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Various density-functional relations are established involving functional expansions for quantities of
interest. The central identity expresses an arbitrary well-behaved functional F[p] in terms of the actual
density p(x) and the functional derivatives of F[p] evaluated at the density p(x). A number of useful
consequences of the formulas are given.
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I. INTRODUCTION

The first part of this paper establishes an identity of a
rather general nature and validity for an arbitrary func-
tional F[p] in density-functional theory. Here p(x) is the
electron density in an atom or a molecule, which satisfies
the normalization condition

f dx p(x) =N,
where N is the total number of electrons and the integra-
tion extends over all space. Some examples of functionals
of interest are the kinetic energy T[p], the electron-
electron interaction energy V„[p],and the exchange-
correlation energy F.„,[p]. The second part of this paper
develops a number of particularly interesting conse-
quences.

In Ref. [I], starting from the virial theorem, one of the
authors derived the following identity for the kinetic-
energy functional To[p] of an inhomogeneous system of
noninteracting fermions:

To [p]= fdx p(x)To (x; [p ] )

2
' f f—d—x,dx~(x, )p(x2)To (xi x2'[p])

1+
, f f f—dx,dxzdx3p(x, )p(x2)p(x3)

shown that for the homogeneous noninteracting Fermi
gas in one and two dimensions, the series expansion (2)
terminates after a few terms, thus giving the kinetic ener-
gy in terms of the first few functional derivatives.

Functional expansions such as Eq. (2) have been
presented in several recent papers [2—4]. In Sec. II we es-
tablish that for any general, well-behaved functional F[p]
an identity or functional expansion such as Eq. (2) holds.
In Sec. III we develop a number of consequences. These
results are of interest in density-functional theory for two
reasons. First, they may reveal interesting connections
between quantities of physical interest. Second, they may
permit the evaluation of some needed but unknown quan-
tity in terms of other quantities. In particular, they may
help in the evaluation of some quantity in terms of its
functional derivatives.

II. GENERAL FUNCTIONAL EXPANSION

The identity in question is provided by the following.
Theorem I. For any well-behaved function F [p],

F[p]=C+fdxp(x)F'(x;[p])

dxdx2px p x F" x x p

1+ f f f—dx, dx2dx3p(x&)p(xz)p(x3)

X To (xi, xp, x3,' [p] ) XF"'(x„x2,x3;[p])—.. . (4)
The primes on the quantities in the foregoing equation
denote functional derivatives with respect to the density
p, e.g. ,

&'To[p]
T ( o„x[xp])—:

If the quantities To(x; [p]),To (x„x2,[p]), . . . are
known, Eq. (2) can be regarded as a functional expansion
of To[p] in terms of the density p(x). In Ref. [I] it is also

Here "well-behaved" means that all of the indicated func-
tional derivatives exist and that the indicated functional
series converges, at least in a region near p. The value of
the constant is zero if the region of convergence of the
series includes p=0 and F [0]=0. However, there may
be cases in which p=o is not included in the region of
convergence and for which the value of the constant is
not zero. See below and the Appendix.

For a preliminary incomplete proof of Eq. (4), consider
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the expansion

F[p2]=F[p]]+fdx[pz(x) —p, (x)]F'(x;[p, ])

+—f fdx, dxz[p2(x, ) —p, (x&)]
1

X [p2(x2) —p&(x2)]

XF"(xi,x2, [pi])+
where the successive functional derivatives are all evalu-
ated at the density p, . Taking p, =p and p2=0, Eq. (4) is
immediately obtained. It is not necessary, however, to
view Eq. (4) as an expansion about zero density, as shown
in the Appendix. All that is necessary is for the function-
al derivatives to exist and the series to converge, at the
density of interest. One could say that F[p] must be
"reasonably analytic" at p. The Appendix gives the
proof of Eq. (4) for the case in which p=O is not neces-
sarily i~eluded in the region of convergence.

Comment 1. The significance of Eq. (4) from a physical
point of view is that it provides an expression for the
quantity F[p] in terms of the actual density p(x) and
functional derivatives, which can be related to kernels or
correlation functions associated with the atomic or
molecular system (see, e.g., [1,2]).

Comment 2. Equation (4) is the functional analog of an
identity for functions that can be derived as follows. Sup-
pose

f(y)=f (x)+(y x)f'(x)+ —,'(y —x) f"(x) —. (6)—

5V[p], , p(x )=e dx
5p(x} (x—x'~

5'V [pl e'
V,"(x,x') =

5p(x }5p(x')
~
x—x'

~

V,'"'(x,x', x",. . . )=0, n ~3

V,'(x; [p])= (9)

(10)

and the right-hand side of Eq. (4) becomes

fdxp(x}V,'(x; [p]) ,'—f—fdxdx'p(x)p(x') V,"(x,x')

=(1 ,'—)e—ffdxdx', =V, [p] . (12)

Comment 7. An important example of the application
of Eq. (4) for which the constant is not zero would be the
description of a molecular electronic density as a pertur-
bation of superposed atomic densities.

III.SOME ADDITIONAL IDENTITIES
FOR FUNCTIONAL EXPANSIONS

F[p]=fdx f(p(x)), (13)

where f does not contain gradient terms or higher-order
derivatives of p(x). We note that for such a functional,
the Grst few functional derivatives are

A. Strictly local functionals

By a strictly local functional we mean here a functional
that can be written as an integral of a function f of p(x),
1.e.,

Then it is readily verified upon similarly expanding
f'(y), f"(y), . . . that

F'(x; [p] )=f '(p(x) ),
F"(x„x2,' [p] )=f"(p(x, ) }5(x,—xz ),

(14)

f(x) xf'(x)+ ,'x f—"(x)—
=f(y) —yf'(y)+ ,'y f"(y)— =c—onst . (7)

This remark is due to Cedillo [18].
Comment 3. For functionals of physical interest, the

region of convergence of Eq. (4) often includes p =0, with
F(0)=0. This is the case for the functionals mentioned
in the Introduction. In what follows, for convenience, we
take the constant in Eq. (4) to be zero.

Comment 4. The validity of Eq. (4) is not dependent on
whether or not the functional F[p] obeys any simple
scaling relation. Thus, while a scaling property can be
used to establish Eq. (4) in particular cases, the converse
does not hold, i.e., the relation (4) does not imply the ex-
istence of a scaling property for F[p].

Comment 5. Equation (4) was used in Ref. [2] in con-
nection with an expansion of what was there called the
hardness functional.

Comment 6; An example where the expansion (4) ter-
minates after a few terms is provided by the classical
Coulomb interaction energy

F"'(x»xz, x3.[p] }=f"'(p(x& ) )5(x& —x2)5(x& —x3), (16)

where f '"'(p) =d "f(p)/dp". —Hence, substituting Eqs.
(14)—(16) into Eq. (4), we obtain the functional expansion
for functionals satisfying Eq. (13),

ao
( )n

—1

F[p]= g, fdx[p(x)]"f'"'(p(*)) . (17)n!

This type of functional includes the class of homogene-
ous functionals

F[p]=fdx[p(x)] (18)

——'k(k —1)(k —2)+ . ] .6 (20)

where the index k is a positive number. For such a func-
tional

f d x p(x)f '(p(x) )=kF [p]

and the identity (17) is equivalent to

0=fdx[p(x)] [1—k+ —,'k(k —1)

V, [p]= ' f fdxdx'P 'P ",

In this case

(8)
Equation (20) is obviously correct since the quantity in
the second set of square brackets is the binomial expan-
sion for (1—1)". As another example, the reader may
easily verify the identity (17) for the functional
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F[p]=fdxp(x)lnp(x) . (21)

I„i[p]= fdx[p(x)]" 'x Vp(x)f'"'(p(x)), (23)

where n is a positive integer. Integration by parts leads
to the identity

I„i[p]+ I„[p]=———f dx[p(x)]"f'"'(p(x)) .

(24)

Multiplying both sides of Eq. (24) by (
—1)" /(n —1)!

and summing over n from 1 to ~ we notice that on the
left-hand side all terms but the first cancel out, leaving
only the term on the right-hand side of Eq. (22). The
summation on the right-hand side yields precisely the
series (17). This establishes the identity (22) for the strict-
ly local functional of Eq. (13). [Note that if the number
of spatial dimensions is d rather than 3, the factor —,

' in

Eqs. (22) and (24) must be replaced by 1/d. ]
Comments For so.me particular F[p] such that F and

5F/5p(x) can be calculated, Eq. (22) can be used as a test
of whether F[p] is strictly local. The identity (22) is a
generalization of the one obtained in Ref. [8] for a spher-
ically symmetric system.

Suppose now that the functional F[p], in addition to
being strictly local, also satisfies a scaling relation of the
form

F[pi. ) =~"FIp)

where p&(x) =A, p(A, x) and A, is a positive scale factor. It
is well known [5—7] that in this case F[p] obeys the iden-
tity

F[p]=——fdxp(x)x V
1 5F[p]
k 5p(x)

(26)

Theorem 2. For the functional defined by Eq. (13), the
following identity holds:

F[p]=—
—,
' fdxx Vp(x)f'(p(x)) . (22)

Proof. Although a shorter proof is indicated below
[Eqs. (33) and (34)], we first follow a longer path to show
the connection and consistency with the expansion (17).
Consider the functional I„[p)defined by

in density-functional theory [9,10]. As examples, for the
noninteracting kinetic-energy functional To[p], the scal-
ing index k =2, whereas for the exchange (only) energy
functional E„[p],k= 1. Equation (28) shows then that
To[p] and E„[p]are homogeneous functionals of degree

and —', in p(x), respectively, i.e., the results of the
Thomas-Fermi model and the Dirac exchange model
[11].

5F[p] Bg 3 Bg

5p(x) Bp(x) Bx; Bp;(x)
(32)

As is easily seen from an integration by parts, the func-
tional defined by Eq. (29) can also be represented as

F[p) = —,' f dx x—.Vrg(x, p(x), Vp(x)), (33)

B. Inclusion of gradient terms

%'e now wish to extend the analysis to the case where
the functional F [p] also depends on the gradient of the
local density, i.e., we consider a functional of the form

F[p]=fdxg(x, p(x), Vp(x)), (29)

where g is a function of x, p(x), and Vp(x), but does not
contain higher-order gradients of p(x). By allowing g to
depend explicitly on the position variable x, the function-
al (29) also covers the case of the so-called weighted-
density approximation [cf. Eqs. (65)—(73) below].

Theorem 4. For the functional defined by Eq. (29), the
following identity holds:

F[p]+—fdxx. Vp(x)
1 5F[p]

5p x

dx p (x) ——x —,(30)
1 Bg Bg
3 J Bp (x) Bx

where

p, (x)—:c)p(x)

Bx~

and summation over repeated indices is implied (here and
in what follows).

Proof. For the functional (29), the functional deriva-
tive is given by

fdx[—3p(x)+x Vp(x)]
1 5F[p)
k 5p(x)

(27)
where Vz indicates the total derivative with respect to x,
1.e.)

dxpx 'px = 1+—Epk
3

(28)

Proof. Equation (28) follows directly from Eqs. (14),
(22), and (27).

Comments. Equation (28) is well known and forms the
basis of the (strictly) local-density approximation (LDA)

where Eq. (27) is obtained from Eq. (26) by integration by
parts.

Theorem 3. A strictly local functional that obeys the
scaling relation (25) is homogeneous of degree (1+0/3),
i.e,. satisfies the relation

'l

F[p)= ——fdx x +x Vp +x.Bg Bg Bg ~pi

3

From Eqs. (29), (32), and (34) it follows that

F[p]+—f dxx Vp(x)
1 5F[p]
3 5p(x)

1 Bg 8 Bg 0 ~pidx. x +x-Vp +x.—
3 Bx i3x,. Bp,. ' Bp, Bx,
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Upon integration by parts, one finds

1 Bg 1 BgdXX.Vp — =— dx6, p3 Bx, Bp, 3 "'Bp,

+ dXXJ
1 Pg Bg (36)

5F[p] Bg 2 8 Bg

5p(x) Bp(r ) r Br Bp'(r )

and the identity (40) becomes

(44)

The functional derivative (39) becomes the simple expres-
sion

so that, altogether, the right-hand side of (35) yields
r

,
' f—dxp, g + ' f—dxx,

Bp 3 Bp) Bx)

Bp.

BXJ

1 BgdXX
3 BX

(37)

(38)

In this case, the functional derivative (32) becomes

~F[p]
5p(x) Bp(x)

Bg 7 p 1 Bg

~lvp lvpl lvpl ~lvpl

(39)

and the identity (30) becomes

F[pj+ —f dxx Vp(x)
1 fiF[pj
3 5p(x)

=—f dx IVp(x)l
1 Bg Bg

~lvp(x)l
X (40)

Proof. Equations (39) and (40) follow from Eqs. (32)
and (30), respectively, since in this case

Since the middle term in large parentheses of this expres-
sion vanishes, we are left with the expression on the
right-hand side of Eq. (30). Q.E.D.

Corollary. In most cases of practical interest, the func-
tion g depends on the magnitude of the gradient, i.e., on

2 2 ' ' 2 1/2

Ivp(x)l= p + p +
Bx By ()Z

F[ ]+ f dr r '(r)

4~ "d„„2p(„) ag rag
3 o Bp'(r) Br

(45)

The reader may verify Eq. (45) directly starting from the
identity

F[p]=4m f dr r g(r, p(r), p'(r))
0

f dr r (r,p(r), p'(r)),
3 0 dr

(46)

g(r, p(r), p'(r)}= fd&g( xp( )x, Vp( )x),= 1
(47)

where the integration is over the solid angle, we find that
the functional

F[pj= f dxg(x, p(x), Vp(x))

=4m f dr r g(r, p(r ),p'(r ))

satisfies Eq. (45).

(48)

where dg/dr denotes the total derivative with respect to
the variable r. Equation (46) assumes, of course, that for
r~~ and 0, the function g is such that the limits
r gI0 both vanish.

Comment. Equation (45) also obtains for the spherical
average of the functional defined by Eq. (29). Thus,
defining the function g(r, p(r), p'(r)) by

Bg a ag alvp
Bx, Bp, (x) Bx, alvpl Bp,

a ag
~

I vp I I vp I

Vp ag
lvpl ~ Vpl

(41)

C. Generalized gradient approximation

The foregoing section applies, in particular, to the so-
called generalized gradient approximation (GGA)
method, which has been applied in recent years in partic-
ular to the exchange (only) functional E„[p][12—16]. In
the GGA (also referred to as the gradient expansion
method up to second order), functionals of interest are of
the form

leading to Eq. (39), while F[p]=fdxg(p(x), IVp(x)l) . (49)

Bg Bg P) vp. Vp Bg Iv I

Bg

ap, ' alvpl Ivpl Ivpl &Ivpl alvpl
'

(42)

leading to Eq. (40).
Of particular interest is the case of spherical symmetry.

In this case,

p(x) =p(r ),

Note that here the dependence of g on x is only through
p(x) and IVp(x)l; hence the last term on the right-hand
side of Eq. (40) is absent and the latter becomes

F[p]+—fdxx Vp(x)
1 ~F[p]
3 5p(x)

=—fdxl Vp(x) I
. (50)

8 Vp x

x Vp(x)=rp'(r), r=lxl
lvp(x)l =p'(r) .

(43)
Comments. In the absence of gradient terms in the

function g, the right-hand side of Eq. (50) is zero, thus
reproducing the identity (22) of the LDA, Also, Eq. (50)
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provides a criterion and test of the extent to which the
GGA is, or is not, satisfied for a given functional F [p].

Let us now assume that F[p] also satisfies the scaling
or virial relations Eqs. (25) —(27). In this case, when these
are combined with Eq. (50), we find the relation

FG [p]= f dxp(x)3 Bg

4 Bg+ f dxlVp( )l (53)

f dxp(x)UPG (x;[p])

where

+ ' f dxlVp(x)l
B Vp(x)

GGA( . [ ])— [P]
5P(x)

F [p]=—fdx[3p(x)+x Vp(x)]UP (x; [p])
1

(51a)

(5 lb)

(52a)

Equation (53) provides a simple and precise method to
compare the relative contributions of (strictly) local and
gradient terms to the value of the functional FGGA[p].

The two most prominent examples to which Eqs.
(49)—(53) apply are the exchange-energy functional E„[p]
and the (noninteracting) kinetic-energy functional To [p].
In the GGA, E„[p]is written as

Ex [p)= fdxex(p(x), IVp(x) ),
where e denotes the exchange-energy density. This ex-
pression must satisfy Eq. (50). The so-called exchange
potential v„(x;[p] ) is the functional derivative

—V.
Bp(x)

Vp(x) Bg
Vp(x) BlVp(x)l

(52b)

U„(x;[p])=
&E.[p)

(55)
5p(x)

E„[p]and U„(x;[p])are related via the scaling relations
with the index k = 1; explicitly [5,6]

Equation (51b) represents the generalization of Eq. (28) in
the GGA. When the expression (52b) is substituted in
Eq. (5lb), we find that the latter can be reexpressed (after
integration by parts) as

E [p]=—fdxp(x)x VU (x;[p]) .

In the GGA, u (x;[p]) must be evaluated via Eq. (52b)
with e„(p,lVpl ) substituted for g. We then find from Eqs.
(51)—(53) the following equivalent relations for E [p]:

E„[p]= fdx[3p(x)+xVP(x)]u (x; [p])

=—fdxp(x)U„(x;[p])+—fdxlVp(x)—
B Vp x

(57a)

(57b)

=3 Be, Be,=—f dxp(x) + f dxlVp(x)l (57c)
Bp x B Vp x

The (noninteracting) kinetic-energy functional Tp[P] obeys the scaling relations (25)—(27) with the index k =2; ex-
plicitly [5,6,1]

&To[pl
Tp [p]= —— d x p(x)x.V0 Bp(x)

In the GGA, To[p] is written as

Tp "[p]=f dxtp(p(x), lVP(x)l),

where to denotes the kinetic-energy density. The expression (59) must satisfy the identity (50). Also

(58)

(59)

&To I P) Bto Vp(x) Bto

5p(x) Bp(x) lVp(x)l BlVp(x)l

In this case, Eqs. (51)—(53) yield the following equivalent expressions for To [p]:

(60)

fiTGGA [
5P(x)

Bt0 4+-
Bp(x) 5

gTGGA [ ]

5P(x)

=—fdxp(x)—3

5

=—fdxp(x)
4
5

TpGGA [p] = fdx p(x)—=3 1 Btp+—f dxlVp(x)l
5 BVpx

Btpf dxlVp(x)
B Vp x

1 Bt0

5
——fdxp(x)

Bp(x)

(61a)

(61b)

(61c)
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t „(p,lvpl)= a[p(x)]'"+bfi 5n Vp(x)
rn px (62)

The most frequently encountered functional To[p] in
the GGA is the Thomas-Fermi-Weizsacker (TFW} func-
tional (see, e.g., [1] and references therein) in which
to~(p, (Vp~ ) is taken as

~exE„[p]=fdx[3p(x)+x Vp(x)]
Bp(x)

(69a}

(69b)=3 Be 1 Be„=—fdxp(x) —— dxx.
4 Bp(x) 4 Bx

For the (noninteracting) kinetic energy (k =2), Eqs. (67)
become

where a and b are constants. For this functional one has,
using Eq. (60), WDA Btp

To [p]=—fdx[3p(x}+x.Vp(x)]
2 Bp(x)

(70a)

5TTFw [pl
5p(x)

a—[p(x)] i
3

Vp(x) 2 V p(x)
p(x) p(x)

(63)

1 Bto
dx x'

5 Bx
3 Bto=—fdxp(x) (70b)
5 Bp(x)

As the simplest example of E„[p],consider the
functional [3]

and the reader may easily verify that Eqs. (61a) and (61b)
are satisfied by TTFw[p].

E„DA[p]= e —f dx p(x), e„=—e
1 2 p(x) (71)

5FwDA[ ]
5p(x) Bp(x)

(66)

When combined with the scaling relation (27) we obtain
the equivalent identities

F [p]=—fdx[3p(x)+x Vp(x)]
1

k Bp(x)
1 Bg

@+3 dxx
8

(67a)

(67b)

In the case of spherical symmetry, Eqs. (67a) and (67b)
become

F [p]= f dr r [3p(r)+rp'(r)]
k o Bp(r)

4n.f dr r p(r)k +3 o Bp(r)

4~f "drr' g .
0 Br

(68a)

(68b)

Applying Eqs. (67) to the exchange energy (k =1) we
have, in the W'DA,

D. Weighted-density approximation

In the weighted-density approximation (WDA), the
functional F[p] is expressed as

F [p]=fdxg(x, p(x)), (64)

i.e., there is an explicit dependence of g on the position
variable x in addition to dependence on p(x). The WDA
is obtained as a special case of Eq. (30); in this case the
latter gives

5FwDA
FwDA[p]+ f d x x.Vp—(x)

3 5p(x)

dxx Bg
3 Bx

where now

It is easily seen that this functional satisfies Eqs. (69a) and
(69b). Moreover, the associated exchange potential u„
is given by

5EwDA

u WDA( )
5p(x) )x)

and is independent of p(x). In fact, the expression (72)
represents the exact exchange potential u„(x;[p])in the
asymptotic limit ~x~ ~ ao [17].

(72)
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APPENDIX: DERIVATION OF EQ. (4)

where the notation has been abbreviated. We also ex-
pand the quantities F'2, F2', . . . about p =p, (x). Thus

F( fF( (p2 p()

Suppose the functional F[p] is such that it allows a
functional Taylor expansion about some density p((x). In
particular, this implies the existence of functional deriva-
tives of F[p] of all orders in the function space surround-
ing the points (in function space) being considered.
Define

hp(x)=p~(x) —p, (x) .

Then we have via the Taylor expansion about p(x)

~F=F[p2] F[p(]—
[p] ~ („)

5p(x) p=p,

+—f f dx(dx2 bp(x()bp(xz)
1 5'F [p]
2 pxl px2 p pi

+ F1 Pz P1 Pz P1

+ 1 ~ ~
1

~F"=F2 ——F(' = fFI"(p2
—p) }

F[,Iv)

+ ~ ~ ~
1

etc. Equivalently,

F1=F2— F1' Pz
—P

Pz P1 Pz P1

(A6}

(A7)

+ ~ ~ ~
1

For brevity we set

5F[p] ~ 5F[p]
5p( x } p= p((x) 5p( x ) p=p2(x)

(A2}

(A3)

F1'=Fz'- F1" pz-P1

F( ~

p p p p
'

~ ~ ~

(AS)

(A9)

5p(x)5p(x') p=p, (~)
'

5'F [p]
5p(x)5p(x') p=p2(~)

'

(A4)

Using (A8), the term fF'((p2 —p() in (A5) can be rewrit-
ten as

F1 pz
—

p1 = — F1p1+ Fzpz

etc. For the subsequent development it is important to
note that the above functional derivatives are symmetric
with respect to interchange of any pair of arguments. We
rewrite (A2) as

EF=F2 —F1

F1 pz
—

p1 +— F1' pz
—

p1 pz
—p

F1pz pz p1

F, p p —
p1 pz

—
p1

+—
t

F'1" P2
—

p1 P2
—

P1 P2
—

p1 + ~ ~
1

(A5) Substituting (A10) into (A5), the latter becomes

(A10)

F fF'p =—f f—F(' [(p2 —p()(p& —p() —2p2(p2 —p()]

1 1

3f 1 P2 P1 P2 P1 P2 P1 P2 P2 Pl P2 P1 +
4t

where

(Al 1)

F— F'p = F p — pF' (A12)
P P)

Using the symmetry of F", with resect to its arguments, the first term on the right-hand side of (Al 1) can be expressed
as
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F1 P2 Pl P2 Pl P2 P2 Pl 2
F 1 P&pl P2P2

Using (A7), the right-hand side of (A13) can be written as

F1P1P1 p 2P2P2 Fl P2P2 P2 Pl

(A13)

(A14)

With (A13) and (A14), (Al 1) becomes

F'P =— F1'P1P1 —— F'2'P2P2

+
I

Fl P2 Pl P2 Pl P2 Pl 3p2P2 Pl P2 pl

(A15)

The pattern is now clear and may be continued in such a way that the quantity F'1"' becomes multiplied by pip, . pl,
from which is subtracted the quantity F2"' multiplied by p2P2 p2. We thus arrive at the result

F— F'p =6 ——' F"pp+ — F ppp
—— (A16)

where the notation (A12) is used. Apart from a possible constant term (see comment 3 in Sec. II), (A16) is the same as
Eq. (4) in the text.

[1]A. A. Kugler, Phys. Rev. A 41, 3489 (1990).
[2] R. G. Parr and J. L. Gazquez, J. Phys. Chem. 97, 3939

(1993).
[3] A. Nagy, Phys. Rev. A 47, 2715 (1993).
[4] A. Nagy (unpublished).
[5] S. K. Ghosh and R. G. Parr, J. Chem. Phys. 82, 3307

(1985).
[6] M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
[7] H. Ou-Yang and M. Levy, Phys. Rev. A 44, 54 (1991).
[8] Q. Zhao, R. C. Morrison, and R. G. Parr, Phys. Rev. A

50, 2138 (1994).
[9] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[10]W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[11]See, for example, H. A. Bethe and R. Jackiw, Intermediate

Quantum Mechanics, 3rd ed. (Benjamin/Cummings, Men-

lo Park, CA, 1986), Chap. 5; N. H. March, Self Consisten-t
Fields in Atoms (Pergamon, Oxford, 1975), Chaps. 3 and 7.

[12]J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
[13]A.D. Becke, J. Chem. Phys. 84, 4524 (1986); Phys. Rev. A

38, 3098 (1988).
[14]A. E. DePristo and J. D. Kress, J. Chem. Phys. 86, 1425

(1987).
[15]S. H. Vosko and L. D. Macdonald, in Condensed Matter

Theories, edited by P. Vashishta, R. K. Kali, and R. F.
Bishop (Plenum, New York, 1987), Vol. 2, p. 101.

[16]E. Engel and S. H. Vosko, Phys. Rev. B 47, 13 164 (1993).
[17]J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36

(1976).
[18]A. Cedillo (private communication).


