látókép- KITE	64,2	1,57	239

K09/606/38	Látókép- KITE	64,8	1,34	303
K09/606/39	Látókép- KITE	64,0	1,50	348
K09/606/40	Látókép- KITE	64,0	1,49	299
K09/606/41	Látókép- KITE	63,8	0,84	390
K09/606/42	Látókép- KITE	64,4	3,31	172
K09/606/43	Látókép- KITE	69,6	1,88	309
K09/606/44	Látókép- KITE	70,4	1,53	325
K09/606/45	Látókép- KITE	69,0	1,92	341
K09/606/46	Látókép- KITE	63,0	2,00	145
K09/606/47	Látókép- KITE	67,0	1,26	235
K09/606/48	Látókép- KITE	67,0	1,18	216
K09/606/49	Látókép- KITE	66,4	1,03	221
K09/606/50	Látókép- KITE	64,0	2,00	142
K09/606/51	Látókép- KITE	66.0	1.07	219
K09/606/52	Látókép- KITE	66.0	1.00	266
K09/606/53	Látókép- KITE	66.0	0.89	268
K09/606/54	Látókép- KITE	60.2	1.90	154
K09/606/55	Látókép-KITE	62.0	0.61	222
K09/606/56	Látókép-KITE	60.4	1.06	203
K09/606/57	Látókép- KITE	61.4	0.62	253
K00/606/59	Látókén-KITE	67.6	1 36	2.51
K09/606/59	Látókép- KITE	65.2	2.06	241
K09/606/60	Látókép- KITE	65.0	1.69	293
K09/606/61	Látókép- KITE	65.0	1,09	446
K09/606/62	Látókép KITE	67.4	1,00	440
K09/606/62	Látákáp KITE	67.6	0.00	402
K09/606/64	Látókép- KITE	63.6	1.37	185
K09/606/65	Látókép-KITE	64.8	0.95	207
K09/606/66	Látókép- KITE	65.8	1.21	307
K09/606/67	Látókép-KITE	66.4	1,21	314
K09/606/68	Látókép-KITE	66.4	0.91	323
K09/606/69	Látókép- KITE	66.0	2.01	244
K09/606/70	Látókép- KITE	62.0	2.53	137
K09/606/71	Látókép- KITE	64.0	2.87	143
K09/606/72	Látókép- KITE	63,0	2,19	169
K09/606/73	Látókép- KITE	66,0	1,82	202
K09/606/74	Látókép- KITE	65,0	1,89	215
K09/606/75	Látókép- KITE	66,0	1,64	222
K09/606/76	Látókép- KITE	56,6	1,15	166
K09/606/77	Látókép- KITE	59,0	1,86	206
K09/606/78	Látókép- KITE	59,6	1,80	189
K09/606/79	Látókép- KITE	59,8	1,96	233
K09/606/80	Látókép- KITE	67,0	2,30	232
K09/606/81	Látókép- KITE	67,0	1,36	357
K09/606/82	Látókép- KITE	67,0	1,81	325
K09/606/83	Látókép- KITE	67,8	1,12	345
K09/606/84	Látókép- KITE	65,6	1,84	150
K09/606/85	Látókép- KITE	64,4	0,78	234
K09/606/86	Látókép- KITE	67,0	0,67	284
K09/606/87	Látókép- KITE	67,0	0,52	306
K09/606/88	Látókép- KITE	62,8	1,27	98
K09/606/89	Látókép- KITE	60,4	1,48	84
K09/606/90	Látókép- KITE	62,8	1,05	132
K09/606/91	Látókép- KITE	63,2	0,81	137
K09/606/92	Látókép- KITE	63,0	1,33	122
K09/606/93	Látókép- KITE	59,0	0,91	108
K09/606/94	Kisújszállás	66,4	1,28	151
K09/606/95	Kisújszállás	67,6	1,71	156
K09/606/96	Kisújszállás	62,2	0,71	342

	K09/606/97	Kisújszállás	64,0	0,44	192
]	K09/606/98	Kisújszállás	66,4	1,36	265
]	K09/606/99	Kisújszállás	68,0	0,86	252
H	X09/606/100	Kisújszállás	63,0	0,78	340
H	309/606/101	Kisújszállás	62,4	0,88	208
ŀ	X09/606/102	Kisújszállás	63,0	1,09	201
ŀ	309/606/103	Kisújszállás	64,2	0,99	280
ŀ	309/606/104	Kisújszállás	64,0	1,02	427
ŀ	X09/606/105	Kisújszállás	62,0	0,93	331
ŀ	309/606/106	Kisújszállás	64,8	1,63	211
ŀ	X09/606/107	Tápió	63,2	0,61	297
ŀ	X09/606/108	Tápió	67,4	0,83	302
ŀ	X09/606/109	Tápió	64,0	0,61	276
ŀ	X09/606/110	Tápió	65,2	0,52	289
ŀ	309/606/111	Tápió	66,0	1,52	213
ŀ	X09/606/112	Tápió	55,6	0,93	126
ŀ	X09/606/113	Tápió	58,4	0,51	171
ŀ	K09/606/114	Tápió	55,0	0,41	99,0
ŀ	K09/606/115	Tápió	56,0	0,26	43,0
ŀ	K09/606/116	Tápió	64,4	0,76	139
ŀ	K09/606/117	Tápió	59,2	0,50	164
H	X09/606/118	Tápió	60,4	0,46	176
ŀ	X09/606/119	Tápió	62,2	0,34	199
ŀ	X09/606/120	Tápió	67,6	1,23	150
ŀ	X09/606/121	Tiszavasvári	68,4	1,45	257
ŀ	X09/606/122	Tiszavasvári	63,2	1,10	296
ŀ	X09/606/123	Tiszavasvári	72,0	1,49	275
ŀ	X09/606/124	Tiszavasvári	63,0	0,78	180
ŀ	K09/606/125	Tiszavasvári	62,8	1,31	264
ŀ	K09/606/126	Tiszavasvári	64,0	1,37	308
ŀ	K09/606/127	Tiszavasvári	66,8	1,15	351
ŀ	K09/606/128	Tiszavasvári	65,4	0,98	405
ŀ	K09/606/129	Tiszavasvári	67,8	0,73	281
ŀ	K09/606/130	Tiszavasvári	63,4	1,89	254
ŀ	X09/606/131	Tiszavasvári	62,0	0,54	175
ŀ	X09/606/132	Tiszavasvári	62,4	0,72	203
ŀ	X09/606/133	Tiszavasvári	63,6	0,72	153
ŀ	X09/606/134	Tiszavasvári	63,6	0,74	212
ŀ	X09/606/135	Jánoshalma	68,4	1,43	374
ŀ	X09/606/136	Jánoshalma	65,0	0,70	382
ŀ	\$09/606/137	Jánoshalma	67,2	0,90	354
	<u>x09/606/138</u>	Jánoshalma	64,0	0,71	297
	200/606/139	Janoshalma	65,2	0,66	318
	200/202/140	Janoshalma	66,0	0.67	3/0
	200/606/141	Janoshalma	67.0	0,05	338
	200/606/142	Janoshalma	65 4	0,41	292
	209/000/143	Jánoshalma	56.6	0.30	136
	209/000/144	Jánoshalma	61 4	0.57	204
	209/000/143	Jánoshalma	65.0	0.62	170
	X09/606/140	Jánoshalma	62.0	0,02	217
	209/606/147	Somogyezil	73.0	1.45	335
	209/606/140	Somogyszii	65.4	0.82	346
T	209/606/149	Somogyszii	62.0	0.98	<u>1</u> 37
T	209/606/150	Somoovezil	62.4	0.76	306
	X09/606/151	Somogyszil	67.6	0.73	354
	209/606/152	Somogyszil	66.0	0.87	413
	209/606/155	Somogyszii	68.0	1.07	303
	X09/606/154	Somogyszii	66.0	0.56	340
1 1	1000/100	Somogyszii	00,0	0,50	540

K09/606/156	Somogyszil	67,6	1,83	251
K09/606/157	Somogyszil	58,4	0,53	128
K09/606/158	Somogyszil	58,2	0,82	204
K09/606/159	Somogyszil	63,6	0,96	193
K09/606/160	Somogyszil	63,0	0,81	248
K09/606/161	Csorvás	70,4	1,30	319
K09/606/162	Csorvás	63,8	0,65	309
K09/606/163	Csorvás	66,8	0,82	352
K09/606/164	Csorvás	60,8	0,67	275
K09/606/165	Csorvás	62,6	0,68	245
K09/606/166	Csorvás	64,8	0,73	297
K09/606/167	Csorvás	67,0	0,81	315
K09/606/168	Csorvás	66,0	0,48	252
K09/606/169	Csorvás	72,6	1,23	197
K09/606/170	Csorvás	56,0	0,34	91,0
K09/606/171	Csorvás	58,0	0,51	179
K09/606/172	Csorvás	62,0	0,56	164
K09/606/173	Csorvás	58,4	0,54	169
K09/606/174	Körösszegapáti	68,0	2,38	193
K09/606/175	Körösszegapáti	62,2	0,55	244
K09/606/176	Körösszegapáti	68,0	0,62	281
K09/606/177	Körösszegapáti	60,4	0,28	180
K09/606/178	Körösszegapáti	65,2	0,40	167
K09/606/179	Körösszegapáti	64,8	0,50	204
K09/606/180	Körösszegapáti	67,0	0,41	267
K09/606/181	Körösszegapáti	66,4	0,40	135
K09/606/182	Körösszegapáti	64,0	1,08	134
K09/606/183	Körösszegapáti	56,0	0,23	84,0
K09/606/184	Körösszegapáti	59,6	0,42	159
K09/606/185	Körösszegapáti	60,8	0,50	100
K09/606/186	Körösszegapáti	57,0	0,20	118
K09/606/187	Harta	71,0	2,96	333
K09/606/188	Harta	62,4	1,20	245
K09/606/189	Harta	65,8	1,25	314
K09/606/190	Harta	61,0	1,82	162
K09/606/191	Harta	64,2	1,17	208
K09/606/192	Harta	67,4	1,02	304
K09/606/193	Harta	66,8	0,91	415
K09/000/194	Harta	65.6	0,70	317
K09/000/195	Harta	52.4	0.24	82.0
K00/606/107	Harta	50.0	0,54	175
K09/606/197	Harta	63.2	1 18	146
K09/606/199	Harta	59.6	0.83	158
K09/606/200	Komádi	67.6	1.54	274
K09/606/201	Komádi	64.0	0.52	233
K09/606/202	Komádi	70.0	0,71	271
K09/606/203	Komádi	62,4	0,42	249
K09/606/204	Komádi	67,6	0,58	263
K09/606/205	Komádi	64,0	0,53	314
K09/606/206	Komádi	65,6	0,56	285
K09/606/207	Komádi	64,2	0,51	145
K09/606/208	Komádi	63,4	0,85	171
K09/606/209	Komádi	60,4	0,37	146
K09/606/210	Komádi	61,6	0,39	205
K09/606/211	Komádi	64,0	0,49	171
K09/606/212	Komádi	62,2	0,38	225
K09/606/213	Dombóvár	69,4	2,16	291
K09/606/214	Dombóvár	62,8	0,78	309

K09/606/215	Dombóvár	59,2	0,67	325
K09/606/216	Dombóvár	61,6	0,96	340
K09/606/217	Dombóvár	57,0	0,74	248
K09/606/218	Dombóvár	63,0	1,26	220
K09/606/219	Dombóvár	54,8	0,38	66,0
K09/606/220	Dombóvár	59,0	1,10	189
K09/606/221	Dombóvár	56,0	0,50	141
K09/606/222	Dombóvár	66,0	1,66	274
K09/606/223	Dombóvár	64,6	0,58	381
K09/606/224	Dombóvár	65,2	1,00	335
K09/606/225	Dombóvár	65,2	1,02	384
K09/606/226	Dombóvár	63,8	0,87	357
K09/606/227	Dombóvár	68,4	3,12	170
K09/606/243	Hajdúböszörmény	63,0	0,85	321
K09/606/244	Hajdúböszörmény	63,2	0,97	395
K09/606/245	Hajdúböszörmény	65,0	0,86	354
K09/606/246	Hajdúböszörmény	64,6	0,64	258
K09/606/247	Hajdúböszörmény	61,6	1,49	177
K09/606/248	Hajdúböszörmény	61,4	0,45	215
K09/606/249	Hajdúböszörmény	54,4	0,42	120
K09/606/250	Hajdúböszörmény	55,0	0,46	111
K09/606/251	Hajdúböszörmény	52,0	0,30	49,0
K09/606/252	Hajdúböszörmény	56,8	0,63	122
K09/606/253	Hajdúböszörmény	60,2	0,64	189
K09/606/254	Hajdúböszörmény	60,4	0,55	215
K09/606/255	Hajdúböszörmény	61,0	0,57	219
K09/606/256/1	Hajdúböszörmény	65,0	0,58	132
K09/606/256/2	Hajdúböszörmény	65,0	0,68	276
K09/606/257	Hajdúböszörmény	66,0	0,50	180
K09/606/258	Hajdúböszörmény	66,2	0,63	126
K09/606/298	Pápa	61,6	1,02	264
K09/606/299	Pápa	65,0	0,99	324
K09/606/300	Pápa	63,0	0,57	350
K09/606/301	Pápa	65,4	0,77	347
K09/606/302	Pápa	63,2	1,37	219
K09/606/305	Pápa	54,6	0,16	51,0
K09/606/306	Pápa	61,6	0,77	158
K09/606/308	Pápa	60,4	0,50	204
K09/606/309	Pápa	58,0	0,44	173
K09/606/310	Pápa	60,4	0,36	271
K09/606/311	Pápa	66,0	0,82	184
K09/606/312	Pápa	64,0	1,17	166
K09/606/313	Pápa	66,8	0,92	290
K09/606/314	Pápa	68,2	0,78	177

3. melléklet

Mintakód	Város	Vízfelvétel (%)	P/L	W (10 ⁻⁴ J)
K10/326/1	Harta	63,8	0,57	165
K10/326/2	Harta	57,6	0,53	202
K10/326/3	Harta	61,0	0,85	199
K10/326/4	Harta	61,6	0,79	225
K10/326/5	Harta	60,0	0,36	160
K10/326/6	Harta	61,8	0,53	200
K10/326/7	Harta	62,2	0,60	253
K10/326/8	Harta	64,0	0,70	195
K10/326/9	Harta	62,0	0,57	190

Harta	58,0	0,43	112
Harta	58,2	0,27	141
Harta	55,6	0,34	109
Harta	62,8	0,57	157
Harta	56,4	0,47	70
Harta	58,2	0,42	118
Somogyszil	64,6	0,68	161
Somogyszil	62,4	0,35	189
Somogyszil	62,4	0,57	205
Somogyszil	65,6	0,43	249
Somogyszil	65,0	0,37	132
Somogyszil	67.0	0.28	207
Somogyszil	65.2	0.43	221
Somogyszil	69.4	0.85	169
Somogyszil	65.2	0.38	189
Somogyszil	59.8	0.36	117
Somogyszil	62.0	0.83	114
Somogyszil	60.8	0.40	139
Somogyszil	62.0	0.38	158
Somogyszil	60.6	0.37	192
Somogyszil	62.2	0.37	176
Somogyszil	61.0	0.45	151
Somogyszil	58.0	0.34	108
Somogyszil	60.0	0,54	166
Somogyszil	63.2	0,05	1/18
Somogyszil	59.2	0,70	00
Somogyszil	58.0	0,70	131
Mezőkövesd	60.2	1 22	137
Mezőkövesd	58.8	0.60	190
Mezőkövesd	62.6	0.83	223
Mezőkövesd	64.2	1.02	243
Mezőkövesd	64.0	0.48	166
Mezőkövesd	64.2	0.90	172
Mezőkövesd	64.2	0.48	234
Mezőkövesd	65.0	1.13	147
Mezőkövesd	62.4	0.61	153
Mezőkövesd	62.8	0.63	122
Mezőkövesd	61.0	0.69	145
Mezőkövesd	60.2	0.37	192
Mezőkövesd	60.2	0.53	209
Mezőkövesd	58.2	0.54	227
Mezőkövesd	60.0	0.63	224
Mezőkövesd	60.0	0.85	186
Mezőkövesd	57.4	0.37	147
Mezőkövesd	59.6	0.63	264
Mezőkövesd	64.6	0.80	199
Mezőkövesd	62.0	0.58	144
Mezőkövesd	59,4	0,39	185
Jánoshalma	67.0	0.49	218
Jánoshalma	61.0	0,52	285
Jánoshalma	64,4	0,44	234
Jánoshalma	63.0	0,50	246
Jánoshalma	64,6	0,26	177
Jánoshalma	63.2	0,45	221
Jánoshalma	64,0	0,46	266
Jánoshalma	63,2	0,42	234
Jánoshalma	62,0	0,53	201
Jánoshalma	59,0	0,25	185
Jánoshalma	61,2	0,38	198
	Harta Harta Harta Harta Harta Somogyszil Som	Harta58,0Harta55,6Harta62,8Harta56,4Harta56,4Harta58,2Somogyszil64,6Somogyszil62,4Somogyszil65,6Somogyszil65,0Somogyszil65,0Somogyszil65,2Somogyszil65,2Somogyszil65,2Somogyszil65,2Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil62,0Somogyszil63,2Somogyszil63,2Somogyszil63,2Somogyszil59,2Somogyszil59,2Somogyszil59,2Somogyszil58,8Mezőkövesd64,2Mezőkövesd64,2Mezőkövesd64,2Mezőkövesd64,2Mezőkövesd62,6Mezőkövesd60,0Mezőkövesd60,2Mezőkövesd60,2Mezőkövesd60,2Mezőkövesd61,0Mezőkövesd62,6Mezőkövesd62,6Mezőkövesd62,6Mezőkövesd62,6Mezőkövesd62,0Mezőkövesd62,0Mezőkövesd62,0Mezőkövesd	Harta 58,0 0,43 Harta 58,2 0,27 Harta 55,6 0,34 Harta 62,8 0,57 Harta 56,4 0,47 Harta 58,2 0,42 Somogyszil 62,4 0,35 Somogyszil 62,4 0,57 Somogyszil 65,6 0,43 Somogyszil 65,0 0,37 Somogyszil 65,2 0,43 Somogyszil 65,2 0,43 Somogyszil 65,2 0,38 Somogyszil 62,0 0,83 Somogyszil 62,0 0,83 Somogyszil 62,0 0,33 Somogyszil 63,2 0,90 Somogyszil 59,2 0

1		1		1
K10/326/69	Jánoshalma	59,0	0,42	124
K10/326/70	Jánoshalma	62,2	0,37	259
K10/326/71	Jánoshalma	56,0	0,40	192
K10/326/72	Jánoshalma	60,0	0,30	232
K10/326/73	Jánoshalma	57,6	0,70	179
K10/326/74	Jánoshalma	57,2	0,42	154
K10/326/75	Jánoshalma	57,8	0,74	290
K10/326/76	Jánoshalma	62,0	0,51	237
K10/326/77	Jánoshalma	57,6	0,49	152
K10/326/78	Jánoshalma	58,4	0,40	181
K10/326/79	Nádudvar	54,0	0,55	106
K10/326/80	Nádudvar	57.0	0,91	170
K10/326/81	Nádudvar	57.8	0.53	138
K10/326/82	Nádudvar	57.6	0.26	116
K10/326/83	Nádudvar	57.6	0.52	157
K10/326/84	Nádudvar	58.8	0.73	95
K10/326/85	Nádudvar	58.0	0.60	67
K10/326/86	Nádudvar	57.4	0.35	97
K10/326/87	Nádudvar	51.0	0.34	19
K10/326/88	Nádudvar	56.4	0.32	121
K10/326/89	Nádudvar	56.4	0.21	117
K10/326/00	Nádudvar	54.0	0.27	50
K10/326/91	Nádudvar	60.8	0,27	107
K10/326/92	Nádudvar	60.8	0,51	185
K10/326/93	Nádudvar	59.0	0.84	103
K10/326/94	Nádudvar	55,0	0.41	91
K10/326/95	Nádudvar	54.0	0.81	122
K10/326/96	Nádudvar	56.8	0.65	113
K10/326/97	Nádudvar	54.0	0.62	154
K10/326/98	Nádudvar	54.6	0.47	122
K10/326/99	Nádudvar	54.8	0.64	89
K10/326/100	Nádudvar	54.8	2.15	97
K10/326/102	Gesztely	65,0	0,66	202
K10/326/103	Gesztely	60,2	0,42	228
K10/326/104	Gesztely	65,2	0,43	261
K10/326/105	Gesztely	65,2	0,52	304
K10/326/106	Gesztely	65,2	0,31	254
K10/326/107	Gesztely	65,0	0,31	281
K10/326/108	Gesztely	65,6	0,43	277
K10/326/109	Gesztely	66,4	0,85	314
K10/326/110	Gesztely	64,0	0,38	195
K10/326/111	Gesztely	64,0	0,63	110
K10/326/112	Gesztely	61,4	0,22	177
K10/326/113	Gesztely	62,0	0,46	165
K10/326/114	Gesztely	63,0	0,55	142
K10/326/115	Gesztely	61,8	0,66	127
K10/326/116	Gesztely	59,6	0,42	167
K10/326/117	Kapuvár	64,0	0,91	174
K10/326/118	Kapuvár	60,4	0,56	248
K10/326/119	Kapuvár	63,8	0,94	272
K10/326/120	Kapuvár	65,0	0,79	311
K10/326/121	Kapuvár	62,0	0,40	224
K10/326/122	Kapuvár	61,0	0,66	227
K10/326/123	Kapuvár	63,0	0,70	273
K10/326/124	Kapuvár	65,6	1,05	188
K10/326/125	Kapuvár	63,0	0,83	190
K10/326/126	Kapuvár	61,0	0,64	132
K10/326/127	Kapuvár	61,2	0,56	176
K10/326/128	Kapuvár	59,0	0,82	142

K10/326/129	Kapuvár	61,4	0,98	149
K10/326/130	Kapuvár	58,9	0,80	110
K10/326/131	Kapuvár	61,2	0,86	136
K10/326/132	Tápió	60,6	0,47	180
K10/326/133	Tápió	62,0	0,44	229
K10/326/134	Tápió	62,8	0,32	208
K10/326/135	Tápió	63,0	0,25	131
K10/326/136	Tápió	62,0	0,29	195
K10/326/137	Tápió	65,4	0,79	148
K10/326/138	Tápió	60,4	0,44	132
K10/326/139	Tápió	58,0	0,56	123
K10/326/140	Tápió	58,2	0,42	152
K10/326/141	Tápió	60,0	0,27	150
K10/326/142	Tápió	60,2	0,22	65
K10/326/143	Tápió	60,8	0,42	112
K10/326/144	Tápió	64,2	0,73	201
K10/326/145	Tápió	59,0	0,77	148
K10/326/146	Tápió	59,0	0,61	133
K10/326/147	Tápió	56,4	0,34	129
K10/326/148	Tápió	56,4	0,87	136
K10/326/149	Tápió	59,0	0,41	144
K10/326/150	Tápió	57,0	0,52	171
K10/326/151	Tápió	58,4	0,45	195
K10/326/152	Tápió	61,4	0,60	166
K10/326/153	Tápió	61,0	0,78	189
K10/326/154	Tápió	64,8	0,72	61
K10/326/155	Iregszemcse	65,2	1,03	139
K10/326/156	Iregszemcse	56,0	0,31	68
K10/326/157	Iregszemcse	62,0	0,52	206
K10/326/158	Iregszemcse	56,8	0,35	92
K10/326/159	Iregszemcse	60,4	0,22	139
K10/326/160	Iregszemcse	64,8	0,46	125
K10/326/161	Iregszemcse	65,2	0,68	178
K10/326/162	Iregszemcse	63,0	0,63	118
K10/326/163	Iregszemcse	65,4	0,55	84
K10/326/164	Iregszemcse	61,6	0,68	214
K10/326/165	Iregszemcse	62,0	0,39	218
K10/326/166	Iregszemcse	63,6	0,81	177
K10/326/167	Iregszemcse	63,4	0,43	214
K10/326/168	Iregszemcse	57,2	0,45	159
K10/326/169	Iregszemcse	58,6	0,24	177
K10/326/170	Iregszemcse	59,0	0,31	168
K10/326/171	Iregszemcse	58,6	0,42	133
K10/326/172	Iregszemcse	64,6	0,84	245
K10/326/173	Iregszemcse	58,2	0,28	153
K10/326/174	Iregszemcse	56,6	0,34	156
K10/326/175	Látókép-KITE	62,0	0,39	130
K10/326/176	Látókép-KITE	56,0	0,22	61
K10/326/177	Látókép-KITE	61,6	0,43	143
K10/326/178	Látókép-KITE	56,4	0,21	84
K10/326/179	Látókép-KITE	59,4	0,19	79
K10/326/180	Látókép-KITE	61,4	0,26	95
K10/326/181	Latokep-KITE	65,0	0,36	100
K10/326/182	Latokép-KITE	64,4	0,22	83
K10/326/183	Latokep-KITE	65,6	0,23	51
K10/326/184	Latokep-KITE	62,6	0,35	192
K10/326/185	Latokep-KITE	61,6	0,21	175
K10/326/186	Latokep-KITE	63,2	0,34	104
K10/326/187	Latokep-KITE	62,8	0,30	231

K10/326/188	Látókép-KITE	57,6	0,28	198
K10/326/189	Látókép-KITE	60,2	0,20	183
K10/326/190	Látókép-KITE	61,6	0,24	166
K10/326/191	Látókép-KITE	60,2	0,29	153
K10/326/192	Látókép-KITE	59,6	0,33	180
K10/326/193	Látókép-KITE	58.2	0.18	112
K10/326/194	Látókép-KITE	60.0	0.36	106
K10/326/195	Látókép-KITE	55.8	0.49	127
K10/326/196	Látókép-KITE	59.0	0.39	191
K10/326/197	Látókép-KITE	60.8	0.38	219
K10/326/198	Látókép-KITE	56.8	0.47	127
K10/326/199	Látókép-KITE	58.4	0.42	202
K10/326/200	Látókép-KITE	50, 4	0,42	202
K10/326/200	Látókép-KITE	59.0	0,44	211
K10/326/201	Látókép-KITE	61.4	0,41	224
K10/320/202	Látókép-KITE	60.8	0,41	107
K10/320/203	Latokep-KITE	62.4	0,49	197
K10/326/204		62,4	0,49	190
K10/320/205		62.6	0,35	221
K10/320/200		56.9	0,39	150
K10/320/207		50,8	0,40	150
K10/326/208		60,2	0,23	206
K10/326/209		61,0	0,19	207
K10/326/210	Latokep-KITE	59,4	0,35	109
K10/326/211		59,6	0,29	230
K10/326/212		60,2	0,23	180
K10/326/213	Latokep-KITE	58,2	0,71	141
K10/326/214		62,0	0,24	270
K10/326/215		62,6	0,32	274
K10/326/216		56,6	0,59	149
K10/326/217		56.4	0,55	219
K10/320/218	Latokep-KITE	57.0	0,20	125
K10/320/219	Latokep-KITE	57,0	0,32	125
K10/320/220	Latokep-KITE	61.8	0,41	210
K10/326/222	Látókép-KITE	55.8	0,38	104
K10/326/222	Látókép-KITE	55,8	0,41	104
K10/320/223	Latokep-KITE	61.4	0,30	107
K10/320/224	Latokep-KITE	59.2	0,41	197
K10/326/225	Látókép-KITE	53,2 62,6	0,40	213
K10/326/227	Látókép-KITE	63.4	0,27	105
K10/326/227	Látókép-KITE	60.4	0,32	107
K10/326/220	Látókép-KITE	66 D	0.29	163
K10/326/230	Látókép-KITE	61.0	0.29	171
K10/326/231	Látókép-KITE	57.0	0.18	121
K10/326/232	Látókép-KITE	60.4	0.18	185
K10/326/232	Látókép-KITE	62.0	0.23	241
K10/326/234	Látókép-KITE	58.2	0.17	135
K10/326/235	Látókép-KITE	63.0	0.14	223
K10/326/236	Látókép-KITE	61.8	0.16	216
K10/326/237	Látókép-KITE	62.0	0.38	183
K10/326/238	Látókép-KITE	61.2	0.29	275
K10/326/239	Látókép-KITE	61.4	0.30	265
K10/326/240	Látókép-KITE	56.0	0,46	126
K10/326/241	Látókép-KITE	63.2	0.28	143
K10/326/242	Látókép-KITE	58,4	0,24	136
K10/326/243	Látókép-KITE	58,0	0,25	143
K10/326/244	Látókép-KITE	59.8	0,23	168
K10/326/245	Látókép-KITE	60,4	0,24	166
K10/326/246	Látókép-KITE	58,4	0,21	153

K10/326/247	Látókép-KITE	61,4	0,16	152
K10/326/248	Látókép-KITE	58,8	0,16	139
K10/326/249	Látókép-KITE	65,4	0,59	218
K10/326/250	Látókép-KITE	65,0	0,39	280
K10/326/251	Látókép-KITE	64,0	1,12	259
K10/326/252	Látókép-KITE	51,0	0,20	25
K10/326/253	Látókép-KITE	54,0	0,13	35
K10/326/254	Látókép-KITE	53,4	0,17	36
K10/326/255	Csorvás	63,4	0,29	169
K10/326/256	Csorvás	62,0	0,25	191
K10/326/257	Csorvás	50,4	0,22	167
K10/326/258	Csorvás	63,0	0,29	210
K10/326/259	Csorvás	61,2	0,16	138
K10/326/260	Csorvás	60,8	0,25	203
K10/326/261	Csorvás	63,0	0,30	193
K10/326/262	Csorvás	62,8	0,29	131
K10/326/263	Csorvás	61,2	0,21	90
K10/326/264	Csorvás	62,0	0,20	92
K10/326/265	Csorvás	60,4	0,24	163
K10/326/266	Csorvás	62,0	0,13	127
K10/326/267	Csorvás	62,0	0,17	105
K10/326/268	Csorvás	59,4	0,17	168
K10/326/269	Csorvás	58,6	0,13	140
K10/326/270	Csorvás	48,9	0,34	99
K10/326/271	Csorvás	58,0	0,23	127
K10/326/272	Csorvás	60,0	0,24	164
K10/326/273	Csorvás	62,6	0,29	105
K10/326/274	Csorvás	60,0	0,43	117
K10/326/275	Csorvás	58,0	0,22	82

Köszönetnyilvánítás

Ezúton szeretném köszönetemet kifejezni mindazoknak, akik ezen dolgozat elkészítésében segítségemre voltak:

Témavezetőmnek, Dr. Győri Zoltánnak köszönöm a szakmai segítséget és támogatást, melyet a vizsgálatok és a dolgozat elkészítése során nyújtott; valamint, hogy a Debreceni Egyetem, Élelmiszertudományi Intézetében lehetővé tette számomra a PhD tanulmányaim és a vizsgálatok elvégzését.

Köszönöm Dr. Kovács Bélának, az Élelmiszertudományi Intézet későbbi vezetőjének, hogy biztosította a munkámhoz szükséges laboratóriumi hátteret.

Köszönetet kell, mondjak továbbá minden kedves volt kollegámnak és tanáromnak, akik munkámat és PhD tanulmányaimat az elmúlt években segítették.

Köszönet illeti a Nemzeti Agárkutatási és Innovációs Központ Élelmiszer-tudományi Kutatóintézetének jelenlegi és korábbi vezetőjét, valamint közvetlen felettesemet, hogy az intézetben lehetőségem nyílt a munka befejezéséhez, a dolgozat megírásához.

Külön köszönet illeti családomat és páromat, akik mindvégig mellettem álltak, bíztattak és szeretetükkel támogattak.

Nyilatkozat

Ezen értekezést a Debreceni Egyetem, Hankóczy Jenő Növénytermesztési, Kertészeti és Élelmiszertudományok Doktori Iskola keretében készítettem el a Debreceni Egyetem doktori (PhD) fokozatának elnyerése céljából.

Debrecen, 2015.

.....

a jelölt aláírása

Nyilatkozat

Tanúsítom, hogy Kónya Éva doktorjelölt 2009-2012 között a fent megnevezett Doktori Iskola keretében irányításommal végezte munkáját. Az értekezésben foglalt eredményekhez a jelölt önálló alkotó tevékenységével meghatározóan hozzájárult, az értekezés a jelölt önálló munkája. Az értekezés elfogadását javaslom.

Debrecen, 2015.

.....

a témavezető aláírása