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Abstract

Background

The surface of the human eye is covered by corneal epitbelial(CECs) which regenerg

from a small population of limbal epithelial stem cells (LESCs). Celaby with LESCs is

non-penetrating treatment for preventing blindness due to LESC deficae dysfunction|.
Our aim was to identify new putative molecular markers andregst regulators in the

LESCs and associated molecular pathways.

Results

Genome-wide microarray transcriptional profiling was used to condeESCs tg
differentiated human CECs. Ingenuity-based pathway analysss apalied to identif

upstream regulators and pathways specific to LESCs. ELISA andcfftometry were usgd
to measure secreted and surface expressed proteins, respebtive than 2 fold increase

and decrease in expression could be found in 1830 genes between the ttypesellA
number of molecules functioning in cellular movement (381), prolifarat(567),
development (552), death and survival (520), and cell-to-cell signaling (&9@) detecte
having top biological functions in LESCs and several of these wenérmed by flow
cytometric surface protein analysis. Custom-selected gene grelgied to stemnes
differentiation, cell adhesion, cytokines and growth factors asasedingiogenesis could
analyzed. The results show that LESCs play a key role not ompitinelial differentiatior
and tissue repair, but also in controlling angiogenesis and ebitac matrix integrity. Som
pro-inflammatory cytokines were found to be important in stemned$eretitiation- ang
angiogenesis-related biological functions: IL-6 and IL-8 partieghain most of thes
biological pathways as validated by their secretion from LESC cultures.

Conclusions
The gene and molecular pathways may provide a more specific wamdiengt of thg

signaling molecules associated with LESCs, therefore, lettpridentify and use these ce
in the treatment of ocular surface diseases.
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Background

The cornea serves mainly a protective and refractive functiong li@imd on the outermost
surface of the eye. It is a highly transparent and strosgetiseparated from the surrounding
conjunctiva by a transitional zone - the limbus. During eye development, tha eethe last
part of the eye to be formed. It consists of a stratified dpitheat the surface, stroma in the



middle - populated by keratocytes and fibroblast-like cells, andraar iayer of endothelial
cells, each separated by a Bowman’s and Descemet’s membrane, regpectivel

The human central corneal epithelial cells (CECs) are deawedreplaced continuously
from the limbal epithelial stem cells (LESC). The latan eindergo asymmetric division and
give rise to transient amplifying cells (TACs), which chart differentiate into mature CECs
that lose their ability to proliferate [1,2]. Animal studies hakeven that CECs arise from
approximately 100 progenitor cells, which means the frequency of LiES€&dremely low
[3]. In humans, the LESCs have been found in the limbal epithelipiscryspecial niches at
the peripheral edge of the cornea [4-6]. Only six such crypts haarm identified in the
limbus, further strengthened by findings from animals [4]. Tptsrprovide a concentrated
and safe place for harboring LESCs, and also, a rich vascular sufplgrowth factors and
metabolites for their sustained persistence [1,7-10]. LESCs plkgyarole not only in
epithelial differentiation, but also in wound healing, tissue regéioa and maintenance of a
balanced immunological state in the cornea [11].

Injuries - traumatic, chemical or iatrogenic, or diseaskshe LESCs, either inborn or
acquired, can all lead to partial or total LESC deficiency SCB) or corneal
neovascularization accompanied by inflammation. Full penetratimgtdptasty is not
anymore the mainstay of treatment for LESCDs, while autologoosbal graft
transplantation from a healthy donor eye, if available, does notder@a/guarantee for the
functionality of the gratft itself. Isolation arek vivoexpansion of autologous or homologous
LESCs in human-like conditions has only been described in detail ingheouple of years
[12]. We recently published a method for cultivating and charaatgrizESCs grown on
lens capsule in a medium containing human serum as the only growth seipp]&8j. The
benefit of our method is not only the use of animal materialdtdiring conditions, but
also, the ability to investigate the phenotype and the genotype ofitip@wing cells, which
can further help identify new putative LESC markers.

In the present study, we compare the gene expression patteersvofo cultured human

LESCs to differentiated CECs with a main focus on markerst@nness and proliferation,
epithelial differentiation, tissue development and growth, immunologiodl angiogenic

factors. In addition, we propose a way to identify and possibly contetivese stem cells
found at low density from the heterogeneous cell populations found in theacfor future

use in clinical transplantation.

Methods

Ethics statement

All tissue collection complied with the guidelines of the Helsiblaclaration and was
approved by the Regional Ethical Committee (DEOEC RKEB/IKE®4/2010). Limbal
tissue collection was done within 12 hours of biologic death from ceslaméy and Hungary
follows the EU Member States’ Directive 2004/23/EC on presumed copsactice for
tissue collection [14].



Isolation and cultivation of LESCs and CECs

In brief, after a thorough eye wash with 5% povidone iodine (BetaBugjis;Pharmaceuticals
PLC, Budapest Hungary), the conjunctiva was incised and sepdratadthe limbal
junction; consequently, a 2 x 1 mm rectangular-shaped limbal graftissected away and
towards the cornea, respectively, at the 12 o’clock position. The defitle gfaft was kept
superficial or within the epithelial layer; multiple graftens collected from a single eye and
tested for growth potential. The graft dissection was perfoused) a lamellar knife placed
tangential to the surface being cut. LESCs were cultured in ladhigose Dulbecco-
modified Eagle’s medium (DMEM-HG, Sigma-Aldrich, Budapest, Huppaupplemented
with 20% v/v human AB serum, 200 mM/mL L-glutamine, 10,000 U/mL penieilli@
mg/mL streptomycin (all from Sigma-Aldrich) at 37°C, 5% £@® 1.91 cn tissue culture
plates, while the medium was changed every alternate day. Thehgobwhe cells was
monitored under phase contrast microscope regularly. Only grafté Wwhat cell outgrowth
within 24 hours were processed further to decrease the chance ofafsbrobntamination
and maintained in culture up to 14 days when they reached 95-100% confluence
Differentiated CECs were scraped from the central patefcbrnea of cadavers and were
used as a positive control. To avoid contamination of one or the othetygellduring
isolation, different donors were used for each isolation carried out.

Microarray and data analysis

Affymetrix GeneChip Human Gene 1.0 ST Arrays (Affymetrix, 8aDlara, CA, USA) were
used for the microarray analysis. The array contained more than 2f&068Granscripts. For
the whole genome gene expression analysis 150 ng of total RNAwkgected to Ambion
WT Expression Kit (Ambion, Life Technologies, Carlsbad, CA, US&n)l GeneChip WT
Terminal Labeling Kit (Affymetrix) according to the maragfurers’ protocols. After
washing, the arrays were stained using the FS-450 fluiditersi@ffymetrix) and signal
intensities were detected by Hewlett Packard Gene Array Scanner 3{6leviett Packard,
Palo Alto, CA, USA). The scanned images were processed usingCipn€ommand
Console Software (AGCC) (Affymetrix) and the CEL files evemported into Partek
Genomics Suite software (Partek, Inc. MO, USA). Robust microamayysis (RMA) was
applied for normalization. Gene transcripts with a maximal sigmlaes less than 32 across
all arrays were removed to filter for low and non-expressedsgeaducing the number of
gene transcripts to 23190. Differentially expressed genesebatwyroups were identified
using one-way ANOVA analysis in Partek Genomics Suite Softw@lustering analysis was
made using the same name module in a Partek Genomics Suite Software.

Pathway analysis

To identify the relationships between selected genes, the Ingétathyay Analysis (IPA,
Ingenuity Systems, Redwood City, CA) was used. Excel dataslwtsning gene IDs with
the assigned gene expression values were uploaded into the prodramngenuity
Pathways Knowledge Base (IPKB) provided all known functions and interactiools whre
published in the literature. ANOVA was used to calculate a p-vadueetermine the
probability that each biologic function or canonical pathway assigméte data set was due
to chance alone. For the representation of the relationships betweganes, the ‘Pathway
Designer’ tool of the IPA software was used.



Measurement of cytokine concentrations by ELISA

LESCs growing out of the limbal grafts were trypsinized (0.025¢pstn-EDTA (PAA,
Pasching, Austria, 5 minutes, 37°C) and seeded onto 24-well plates xdtfacgll/mL
density. Cells were cultured for 9 to 13 days. At the end of theurmg period, the
supernatants were harvested and kept at —20°C until further meastrdé&e OptEIA
ELISA (BD Pharmingen, San Diego, CA, USA) assay kits werd td®owing the supplier’'s
instruction to measure the concentration of secreted IL-6 and Ilit&kioes. Each
experiment was performed at least three times and eachesavapl tested in triplicates.
Statistically significant differences were determined by painediesit’s t test.

Transmission electron microscopy

Human corneal tissue procurement and use were conducted in accordémclcal

regulations and approved by the Research Ethics Committee oBSKiund) University. Unless
specified otherwise, reagents were obtained from TAAB LabadeatoEquipment Ltd

(Aldermaston, UK). Pieces of LESCs grown on lens capsules weukih freshly prepared
4% paraformaldehyde in 0.1 M phosphate for 2 h at 4°C. Tissuespnmressed at low
temperatures and were embedded in LR White resin (Sigma-Aldtict20°C for 48 h under
ultraviolet light. Ultrathin sections were collected on 200 mesmyar-coated carbon nickel
grids and examined in a Jeol 1400 transmission electron microscope (Jeol Ltd, &pkyo, J

Surface protein level analysis by flow cytometry

Fluorescein isothiocyanate (FITC), phycoerythrin (PE) and allagysnin (APC)
conjugated antibodies were used for multicolour flow cytometric alsatgsmeasure the
selected surface protein expression on isolated LESCs and mhifieed CECs. Antibodies
against CD29/Integrinpl, CD44/HCAM, CD45, CD54/ICAM1, CD73, CD90/Thy-1,
CD117/c-kit and CD146/MCAM markers were used in a concentration muedi the
manufacturer's protocol (all antibodies were obtained from Bioleg&aah, Diego, CA,
USA). All samples were labeled for 30 minutes on ice, then mahbyreé ACSCalibur flow
cytometer (BD Biosciences Immunocytometry Systems, San @@selUSA) and the data
were analyzed using FlowJo (TreeStar, Ashland, OR, USA), seftvldre results were
expressed as means of positive cells£96D. Statistically significant difference between the
two groups (LESC vs. CECS) was determined with paired studeritdandsa value of p <
0.05 was considered significant.

Results

Gene array and IPA analysis

A microarray based transcriptional profiling was used to compB&Cs to differentiated
CECs. The intensity profiles of the ogansformed signal values of the 28869 transcripts
were obtained, out of which 955 and 875 transcripts had a more than 2 foleé ¢ré&l)g
increase and decrease in expression between the two cellrbgustively 1t = 3,p < 0.01).
Table 1 summarizes the most affected signaling pathways iddnkf/ the IPA software
based on the significant expression of genes in the LESCs. The riopicad pathways
included genes involved in hepatic fibrosis, angiogenesis inhibition by llegpondin 1
(TSP-1), retinoic acid receptor (RAR) activation, antigen presentand axonal guidance



signaling. Some of the signaling pathways were also relatediseases or toxicological
pathways such as induction of reactive metabolites, renal iscteardiaenal proliferation.
IPA could determine the biological functions and diseases fromighdicantly changed
expression levels of groups of genes: 733 molecules were found twddeed in cancer
development, 567 in cellular growth and proliferation, 552 in cellular develop®2dtin
cell death and survival and 402 in gastrointestinal diseases. Onigak sumber of
molecules related to visual system development and function (98), and Yeohviol
increased levels of albumin could be detected. (for more details see Table 2).



Table 1 The most significantly affected canonical pathways found in LESCs

Ingenuity canonical pathways -Log(B-H-P-value) Ratio

Top canonical pathways Hepatic fibrosis/hepatic stellate cell activation 8.36E-05 32/142 (0.225)
Inhibition of angiogenesis by TSP1 2.22E-04 12/34 (0.353)
RAR activation 5.01E-04 35/179 (0.196)
Antigen presentation pathway 1.25E-03 11/40 (0.275)
Axonal guidance signaling 1.31E-03 65/432 (0.15)

Top tox (toxicological) pathways Hepatic fibrosis 4.25E-06 27/93 (0.29)
Glutathione depletion - cyp induction and reactivetabolites 6.6E-05 7/12 (0.583)
Liver proliferation 1.5E-04 39/189 (0.206)
Persistent renal ischemia-Reperfusion injury (mpuse 4.41E-04 10/30 (0.333)
Increases renal proliferation 4 54E-04 24/101 (0.238)

IPA software was used to calculate the canonical pathways from thexgpeasston profile of LESCs grown on lens capsule.



Table 2 Top biological and toxicological functions

Function Name p value Molecules
Diseases and disorders Cancer 5.96E-27 - 1.23E-03 733
Reproductive system disease 1.61E-16 - 1.19E-03 344
Dermatological diseases and conditions 3.42E-165H-03 282
Gastrointestinal disease 4.31E-13 - 8.26E-04 402
Endocrine system disorders 2.65E-10 - 7.46E-04 257
Molecular and cellular functions Cellular movement 5.90E-18 - 1.43E-03 381
Cellular growth and proliferation 1.31E-10 - 1.108- 567
Cellular development 3.26E-09 - 1.07E-03 552
Cell-to-cell signaling and interaction 8.23E-09.48E-03 290
Cell death and survival 1.04E-08 - 1.48E-03 520
Physiological system development and function Cardiovascular system development and function BH2- 1.23E-03 271
Tumor morphology 6.48E-09 - 9.47E-04 140
Organismal development 9.59E-09 - 1.48E-03 371
Visual system development and function 1.34E-0A8HE-03 98
Tissue development 2.59E-07 - 1.48E-03 350
Clinical chemistry and hematology Decreased levels of albumin 1.63E-03 - 3.94E-01 6
Increased levels of alkaline phosphatase 2.79E10B3E-01 16
Increased levels of creatinine 8.01E-03 - 8.01E-03 8
Increased levels of potassium 1.48E-02 - 5.41E-01 7
Increased levels of albumin 1.09E-01 - 2.21E-01 5
Cardiotoxicity Cardiac stenosis 6.92E-04 - 3.13E-01 15
Congenital heart anomaly 3.64E-03 - 5.28E-01 23
Cardiac arteriopathy 4.20E-03 - 6.33E-01 42
Pulmonary hypertension 5.95E-03 - 1.18E-01 11
Cardiac hypertrophy 8.04E-03 - 1.00E00 51
Hepatotoxicity Liver proliferation 2.37E-04 - 3.13E-01 39
Liver cholestasis 6.93E-04 - 5.84E-01 22
Liver cirrhosis 7.33E-04 - 2.21E-01 31
Liver damage 8.26E-04 - 2.21E-01 33
Liver hyperplasia/hyperproliferation 8.39E-03 -3D01 80
Nephrotoxicity Renal proliferation 6.16E-06 - 2.21E-01 38
Renal damage 7.17E-04 - 5.03E-01 37
Renal tubule injury 7.17E-04 - 2.21E-01 24
Renal necrosis/cell death 1.84E-03 - 1.00E00 52
Renal inflammation 8.70E-03 - 1.00E00 34

The most affected pathways related to known biological and toxicological functi@ESICs as determined by the IPA software.



Customized gene array data — upstream regulators

We selected 257 upstream regulators that were expressedcsaigiyfiand differentially in

LESCs that were also related to our groups of interest (stsmaed proliferation,

differentiation, cell adhesion, cytokines and growth factors angiogenesis). Their

biological functions were extensively related to physiologmalntenance of LESCs, while
the molecules involved in these processes showed significant interdiiecences. Figure

1 shows the heatmap and the functional clustering of the 257 upstrgaatoes selected on
the basis of their high or low FC or previously documented relatidtESCs. The cluster
analysis demonstrated a clear distinction between the LESCs ambmwwl CECs. The

genes that were mostly affected were involved in ion-, nucleatidgrotein binding, protein
secretion as well as receptor or enzyme activities. Tableo®ssthe top 20 up- or down-
regulated genes within these gene groups.

Figure 1 Heatmap of the differentially expressed genes in LESCs compared to CEC
Heatmap of the transcripts and functional clustering of 257 genes expresskchsityi
different in LESCs and CECs, and related to stemness, epithelial diffecentissue
organization and angiogenesis. Red and blue colors indicate high and low expression,
respectively. The cluster analysis and dendrogram show the differencehétedwo cell
types(A). Distribution of the 257 significantly differentially expressed genes bgcutd
type as defined by IPAB).




Table 3Top 20 up- and down-regulated custom selected genes in LESC

Symbol Entrez gene name Fold Activation z- p-value of Molecule type
change score overlap
Fold change up-regulated
FN1 Fibronectin 1 74.934 2.979 8.37E-05 Enzyme
CCNAl Cyclin A1 27.199 3.42E-02 Other
IL1B Interleukin 1, beta 24.948 4.924 8.09E-15 Cytokine
INHBA Inhibin, beta A 21.815 1.352 2.27E-04 Growth factor
SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasgen activator inhibitor type 1), 18.854 -0.927 1.40E-02 Other
member 1
GDF15 Growth differentiation factor 15 16.924 1.999 2.63E-02 Growth factor
PTHLH Parathyroid hormone-like hormone 16.2 1.972 8.72E-03 Other
OSMR Oncostatin M receptor 15.366 1.982 1.83E-02 Transmembrane receptor
CXCL10 Chemokine (C-X-C motif) ligand 10 15.171 0.911 2.31E-02 Cytokine
MMP9 Matrix metallopeptidase 9 (gelatinase B, 92 kDeetiV collagenase) 14.243 0.689 1.72E-02 Peptidase
ILIR1 interleukin 1 receptor, type | 13.972 2.603 5.76E-03 Transmembrane receptor
MMP1 Matrix metallopeptidase 1 (interstitial collage@ps 13.875 1.188 4.01E-03 Peptidase
ICAM1 Intercellular adhesion molecule 1 13.681 2.961 1.36E-03 Transmembrane receptor
ITGAS Integrin, alpha 5 (fibronectin receptor, alphaypelptide) 13.455 2411 1.46E-02 Other
SH3KBP1 SH3-domain kinase binding protein 1 12.752 4.98E-02 Other
AKT3 V-akt murine thymoma viral oncogene homolog 3 {girokinase B, gamma) 11.843 4.76E-02 Kinase
LOXL2 Lysyl oxidase-like 2 11.734 1.992 1.88E-03 Enzyme
CEACAM5 Carcinoembryonic antigen-related cell adhesionecue 5 10.588 1.23E-02 Other
SLPI secretory leukocyte peptidase inhibitor 8.53 -2.433 1.06E-02 Other
PDzK1IP1 PDZK1 interacting protein 1 8.485 1.23E-02 Other
Fold change down-regulated
CRTAC1 - cartilage acidic protein 1 -72.277
LPA Lipoprotein, Lp(a) -11,623 4.98E-02 Other
ETV1 Ets variant gene 1 7,444 1.969 1.83E-02 Transcription regulator
EDNRB Endothelin receptor type B -7,25 3.38E-02 G-protein coupled receptor
BMP7 Bone morphogenetic protein 7 -6,436 0.733 1.17E-04 Growth factor
NREP Neuronal regeneration related protein -5,823 -0.248 3.81E-03 Other
CFTR Cystic fibrosis transmembrane conductance regu{AfbP-binding cassette sub-family-5,766 -1.993 1.49E-01 lon channel
C, member 7)
DCN Decorin -5,066 0.172 6.04E-07 Other
RORA RAR-related orphan receptor alpha -4,781 -0.439 2.61E-03 Ligand-dependent nuclear
receptor
LEF1 Lymphoid enhancer binding factor 1 —4,441 -0.306 2.01E-02 Transcription regulator
BDKRB1 Bradykinin receptor B1 -4,1 -2.000 6.89E-04 G-protein coupled receptor
GJAL Gap junction protein, alpha 1 -3,94 -1.480 5.54E-04 Transporter
FAM3B Family with sequence similarity 3, member B -39 3.20E-08 Cytokine




P2RX7 Purinergic receptor P2X, ligand-gated ion channel, -3,885 1.15E-02 lon channel

KAT2B K(lysine) acetyltransferase 2B -3,829 1.963 8.27E-02 Transcription regulator
oDC1 Ornithine decarboxylase, structural 1 -3,63 4.98E-02 Enzyme

EPHX2 Epoxide hydrolase 2, cytoplasm -3,469 3.42E-02 Enzyme

MAT1A Methionine adenosyltransferase I, alpha -3,386 -0.215 1.82E-02 Enzyme

CTSL2 Cathepsin L2 -3,385 4.98E-02 Peptidase

DUSP1 Dual specificity phosphatase 1 -3,358 -1.881 6.12E-02 Phosphatase

NOV Nephroblastoma overexpressed -3,149 0.555 1.94E-02 Growth factor

The top 20 up and down regulated genes in LESCs as determined by the IPA software.



Customized gene networks — upstream regulators
Stemness and proliferation

As seen in Figure 2, out of the 257 upstream regulators, 122 &aredrto stemness and, in
particular, mesenchymal stem cells (MSCs). The exprepsittarn also demonstrated a clear
difference between the LESCs and the CECs (Figure 2A). Theses coded for
transcription factors, surface molecules, cytokines and gromtbréaall playing a key role
in the maintenance of multipotency, proliferation capacity of hematp and/or MSCs
(Figure 2B). Up- and down- regulation was found in 66 and 56 genes, reslyecnd
within the custom selected gene cluster, the 10 highest upstezadators wereCCNAL
(27.199 fold),IL1B (24.949, GDF15 (16.924),ICAM1 (13.681), TGFB (16.745) SOX9
(4.859 fold)VIM (4.368),NT5E (4.009) TGFBR2(3.772) andBMP6 (3.494), while the 10
most down-regulated wer&MP7 (-6.436 fold),LEF1 (-4.441), GJAL (-3.94), KAT2B
(-3.829),KLF4 (-3.041),EGF (-2.563) FOXN1 (-2.11),SOX6(-1.984),GDF9 (-1.865)
andHSPA9(-1.838). The expression of these selected genes strengthen our piiadiogs
that theex vivocultured LESCs show great similarity to MSCs regarding thefiace marker
profile and the extracellular matrix (ECM) production ability3]. The present comparison is
rather focused on the differences between LESCs and diffeeght@ECs in their
transcriptional factor patterns, making the LESCs more progeikgryet with a limited
multipotency potential as compared to other stem cells, including bw@meow-derived
MSCs (bmMSCs). As expected, our data show that LESCs have a Ipigiéeration
potential and stemness-related gene expression than differer@iatesl The SRY related
HMG-box family membersSOX9 and SOX6 both involved in chondrogenesis and
proliferation, were down-regulated in the LESCs. Flow cytometnidase protein level
analysis found a significantly higher number of positive cells @M1 in CECs (56.19 +
12.46%) than in LESCs (4.37 = 7.63%) (p = 0.0001) (Additional file 1: Fi@ire No
difference could be found in the well-known MSC surface marker$, aaaCD90 (8.75 +
19.56% in LESCs and 1.77 = 3.54% in CECs, respectively (p = 0.4748)) and CD73 (89.86 *
6.15% in LECSs and 76.93 + 17.43% in CECs, respectively, (p = 0.2374); data ateown
Mean = SD), while more cells expressed the stem cell faetmeptor CD117/c-kit in the
LESCs (19.87 £ 24.92%) compared to CECs (0 £ 0%) at a proteih lewwever, this
difference was not statistically significant (p = 0.1491) due toga inter-donor variance
(Additional file 1: Figure S).

Figure 2 Upstream regulators as determinants for stemnesSelected upstream regulator
genes which are involved in the maintenance of stemness, cell cycle and mdtipelated
transcription factorgA), and growth factors, cytokines and corresponding recef8pr3he
gene characteristics of MSCs are highlighted as well.

Differentiation

Our previous phenotype analysis of LESCs showed the heterogehthty population [13],
so we analyzed 42 genes related to terminal and epitheliatatifiation. The heatmap of
these transcripts with the clustering of the expressed gdroes a clear segregation of the
LESCs from the differentiated CECs (Figure 3A). Among therawgr factors, cytokines,
adhesion molecules, transcription regulators and enzymes can be féiguode (3B).
Transcriptional regulators such BOXG1 (-1.165),FOXD3 (-1.1), MYOD1 and OSGIN1
(-1.109) were all down-regulated in contrast to F@EXAlandPMEL up-regulation (Figure
3C). The pericellular matrix proteoglycan decorin coding de@&l (-5.066) was found to



be down-regulated in LESCs. Within the collection of cytokines and gréaators which
play a role in epithelial differentiatioBMP7 (-6.436 fold),FGF1 (-2.96),FGF7 (-1.473),
IL18 (-1.152) andGF2 (-1.126) were down-, whil&L1B (24.948),INHBA (21.815),IL1A
(7.853),TGFB1(6.745),EREG(3.836),BMP6 (3.494) andDKK1 (2.88) were up-regulated
(Figure 3D). At a protein level, CD146/MCAM, a key player in MSfifferentiation, was
found not to be expressed on the surface of CECs (0 + 0%) compar&b@s (82.40 +
14.60%, p = 0.0002) (Additional file 1: Figure S1). Presence of CK14 on LE&Ebeen
described by our group previously [13]

Figure 3 Expression of terminal differentiation related genesExpression of transcription
factors, transmembrane receptors, enzymes and adhesion malagufesbgroups of
cytokines- and growth factor coding genes involved in epithelial differemtiaf stem cells
(B). Distribution of the selected 42 upstream regulators by molecule type, such as
transcriptional regulator€C) and growth factors and cytokin€3).

Cell adhesion

To further distinct the multipotent LESCs within the heterogengopsilation of epithelial
cells, surface markers including ECM-cell, cell-cell adhesaod cell migration proteins
were used as putative markers. The upstream regulators of 5¢ gmiag for molecules
involved in cell adhesion were analyzed. (Figure 4A, E). The fitsgr®up contained highly
expressed transcriptional factors and transmembrane receptdrs LESCs (Figure 4C):
TGFBI (6.745), AKT3 (11.843),CTGF (6.513), MAP2K (12.088),SPP1(2.077) andSRC
(1.931). Six genes includingKT1 (-1.026), NOV (-3.149), ROCK2 (-1.076), PRKCA
(-1.154), HRAS (-1.5) andPRKCB (-1.583) were down-regulated. The next subgroup
(Figure 4D), included integrins, cell adhesion molecules (CAMs), qigdgie enzymes and
matrix metalloproteases (MMPs) — all involved in the ECM breakdamah tissue healing
and remodeling; the most up-regulated genes in this clusterMiil (13.875),MMP14
(1.836) andMMP9 (14.243), whileMMP3 was down-regulated (-1.105). The laminins,
which are important proteins in the basal membrane and their cgdives such dsAMA1L
(1.428),LAMA3 (3.289) and_AMC1 (1.724) were all up-regulated in the LESCs. CAMs and
tight junctions which are very important in cell-cell adhesion asgli& organization, such as
ICAM-1 (13.681),CAV1 (1.608) andCLDN7 (3.056) were up-, whil&sJAL (-3.94) was
down- regulated. In particulaCDH1 (1.536), important in desmosomal junction formation
and stratified epithelium transformation was up-regulated, andiésmosome formation
between the LESCs grown on lens capsule could be demonstrated aissmgission electron
microscopy (Figure 4B). Altogether, the expression of 11 integythng genes was different
between the LESCs and the differentiated CECs - 8 out of them wge, while 3 were
down- regulated. Surface protein level analysis found no differeatgebn LESCs and
CECs in the expression of CD29/Integrfi (97.01 + 1.87% and 78.28 % 15.84%,
respectively), and CD44/HCAM (16.55 £ 23.21% and 19.83 + 21.55%, respgrtivel
expression. The percentage of CD47 positive cells, which plays anraell viability and
immunoregulation, was significantly higher in LESCs (98.98 + 0.57%) cadpar CECs
(25.9 £ 27.44%) (p = 0.0039), showing higher viability and inhibition of phagocytosie
LESCs (Additional file 1: Figure S1).

Figure 4 Differential changes in selected genes related to cell-cell tion, cell-to-cell

and cell-to-extracellular matrix (ECM) adhesion. Collection of significantly different
expressions of transcription factors, kinases and transmembrane receatedstoetell-cell
connection and adhesigA). CAMs, integrins and ECM receptors determine the tissue origin



of LESCs C andD). Molecule types of the selected 54 upstream regulator in the two groups
of cells(E). TEM pictures about LESCs on lens capsule shows the cell-cell junctions
between the cellB) (LC = Lens capsule, A = Attachment between LC and cells; CZ,

and C3 - three cell-layer, L = translucent sp&re, Desmosomes

Cytokines and growth factors

Cytokines and growth factors have an important function in celeoelimunication and can
affect cell function, differentiation and immunogenicity (Figure SR)YB was the most up-
regulated gene (24.948 fold), followed IXCL10 (15.171),IL1A (7.853),IL8 (5.849),
EDN1 (5.504),IFNE (4.601),IL6 (2.57),SPP1(2.077) andCCL5 (1.973). Although most of
the up-regulated genes were related to pro-inflammatory cytoksoese members with
similar pro-inflammatory properties, but from other cytokine fasiliwere down-regulated:
IL17 (-1.129), the IL-1 superfamily membédisl8 (-1.152) andL36RN (-1.059). Human
EDA (-1.113) which belongs to the TNF family was within the most dorgulated genes,
while the top down-regulated gene wasM3B (-3.900) (Figure 5B). Next, we filtered out
the entire dataset for growth factors, all being important fantaining multipotency and
differentiation of progenitor or stem cells (Figure 5C). The tmgsregulated genes were
members of the TGF beta (T@Fsuperfamily:INHBA (21.815 fold), GDF15 (16.924),
TGFB1(6.745) andBMP6 (3.494). Epiregulin and amphiregulin, members of the epidermal
growth factor (EGF) family, were the top up-regulated geB#EG (3.836) andAREG
(4.047), as well as connective tissue growth fa€CioGF (6.513). The down-regulated genes
included other TGF superfamily membersBMP7 (-6.436) andGDF9 (-1.865). Acidic
fibroblast growth factorFGF1 (-2.96) andFGF7 (-1.473) were also down-regulated, as
well as NOV-like CTGF- member of the CCN protein family: pheblastoma
overexpressetlOV (—3.149). Similarly, EGF gene expression responsible for regulation of
cell division and proliferation was down-regulated —2.563 fold.

Figure 5 Differences in the expression of the cytokines and growth factors codingrggs.
Heatmap of the transcripts of cytokines- and growth factors- coded geneS@s laad
CECs(A). Selection of significantly and differentially expressed genes of cytok)eand
differentiation and growth facto(€). In comparison to CECs, the LESCs expressed 37
cytokine and 40 growth factor coding genes in a significantly different manne

Angiogenesis

48 molecules were detected in the dataset which may haveia palthological angiogenesis
in the cornea (Figure 6A). This set contained transcription factomymes and cytokines
including angiogenic growth factors as well (Figure 6B). Tihenectin geneKN1), which

is important in new vessel sprout formation, had the highest up-negu{@4.934), followed
by SERPINE1(18.854) andVIMP9 (14.243). The coagulation factor Il (thromboplastin)
geneF3 (7.054) was also highly expressed in the LESCs. The most down-sshglenes
were PLG (-2.521), TIMP1 (-1.658), FOXO4 (-1.213), TGFBR1 (-1.179) (Figure 6C).
Certain cytokines and growth factors which are also importaahgiogenesis (Figure 6D)
were up-regulated in the LESCH:B1 (24.948), C-X-C motif chemokine 1@XCL10
(15.171), TGFB1 (6.745) andvVEGFA (2.742). In addition, IL-6 and IL-8, two very potent
angiogenic cytokines, were up-regulated in these deHs:(2.57) andL-8 (5.849), similar
to EDN1 (5.504),EREG (3.836) andBMP2 (2.686) up-regulation within this cluster. Only
four of the angiogenic cytokines were down-regulated in the LE&€dic FGF -FGF1
(—-2.96),IL17F (-1.129), TGFB2(-1.106) anKITLG (-1.015).



Figure 6 Significantly expressed angiogenesis-related genes in LES@sgiogenesis is a
complex process mediated by MMPs, proteolytic enzymes and ECM pr@girSytokines

and growth factors are important players of angiogenesis with endothdladtoedtion and
EPC/stem cell differentiatiofB). Most of the angiogenic molecules belong to these molecule
types(C andD).

Discussion

Absence or removal of the LESC layer in animals can causectigefecorneal
epithelialization, indicating the essential importance of theie m corneal surface biology
and regeneration [15,16]. In humans, besides injuries and diseasesctiysfan LESC loss
can lead to LESCD; other causes, such as genetic diseasemusarabnormal development
of the anterior segment and the limbus, while Steven Johnson syndromeg ¢inmbitis or
ocular pemphigoid are inflammatory processes which can lead t&CRESimilar to
cytotherapy, radiation or surgery in the limbal region [9,17]. Altogieta plethora of causes
can lead to decreased transparency of the cornea, inflammation amdalc
neovascularization (key features of LESCD), resulting in a seandspainful disease with
subsequent loss of vision [18]. The inflammatory processes and tlogengsis very likely
change the environment, so that the small niche of stem celtsnbscnon-functional
[6,10,19]. Therefore, the treatment of LESCD wethvivocultured and functional LESCs is
becoming widely accepted today [20]. Many other types of cellsydimd embryonic stem
cells, bone-marrow and Wharton jelly-derived stem cells haea b&tempted for LESCD
treatment in animal models with relatively good outcomes [17,21]. bédisbased therapies
in the clinical practice, however, use limbal epithelial celisuced on 3 T3 mouse feeder
fibroblast supplemented with fetal calf serum [22]. The risk ofrimeu (animal) viral
transmission during such procedures is not yet known [23,24]. Althougimiba& lepithelial
cells cultivated on mouse feeder cells can replace the wounddaeligpi cells, the
mechanism how they make the local tissue more suitable for risstam cells to recover
their stemness and differentiation potential has been unknown [17]s@&@imsingly “gold
standard” cell therapy method would not be able to compete with hummaalanaterial-free
product that would be ideal for clinical use. Furthermore, the overall suctess tlae above
therapies has been reported to be 76% [24], although, the right quant&ilsoheeded for
recovery has not yet been reported. In stem cells based thetbpigairity of the product
(the percentage of stem cells within the cell culture) igial for the outcome [24-26].
LESCs lose their multipotency during epithelial expansion and diftetion [27], therefore,
it is important to distinguish between LESCs, TAMs and CEChinvthe cell culture used
for therapy. In our cell cultures, the SRY related HMG-box famiember SOX9 was up-
regulated, while SOX6 expression was down-regulated, indicating no clgemidr
differentiation but high proliferative capacity of the LESCs. keminore, S100A4 and A9
proteins have been found to be potent markers of limbal epithelial @gllp [28] - in our
LESCs,- theS100A4was down-regulated indicating they are not crypt cells. Others ha
reported thaCXCL12 COL2A ISL1, FOXA2 NCAM1 ACAN GJBlandMSX1can be used
as putative markers to identify LESCs [29]. We could not confirnifardnce in these genes
between the LESCs and the differentiated CECs, with the eaneptiFOXA1 which was
up-regulated andsJA1 down-regulated (also known as negative marker for LESCs [30]).
Similarly, Wnt2, Wnt6, Wntl11l and Wnt16b have been reported to be typicglhgssed in
the limbal region and to be important for the LESCs proliferation B/H could confirm that
WNT1and WNT5Aexpression was up-, whi/NT3Awas down- regulated in our LESCs,
along the wider lines of the results mentioned above. Surface rpfetal analysis found



higher positivity for CD146/MCAM, CD47 and CD117/c-kit in LESCs compde@ECs,
showing a pattern typical for stem cells and higher multipotencthé earlier cell type
(Additional file 1: Figure S1). This phenotype analysis furthewved simply using classical
MSC markers, such as CD90/Thy-1 and CD73, it is not possible toedifigte between the
two cell types.

LESCs play a key role in limbal tissue healing and remodedipgocess which usually starts
with ECM breakdown [32,33]. The latter is mediated by MMPs, whiclewe-regulated in
the LESCs and their pattern implicates a preferred degoadati collagens to rebuild the
ECM [32]. Laminins and vitronectin are typically found in the limibalsal membrane
[34,35] and their genes were up-regulated in our LESCs.

For attachment to new ECM proteins, integrins and CAMs are atsmtal, the expression
of which is typical for the tissue of origin. Indeed, the integsipression is able to define the
cell phenotype and seems to be useful in classifying MSCs frowusaissues besides the
well-known MSC markers we have reported before [13]. The resultsirofene array data
analysis strengthen the fact that LESCs cultured in mediunaioord human serum as the
only growth supplement can keep their integrin and CAM patternréfhetes them to their
limbal tissue phenotype. Surface protein level analysis found sxpression levels of
CD29/Integril and CD44/HCAM in the two cell types, while CD54/ICAM1 positivitgs
higher in the CECs (Additional file 1: Figure S1).

Wound healing can often lead into angiogenesis, which can haveyanweortant and
controllable pathological role in the limbus [33,36-38]. Fibronectin isngpoitant ECM
protein in expanding cells as well as angiogenesis, mediatragutsg, de novovessel
formation and endothelial progenitor/stem cells differentiation @mdothelial cells [39-41].
The two highest up-regulated gene products found in our LESCsteeleave an opposite
effect on the angiogenesis pathway: R-tan induce-, while CXCL10 can inhibit the
formation of new vessels [42-46]. Interestingly, human limbal ejpgih@logenitor cells have
been found to express CXCL10 [47] while its absence could decreats/¢hef IL-6 in
mice corneas [48]. The expression TWEFB1 is very important in wound healing and in
inducingVEGF expression, which was also up-regulated in the LESCs, capablevokjng
angiogenesis in the damaged tissue [49,50]. Endothelin-1 has many atickéhdirect
angiogenic effects upon the endothelial cells and fibroblastpreviokes the release of the
pro-angiogenic compounds like VEGF from endothelial cells and stterithe fibroblasts to
produce pro-angiogenic proteases [51,52]. Altogether, our results intheateoth pro- and
anti-angiogenic genes are expressed at the same time obatarced way in LESCs,
maintaining an avascular state in the normal cornea. Loss afahisol can be initiated by
either a decreased production of anti-angiogenic moleculescaised production of pro-
angiogenic and inflammatory factors. Although transplantation of ISH&S been known to
suppress corneal inflammation and angiogenesis, the molecular msachaow LESCs
participate in the processes has not yet been fully understood [9,17,36,531824! hiche
cells have been found to have a differentiating ability towardsogegic progenitors and
inhibition of endothelial differentiation of LESCs [53].

IL-6 and IL-8 can be secreted by many cell types during inflatiam or differentiation.
These cytokines play a role in inflammation, angiogenesis and dif§&€entiation-related
processes [55]. Their gene expressions were up-regulated in LES&€$2.570) andL-8

(5.849). Using the IPA analysis, the IL-6 signaling pathways Weteer confirmed of being
present in our LESCs compared to CECs, together with some ogieknown pathways



described below (Additional file 2: Figure S2A). The first spethway or network affected

is the IL-13 and TNFe mediated release of IL-6 from activated cells. This siggasrfurther
mediated by NkB and JNK (JUN, C-Fos) transcriptional factors and can lead to IL-6 and IL-
8 release in parallel to collagen type | production (COL1A1l), wisadhe major component
of connective tissue. The second network affected is the autamrine6-mediated-IL-6-
secretion through RAF1, MAP2K and ERK1/2. This process needs to lagediby the IL-6
receptor (IL6R), however, the JAK-STAT pathway (STAT3) @so induce release of
angiogenic factors such as VEGF and activation of SOX3. As shownrebief our dataset,
IL1B was highly up-regulated with a 24.948 fold change hand-in-hand with gptoec
IL1IR1 (13.972) andL1A (7.853). Although a subunit of the receptor for IL-6 coding gene
was down-regulated H6R (-2.640), a member of the type | cytokine receptor family -
oncostatin M receptoiQSMR, was found to be highly up-regulated (15.366) in the LESCs.
This receptor can form heterodimers with gp130, which is a sigmedducer for IL6R. It can
also provide an intracellular signal through Janus kinases afterdlibinding. In addition,
many other ligands can be associated with gp130 (and the ILigtoees well) such as IL-
11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factol) and cardiotrophin 1
(CT-1). Activation of RAS and MAPK signaling can then be connected to thf theHiated
pathway. In our dataseésOCS3wvas up-regulated (1.397), whiB®OCSlwas down-regulated
(-1.120). Four MAPKs were slightly up-regulated in the LES@AP2K1(2.088),MAPK1
(1.339), MAPK14 (1.011) andMAPK3 (1.163), while the members of the dB- pathway
were down-regulatedlFKB1 (-1.178) andNFKBIA (-1.193). CXCL10 with high amount of
IL-6 has been shown to induce migration of trophoblasts through activatiiwe @XCR3
receptor [56]. InterestinglyCXCL10was among the highest up-regulated genes (15.171) in
the LESCs compared to CECs (Additional file 2: Figure S2B).

The pathways in which IL-8 participates are in general more comiplen for other
cytokines. IL-8 can be produced by any cell possessing toll-likepters during
inflammation, and it is one of the most known chemotactic factormdatrophils and
activator of immune cells [57]. (Additional file 3: Figure S3A). dddition, IL-8 has been
described as potent pro-angiogenic cytokine especially in the 58/89], although the
molecular background of such angiogenic processes has not beetes@ibed. IL-8 can
bind to G protein-coupled serpentine receptors such as CXCR1 and C>i@RBeside
immunological activation, it can induce rearrangement of cytoskgbevteins, increase the
expression of VCAM and ICAM1, and the migration as well as Veksenation of
endothelial cells and stem cell-like endothelial progenitor cellparallel with increase in
vascular permeability (Additional file 3: Figure S3B).

Our gene expression data which indicate that IL-6 and IL-8 pattcipa most of the
networks or selected pathways analyzed correlate wel tié measurements of their
secreted levels in the supernatants of the cultured LESCdeVéleof these cytokines was
continuously high in the culture supernatants at days 9 (5885.24 + 685.6 pgicthllBa
(6147.14 £+ 530.21 pg/mL) with no significant difference at both time pdmts 0.14)
(Additional file 4: Figure S4). For comparison, the physiologiclle¥dL-6 in the tear fluid
of human subjects is very low (2.4 pg/mL) (data from our group undeicptibh). IL-6 can
participate in many stem cell-related processes and has fbaed to be important in
maintaining the needed niche for LESCs and LESC-epithelial attena[60]. In bone
marrow-derived stem cells, IL-6 is needed for immunosuppressionhwdifect of the
LESCs has been described with different possible mechanisms [11].



Overall, our gene selection and networks are somewhat different threnwell-known
canonical pathways described so far because they were gerteratedoand were based on
our data and the already published networks from literature. lainsnto be further
investigated and confirmed whether these pathways are reflectthe same manner at
protein level bothex vivoandin sity, giving a possibility of finding a specific phenotype and
genotype profile for LESCs. These can clearly be benefiaialreating ocular surface
diseases and discovering innovative therapies aided by the gene arrayogchnol

Conclusion

The human eye as an organ possesses great potential for regersnd cell therapy, in

particular, its corneal surface which contains LESCs. Idengfymolecular markers and
upstream regulators in the LESCs using genome-wide microaarssctiptional profiling, as

well as verification of those at protein expression level cavige a better identification and
more specific understanding of the signaling molecules assdaiath these cells, therefore,
better application ocular surface disease treatment. Overalbumd that the human LESCs
play a crucial role in cellular movement and adhesion, epithelidreliftiation and tissue
repair, as well as angiogenesis and extracellular matrix integrity
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Additional files

Additional_file_1 as TIFF

Additional file 1: Figure S1. Surface protein level analysis by FACS. Positivity of the
LECSs and CECs for CD73, CD90/Thy-1, CD117/c-kit, CD146/MCAM stemness markers,
CD29/Integringl, CD44/H-CAM cell adhesion molecules and CD47 cell viability and
immunoregulatory marker, were determined by flow cytometry. CD45 was ssedegative
control in these cells (Data shown are Mean = SD; p < 0.05 *, p < 0.01 **, p < 0.001 ***; N
=6).

Additional_file_2 as TIFF

Additional file 2: Figure S2. Networks generated by IPA which are related to the IL-6
signaling pathway. The colored genes appear in the studied dataset, red colsedeape
while green colored genes are down-regulated. The grey colored genes ditheotdi off
level. (A). 44 upstream regulators of the IL-6 signaling pathway in LESCs grbeped
upon biological functions of a molecule type (B).



Additional_file_3 as TIFF

Additional file 3: Figure S3. Networks generated by IPA which are related to the IL-8
mediated signaling pathway. IL-8 plays a key role in innate immunitai)as pro-
angiogenic cytokine (B).

Additional_file_4 as TIFF

Additional file 4: Figure S4. Secreted IL-6 and IL-8 levels in LESC cultures. The levels of
secreted IL-6 and IL-8 as measured by ELISA in the supernatants of longE&G

cultures. (N = 21, p values were determined by student’s T test).
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