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1 Introduction

Let us begin by considering a problem which, to the author’s knowl-
edge, was first studied by Szekeres [20] in an unpublished communi-

1

cation' and independently in a paper of Pillai [62]. We present it as

follows, albeit the formulations were different.

Problem 1. Let £ > 2 be an integer. Is it true that in every set of k
consecutive integers there exists one which is coprime to all the others?

One may immediately answer the question if %k is reasonably small.
For instance, each of two consecutive integers is always coprime to
the other. Same holds for the one in the middle of a block of three
consecutive integers. Similarly straightforward and easy considerations
can settle the cases of k =4, 5, or 6. Obviously, the larger k£ becomes,
the harder it is to directly check the possible common divisors.

The earliest documented result traces back to Erdés [19], who proved
that if k£ is larger than some positive constant kg, then the answer
should be false. However, his method is ineffective and does not give a
way to compute ky. The first effective statement was made by Pillai?
[62] half a decade later. Indeed, he showed that there always exists
an element coprime to all the others if £ < 16, but the contrary holds
whenever 17 < k < 430. The latter result was extended to every
k > 17 in a work of Brauer® [11], resolving Problem 1 completely.
Since then, various proofs of these bounds appeared in the literature,
notably by Pillai [64, 65], Evans [22], Harborth [44, 45], Eggleton [18],
and Gassko [30].

'Erdés [20] mentioned it, but no accessible publication of Szekeres discusses it,
see [33] for a complete list of them.

2In [20], this was independently attributed to Szekeres as well.

3Pillai [64] noted that between the papers of his and Brauer’s, he received a
letter from Scott, in which the constant 430 was improved to a number slightly less
than 2.5 - 10°.



2 1 Introduction

Note that the interest in the study of Problem 1 is many-folded. Here,
we briefly mention two important directions that stimulated the early
progress of the topic.

Pillai was motivated by the long standing folklore conjecture which
states that the product of £ > 2 consecutive integers can never be a
perfect power. Combining his result with further elementary methods
he verified it for & < 16, see [63]. It is well-known that a complete
solution was given by the famous theorem of Erdds and Selfridge [21].

Another closely related research area is that of prime gaps. Origi-
nally, Erdds [19] worked on lower bounds concerning the difference of
consecutive primes, but he did not discuss the consequences regarding
Problem 1. On the other hand, Brauer [11] definitely related his in-
terest in the topic to an earlier result he obtained with Zeitz [12, 5].
There, they considered an old problem of Legendre [53] on the max-
imum number of consecutive integers which are divisible by at least
one of the first m primes.

Gradually, Problem 1 itself began to attract increased attention and
was extended in many directions. There are two natural ways to take
if we intend to generalize the original question: one is to relax the
coprimality condition, the other is to replace consecutive integers with
consecutive terms of some sequence of integers. Since the related lit-
erature is very rich in each case, we give a detailed exposition of the
results.

Before starting the discussion, it is time to introduce some parts of
the terminology. This includes a more general notion of coprimality
and two strongly connected quantities, simplifying the description of
results related to Problem 1.

Let T be an arbitrary set of positive integers such that 1 € T. The
integers x and y are said to be T-coprime if ged(z,y) € T. Now
take any sequence of integers s = (s,)>2, and define two numbers,
gs(T) and G4(T), as follows. Let g5(T") be the smallest positive integer



such that there exist g,(7) consecutive terms of s with the property?
that none of them is T-coprime to all the others. Similarly, let G4(7T")
stand for the smallest positive integer such that for each £ > G4(T)
one can find k consecutive terms so that the latter property holds.
Both quantities may or may not exist, we will see examples of every
possibility later. Note that whenever s is the sequence of consecutive
non-negative integers or if T'= {1}, we suppress the dependence both
on s and 7', respectively. For instance, we write that the combined
efforts of Pillai [62] and Brauer [11] gave g = G = 17.

We start with the first type of generalizations, the relaxation of the co-
primality condition. Let d be a fixed positive integer. Caro [15] proved
the existence of ¢g(d) = ¢({1,2,...,d}) and G(d) = G({1,2,...,d}) for
arbitrary d and established the upper bounds

g(d) < 45dlogd  and G(d) < b4dlogd.

Both were slightly improved in a joint work of Saradha and Thangadu-
rai [72], in case d > 11 and d > 20, respectively. Interestingly, neither
paper contains any exact values of g(d) or G(d) for some value of d,
let it be very small.

In a recent work, Hajdu and Saradha [37] made significant progress on
the previous results. Let T" be a non-empty set of positive integers.
Provided that T" does not have “too many” elements, they obtained
effective upper bounds on both ¢(7") and G(T'). More precisely, if
there exists some constant ¢y such that for every ¢ > ¢y the number of
elements in 7" does not exceed ¢/(101log c), then

G(T) < max(425,2¢o + 1).

They derived a similar upper bound under the assumption that the
set of all primes dividing some element in T satisfies analogous restric-

“In a number of papers, this property has its own notation P(T).
SFor instance, g(2) < 63 and G(2) < 75 and the exact value can be checked by
straightforward computation using a rather modest capacity.
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tions on its natural density®. On the other hand, they also invented
a heuristic algorithm for the exact computation of ¢(7") and G(T),
in case T is given explicitly. It was used, for instance, to show that
9(2) = G(2) = 25 and that g({2* : @« > 0}) = G({2* : a > 0}) = 86.
For a comprehensive list of their calculations, see [38].

One may replace consecutive integers by consecutive terms of some
sequence of integers as well. Evans [23] was the first to study arithmetic
progressions s = (a + nd)$%, and he proved the analogue of Erdés’s
result by showing the existence of G. As in the paper of Erdds [19],
the means of effectively computing it, or at least g,, are not discussed.
Ohtomo and Tamari [60] derived the same result, but also obtained
gs < 385 for the sequence of odd numbers. Hajdu and Saradha [37]
noted that if one aims to find effective upper bounds, then either the
problem is trivial” or there is a set T such that g, = ¢(T) and G, =
G(T) hold. Unsurprisingly, the set T" is the set of all integers composed
of primes dividing d. We mention that arithmetic progressions over
unique factorization domains were also considered, see the paper of
Ghorpade and Ram [32] on this particular case.

An arithmetic progression (a + nd)$°, is essentially the evaluation of
the linear polynomial a + dz € Z[z] over non-negative integers. In
this spirit, Harrington and Jones [46] extended the scope of Problem 1
to quadratic sequences®, that is, to sequences defined by polynomials
of degree 2 with integer coefficients. Using direct computation they
gave all the possible values of g, for every monic and a specific family
of non-monic quadratic polynomials. They also conjectured that g,
exists for any quadratic sequence and is uniformly bounded. On the
other hand, they did not study G, to any extent.

6A set of positive integers T has natural density a if lim w = «, where
n—oo

T'(n) consists of elements in 7" not exceeding n.

“In case the initial term a and the difference d satisfy ged(a,d) > 1, no two
terms can be coprime.

8In certain pieces of literature, these sequences appear as second-order arith-
metic progressions.



Present thesis connects to the previous investigations and considers
Problem 1 in important sequences of integers under varying coprimal-
ity conditions. Our new results and contributions to the theory are
summarized in the remaining part of the section.

To follow in the footsteps of Evans [23], we begin the discussion with
sequences of the form

s=(f(n))hZy  [eZ]

Our main concern is the conjecture made by Harrington and Jones.
Indeed, we prove the existence of G provided that the degree of the
corresponding polynomial is at most 3. As a corollary, the existence of
g, for quadratic sequences immediately follows, providing a qualitative
answer to the conjecture. The backbone of our proof is formed by a
simple, but fruitful relationship between f and an auxiliary polynomial
arising from the resultant of f and its shifts. Based on this connection,
we explain a “greedy” approach to finding a constant kg such that for
every k > ko one can construct infinitely many sets of k consecutive
terms

fn+1), f(n+2),...,f(n+k)

so that none of them is coprime to all the others. In particular, this
proves the existence of GG5. The success of our idea relies on estimates
concerning primes satisfying desirable properties on both their size
and their relation to congruences involving f and the corresponding
auxiliary polynomial. Note that our construction of kg is ineffective,
but in principle, it can be made effective. On the reasons why we do not
make it so and for remarks on both the relaxation of the coprimality
condition and the uniform upper bound in the conjecture of Harrington
and Jones, see the end of Section 2.

In the second part of the thesis, we turn our attention to recurrence
sequences. Section 3 deals with sequences s = (s,)5, which obey a
linear recurrence relation of the form

Sntr = A1Spyr—1 + Q2Sppr—2 + -+ QrSy (TL > 0)
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for some fixed integers r > 1 and aq,as,...,a, and satisfy, in most
cases, the additional divisibility property that m | n implies s, | s,.
Let S be a finite set of primes and T be some subset of Zg, the set
of all integers having no prime factors outside S, with 1 € T'. Under
the natural assumption of non-degeneracy, we prove that both gs(7')
and G4(T') exist and are effectively bounded in terms of r and |S|. In
our reasoning, we rely on the divisibility property to construct a set T”
such that G4(T') < G(T”) holds. A key element here is a deep theorem
of Schlickewei and Schmidt [74], concerning the number of solutions to
polynomial-exponential equations. With its help, we are able to apply
results of Hajdu and Saradha [37] and verify the existence and effective
boundedness of G(17).

Restricting ourselves to binary recurrences only, that is, to r = 2,
we obtain much stronger statements. A simple characterization result
identifies linear divisibility sequences of order 2 as Lucas sequences of
the first kind®. As a superior alternative to the estimates of Schlickewei
and Schmidt, we can apply the celebrated theorem of Bilu, Hanrot,
and Voutier [8] on the existence of primitive prime divisors. Lucas
sequences of the first kind also satisfy the strong divisibility, meaning
gcd(Sm, Sn) = Sged(mm)- Lhis way, we can write g4(7") = g(1") and
Gs(T) = G(T") in place of the inequalities. The considerably stronger
construction has its benefits, in the sense that we are able to compute
every possible values of g, and G,. Let us briefly mention that as
an intermediate step we solve a problem of Beukers [7] concerning +1
elements among terms of Lucas sequences of the first kind.

Our results raise the natural question on the necessity of the divisibil-
ity property assumed. A promising study of this problem is induced
by Lucas sequences of the second kind!?. Here, the strong restrictions

9Lucas sequences of the first kind are binary recurrences with initial terms so = 0
and s; = 1 satisfying the recurrence s, 492 = Ps,4+1—@s, for some nonzero integers
P and Q.

10T ucas sequences of the second kind are binary recurrences with initial terms
so = 2 and s; = P satisfying the same recurrence as Lucas sequences of the first



on the arithmetic of the recurrences are only slightly weakened, yet
our corresponding theorem shows that already the existence of G be-
comes “rare” and that frequently, not even g, exists. Nevertheless, the
behavior is by no means chaotic, as we are able to completely classify
each phenomenon and provide strong quantitative results. In the final
part of the section, we briefly discuss linear recurrences devoid of any
specific divisibility property.

One may also wonder what happens if we drop the linearity in the
recursive definition, but keep the strong arithmetic intact. We study
this situation in Section 4. The subject of our experiment is a family
of bilinear recurrences known as elliptic divisibility sequences. Let F
be an elliptic curve over Q given by a generalized Weierstrass equation
of the form

E y2+ala7y+a3y:m3+a2x2+a4x+a6

and let P be an affine rational point of infinite order. Write the coor-
dinates of the multiples nP in the form

A?’l O’I’L
b= (B_z’B_z) (nz1)

with A,, B,,C,, € Z and gcd(A,C,, B,) = 1. Putting By = 0, the
resulting sequence B = (B,)>, is said to be anelliptic divisibility
sequence. Ward [83] was the first to define such sequences using the
bilinear recurrence relation

Bm+anfn = Bm+1BmleZ - BnJranleEn (m >n = O>7

but the definition!! we use has become more standard over time. We
prove that in this specific family of bilinear recurrences, one can obtain
the analogues of our theorems on linear divisibility sequences. Indeed,

kind.
"This is often attributed to Silverman [76], but the construction was essentially
known to Ward [83] already.
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let S be a finite set of primes and 7" be some subset of Zg. Once more,
gs(T') and Gp(T) exist and can be effectively bounded in terms of the
equation E and the set S. The main steps of the proof are identical
to those we make for linear divisibility sequences. The only change is
the application of a result concerning integral and S-integral points on
elliptic curves due to Hajdu and Herendi [35] in place of the theorem
of Schlickewei and Schmidt [74].

Note that elliptic divisibility sequences are also strong divisibility se-
quences. One may be optimistic about the complete resolution of the
related version of Problem 1, as it is the case with Lucas sequences
of the first kind. However, a similar approach would fail for various
reasons. We discuss these briefly.

Finally, in Section 4, we consider Diophantine applications. Recall that
Pillai [63] studied whether the Diophantine equation
zz+1)...(z+k—1) =1

can have a solution in unknown positive integers x,y, k, and ¢, where
k,¢ > 2. The folklore conjecture stated that it does not have any. To
verify it for k < g = 17, Pillai used the fact that one of

r,e+1,...,c+k—1

has to be an /th power itself, since it is coprime to all the others. The
idea naturally translates to similar equations consisting of consecutive
terms of some sequence of integers.

As an illustration, we consider a problem involving terms of an elliptic
divisibility sequence B = (B,)>%,. More precisely, we show that if
¢ > 2 is fixed and B; = 1, then the equation

BnBnyd- - Buyk-1)a = ?Jz

can admit only finitely many solutions in unknown integers m,d, k,
and y, where m,d > 1, k > 2 and ged(m,d) = 1. Note that B



depends on both the curve and the point chosen. This makes the
assumption B; = 1 seem to be a serious restriction. We discuss why it
is merely a technical condition and how one can eliminate it, at least
in principle. Our proof relies on the arithmetic of elliptic divisibility
sequences, explicit computations made by Hajdu and Saradha [38],
estimates on the number of primes in certain intervals, and a finiteness
result on perfect powers in B by Everest, Reynolds, and Stevens [27].
While our result is not effective, an additional condition makes it so.
We also explain how our proof turns into an algorithm which can be
applied to solve a given specific case efficiently.

As a closure to the introduction, let us mention that most of the content
can be found scattered across the papers [39, 40, 41, 36, 71]. Compared
to these our discussion is slow-paced, but more uniform and detailed.
While some of the results are left out to keep integrity, in certain cases,
we improve the earlier ones and refine the proofs as well. We also put
emphasis on a considerably exhaustive presentation of the history of
Problem 1 and related results.

Finally, we note that the author was involved in other scientific activi-
ties during his doctoral scholarship period. Since these results are only
loosely connected to the content of the present thesis, we do not include
them here and for details we refer to the papers [29, 17, 66, 42, 81]



2 Quadratic and cubic sequences

This section is devoted entirely to the study of sequences of the form
s = (f(n))>,, where f € Z[x]. We do not give them any specific name,
although for the sake of clarification, and non the less of aesthetics, we
use expressions like the sequence corresponding to f, and quadratic or
cubic sequence. In any case, we make sure that s is clearly identified
from the context. Our main concern is an extension of Problem 1 to
such sequences and, in particular, a conjecture of Harrington and Jones
[46] on the existence of g5 when f is quadratic. Note that the results
of this section can be found in a joint paper of Sanna and the author

71].

2.1 Brief overview of related results

We begin with a summary of what is already known on the topic. The
case when f is constant is not much of interest. Indeed, if f = £1, then
neither g, nor G exist, otherwise both of them do and g, = G, = 2.
For linear polynomials f(z) = a 4 dx the situation is more complex,
but, in principle, it is also solved. Recall that Evans [23] proved the
existence of GG, in arithmetic progressions and, in turn, that of g, as
well. Further, Hajdu and Saradha [37] explained how to obtain effec-
tive upper bounds for both quantities depending on d only'?. Exact
computation is also possible using their heuristic algorithm, for in-
stance, it is known that if d = 2% for some positive integer «a, then
g, = G4 = 86.

The next reasonable step is to consider polynomials of degree 2 and
their corresponding sequences. The only known result in this direction,
that appears in the literature, is due to Harrington and Jones [46]

12For each d they construct a set T such the G, < G(T). It is very straightforward
how the bound can be made dependent on d only following their explanation.

10



2.1 Brief overview of related results 11

concerning ¢s.

Theorem 2.1 (Harrington and Jones [46]). Let f(x) = ax® +bx +c €
Zlx] be an irreducible polynomial of degree 2 and let s = (f(n)),.
Suppose that one of the following holds:

i) a=1;
i) (a,b) = (2%,0) for some positive integer k;

i) Ay = b* — 4dac € {a?, —¢"}, for some positive integer k, where q
18 an odd prime.

Then gy exists and gs < 35. In particular, g; < 18 provided that
f(x) # 42? — 17.

Note that Theorem 2.1 is a combination of Theorems 5.1 and 6.1 in
[46] restricted to irreducible polynomials. For reducible quadratics
Harrington and Jones claimed g, = 17 which can be easily disproved
as the following example shows.

Example 2.1. Let f, = hZ, where hi(z) = a + dyz with a being a
non-zero integer coprime to dj, the product of the first k primes. A
simple argument shows that if s = (fx(n))32, and u = (hx(n))22,, then

Js = Gu > DPi, Where py is the kth prime number. As a consequence, g
is unbounded.

Similar counterexamples are easy to construct. The confusion seems
to come from a wrong reference to the early work of Pillai [62] instead
of that of Evans [22].

Harrington and Jones also made a conjecture on a uniform bound
for every quadratic sequence. Once again, they did not exclude the
reducible case, and hence we reformulate it accordingly.

Conjecture 2.1 (Harrington and Jones [46]). Let f € Z[z] be an
irreducible polynomial of degree 2 and let s = (f(n))>2,. Then gs
exists and g5 < 35.
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A natural question to ask is that how well-supported, either theoret-
ically or computationally, the conjecture is. We provide more related
information as the section progresses.

2.2 A qualitative answer to Conjecture 2.1

Now we begin to explain how we connect to, and extend, the previous
results. Our aim is to prove the following statement.

Theorem 2.2 (Sanna and Szikszai [71], 2017). Let f € Z[z] and let
s = (f(n)2,. If degf < 3, then there exists a positive constant
ko such that for every integer k > ko there are infinitely many non-
negative integers n with the property that none of

fn+1), f(n+2),...,f(n+k)

1s coprime to all the others. In particular, both G4 and g, ezist.

Note that Theorem 2.2 verifies the existence part of Conjecture 2.1
immediately. On the other hand, the result is ineffective and we do
not get any upper bound, let alone a uniform one, for G5. This still
leaves the problem of g, < 35 wide open.

In what follows, we give a series of preliminary results which are used
in our proof of Theorem 2.2. First, we fix some notations. If not stated
otherwise, we always take p to a be a prime number. Further, for any
x > 1 and for any set of positive integers S we put

S(z) = SN [1,al.

We also use the Landau-Bachmann O and the associated Vinogradov
symbols < and >>. The dependence of the implied constants is either
indicated by subscripts or explicitly stated. For instance, we write Oy,
<, and >;. Finally, the function v,(z) denotes the standard p-adic
valuation of the integer z.
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Note that our scope is not restricted to quadratic and cubic polyno-
mials only. Whenever a result holds in generality, we state it that

way.
Let
f(@) = age + ag_12%7 4 -+ ag

be a polynomial of degree d > 1 with integer coefficients ag, aq, ..., aq
and define

fo)=ai JI (@—(a—a)), (2.1)

1<i,j<d,i#j

where aq, s, ...,a4 are all the roots of f in C. Observe that the

polynomial f is related to the resultant. Indeed, denoting by Res, the
resultant of polynomials with respect to x, one can compute it from
the relation

Res, (f (), f(z +y)) = agy" [ (y).

The most important cases for our purpose correspond to degree 2 and
3 given by
flz) = aza® — Ay

and
f(z) = (a32* + 3aa3 — a3)*a® — Ay,

respectively. Here, Ay stands for the discriminant of f.

The following lemma shows that the auxiliary polynomial f is not a
random construction, it is related to the solvability of certain systems
of congruences involving f.

Lemma 2.1. Let f € Z[z] be a quadratic or cubic polynomial. If there
is a prime p 1 6aq such that p | f(r) for some positive integer r, then
the system of congruences

{f(n) = 0 (mod p)
f(n+r) = 0 (mod p)

has a positive integer solution n.
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Proof. Let aq,as, ..., aq be the roots of f in the algebraic closure of
the finite field F,. In view of (2.1), we can assume that oy — e =7,
where 1 is considered as an element of IF,. We distinguish between the
cases of degree 2 and 3.

If d = 2, then by the Viéte’s formulas we have a; + ay € F,. Since
p > 2, the roots o and a3 are in IF,, and our claim follows.

In case d = 3, we split the proof. If f has a root in [F,, then it is either
one of a; or ap, and hence oy, ay € Fy, or it is a3, in which case o and
oy are the roots of a quadratic polynomial in [F,. Proceeding as in the
case d = 2, we get oy, ay € F),. On the other hand, if f is irreducible,
then any Galois automorphism of f over [F, which sends a; to s also
sends as to az. Thus

r=01 — Qg = Qg — Q3
and
3an = (a1 + ag + a3) — (a1 — az) + (g — ).

By p > 3, this implies ay, g € F, which, in turn, concludes the proof.
[

A natural question to ask would be that why we cannot draw the same
conclusion for polynomials of higher order. As the following exam-
ple shows, the statement of Lemma 2.1 is no longer true for quartics
already.

Example 2.2. Consider the polynomials f,(z) = (z — a)* + 1, where
a € Z. Since fo(x) = x* +1 is irreducible so are all f, in Z[z]. Further,

falz) = 212 + 82% — 1122 + 256
for every a and we have 7| f,(3). However, the congruence
fan) =0 (mod 7)

does not have a solution at all. Note that similar infinite families are
easy to construct.
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We take a short detour to explain how we aim to apply Lemma 2.1.
Suppose that there is an abundance of primes p dividing some f ().
For each r, we can find an n so that f(n) and f(n+r) are both divisible
by p. Provided that £ is large enough one can expect to construct sets
of consecutive integers

n+1ln+2,...,n+k

with the property that only a few terms among the corresponding
evaluations

fn+1), f(n+2),...,f(n+k)

can be coprime to all the others. The problem lies with these excep-
tional terms. However, we may not actually need every p and if there
were really enough of them, we can hope to spare some. Thus handling
the outlying terms should not cause any trouble.

The following results aim to give our idea a sufficient support and, in
turn, to prove Theorem 2.2. First, we mention the strong connection
between the Galois groups of f and f over Q, since it is fundamental
to some intermediate estimates.

Lemma 2.2. Let f € Z[z] be a non-constant polynomial. Then f and
f have the same Galois group over Q.

Proof. The identity

Jj=1

implies that f and f have the same splitting field over @, and hence
the same Galois group. O

For any non-constant polynomial f € Z[x] we define

Pr={p:p| f(n) for some n € N}.
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It is well-known that P; has a positive relative density'® d; in the set
of prime numbers. More precisely, the Frobenius density theorem [79]

says that
5. — Fix(G)
el

where G is the Galois group of f over Q and Fix(G) is the number

of elements of G which have at least one fixed point when regarded
as permutations on the roots of f. The next lemma establishes an
asymptotic formula for the number of elements of P(x) in terms of
the logarithmic integral function

T

) dt
2

Lemma 2.3. Let f € Z[x] be a non-constant polynomial. Then,

[Py(a)] = éLi(x) + Oy (exp GO @))> ,

for all x > 2, where C(f) > 0 is a constant depending on f only.

Proof. The formula is a direct consequence of the effective version of
the Chebotarev density theorem, see Theorem 3.4 in [75]. O

We also need information on the p-adic valuation of products consisting
of consecutive values of a polynomial. We set

k
Qr = Hf(i)

for later use.

1BLet A C B be sets of positive integers. The set A has relative density o in the

ey A
set B, if nl;n;o B = @
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Lemma 2.4. Let f € Z[x] be a polynomial without a positive integer
root. For any prime number p and for all integers k > 2 we have

gk log k
Q) = O (10gp) ’

where ty is the number of roots of f in Q.

Proof. The statement is almost identical to Theorem 1.2 in [2]. The
only difference is that the error term is written as O(log k), but one
can easily check that it is indeed O¢(logk/logp). O

Now we apply both Lemma 2.3 and 2.4 to obtain a lower bound on the
density of the set

Sy ={p:p>kandp| f(n) for some positive integer n < k}.
Lemma 2.5. Let f € Z[x] be a non-constant polynomial. Then
Sk > (1—0p)k
for all sufficiently large integers k.
Proof. We proceed similarly to the first part of the proof of Theorem
5.1 in [28].

Observe that if f has a positive integer root, then 65 = 1 and our claim
follows. Hence we assume that it is not the case. In particular, @ # 0
for any positive integer k. Clearly, we may write

Sk={p:p|Qrand p > k}.
Put
S, ={p:p|Qr and p < k}.
Taking the logarithm of @), for every positive integer k£ we have

log [Qcl = > vp(Qr) logp+ > 1,(Qx) log p. (2.2)

PESk pES),
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Now assume that £ > 2 and apply Lemma 2.4 to obtain

gk log k
(@)= O (10gp)

and, as a consequence, get

> v(Qr)logp < Y logp <; Y log|f(k)| < [Sillogk. (2.3)

PESK PESk PESk

Since S}, is a subset of the set of all prime numbers up to k, we can
use the Prime Number Theorem, or even Chebyshev’s estimates, to
deduce that

FARSY é.
Further, S; C Py. Thus, by Lemma 2.4 and partial summation, we
et log p log p
< =drloghk + O(1).
I;S,;p_l _pgf:(k)p_l rlogk + O(1)
Therefore,

dk1
3 (Qulogp < S ( %8P 1 04(log k)) < Spdklogk + O (k).

-1
pEeES), peES), p

(2.4)
Applying Stirling’s formula for factorials, that is
Inn!=nlnn —n+ O(Inn),
we obtain
log |Qk| = dklogk + Oy (k), (2.5)

since we may write f(n) = O;(n?). Now putting together (2.2), (2.3),
(2.4), and (2.5) culminates in

k
|Sk| > (1 —d¢)dk + Oy (@)

which finishes the proof. O
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After this series of preliminary results we have everything at hand to
give the proof of Theorem 2.2.

Proof of Theorem 2.2. Let f € Z[x] be a polynomial of degree 2 or
3. If f is reducible in Z[z], then there exists a linear polynomial h €
Z[z| such that h(n) | f(n) for all integers n. With the notations
s=(f(n)>2, and u = (h(n))>2,, the existence of G follows from the
existence of G,,.

Hence we can assume that f is irreducible in Z[z]. The Galois group of
f over Q is precisely one of Sy, S3, or A3, where S, and A,, stand for the
symmetric and alternating groups, respectively. The Frobenius density
theorem says that dy is 1/2, 2/3, or 1/3, accordingly. By Lemma 2.2
we know that f and fhave the same Galois group over Q, and thus
0F = 05

In what follows, k is always assumed to be sufficiently large. Define S,
as

Sy ={p:p>k/2and p| f(r) for some positive integer < k/2}.
From the previous considerations, and by Lemma 2.5, we have that
1Sk| > eik, (2.6)

where ¢; > 0 is a constant depending only on f. Lemma 2.1 tells us

that for each p € S, there exist two integers z, and z;r such that

f(z)=f(2)=0 (mod p)
and 0 < z;r —z, <k/2 <p. Since
1
DR
pEpr
we may fix s > 1 elements p; < --- < p, of P; such that

f[ (1 - %) < % (2.7)

i=1
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By the definition of Py, for each p € P; we can pick an integer z, such
that f(z,) =0 (mod p).

Let a3 < ag < ... < ay, be all the elements of {1,2,...,k} which are
not divisible by any of the primes py, po, ..., ps, and let by < -+ < by,
be all the remaining elements, so that k = k; + ks. Applying the sieve
of Erasthotenes and (2.7), we obtain

2 1
ky ng(l——) +25<%k. (2.8)
i=1

Di

Let ¢1 < g3 < --- < ¢ be all the elements of S; \ {p1,ps ..., ps}. From
(2.6) and (2.8) we get

thlk—s>%k>k1.

As a consequence, for any j = 1,2,...,k;, we can define r; = Zg; if
aj <k/2,and r; = z;; if a; > k/2. Finally, we assume that k > 2p;.

At this point py1,po,...,ps and q1,qa, ..., qk, are all pairwise distinct.
Thus, by the Chinese Remainder Theorem, the system of congruences

{n =z, (mod p;) (i=1,2,...,8)
n =r;,—aj (mOqu) (j:1,2,...,k1)

has infinitely many positive integer solutions n. For each n, none of

fn+1), f(n+2),...,f(n+k)

is relatively prime to all the others.

Indeed, take any h € {1,2,...,k}. On one hand, if h is divisible by
some p;, then

fin+h)=f(n+hLtp)=f(z,) =0 (mod p;).

Hence

ged(f(n+h), f(n+hxp;)) > 1,
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since h +p; € {1,2,...,k} for the right choice of the sign by the
assumption k > 2p,.

On the other hand, if A is not divisible by any of py, ps,...,ps, then
h = a; for some j € {1,2,... k }. If a; < k/2, then

f(n+h)=f(z;) =0 (mod g;),

and
fln+hdz —20)=f(2) =0 (mod g5).

Thus
ged(f(n+h), fln+h+z5 —2.)) > 1,

as h + z;; — 2, € {1,2,...,k}. Similarly, if a; > k/2, then

ged(f(n+h+z, —2.), f(n+h)) > 1,

4aj

since h + z,. — z; € {1,2,...,k}. This finishes the proof. ]

2.3 Remarks and generalizations

Theorem 2.2 raises a few natural questions. While it does prove the
existence of G for every quadratic and cubic sequence it fails to address
the uniform boundedness of g, in Conjecture 2.1. Further, one may
ask why we limit the scope to polynomials of degree at most 3. Finally,
the investigation of the more general T-coprimality property is missing.
We briefly discuss each topic.

Uniform boundedness of g;.

In principle, the dependence of the constants on the polynomial can
be made effective. Here, we avoid this for two reasons. On one hand,
Conjecture 2.1 claims the existence of a uniform bound, not only an
effective one. On the other hand, already a rough estimate on what
we can expect seems to be far from optimal in view Theorem 2.1.
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In spite of what we have just written, one can be optimistic that g, is
uniformly bounded. Observe that to obtain gs, we aim to find the first
k such that our construction in the proof of Theorem 2.2 works and
we do not care whether we can continue with k£ + 1,k 4+ 2,... or not.
The problem is closely related to the number of primitive divisors of
f. A prime p is said to be a primitive divisor of s,,, where s = (s,)22,
is a sequence of integers, if p | s, for some positive n, but p 1 s, for
every positive m < n.

By Lemma 2.1, whenever f (r) has a primitive prime divisor p, the
system of congruences

{ f(n) 0 (mod p)
f(n+r) = 0 (mod p)

has a solution in n. If for small values of r we find primitive divisors

for the majority of the numbers f (r), then the Chinese Remainder
Theorem can be applied to find infinitely many n and some “small” k
so that

fn+1),f(n+2),...,f(n+k)

is “densely” covered. With some further computation we can be hope-
ful to find g, easily.

Recall that f(z) = a®2z? — Ay if f is quadratic. The author is not
aware of any piece of literature which addresses primitive divisors of
quadratics in general. Everest and Harman [24] proved that certain
infinite families of simple quadratic polynomials f € Z[z] fail to have
a primitive divisor infinitely often. We do not go deeper, but mention
that there is an interesting connection with generalized Ramanujan-
Nagell equations as well. For further content, we only refer to the
papers [46, 24] and the references given therein.
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Limitations on the degree.

Observe that Lemma 2.1 is fundamental to our proof of Theorem 2.2
and its conclusion already fails in the case f is quartic, see Example
2.2. However, by no means we suggest that this is the only promising
approach. Indeed, one can expect the following. If f is a polynomial
of degree d, then there will be a positive density of primes p for which
f has exactly 0,1,..., or d roots in F,. In case f is cubic, we were
satisfied with systems of the form

{f(n) = 0 (mod p)
fn+r) = 0 (mod p).

This construction does not exploit when we have a third root. More
precisely, we do not study the phenomenon when

f(n) = 0 (mod p)
f(n+r) = 0 (mod p)
f(n+m) = 0 (mod p)

has a solution n for some 0 < r; < ry < p.

It would be interesting to see how one can extend the idea of Lemma
2.1 in a way that a similar approach can work for some infinite family
of irreducible quartics. One may also try to replace the lemma entirely
and obtain a different proof of Theorem 2.2 that can be generalized for
some higher degree polynomials as well.

T-coprimality.

One may be curious not just about the limitations of Theorem 2.2, but
the absence of the more general T-coprimality property. The proof of
Theorem 2.2 is definitely not sensitive to the exclusion of divisors from
a set of positive integers T' provided that the set of primes dividing
some term in 7' has relative density 0 in the set of prime numbers.
Thus we can formulate the following result.



24 2 Quadratic and cubic sequences

Corollary 2.1 (Sanna and Szikszai, 2017). Let f € Z[z], s = (f(n))32,,
and let T be a subset of Zs, where S is a set of primes having relative
density 0 in the set of prime numbers. If deg f < 3, then G4(T), and
hence gs(T), ezist.

Proof. Since S has relative density 0 in the set of prime numbers, we
can simply repeat the proof of Theorem 2.2. O]

Here, we do not discuss this matter further, but suggest that a more
interesting problem would be to consider what happens when the set
S has a positive relative density. Note that the corresponding question
has been put forward in the case of consecutive integers and arith-
metic progressions as well, see [37], and are yet to be answered in any
measure.



3 Linear recurrences

In this section, we work exclusively with linear recurrences. We begin
with a moderately paced introduction to the basic theory and certain
arithmetic properties. After that, we proceed with the statement of
our theorems and their proofs. The content there is split into several
parts as each requires a somewhat different approach. Note that the
results of this section can be found in the joint papers of Hajdu and
the author [39, 40]. However, present formulations contain a number
of improvements.

3.1 Basic theory and arithmetic properties

First and foremost, note that linear recurrences arise as solutions to ho-
mogeneous linear difference equations and the reader with background
may find most of what we discuss here familiar. We also emphasize
that every definition and result here lies at the very base of the the-
ory and, as such, can be found in many lecture notes and books. To
avoid breaking the flow of content with various references, we mention
the book of Everest, van der Poorten, Shparlinski, and Ward [26] as a
potential source, although our formulation does not necessarily follow
any specific piece of literature.

Let r be a positive integer. A sequence of integers u = (u,)5°, is called
a linear recurrence of order r if

Uptr = O Upyr—1 T Q2Upyr—2 + - + Qr Uy, (31)

holds for every n > 0 and with some integers aq, as, ..., a, such that
a, # 0. Note that r is minimal by the assumption a, # 0. Otherwise,
the recurrence would be of order at most » — 1 and our definition
would not make much sense in general. The numbers ug, uy, ..., u,_1
and aq, as, ..., a, are said to be the initial terms and the coefficients of

25
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the sequence, respectively. Frequently, we write u = u(aq,as,...,a,)
to signal both the order and the coefficients of the relation (3.1).

There are a number of basic examples of linear recurrences of low
order. For instance, r = 1 leads to the consideration of geometric
progressions. Of course, there are less trivial ones. We mention two of
the most common, and perhaps the most popular recurrences.

Example 3.1. The sequence of Fibonacci numbers F' = (F},)>°, has
initial values Fy = 0 and F; = 1 and obeys the linear recurrence

relation
Fn+2:Fn+1+Fn (nZO)

of order 2. The sequence of Lucas numbers L = (L,)2, also satisfies
the above relation, but with initial terms Ly = 2 and L; = 1.

Indeed, if r = 2, then we have a lot of noteworthy examples, like those
of Mersenne, Pell, Jacobsthal, and balancing numbers.

To a linear recurrence u = u(ay, as, . . ., a,) we associate the polynomial
" —ar" — - —a,. (3.2)

Let oy, o, ..., ar be the distinct roots of (3.2) over C. We call (3.2)
the companion or characteristic polynomial of u, while aq, s, ..., az
are said to be the characteristic roots, or simply roots, of the sequence.
These objects play crucial roles in the theory of linear recurrences. Let
the multiplicity of a; be e; (i = 1,2,...,k). A fundamental result
states that any term of the sequence can be obtained in a closed form,
namely as

up = fi(n)of + fa(n)ag + - + fr(n)og (n > 0), (3.3)

where fi, fo, ..., fr € K[z] with K = Q[ay, ag,...,ax] and deg f; <
e;i—1(i=1,2,... k). Here, the polynomials fi, fo, ..., fx are uniquely
determined by the initial terms. Technically, one may consider linear
recurrences as generalized power sums of order r.
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Example 3.2. The companion polynomial of the Fibonacci sequence
F = (F,)%, is 2 — x — 1 and its distinct roots are

_1+V5 1—+5

d -
« 5 an 15} 5
The corresponding representation is the well-known Binet’s formula
F, = ot — p" (n>0).
a—p

We can use the roots to describe another important property. If for
some distinct ¢ and j the quotient o/ is a root of unity, then we call
the sequence degenerate, otherwise we say that it is non-degenerate.
Note that the case r = 1 is always considered as degenerate in our
context. It turns out that the study of arbitrary linear recurrences
reduces, in some sense, to the study of non-degenerate sequences.
Namely, for any linear recurrence of order r, each subsequence of the
form (ug4na)$S, is either identically zero or non-degenerate, where a is
a non-negative integer and d is a positive integer effectively bounded
in terms of the order r only. Subsequences of the above form are called
arithmetic sub-sequences and are linear recurrences of order at most r
themselves.

The arithmetic of linear recurrences also attracted a vast amount of
interest. Since the properties are not specific for them, our defini-
tions concern integer sequences in general. A sequence of integers
s = (s,)2, is said to be a divisibility sequence, if for any non-negative
integers m and n with m | n we have s, | s,. Whenever the more
restrictive relation ged(sy,, $,) = Sged(m,n) holds, we call s a strong di-
visibility sequence'®. Tt is obvious that the latter property implies the
former. While the divisibility property is far from being automatic, it
is clearly not artificial, as the following example suggests.

Example 3.3. Let u = u(a;) be a linear recurrence of order 1 with
ug # 0 and a; # 0,+1. Then u is a divisibility sequence, but not

14This property is also known as ezact divisibility.
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a strong divisibility sequence. The sequence of Fibonacci numbers is
both a divisibility and a strong divisibility sequence.

Usually, there are two natural assumptions to be taken if one works
with divisibility sequences. On one hand, we take s; = 1, otherwise
we may study the normalized sequence s’ = (s,,/$1)52, instead. On
the other hand, we assume that sq = 0. This probably needs a bit
more explanation. Observe that s, | so for every positive integer n. If
so # 0, then all the primes dividing some term of the sequence s are
contained in the finite set consisting of prime factors of sy. Since linear
recurrences modulo a prime p are ultimately periodic, this would make
the arithmetic of the sequence somewhat simple, but at least, not much
of interest. Further, an early result of Pélya [67] implies that if s is
a linear divisibility sequence of order at least 2, then sy # 0 can only
happen if s is degenerate!®.

Let us note that the problem of characterizing all linear divisibility
sequences traces back to Hall and Ward [43] and has attracted a vast
amount of interest. As the theorem of Bézivin, Pethd, and van der
Poorten [4] suggests, such a sequence is essentially a divisor of a prod-
uct of linear divisibility sequences of order 2. For more details we refer
to the works [4, 61, 3] and the references given therein.

3.2 Results on linear divisibility sequences

After the brief overview of the basic theory, we begin the exposition
of our results. We divide those concerning divisibility sequences into
three parts depending on whether the order is r =1, r =2, or r > 3.

Note that if u = wu(ay,as,...,a,) is a linear recurrence, then d =
ged(ag,as, ... a,) | u, for every n > r. Now d > 2 would imply the
existence of both ¢, and G, and also g, = G, = 2. In view of this, we
can assume that d = 1. While this seems to be a natural restriction

5Note that this is not the case if we omit the divisibility property.
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when studying the standard coprimality, the case d > 2 could still
prove to be an interesting one when we consider the more general T-
coprimality. However, as the section progresses it becomes more and
more evident that the consideration of such recurrences would not yield
stronger results, but would involve more technicalities. Hence we avoid
d > 2 under any circumstances.

The case r = 1.

Observe that if u = u(ay) is a linear recurrence of order 1, then its
general term is given by u, = wupa? . Technically, we have to work
with geometric progressions, a very specific situation. Recall that such
sequences are considered as degenerate in our discussion. They also
satisfy the divisibility property, although not necessarily the natural
assumptions ug = 0 and u; = 1. We state the following simple result

for sake of completeness.

Proposition 3.1. Let u = u(ay) be a linear recurrence and let T be a
subset of Zs, where S is any set of primes. If either |ug| ¢ T U{0}, or
|up| € T and there is a prime p | a1 such that v,(z) is bounded for every
x € T holds, then both g,(T) and G,(T) exist and g,(T) = G,(T) = 2.
In particular, g, and G, exist if and only if either |ug| > 2, or |ug| =1
and |ay| > 2 holds.

Proof. 1f |ug| ¢ T U {0}, then wg is neither zero nor it has all of its
divisors in T'. Since the general term is u,, = uoa’f_l, we see that ug | uy,
for every n > 0 and the claim follows. Otherwise, all the divisors of
up are contained in T, but there exists a prime p | a; such that v, is
bounded over the elements of T. Since p"~! | u,, there is a positive
index ng with the property that for every n > ng the prime power p”
does not divide any element of T'. Putting these observations together
this part of the theorem follows as well.

The specific case of T'= {1} is completely trivial. O



30 3 Linear recurrences

It is easy to see that the assumptions in Proposition 3.1 concerning the
T-coprimality are not necessary, except ug # 0. However, the set T'
would be very unnatural if it does not satisfy them. We do not explore
this in more detail as there would be more pain than gain.

The case r = 2.

Specializing (3.1) for » = 2 and replacing the coefficients in it, we can
write

Uny2 = Pun—l—l - Qun (n > O)

for every linear recurrence u = (u,)°, of order 2 with some nonzero
integers P and (). We slightly modify our notation for the dependence
on P and @ and write u = u(P, Q) instead of u(P, —Q). By assump-
tion, P and @) are coprime. Further, by the divisibility property, we
can require that the initial terms are ug = 0 and u; = 1, otherwise the
sequence would be either degenerate or it would have a fixed divisor
d > 2. These together leads to a famous family of binary recurrences,
the Lucas sequences of the first kind. If o and [ are the roots of the cor-
responding companion polynomial 22 — Pz + @, then it is easy to check
that the power sum representation is similar to that of the Fibonacci
sequence in Example 3.2. Indeed, we have

a — g
o
a—f

for every n > 0, where o and 3 are the roots of 2?2 — Px + ). These

(3.4)

sequences were introduced by Lucas [56] and were studied extensively
in a series of his papers [56, 57, 58]. The most important fact for us is
that they satisfy more than the divisibility property, namely.

Proposition 3.2. Fvery Lucas sequence of the first kind is a strong
divisibility sequence.

Proof. This fundamental result was already shown to be true by Lucas
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[56]. A more recent proof can be found in the book of Ribenboim
[69]. 0

The arithmetic of Lucas sequences is a topic with rich literature and the
corresponding results found many applications in other areas of number
theory. Here, we restrict ourselves to the parts which are needed to
prove the results of the section. For a comprehensive introduction to
the general theory we refer to the book of Ribenboim [69].

Our first result on Lucas sequences concerns the T-coprimality prop-
erty, in case the set T" has a nice structure.

Theorem 3.1 (Hajdu and Szikszai [39], 2012). Let u be a non-degene-
rate Lucas sequence of the first kind and let T be a subset of Zg, where
S is a finite set of primes. Then, both g,(T) and G,(T) ezist and we

have
gu(T) < G, (T) <20(2|S| + 30) log(2|S| + 30).

In the proof, we construct a set 7" such that the existence of G(7") can
be proven and G, (1) < G(T"). To do so we need the following result
of Hajdu and Saradha [37].

Lemma 3.1. Let T be a set of positive integers with 1 € T. If there
exists a constant cy such that for every ¢ > c¢o the number of elements
in T not exceeding c is at most ¢/(10logc), then G(T') exists and

G(T) < max(425,2¢o + 1).
In particular, if T is finite, then G(T') exists and is effectively bounded.
Proof. This is a reformulation of Theorem 2.1 from [37]. Since the

bound on the number of terms in 7" is monotone increasing from some
point on, the specific case of finite sets easily follows. n

The applicability of Lemma 3.1 relies on a powerful theorem of Bilu,
Hanrot and Voutier [8] which gives a strong uniform bound in ev-
ery non-degenerate Lucas sequence for the index of a term without a
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primitive divisor. The problem of completely describing terms with-
out primitive divisors has a long history and the following result can
be thought of as the coronation of the classical works on the topic by
Zsigmondy [85], Carmichael [14], and later by Schinzel [73] and Stewart
[80].

Lemma 3.2. Let u = u(P,Q) be a non-degenerate Lucas sequence
of the first kind. Then wu, has a primitive prime divisor if n > 30.
Further, u, has a primitive prime divisor for every n > 4, n # 6,
except finitely many possibilities, listed in Table 1. In particular, the
number of terms without a primitive divisor is at most 10 in a single

sequence.
(P, Q) n
(£1,1), (£1,3), (£1,4) 5,12
(£2,11), (£12,55), (£12,377) 5
(+1,2) 5,7,8,12,13, 18,30
(£1,5) 7,12
(£2,7) 8
(£2,3), (£5,7) 10
(£2,15) 12

Table 1: Lucas sequences with terms u,, without primitive divisor for
n =>5 or somen > 7.

Proof. The statement is a reformulation of Theorem C from [8]. The
upper bound on the number of terms without primitive prime divisors
is a simple consequence in all but one case, when (P, Q) = (£1,2). We
check it directly. O

Now we are ready to prove our theorem.

Proof of Theorem 3.1. Put

T'={n:u, € T}
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Since u is non-degenerate and S is finite, we can apply Lemma 3.2 and
obtain that
IT'| <10+ |S].

Observe that the requirements of Lemma 3.1 are satisfied and a simple
calculation leads to the upper bound

G(T") < 20(2|S| + 30) log(2]|S| + 30).
Now take any integer & > G(T"). Then there exist k consecutive indices
n+1ln+2,...,n+k

with the property that for every ¢ € {1,2,...,k} thereis ani # j €
{0,1...,k — 1} such that ged(n +i,n + j) ¢ T". By Proposition 3.2
we have that ged(Uni, Untj) = Uged(n+in+j) and the construction of 7"
implies that Ugeq(nrintj) € T- This proves the existence of G, (7T") and,
since G, (T") = G(T"), we obtain the upper bound as well. O

Note that if the size of the primes in S is reasonably small, then for a
given sequence we can easily construct 7”7 and improve the bound. The
background is provided by the following classical result on the rank of
apparition of primes dividing some term. For a prime p we call the
positive integer r, its rank of apparition, if p is a primitive divisor of

Up, -

Proposition 3.3. Let u = u(P, Q) be a non-degenerate Lucas sequence
of the first kind and let p be an odd prime. Then one of the following
holds.

i) If p| Q, then ptu, for every positive integer n.
i) If p| (P?+4Q), then r, = p.

P? 4
iii) Otherwise, 1, | p — € with € = (LQ), where (f) stands
b p
for the Legendre-symbol.
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Further, if p = 2, then either QQ is even and p does not divide any term,
orry, < 3.

Proof. This is a well-known and fundamental property of Lucas se-
quences of the first kind and can be found in many works, for instance,
in the book of Ribenboim [69]. O

We can use Proposition 3.3 in the following way. For every p € S we
check if p divides any term at all. If it does, then we bound r, with one
of p—1,p, or p+ 1, according to how p is related to the discriminant
P? + 4Q. Listing the divisors of this possible maximal value of r, we
can check the corresponding terms of u one after another and find the
exact value of 7,. In the end, we construct 7" explicitly, replace the
estimate |S|+ 10 with the exact number of elements, and apply Lemma
3.1 to obtain a better bound on G, (7).

In Theorem 3.1, we could only bound G,(7T), since there we have no
specific information on S except that it is finite. On the other hand,
our construction made sure that G, (7)) = G(7”). One may expect that
if S is “simple”, then, depending on (P, @), we do not have too many
possibilities for 7”. Choosing S = ), and hence T" = {1}, our next
theorem replaces the estimates of g, and G,, with their exact values.

Theorem 3.2 (Hajdu and Szikszai [39], 2012). Let u = u(P, Q) be a
Lucas sequence of the first kind. Then g, and G, exist if and only if
(P, Q) is not one of (0,%£1) or (£1,1). In case g, and G, exist, we
have g, = G, = 17, except the sequences listed in Table 2.

Note that we left the non-degeneracy assumption and this way the re-
sulting theorem completely settles the corresponding form of Problem
1 in Lucas sequences of the first kind.

We base the proof on three lemmas. The first one shows that allowing
degenerate sequences only leads to the consideration of six concrete,
and in fact very simple, sequences.
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(PQ) 9. Gy
(£1,Q),Q #1,2,3,5 25 25
(P,P2—1),|P|>1 43 43
(+£12,55), (£12,377) 31 31
(
(
(

+1,3) 45 45
+1,5) 49 51
+1,2) 107 107

Table 2: Values of g, and G, for exceptional Lucas sequences.

Lemma 3.3. Let u = u(P,Q) be a Lucas sequence of the first kind.
Then u is degenerate if and only if (P, Q) is one of (0,%1),(£1,1), or
(£2,1).

Proof. Let a and S be the two roots of the companion polynomial
2?2 — Pz +@Q. The sequence u is degenerate precisely when the quotient
a/f is a root of unity. Since «/f is either rational or a quadratic
algebraic integer, it is one of £1, i, &€ or ¢, where € = (1+1i/3)/2.
We pick up a single possibility to illustrate how to check each.

Suppose that a/5 = —e. Then P = (1 —¢€)5 and Q = —ef3, and hence

= (). By the coprimality of P and @, the only possibility we get
s (1,1), since (—1,1) would give a/3 # —e. Proceeding similarly in
every other case, we obtain the result. O

The second lemma lists all possible +1 elements in Lucas sequences.
In other words, with the notation of the proof of Theorem 3.1, we
determine the set 7" under every circumstance. We do not consider
degenerate sequences, since they may have infinitely many +1 terms.

Lemma 3.4. Let u = u(P,Q) be a non-degenerate Lucas sequence of
the first kind. The only solutions n to the equation |u,| = 1 are listed
in Table 3, except when n =1 is the only solution.

Proof. By definition uv; = 1 always and there is nothing to discuss.
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(P,Q) Indices n with |u,| =1
(£1,0),Q £1,2,3,5 1,2
(P,P?+1),|P| > 2 1,3

(£12,55), (£12,377) 1,5

(£1,3) 1,2,5

(£1,5) 1,2,7

(+1,2) 1,2,3,5,13

Table 3: Lucas sequences of the first kind with more than one term
satisfying |u,| = 1.

Observe now that if n > 2 and the equation |u,| = 1 has a solution,
then w,, cannot admit a primitive divisor. Since u is non-degenerate, we
can apply Lemma 3.2 and obtain n < 6, n # 5 for all, but the finitely
many pairs (P, Q) listed in Table 1. We can check these exceptional
cases one by one and list all the solutions by direct computation of u,
up to n = 30.

Now suppose that n is one of n = 2,3,4 or 6. Writing u,, in terms
of P and Q we get P,P? — Q,P3 — 2PQ, and P° — 4P3Q + 3PQ?,
respectively. We are left to check finitely many equations and systems
of equations, depending on whether one or more of these terms are
+1. As in the proof of Lemma 3.3, we illustrate how to proceed in one
case. Since the systems are just as easy to solve as single equations,
we consider the solution of ug = 1. This is equivalent to solving

P® —4P*Q 4+ 3PQ* = 1.

Note that P | 1 instantly follows and necessarily we have P = =+1.
But then @ = 0, a contradiction. We may proceed by similarly simple
arguments in each case. O

Note that the description of all £1 elements among terms of non-
degenerate Lucas sequences of the first kind was a problem of Beukers
[7]. In possession of the primitive prime divisor theorem, it reduces to
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the consideration of rather simple polynomial equations, yet we may
say that Lemma 3.4 settles the problem completely.

Now we are just one step from the proof of Theorem 3.2, as we only

need to compute ¢g(7") and G(T”) in every case.

Lemma 3.5. For every set T listed in the first column of Table 4,
the exact values of g(T) and G(T') are given in the second and third

columns.
T 9(T)  G(T)
{1} 17 17
{1,2} 25 25
{1,3} 43 43
{1,5} 31 31
{1,2,5} 45 45
{1,2,7} 49 51

{1,2,3,5,13} 107 107

Table 4: The values of g(T") and G(T') for some particular sets 7.

Proof. The cases T'= {1},{1,2}, and {1, 2,3} are already known, see
[38]. For the remaining ones we use the algorithm invented by Hajdu
and Saradha [37]. O

The proof of Theorem 3.2 becomes a simple combination of the pre-
ceding results.

Proof of Theorem 3.2. Suppose first that u is non-degenerate. With
the same notations and following the proof of Theorem 3.1 we find
that ¢,(T") = g(T7") and G,(T") = G, (T"). Applying Lemma 3.4 we can
give all possible 7" exactly and then we use Lemma 3.5 to get g(7")
and G(T") in each case. If u is degenerate, we simply check all of the
six sequences and find that these are either just sequences of zeros and
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+1 elements or the sequence of consecutive non-negative integers up
to sign. O

The case r > 3.

So far we have worked with very specific linear divisibility sequences.
In order r = 1, we identified them with geometric progressions and
obtained simple results. In order r = 2, we had to deal with Lucas
sequences of the first kind which satisfied considerably stronger proper-
ties than divisibility only. As we mentioned at the end of our overview
on the basic theory, the characterization of linear divisibility sequences
by Bézivin, Pethé, and van der Poorten [4] implies that any such a re-
currence must be a termwise divisor of a product of Lucas sequences
of the first kind. This alone is not enough to deduce that every divis-
ibility sequence of order r > 3 is also a strong divisibility sequence,
albeit they can be, see, for instance, [61]. On the other hand, the con-
struction in the proof of Theorem 3.1 does not change considerably if
we only work with the weaker divisibility property. Indeed, we have
the following result.

Theorem 3.3 (Hajdu and Szikszai [39], 2012). Let u be a non-degene-
rate linear divisibility sequence of order r > 3 and let T' be a subset of
Zs, where S is a finite set of primes. Then G,(T), and hence g,(T),
exist and

The only auxiliary result we give is a consequence of a deep theorem
of Schlickewei and Schmidt [74] concerning the number of solutions to
polynomial-exponential equations. It serves as our alternative to the
primitive prime divisor theorem of Bilu, Hanrot and Voutier.

Lemma 3.6. Let u = (u,)2, be a non-degenerate linear recurrence of
order v > 2 and let p1,po, . .., pr be distinct primes. Then, the equation

—_ (65 pNe %] Qe
Up =P1 P2" - - Py
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7(k+r) . . . .
has at most r? solutions in non-negative integers n, ay, s, . . ., Q.

Proof. Let k be the number of distinct roots of the companion poly-
nomial of v in C. Using (3.3) we can rewrite the equation as

k
Y Pin)ar —pips . ple =
i=1
This way, the statement follows from Theorem 1 in [74] by a simple
calculation, similarly to the proof of Theorem 2.1 in [74]. O

The proof of Theorem 3.3 is now very straightforward.

Proof of Theorem 3.3. Put
T'={n:u, € T}

From Lemma 3.6 it follows that 7" is finite. Indeed,

‘T” < T27(|S\+7‘)
By Lemma 3.1 we know that G(7") exists and a simple calculation
shows that

G(T’) < TZS(‘SH‘T‘)

Note that by the divisibility property tgcd(mn) | Um and tgeamn) | tn,
and hence Ugea(m,n) | gcd(tpm, u,) and as in the proof of Theorem 3.1,
the existence of G(T") implies that of G,(T") and we have G,(T) <
G(T"). This finishes the proof. O

Observe that the main difference between Theorems 3.1 and 3.3 is that
in the former, one may write ¢,(7") = g(17”) and G, (T') = G(1"), but in
the latter, we only get inequality. Further, one cannot be too optimistic
about the explicit construction of 7. We do not discuss this matter
in detail.
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3.3 Relaxation of the divisibility

In view of the previous results, it seems that for linear divisibility se-
quences the existence of both g, and G is somewhat automatic, except
certain degenerate cases. However, our proofs of the corresponding
results relied on the divisibility property. It is natural to ask what
happens if we leave this condition. In this part of the section, we show
that even a very modest weakening of the arithmetic properties can
cause a dramatic change in the behavior. A promising study of such a
phenomenon is induced by Lucas sequences of the second kind.

A Lucas sequence of the second kind is a linear recurrence v = (v,)2,
of order 2 with initial terms vy = 2 and v; = P satisfying the relation

Un42 = Pvn-l-l - Qvn (n > O)

As in the case of Lucas sequences of the first kind, we slightly modify
the notation and write v = v(P, Q) instead of v = v(P, —Q). Note
that P and () are once again assumed to be coprime. If o and 3 are
the roots of the recurrence, then

v, =a" 4+ 4" (3.5)

for every n > 0. The main reason for choosing Lucas sequences of the
second kind for our experiments is the following theorem of McDaniel
[59]. It shows that while Lucas sequences of the second kind are not
divisibility sequences, they still satisfy strong arithmetic properties.

Proposition 3.4. Let v = v(P,Q) be a Lucas sequence of the second
kind. Then, for any m,n > 1, we have

Vged(m.n), 1 Vo(m) = vo(n),
ged (v, v,) = ged(m.n) 2(m) 2(n)
1 or 2, otherwise.

Proof. This is just the main result in the paper of McDaniel [59] O
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Observe that, in some sense, a Lucas sequence of the second kind is
“almost” a strong divisibility sequence. More precisely, Proposition
3.4 says that the subsequence of terms with odd indices behaves as a
strong divisibility sequence, otherwise the common divisor is controlled
by the 2-adic valuation of the terms. As our next theorem shows this
somewhat slight difference, compared to strong divisibility, leads to all
the possible situations regarding the existence of g, and G,.

Theorem 3.4 (Hajdu and Szikszai [41], 2015). Let v = v(P, Q) be a
non-degenerate Lucas sequence of the second kind.

i) If P is even and @ is odd, then both g, and G, ezist and g, =
G, =2.

it) If both P and Q are odd and coprime, then G, does not ezist, but
gy does and

171, if P = +1,
9o =341, if Q = (P*+1)/2,

6, otherwise.
iii) If P is odd and @Q is even, then neither g, nor G, ezists.

We mention that the part ii) in Theorem 3.4 is not present in the paper
of Hajdu and the author [41] and hence it can be considered as a new
result of the thesis.

Besides Proposition 3.4 we need the following two preliminary results
to prove Theorem 3.4.

Lemma 3.7. Let T = {2* : a« > 0}. Then g(T) = 86. In particular,
the following holds.

i) For the sequence s = (2n + 1)22, we have g; = 86.

it) Forthe sequence s = (4n+2)2, we have gs({1,2}) = gs(T") = 86.
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Proof. The results on g(T') follows immediately from the tables of Haj-
du and Saradha [38]. Case i) is a straightforward consequence, while
in case ii), we reduce to the sequence s = (2n+ 1)2, first. It takes an
easy argument to see how our claim follows. O]

Lemma 3.8. Let v = v(P,Q) be a non-degenerate Lucas sequence of
the second kind such that P and @) are odd. Then the only solutions
to the equation |v,| = 1 aren =1, if P = +1, and n = 2, if Q =
(P*+1)/2.

Proof. Combining (3.4) and (3.5) we can write

Uy = U2n (n>1),
Unp

where v and u are Lucas sequences of the first and the second kind given
by the same pair (P, Q), respectively. Thus the equation |v,| = 1 can
be translated into the pair of equations us, = tu,. We apply Lemma
3.2 to bound n in the following way. Since wug, = Fu, is not possible
whenever ug, admits a primitive divisor, and since both P and () are
odd, we are left to deal with n < 5. Now write vy, vs,...,v5 in terms
of P and () and proceed similarly to the proof of Lemma 3.4. n

Proof of Theorem 3.4. Case 1) is trivial, since every term is divisible
by 2.

Case iii) is also evident. Indeed, if we take any k > 2 consecutive
indices
n+1,n+2,....,n+k,

then there always exists one, let say n+i, such that vo(n+i) > va(n+y)
for every i # j € {1,2,...,k}. Further, 2 does not divide any term.
By Proposition 3.4, gcd(vp4i, Untj) = 1 for every i # j € {1,2,...,k},
and hence neither G, nor g, exists.

Finally, we consider case ii). For later use it is important to note that

2 | vy, if and only if 3 | n. Also, by Proposition 3.4, vy | v, for every
n > 0.
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We prove first that GG, does not exist. Let k& = 2% for some positive
integer v and take k consecutive indices

n+1ln+2,...,n+k.

Then there are two indices, say n + i; and n + i, such that vy(n +
i1) > va(n + 1s) > wvo(n + j) for every j € {1,2,....k} \ {i1,i2}.
By Proposition 3.4, ged(vntiy, Unt), 86d(Vntiy, Unty) € {1,2} for every
j €41,2,...,k}\ {i1,i2} depending on whether 2 is a divisor of the
terms in question. However, |n+i; —(n+1is)| is a power of 2 and hence
it is not possible that both v,,,;, and v,;, are divisible by 2. Thus
one of them is coprime to all the others which, in turn, proves that G,
does not exist.

We split the proof on g, into three parts according to the conditions
listed in Theorem 3.4.

First, let P = +1. From Lemma 3.8 it follows that the equation
|un| = 1 has the single solution n = 1. By Lemma 3.7, we may find 86
consecutive odd indices

n+1l,n+3,...,n+171

so that none of them is coprime to all the others. By Proposition 3.4,
the corresponding terms

Un+41, Un+43, - -+, U171

also satisfy this. According to the tables in [38], we may also choose n
in a way that among

n+1ln+2,...,n4+171

we have 3 | n+84 and v5(n+84) > vy(n+i) forevery i € {1,2,...,171}\
{84}. Observe that for every even index n + 2i we can find another
even index n + 2j, where i,7 € {1,2,...,85} \ {42} and ¢ # j, with
the property that vo(n + 2i) = ve(n + 25) > 1. Further, 3 | n + 84
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implies 2 | v,184. Hence none of the terms v, o; can be coprime to all
the others, if i € {1,2,...,85}. This shows that g, < 171.

Now take k£ < 170 consecutive terms, let say

Un+1, Un+25 - -+ Untk-

In particular, we only have at most 85 among them with odd indices.
We may use Lemma 3.7 once more and find that one of the odd indices,
let say n + i, is coprime to all the others. Hence, by Proposition 3.4,
the corresponding term wv,.; is coprime to all the other terms with
odd indices. Suppose now that v,; is not coprime to some term with
an even index. It is possible if v,.; is even, that is, 3 | n 4+ 4. This
means that there can be no other odd index which is divisible by 3,
otherwise k > 171, a contradiction. Thus £ is at most 11. Checking
every 2 < k < 11 by direct computation we find that one of the terms
is always coprime to the others. Hence g, = 171.

Consider now the case Q = (P? +1)/2. From Lemma 3.8 it follows
that the equation |v,| = 1 has the single solution n = 2. In particular,
vy = P # 41 divides every term with an odd index. Now take 86
indices

n+2,n+6,...,n+ 342

so that each of them is divisible by 2, but none of them by 4. By
Lemma 3.7, for each n + (4¢ — 2) we can find an n + (45 — 2) , where
i,j € {1,2,...,86} and ¢ # j, with the property that ged(n + (4i —
2),n+ (45 — 2)) is divisible by an odd prime p. As a consequence, 1 #
Up | 8Cd (U (4i-2)s Unt(4j-2)) = Vged(nt(4i—2)m+(4j—2))- Once again, by the
tables in [38], we may choose n so that vo(n + 174) > ve(n + s), where
s €{2,3,...,342} \ {174} and 3 | n + 174. It is now straightforward
why none of

Un+42, Un43y - - -y Un4342

can be coprime to all the others. Indeed, 3 | n 4+ 174 so v,1174 is
divisible by 2. Further, every v,,; with an odd index is divisible by
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P # +1. Finally, by construction, for every even index n + i there is
a distinct even index n + j such that either vo(n +1i) = vo(n+7) > 1
or vo(n+1i) =va(n+j) =1, but both n + i and n + j are divisible by
the same odd prime p # 3. Hence g, < 341.

The proof of g, > 341 goes the same way as in the previous case.
Namely, take at most 340 consecutive indices. Then there can be
at most 85 among them of the form 4¢ 4+ 2. By Lemma 3.7, one of
them, say n, does not have any odd common factor with the others.
Thus if v, is not coprime to all the others, then 2 | v, and hence
3 | n. But then there can be at most 24 consecutive terms, otherwise
it would contradict the choice of n. We can check each case by direct
computation and find that in every set of at most 24 consecutive terms
one is always coprime to the others. Hence g, = 341.

If neither P +1 nor @ = (P? +1)/2, then from Lemma 3.8 we get
that there are no solutions to the equation |v,| = 1. In particular,
v; = P # +1 and by Proposition 3.4, P | v,y for every n > 0.
Without losing generality we may choose n so that among

n+1l,n+2...,n+6

both 3 | n + 4 and va(n + 4) > wa(n + i) are satisfied for every i €
{1,2,3,5,6}. Since 3 | n+ 1 and vp(n +2) = vu(n + 6) = 1. we find
that ged(vpya, vns1) = 2 and ged(vyg2, Vnie) = v2 > 2. Finally, every
term of odd index is divisible by P, and hence none of

Un+1,Un425 - -+ s Unt6

is coprime to all the others. This proves that g, < 6. The fact that
gy > 6 follows from a simple computation for the cases of k = 2, 3,4,
and 5. O

3.4 Further results and open problems

As the final thoughts in the section, we briefly discuss some connected
results and problems arising from further relaxations of the divisibility
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property.

Lehmer sequences.

A sequence of integers 4 = (u,)5°, is said to be a Lehmer sequence of
the first kind, if it satisfies the fourth-order linear recurrence relation

an+4 = (P - 2Q)an+2 - Q2an (n > 0)

with initial terms 1y = 0,47 = Uy = 1 and ug = P — (). These
sequences were introduced by Lehmer [54] and are intimately related
to Lucas sequences of the first kind. Indeed, if we write its terms in
the form (3.3), then we obtain

a — Bn ) )
—— if nis odd,
~ o —
Up = a — Bn
— otherwise.
a?—

Here, o and [ are the distinct roots of the companion polynomial of
the recurrence, but, since both are double roots, we can think of them
as roots of the polynomial

x2—\/ﬁx—l—Q.

Two important facts about non-degenerate Lehmer sequences of the
first kind are that they satisfy both the strong divisibility property
and the primitive prime divisor theorem of Bilu, Hanrot, and Voutier
[8], albeit the latter holds with slightly more restrictions on the indices
and the exceptional sequences. In view of this, one would expect that
the analogues of Theorem 3.1 and 3.2 can be replicated for them. Here,
we only emphasize that this is the case indeed and do not state the
results explicitly. Instead, we refer to the joint paper of Hajdu and the
author [39], where such sequences are addressed in detail.

We note that there are also Lehmer sequences of the second kind. These
are also fourth-order linear recurrences and share a similarly close bond
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with Lucas sequences of the second kind as it is between Lucas and
Lehmer sequences of the first kind. Now it is no surprise that the
statement of Proposition 3.4 extends to them without major changes.
Once again, we do not go into details and for the related results, we
refer to another work of Hajdu and the author [41].

Open problems.

Suppose that u is a linear recurrence of order 2. From the results of
the section it is clear what happens if u is a Lucas sequence. The
same can be said about any shifts'® of such sequences. However, for
other binary recurrences we did not study either of g, or GG,. Indeed,
we are not aware of any example for which the questions of existence
or boundedness were addressed to any extent. Hence for future work
we pose two problems. In what follows, we may exclude degenerate
sequences.

Problem 2. Find a non-trivial example of a linear recurrence u of
order 2 such that it is not a Lucas sequence, nor its shift, for which
the existence of g, and G, can be proved or disproved.

By non-trivial we mean a sequence without an eventual fixed divisor.
For instance, we exclude the recurrence u = (u,)32, given initial terms
ug = 5, u1 = 1 and the relation

Upio = DUpy1 + Uy (n>0).

It is easy to check that apart from u; every term of u is divisible by 5
and the study of g, and G, is rather pointless.

We also pose a more serious problem.

Problem 3. For linear recurrences of order 2 find necessary and suf-
ficient conditions on the existence of g, and G,.

6By shift we mean that for some fixed positive integer k and some Lucas sequence
of either kind @ = (,)%2, we have u = (lp1£)5 -
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Note that from the previous example it is clear for linear recurrences of
order 2, the divisibility property is not necessary, even if that sequence
is very specific. Except this observation we do not get into details con-
cerning the problem, but mention that for linear recurrences without
strong arithmetic properties, like the divisibility, similar questions can

be asked.



4 Elliptic divisibility sequences

We can draw the following picture from the preceding section. If u
is a non-degenerate linear divisibility sequence, then both ¢, and G,
exist and are effectively bounded. On the other hand, if the divisibility
property is weakened, then we may lose the existence of not only G, but
also that of g,. A reasonable next step would be to drop the linearity
of the recurrence and keep the strong arithmetic intact. For this end,
we consider the important family of elliptic divisibility sequences. The
results of this section can be found in a paper of Hajdu and the author

[40].

4.1 Elliptic curves and a related recurrence

The definition of elliptic divisibility sequences assumes familiarity with
the basic theory of elliptic curves over Q. A nice introduction can be
found, for instance, in the book of Washington [84]. Once again, we
do not refer to various pieces of literature, but instead point the reader
toward this book.

By an elliptic curve over Q, we understand an equation of the form
E: 92 + a1 xy + agy = 2%+ ap2® + agr + ag, (4.1)

where ay,as, a3, a4,a5 € Q. The set of rational solutions to (4.1),
together with a symbol oo, that is,

EQ) = {(z,y) € Q*: y* + arzy + asy = 2° + apx® + asx + ag} U {00}

is called the set of rational points on E. The symbol oo is said to be
the point at infinity. Note that we consider the points in the affine
space Q? instead of the two-dimensional projective space P?(Q), where
the point at infinity would make sense immediately. The reason is
that the affine representation is sufficient for our discussion. Hence we

49
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treat oo as a symbol devoid of any representation as some element of
Q? and clarify its relation to other rational points whenever it becomes
necessary.

It is well-known that there is a standard additive operation on the
points which turns F(Q) into an Abelian group. Let us call it simply
the addition of points. The famous theorem of Mordell states that
E(Q) is finitely generated, that is, has the representation

EQ ~Z"&T

for some non-negative integer r and a finite group 7. The number
r is said to be the rank of the curve. The group T is isomorphic to
the group of torsion points, points of finite order with respect to the
addition in F(Q).

Now let P € E(Q) be any rational point. By the n times multiple nP
we understand the nth-fold addition of P. We may write these in the

A, C,
b= (B_,%’B_z) (n21),

where A,, B,,C, € Z and gcd(A,C,, B,) = 1. Taking B, to be 0,
the sequence B = (B,,)22, is said to be an elliptic divisibility sequence.
The choice By = 0 is natural, since 0P is understood as co and in the

form

affine representation oo can be thought of as division by zero. Note
that B depends both on the point and the equation chosen for the
elliptic curve. For this reason we usually signal the dependence by
writing B = B(F, P).

Throughout the section we assume that P is a point of infinite order
in £(Q). Otherwise, P would belong to the torsion group and the
multiples of P would form a periodic sequence. The famous theorem of
Mazur restricts the length of the period to at most 12. Such sequences
have a very simple arithmetic and we do not concern ourselves with
their study'”.

170One may think of this phenomenon as the analogue of degeneracy in case of
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The most important property of elliptic divisibility sequences for our
purposes is given in the following proposition. This also justifies us
choosing them for study.

Proposition 4.1. Fvery elliptic divisibility sequence is a strong divis-
wbility sequence.

Proof. This is a fundamental result which, for instance, is direct con-
sequence of formula (13) on the p-adic valuation of multiples of points
in [76]. O

As a closure to the introductory part, we note that the original defi-
nition of elliptic divisibility sequences calls upon a bilinear recurrence
relation of the form

Bm+an—n = Bm—&-le—lBEL - Bn—i—an—lB?n (m Z n Z O)

This formulation goes back to Ward [83] who was the first to study
such recurrences extensively. In fact, he already showed the connection
with elliptic curves. Here, we emphasize that our definition of elliptic
divisibility sequences coincide with that of Ward’s up to sign and has
become more standard during the past decades. Finally, we note that a
comprehensive study of elliptic divisibility sequences, both as bilinear
recurrences and multiples of points on elliptic curves, can be found in
the theses of Shipsey [77] and Swart [82].

4.2 An “expected” result
Our one and only result in this section shows that replacing linear

recurrences with elliptic divisibility sequences in Theorem 3.3 does not
change the conclusion.

linear recurrences.
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Theorem 4.1 (Hajdu and Szikszai [40], 2014). Let B = B(E, P) be
an elliptic divisibility sequence and let T' be a subset of Zg, where S is
a finite set of primes. Then both gg(T') and Gg(T) ezist and

gB(T) < GB(T) < C(E, ]S],maXS),

where C(E,|S|,max S) is an effective constant depending on E, |S|
and max .S only. In particular, g, and G, exist and are effectively
bounded in terms of E only.

Note that the divisibility property itself was not enough to obtain
either Theorem 3.1 or Theorem 3.3 as we also needed control over the
number of terms falling into Zg. For this end, we use the following
result.

Lemma 4.1. Let S be a finite set of primes. Then the number of
elements of Zg in the elliptic divisibility sequence B = B(E, P) is
finite and effectively bounded in terms of E, |S| and max S only. In
particular, the number of =1 terms in B is effectively bounded in terms
of E only.

Proof. The lemma is a simple consequence of Theorems 1 and 2 in
[35]. m

Observe that, like in Theorem 4.1, the upper bound is not given explic-
itly despite its effective nature. We already indicate that the reasons
are closely related, but we only discuss this matter after the proof.

Proof of Theorem 4.1. Put
T'={n:B,eT}.

By Lemma 4.1, 7" is finite and the number of terms is effectively
bounded. Indeed, we have

IT'| < Cy(F,|S],max S).
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Lemma 3.1 tells us that both G(7") and g(7”) exists and can be effec-
tively bounded as

g(T') < G(T") < C(E, |S], max S).

The existence and effective boundedness of gg(7") and G (7T') are ver-
ified by the same argument as in the proof of Theorem 3.1, the only
difference is that we refer to Proposition 4.1 instead of 3.2 regarding
the strong divisibility property. O]

Note that in the paper of Hajdu and Herendi [35], the bounds concern
the size of the solutions to elliptic equations of the form (4.1) rather
than the number of solutions. Neverthless, they do give an upper
bound on the latter. Since these bounds are complex, we chose to
omit them. The main point is that an effective upper bound can be
obtained. Let us mention that the study of the number of integral and
S-integral points on elliptic curves is a very active field of arithmetic
geometry and opening up on the connection between our bounds and
the related results would divert from the content considerably. For
recent research we refer to the yet unpublished paper of Alpoge [1] and
the references given therein.

Now another important point is that whether we can find better, or
at least alternative, estimates on the size of 7" or not. In the case of
Lucas sequences of the first kind, this was obtained with the help of
the theorem of Bilu, Hanrot and Voutier. Indeed, a deep theorem of
Silverman [76] states that in a single elliptic divisibility sequence, only
finitely many terms can fail to have a primitive prime divisor. However,
this result is ineffective and cannot be applied in place of Lemma 4.1.
Neverthless, if we restrict ourselves to curves having integral j-invariant
or we specify (4.1) and, more importantly, the point, then we can

certainly do better. For further information we refer to the papers
[25, 48, 49, 50].
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Now we arrive at the final section of the thesis. The topic we discuss
here can be considered as a standalone, since it concerns the solution
of a Diophantine equation. However, it shares a close bond with the
previous three. In what follows, we make this connection clear.

5.1 Powers in products and g;

Recall that there is a deep Diophantine interest in Problem 1. Namely,
Pillai himself was motivated by the famous folklore conjecture that the
product of at least two consecutive positive integers is never a perfect
power. This translates to the consideration of the equation

nn+1)...(n+k—1) =y (5.1)

in unknown positive integers n,y, k, and ¢ with k,I > 2. Pillai [63]
was able to prove that there is no solution if £ < 16. Observe that the
limitation on k is not a random choice. Indeed, kK < g = 17 and as a
consequence, one of

n+1l,n+2,....n+k

has to be coprime to all the others. Hence it is a perfect power itself
which is, in some sense, a serious restriction and something which one
can make use of. Of course, this observation alone is not enough to
settle the problem.

The idea naturally extends to products of consecutive terms of a se-
quence of integers s = (s,,)52,. Consider the equation

Sn+1Sn+2 - - - Sntk = yg (5-2)

with the same conditions as (5.1). Recall that the specific case (5.1)
of (5.2) was completely solved by Erdés and Selfridge [21]. However,

o4
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besides the case of consecutive positive integers, other variants of (5.2)
have also been studied in detail.

A long-standing conjecture!® that if s is an arithmetic progression with
coprime initial term and difference, then there exists a constant kg
such that (5.2) has no solutions provided that k& > ky. In a recent
publication, Bennett and Siksek [6] proved a weaker version of this
conjecture. For a nice and comprehensive survey of the history of the
problem and related results we refer to the introduction of their paper
as well as to that of Gy6ry, Hajdu, and Pintér [34]. On the other hand,
for sequences corresponding to higher order polynomials, the equation
has not yet been studied extensively, see Cilleruelo [16] and He, Toghé,
and Yang [47] for partial results.

Variants of (5.2) for linear recurrences have also been considered. Luca
and Shorey [55] chose s to be a Lucas sequence of the first or second
kind and obtained effective finiteness result on the size of the solutions.
They also gave complete solution in case s is the sequence of Fibonacci
numbers. For related progress in this direction we refer to the recent
paper of Bravo, Das, Guzméan, and Laishram [13] and the references
given therein.

In the above mentioned works, the arithmetic of the sequences usually
plays an important role. However, it is a rather common phenomenon
that the authors only partially exploit the connection with g; or do
not at all. We have seen that g, may or may not exist. In any case,
one is able to derive simple, yet important consequences under certain
conditions. We given an example of this phenomenon.

Suppose that the set
P(s) ={n: s, is a perfect power}

is finite. If g, exists, then it is clear that there can be only finitely
many solutions with k < g;. Otherwise, if g, does not exist, this claim

8This conjecture is widely attributed to Erdés, see, for instance, [78].
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extends to any k. Indeed, if P(s) is given explicitly, then we may turn
this knowledge into an effective method to solve the corresponding
variant of (5.2) completely.

The second part of the section picks up a concrete example of (5.2) for
which the ideas we just briefly discussed find applications.

5.2 A finiteness result

Let B = B(E,P) = (B,)}2, be an elliptic divisibility sequence and
consider the equation

BByt Boy-1a=y" (5.3)

in unknown positive integers n, d, k, y, and ¢ with ged(m, d) = 1, where
k,¢ > 2. Note that the indices in (5.3) come from an arithmetic
progression and in this sense the equation is more general than (5.2).

Now assume that B; = 1. Since B is dependent on both the equation
of the curve E and the generator point P, this seems a serious limita-
tion. However, as the section progresses, we discuss why it is merely a
technical condition. For later use we set

Py(B) = {n : B, is an (th power}.

By a theorem of Everest, Reynolds, and Stevens [27], we know that
Py(B) is finite for every ¢ > 2. Indeed, Reynolds [68] explained how
to effectively determine it if either £ or P satisfies some additional
conditions.

Let us also put

N; = |Pu(B)| and M,= max n
nePy(B)

for easier reference. The aim of this section is to prove the following
result.
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Theorem 5.1 (Hajdu, Laishram, and Szikszai [36], 2016). Let ¢ >
2 be fized. Then (5.3) has only finitely many solutions. Further, if
(n,d, k,y) is a solution, then

max(n,d, k,y) < Co(Ny, My),

where Cy is an effectively computable constant depending on Ny and M,
only. In particular, if Py(B) is given explicitly, then all the solutions
to (5.3) can be effectively determined.

What follows is devoted entirely to the proof of Theorem 5.1. Like in
the preceding sections, we break it down to a series of auxiliary results.

Recall some of the notations we already used. For instance, p is a
prime if not stated otherwise, 1,(2) is the standard p-adic valuation of
the integer z, and 7, is the rank of apparition of the prime p in B if it
exists. In addition, we let P(z) denote the greatest prime factor of the
non-zero integer z with the convention that P(1) = 1.

According to Proposition 4.1, every elliptic divisibility sequence has
the strong divisibility property. Our first lemma gives further insight
into the arithmetic properties.

Lemma 5.1. Let B = (B,)%, be an elliptic divisibility sequence.
Then we have the following properties.

i) If p| By, then v,(B,) =1, (ﬁ) + vp(B,,) for everyn > 1.

Tp
ii) For every prime p we have r, < p+142,/p.

By,

iii) If m | n, then ged (Bm, B

n
)‘—foreveryn2m>0.
m

Proof. Case i) is a reformulation of (13) in [76] and ii) is a simple
consequence of Hasse’s theorem on the number of points on elliptic
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curves over finite fields, see, for instance, [77]. In case iii), we can
apply 1) to get

() o () 50 (2) -t (2).

Hence B
min (Vp(Bm), Vp (B_n)> <, (%)

and our claim follows. O

With the help of Lemma 5.1 we can obtain further information on the
arithmetic relations among the terms
Bn7 Bn+d7 BRI Bn-‘r(k—l)d-

Write n + id = a;x; for every 0 < i < k — 1 such that P(aq;) < k and

gcd (x Hp> = 1.

p<k

Note that B,, | Bnyia by the divisibility property. The following result
explains how one can “control” the common divisor of B,, and the
other terms of the product.

Lemma 5.2. Let 0 <4 < k. Then

Bn %
ng (Bzza HBn+jd) =1 and ng (me B+ d) a

J7

7.

Proof. 1f x; = 1, then the assertion follows from B; = 1. Hence assume
that x; # 1. For for every p | x; we have p > k. Since a prime greater
than k& can divide at most one of

n,n+d,....,n+ (k—1)d,

for every j # i we get ged(z;,n + jd) = 1. By property i) in Lemma
5.1, the first formula follows. The second part of the statement is an
immediate consequence of iii) in Lemma 5.1. O
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We stop for a moment and prove Theorem 5.1 for small values of
k. Indeed, the following proposition explains how one can relate the
quantity g to the solution of (5.3).

Proposition 5.1. Let (n,d, k,y) be a solution to (5.3) with k < 48.
Then we have max(n,d) < c¢M,, where ¢ = 1 for k < 16, ¢ = 2 for
17< k<24, and c = 3 for 25 < k < 48.

Proof. Recall that g = 17 and, by the tables in [38], ¢(T") = 25 or 49
depending on whether 7" = {1,2} or T = {1, 2,3}, respectively. Fur-
ther, note that if s is an arithmetic progression, then g, > ¢ provided
that the initial term and the difference are coprime. In what follows, ¢
and j are always elements of the set {0,1,... k — 1}.

We consider first the case k < g = 17. Among the indices
n,n+d,....,n+ (k—1)d

we can find one, let say n+id, which is coprime to all the others. From
Proposition 4.1 it follows that ged(Bytid, Bntja) = B1 = 1 for every
i # j. Hence n+id € Py(B). If i >0, then n+d < n+id < M,
and the claim follows. Otherwise, we can repeat the same argument
for the other & — 1 consecutive indices.

In the second case, we let k < g({1,2}) = 25. Thus one of
n,n+d,....,n+ (k—1)d,

let say n + id as before, satisfies that ged(n +id,n + jd) < 2 for every
i # j. Once more we can assume ¢ > 0. The case when ged(n +id,n+
jd) = 1 goes the same way as the previous one. Hence suppose that
ged(n+id, n+jd) = 2 and put a; = 2t. Observe that ged(t,n+jd) = 1
for all i # j. We can rewrite (5.3) as

Bn id
BmiB—+ [IBe=" (5.4)

tr, ..
b
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On one hand, ged(tz;,n + jd) = 1 and ged(By,,, Butja) = B1 = 1
follows. On the other hand, by part iii) of Lemma 5.1, we have

If 2 | By, then ry | tx;. According to ii) of Lemma 5.1, ro < 5 and
this implies that ry | t. However, this would contradict the choice of
n + id. Thus By, is odd, and hence coprime to By, 4/ Bi,- By (5.4),
tr; € Po(B) and we get max(m,d) < m + id = 2tz; < 2M,, proving
our claim also in this case.

Finally, let & < ¢({1,2,3}) = 49. As before, we can find an n + id
such that ged(n + id, n + jd) < 3 for every j # i. Obviously, the only
interesting case is when ged(n + id,n + jd) = 3. In particular, 3 | a;,
and we can write a; = 3t. Following the argument of the previous case,
we finish the proof. O

Based on the proof of Proposition 5.1 one may expect that if g(D) =
9({1,2,..., D}) is given, then for any solution (n,d, k,y) of (5.3) with
k < g(D) we get max(n,d) < DM,. This idea would rely on a strong
enough lower bound on ¢g(D) so that we can really get contradiction
by looking at upper bound on the rank of apparition. The author is
not aware of any such result in the literature, however it seems rather
feasible to obtain one. Nevertheless, this approach only works for fixed
k and we still need other means of proving Theorem 5.1.

For later use, we set k' = k + 1 + 2v/k and put

Wy = {i : 3p| (m+id) with p > k},
We = {ieW, : 3p|(m+id) with k <p < ¥},
Wo = Wi\ Wa.

Further, we write w; = |W;| for i« = 0,1,2. It is obvious that wy =
w; — wy and we also have

wy < wa(K) — ma(k) < w(k') — m(k),
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where 74(z) stands for the number of primes up to x which does not
divide d. Note that W, can be thought of as the set of all primes
divisors of indices which have “considerably large” prime factors. This
way, the set W) is closely related to Py(B) as the next lemma shows.

Lemma 5.3. Let (n,d, k,y) be a solution to (5.3). Then x; € Py(B)
for each v € Wy. In particular, we have wg < Ny and also k < M, if
wo > 0.

Proof. Observe that for i € W, the numbers z; are distinct and for
every prime divisor ¢ | xz; we have ¢ > k’. Let i € W, and let p be a
prime divisor of a;. Then, by ii) of Lemma 5.1, r, <p+1+2,/p < k'
Thus 7, 1 z;, and hence p 1 B,, as well. From Lemma 5.2 we get
ged(By,, Bimtia/Be;) = 1 and it follows that z; € P,(B). Since the z;-s
are distinct, we obtain wy < N, proving the first part of the statement.
The second part follows simply from the inequality £ < x; < M,,
finishing the proof. m

In what follows, we establish lower bounds for wg in terms of k. Our
aim is to get an upper bound on the size of k, since in view of the
previous lemma we have wg < N,. First, we need some intermediate
results concerning the number of terms W (A) in the product

A=mim+d)...(m+ (k—1))d
having a prime factor larger than k.

Lemma 5.4. Let k > 31. Then we have the following.

i) W(A) > min (| 27(k)| — 1,7(2k) — w(k) — 1) if d =1 and m >
k.

ii) W(A) > w(2k) — mg(k) — p if d > 1, where p =1 for d =2 and
p = 0 otherwise.
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Proof. Part i) immediately follows from Corollary 1 in [52]. Although
the assertion was stated for the number of distinct prime factors of

A, it is valid for W(A) as well. Part ii) is a simple consequence of
Theorem 1 in [51]. O

We also use estimates for 7(x), due to Rosser and Schoenfeld [70].

Lemma 5.5. For every x > 17 we have

T < (x) < T (14 ;
m(x :
log x log 2logx

Proof. The upper and lower bounds are part of Theorem 1 and Corol-

lary 1 in [70], respectively. O
The previous two lemmas can be combined to get a trivial lower bound

on wg.

Lemma 5.6. Let k > 2 and assume that n > k if d = 1. Then there
exists an absolute constant ¢ > 0 such that

Proof. Recall that wy = w; — we and wy < my(k+ 1+ 2\/%) —ma(k) <
7(k+ 1+ 2VE) — w(k). Since w; > W(A), the assertion follows from
Lemmas 5.4 and 5.5 by a simple calculation. [

If we put further restrictions on n, d, and k, we can considerably
improve Lemma 5.6.

Lemma 5.7. Let k > 48, and assume that n+d > (k—1)*. Then we
have
3(k—1)

> = — 7a(k + 1+ 2VE).

Wo
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Proof. We follow standard arguments going back to Erdds. For each
prime p < k and p { d, we can choose an index 7, with 0 <4, < k such
that v,(n + i,d) > v,(n + id) for every i € {0,1,...,k —1}. Put

I={i, : p<k, ptd}

and write J for the complement of I U W, U {0} in {0,1,... &k — 1}.
Clearly, |J| > k —w; — m4(k) — 1. Let

A =] n+id),

ieJ

and observe that all prime divisors of A’ are at most k& and also that
ged(A';d) = 1. For any i =0,1,...,k — 1 we have

vp(n+id) < vy(n+id — (n+i,d)) < v,(i — ip).

Thus v,(A’) < v,((k —1)!), and it follows that A" | (k —1)!. Hence we
get
(n+d)F =t < (k= 1)1,

Using our assumption n +d > (k — 1)*, we obtain

3(k—1
wy, = % — Wd(k).
Since wy = wy — we and wy < wy(k + 1+ 2\/%) — my(k), the assertion

follows. O

Proof of Theorem 5.1. In view of Proposition 5.1, we may assume that
k > 49. We split the proof into two parts.

Suppose first that d > 1, or d =1 and n > k. By Lemmas 5.3 and 5.6,
k is bounded in terms of N,. In case n +d < (k — 1)*, we are done.
Otherwise, Lemma 5.7 gives

3(k—1)

> = — 7k + 1+ 2VE).

Wo
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Now apart from at most m4(k) indices 7, we have that v,(a;) < v,((k—
1)!). With the notation of Lemma 5.7, the exceptions are those indices
ip, for which v,(a;,) is maximal. This implies that if

3(k—1)

T malk+ 1 WEk) — m(k) > 1, (5.5)

then there are at least two indices ¢ # j such that all a;, a;, z;, x; are
bounded in terms of N, and M,. As one of these indices, say i, is
positive, and by n +d < n + id = a;x;, we obtain that n and d are
also bounded in terms of N, and M,. A simple calculation based upon
Lemma 5.5 shows that (5.5) holds whenever k > 62. In fact, working
with the concrete values of 7(z) function, we can get down to k > 42.
Hence the theorem follows in this case.

In the second part, assume that d = 1 and m < k. There ex-
ists an effectively computable constant c; = ¢3(N;) > 0, depending
only on N, such that if n + &k — 1 > ¢3(Ny), then the open interval
(3(n+k —1),n+ k — 1) contains more than Ny primes. Observe that,
by n < k, such primes are among

nn+1,....n+k—1

and each of them divides exactly one of these numbers. Let ¢ be any of
these primes, and write ¢ = n+i. By Proposition 4.1, ged(By 44, Bnyj) =
By =1 for any j # i with 0 < j < k. Hence n + i € Py(B). However,
since we have more than N, primes among n,...,n+ k — 1, this yields
a contradiction. Thus n + k — 1 < ¢3(NNy), finishing the proof. O

Recall that we assumed from the beginning that B; = 1. Now we
address how one eliminates this condition. Assume that B; # 1 and
consider the normalized sequence B’ = (B,/B1);%,. A simple ar-
gument shows that property i) of Lemma 5.1 remains intact for B'.
Property ii) holds for elliptic curves in general, and hence it is also
valid. Now iii) follows from i) as well, and hence we can also prove
Lemma 5.2. Since these are the only auxiliary results which concern
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the arithmetic of elliptic divisibility sequences, one may hope that the
proof of Theorem 5.1 can be pulled through the same way. The only
issue we left to address is the change in Py(B). Note that Py(B’) con-
sists essentially of terms in B which are By times multiples of an /th
power. Everest, Reynolds and Stevens [27] mentions that the proof on
the finiteness of P;(B) can be modified to obtain the same conclusion
for S-unit multiples of ¢/th powers. This is exactly what we need in
order to drop the condition B; = 1 entirely.

5.3 Effective enumeration: an example

Following the proof of Theorem 5.1 it is clear that both the finiteness
of the solutions and the existence of an effectively computable upper
bound, depending on N, and M, have been proven. In fact, if Py(B) is
given explicitly, then with a finite, trial and error, computation we can
enumerate each solution to (5.3). However, this is certainly the most
undesirable way to follow. In the next example, we explain on how to
proceed in a specific case and close the discussion of our results.

Example 5.1. Consider the elliptic curve
E: y+oy=a>+22—T2+5

and the elliptic divisibility sequence B = (B,,)22; generated by the
point P = (2, —3). Reynolds [68] found that

BlzB2:B3:B4:B7:1, B12:27

are perfect powers in B. For the sake of simplicity, assume that there
are no other perfect power besides these. Then

1,2,3,4,7,12}, if (=T,
Pu(B) =
‘ {1,2,3,4,7}, otherwise,
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and hence

6, ifl=T1; 12, ifl=1;
N, = and M, =
5, otherwise; 7,  otherwise.

Following the proof of Lemma 5.6, by a simple calculation, we get
wo > 1 for £ > 49. However, in view of Lemma 5.3, we find that
k < M, <12, a contradiction.

Hence we conclude that £ < 48. By Proposition 5.1, we get m + d <
3M, < 36. As m,d and k are reasonably small, we can easily check
all possibilities. We find that the only solutions (m, d, k,y) of (5.3) for
arbitrary ¢ are given by

(1,1,2,1), (1,1,3,1), (1,1,4,1), (1,2,2,1), (1,3,2,1), (1,3,3,1),
(1,6,2,1), (2,1,2,1), (2,1,3,1), (2,5,2,1), (3,1,2,1), (3,4,2,1)

(4,3,2,1)

and further, for £ = 7, we also find the solutions

(1,11,2,2), (2,5,3,2), (7,5,2,2).
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6. Osszefoglald

Jelen dolgozatban a kovetkezd, gyakran Pillainak [62] tulajdonitott,
klasszikus szamelméleti probléma altalanositésait tekintettiik.

1. Probléma. Legyen k& > 2 egész szam. Igaz-e, hogy barmely k
egymast koveto egész szam kozott 1étezik olyan, mely az 6sszes tobbi-
hez relativ prim?

A fenti kérdést mind a hosszi primhézagok tanulméanyozasa, mind a
Diofantikus alkalmazésok lehetdségei motivaljak, lasd a [19, 12, 5, 64]
cikkeket. Kovetkezésképpen a probléma tobb iranyban is kiterjesztésre
keriilt, egyrészt a relativ prim feltétel gyengitése, masrészt az egymast
koveto egészek valamely egész szamokbdl allé sorozattal vald helyet-
tesitése révén. Ttt a [22, 15, 37, 46] miivekre hivatkozunk.

A téméban elért 1Gj eredményeinket négy fejezetre osztottuk. Az elso
harom tartalma kozvetleniil kapcsolddik az 1. Probléma kiilonféle valto-
zataihoz, mig a negyedik egy Diofantikus egyenlet megoldasat részletezi.
Tételeink Osszefoglalasa elott felidézzilkk az azok egyszerii megfogal-
mazasahoz sziikséges terminologia fontosabb elemeit.

Pozitiv egészek egy T halmazat megadva, melyre 1 € T, az x és y
egészeket T-relativ primnek nevezziik, ha Inko(x,y) € T. Vegyiik
sorozatat. Legyen g4(T) az a leg-

o0

egészek egy tetszleges s = (s,)22,

kisebb pozitiv egész, hogy létezik a sorozatnak gs(7") darab egymadst
koveto eleme azzal a tulajdonsiggal, hogy egyikiik sem T-relativ prim
az Osszes tobbihez. Hasonléan, legyen G4(T') az a legkisebb pozitiv
egész, hogy minden egyes k > G4(T') esetén talalhaté k egymast kovetd
tagja a sorozatnak az utobbi kévetelménynek megfeleléen. Amennyi-
ben T = {1} vagy pedig s az egymdst kovet§ nem-negativ egészek
sorozata, ugy a jelolésbol elhagyjuk mind a T" halmazt, mind a soroza-
tot.

77
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Elsoként, a 2. Fejezetben,

s= () (f€Zlx])

alaku sorozatokat tanulmanyoztunk. Az f linearitdsa okan valéjaban
szamtani sorozatokkal kell dolgozzunk. Ebben az esetben az 1. Probléma
kapcsolédd valtozata lényegében megoldott Evans [22], illetve Hajdu
és Saradha [37] eredményeinek koszonhetéen. Ugyanakkor, ha f kvad-
ratikus, az egyetlen korabbi eredmény a szakirodalomban Harrington
és Jones [46] nevéhez flizodik, akik g, értékét explicit médon meg-
hataroztak kvadratikus polinomok egyes csaladjaira. Ezen tilmenden
sejtésként fogalmaztak meg, hogy gs minden kvadratikus sorozat esetén
1étezik, illetve uniform maddon korldtos. A disszertacioban kvalitativ
valaszt adtunk erre a sejtésre, kiterjesztve azt harmadfoki sorozatokra
is.

6.1. Tétel (Sanna and Szikszai [71], 2017). Legyen f € Z[x] és legyen
s = (f(n)>2,. Hadegf <3, akkor létezik olyan ko pozitiv konstans,

hogy barmely pozitiv k > ko egész esetén végtelen sok n nem-negativ
egész taldlhato azzal a tulajdonsdggal, hogy

fn+1), f(n+2),...,f(n+k)

eqyike sem relativ prim az osszes tobbihez. Specidlisan, mind g,, mind
pedig G létezik.

A 3. Fejezetben linedris rekurziv sorozatokkal foglalkoztunk. Fzek
egészek olyan u = u(aq, as, ..., a,) = (u,)>2, sorozatai, melyek eleget
tesznek egy

Uptr = QO Uptr—1 F QUptr—2 + +++ + ApUy (n > O)

alaku rekurziv relacionak valamely aq,as, ..., a, egész szamok esetén,
ahol a, # 0. Feltettiik, hogy a kérdéses sorozatok tagjaira fenndll
az oszthatésagi tulajdonsdg, azaz barmely m | n indexek esetén wu,, |
u, kovetkezik. Az altalanossagot nem megszoritva, a rekurziv relacio
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ai,as, ..., a, egyitthatéit relativ primnek tekintettiik, a sorozat elsé
két tagjat pedig ug = 0 és u; = 1 mddon valasztottuk. Megjegyezziik
tovabba, hogy az u sorozatot degeneraltnak nevezziik, amennyiben az

r—axm = —a,

polinom valamely két kiiloboz6 gyokének hanyadosa egységgyok.

Eredményeinket a sorozat rendje, azaz r szerint harom részre osztottuk.
Amennyiben r = 1, az aldbbi egyszert allitas adédik.

6.1. Allitas. Legyen w = u(ay) egy linedris rekurzio és legyen T C
Zs, ahol S primek eqy tetszéleges halmaza. Ha |ug| ¢ T U {0} vagy
|up| € T és létezik olyan p | ay prim, hogy v,(x) korldtos minden x € T
esetén, akkor mind g,(T), mind G, (T) létezik és g,(T) = G (T) = 2.
Specidlisan, g, és G, pontosan akkor létezik, ha vagy |uo| > 2, vagy
lup| =1 és |aq| > 2 dll fenn.

A linedris rekurziok tagjait altalanositott hatvanyosszegként eléallitva
kovetkezik, hogy ha a r = 2, akkor éppen az tgynevezett elsofaju
Lucas-sorozatok csaladjat kapjuk. Ezek tobb olyan erds aritmetikai tu-
lajdonsagot teljesitenek, melyek szamottevéen megkiillonboztetik 6ket
més linedris oszthatésagi sorozatoktol. Lucas-sorozatokkal kapcsolat-
ban els6ként az alabbi dltalanos eredményt igazoltuk.

6.2. Tétel (Hajdu és Szikszai [39], 2012). Legyen u egy nem-degenerdlt
elséfajii Lucas-sorozat és legyen T C Zgs eqy részhalmaza, ahol S pri-
meknek egqy véges halmaza. FEkkor mind g,(T), mind G, (T) létezik,
tovabbd

9.(T) < G, (T) < 20(2|] + 30) log(2] 5] + 30)

teljestil.

A T halmazt a T = {1} esetre megszoritva egy sokkal erésebb &llitast
fogalmaztunk meg.
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6.3. Tétel (Hajdu és Szikszai [39], 2012). Legyen u = u(ay,as) egy
elséfajii Lucas-sorozat. FEkkor g, és G, pontosan akkor létezik, ha
(a1,a2) nem a (0,%1) vagy (£1,—1) pdarok valamelyike. Amennyiben
gu €s Gy létezik, ugy g, = G, = 17, kivéve az 5. Tdbldzatban taldlhato
sorozatokat.

(a’l ) Gu Gy
(£1, ag) as #—1,-2,-3,-5 25 25
(aq, a1 +1),|a1]| > 1 43 43
(£12, —55), (£12, —377) 31 31
(£1,-3) 45 45
(£1,-5) 49 51
(41, -2) 107 107

5. tablazat. A g, és G, értékei a kivételes Lucas sorozatok esetén.

Vegyiik észre, hogy 6.3. Tétel teljességgel megoldja az 1. Probléma
Lucas-sorozatokra vonatkozé formajat. Megjegyezziik tovabba, hogy
a 6.3. Tétel bizonyitasanak egyik lépéseként megvélaszoltuk Beukers
[7] egy kérdését elsbfaji nem-degenerdlt Lucas sorozatok 41 értékii
elemeinek jellemzésére vonatkozodan.

Linearis oszthatésagi sorozatokkal kapcsolatos utolsé eredménytink min-
den legalabb harmadrendii nem-degeneralt sorozatot magaba foglalt,
igy téve teljessé vizsgalatainkat.

6.4. Tétel (Hajdu és Szikszai [39], 2012). Legyen u egy r > 3 rendi
nem-degenerdlt linedris oszthatosagi sorozat és legyen T C Zg, ahol
S primek egy véges halmaza. FEkkor G, (T), és igy g.(T) is létezik,
tovabbd

gu(T) < Go(T) < r251*7
teljestil.

A linearis rekurziv sorozatokra vonatkozd eredmények alapjan tugy
tlinhet, hogy a g és G mennyiségek létezése szinte automatikus. Ugyan-
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akkor a bizonyitdsokban kozponti szerepet jatszik a sorozatok &ltal
teljesitett oszthatdsagi tulajdonsag. Annak tanulmanyozasa végett,
hogy mi torténik, ha elhagyjuk ezt a feltételt, tigynevezett masodfaju
Lucas-sorozatokat tekintettiink. Ezek olyan méasodrendii v = (v,,)%2,
linedris rekurziok, melyek kezdoétagjai vg = 2 és vy = ay, tovabba
az oszthatosdagnal csak ,,arnyalatnyival” gyengébb tulajdonsidgokat tel-
jesitenek. A kovetkez6 tételbol lathatjuk, hogy ez 6nmagaban is ele-
gend6 a g és G mennyiségek viselkedésének jelentés megvaltozasahoz.

6.5. Tétel (Hajdu és Szikszai [41], 2015). Legyen v = v(ay,as) egy
nem-degenerdlt mdsodfaji Lucas sorozat. Ekkor a kovetkezok teljesiilnek.

i) Ha ay pdros és as pdratlan, akkor mind g,, mind G, létezik,
tovdabba g, = G, = 2.

it) Ha mind ay, mind ay pdratlan, akkor G, nem létezik, azonban g,
1gen €s ekkor teljesil, hogy

171, ha ay = £1,
gv =341, haay=—(ai+1)/2,
6, eqyébként.

i11) Ha ay pdratlan és ay pdros, akkor g, és G, egyike sem létezik.

Lathattuk tehat, hogy linearis rekurziv sorozatok vizsgalata soran az
oszthatosagi tulajdonsag szoros Osszefliggésben éll a g és G mennyiségek
viselkedésével. Felvetodott a kérdés, hogy az erds aritmetika érvényben

maradasa esetén, a linearitds elhagyasaval, milyen eredmények nyer-
hetdk.

Az elliptikus oszthatdsagi sorozatok olyan bilinearis rekurziok, melyek
egy racionalis szamtest feletti

E: Y2+ ayzy + asy = 23 + asx? + aux + ag
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altalanos Weierstrass-egyenlettel adott gorbe pontjaibdl allithatok el6
a kovetkezo médon. Legyen P az E egy raciondlis affin pontja. Ekkor

An Gy

frhat6, ahol A,,B,,C, € Z és Inko(A,C,,B,) = 1. A By = 0
vélasztassal, a B = B(E,P) = (B,);, sorozatot elliptikus oszt-
hatdsagi sorozatnak nevezziik. Ezek 1ényegében a Lucas sorozatokkal
azonos oszthatésdgi tulajdonsdgokat teljesitenek. A 4. Fejezetben a
kovetkez6 kapcesolodod, és nem meglepd, eredményt nyertiik.

6.6. Tétel (Hajdu és Szikszai [40], 2014). Legyen B = B(E, P) egy
elliptikus oszthatosdgi sorozat és legyen T C Zg, ahol S primek egy
véges halmaza. Ekkor mind gg(T), mind Gp(T) létezik és

95(T) < Gp(T) < C(E,|S], maxS),

teljesiil, ahol C(FE,|S|,max S) egqy effektiv konstans, mely kizdrdlag az
E, |S| and max S paraméterektdl fiigg. Specidlisan, g, és G, létezik és
effektiv modon korldtozhato kizdardlag E fligguényében.

Az utolsé, azaz 5. Fejezetben, a g értékére vonatkozo effektiv eredmények
egy diofantikus alkalmazdsit tanulményoztuk. Legyen B = (B,)>,
egy elliptikus oszthatdsagi sorozat és tekintsiik a

BuBuid- - Boig-nya =4 (6.1)

egyenletet, ahol n,d, k,y, ¢ olyan ismeretlen pozitiv egészek, melyek-
re Inko(m,d) = 1 és k,¢ > 2 teljesiil. Megjegyezziik, hogy a (6.1)-
hez hasonlé egyenleteknek igen kiterjedt az irodalma. Kapcsolédo
eredményekért a [21, 34, 6, 16, 47, 13] tudoményos munkékat emlitjiik
meg.

Egyszertibb hivatkozas kedvéért vezessiik be a

Py(B) = {i : B; l-edik hatvény}
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és

Ny = |Pu(B)| és M, = max n
n€Py(B)

jeloléseket. A disszertacié utolsé éllitasa az (6.1) megoldasaira fogal-
maz meg ineffektiv végességet, mig tovabbi feltételek esetén egy expli-
cit leszamlalast és effektiv korlatossagot adé eljarast 1étezését mondja

ki.
6.7. Tétel (Hajdu, Laishram és Szikszai [36], 2016). Legyen ¢ > 2

rogzitett. Ekkor az (6.1) egyenletnek csak véges sok megolddsa lehet.
Tovabbd, ha (n,d, k,y) egqy megoldds, akkor

max(n, d7 k? y) S O(Ng, M@)

teljesil, ahol C' eqy effektiv modon kiszamithato konstans, mely kizaro-
lag az Ny és M, értékétdl figg. Specidlisan, ha Py(B) explicit adott,
akkor a (6.1) egyenlet dsszes megolddsa effektiv médon meghatdrozhato.
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In the present thesis, we studied the following classical number-theore-
tical problem, often attributed to Pillai [62].

Problem 1. Let k£ > 2 be an integer. Is it true that in every set of k
consecutive integers there exists one which is coprime to all the others?

The above question is motivated by both the study of long prime gaps
and Diophantine applications, see the papers [19, 11, 5, 64]. Gradually,
the problem was extended in many directions on one hand by the
relaxation of the coprimality conditon, and on the other by replacing
consecutive integers with some sequence of integers. Here, we refer to
the works [22, 15, 37, 46].

We split our new results on the topic into four sections. The content
of the first three is directly connected to variants of Problem 1 while
the fourth concerns the solution of a Diophantine equation. Before
summarizing our theorems, we recall the most important parts of the
terminology needed to formulate them.

Given a set of positive integers T, such that 1 € T, the integers x and
y are said to be T-coprime if ged(x,y) € T. Now take an arbitrary
sequence of integers s = (s,)7%,. Let gs(T") be the smallest positive
integer such that there exist gs(7") consecutive terms of the sequence
such that none of them is T-coprime to all the others. Similarly, let
G4(T') stand for the smallest positive integers so that for each k >
Gs(T) we can find k consecutive terms of the sequence with the latter
property. Whenever T'= {1} or s is the sequence of consecutive non-
negative integers, we suppress the dependence on T and s, respectively.

First, in Section 2, we studied sequences of the form

s=(f(n)Zy  (f €Zx)).

Observe that when f is linear we have to work with arithmetic progres-
sions. In this case, the corresponding version of Problem 1 is essentially

84
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solved thanks to results of Evans [22] and Hajdu and Saradha [37].
However, if f is quadratic, the only result appearing in the literature
is due to Harrington and Jones [46] who determined the value of g
explicitly for certain families of quadratic polynomials. Further, they
conjectured that gy exists for every quadratic sequences and that it is
uniformly bounded. In the dissertation, we gave a qualitative answer
to this conjecture, extending its scope to cubic sequences as well.

Theorem 7.1 (Sanna and Szikszai [71], 2017). Let f € Z[x] and let
s = (f(n)2,. If degf < 3, then there exists a positive constant
ko such that for every integer k > ko there are infinitely many non-
negative integers n with the property that none of

fn+1), f(n+2),...,f(n+k)

is coprime to all the others. In particular, both G and g, exist.

In Section 3, we dealt with linear recurrences. These are sequences
of integers u = u(ay,as,...,a,) = (u,)>2, that satisfy a recurrence
relation of the form

Uptr = A Uptr—1 + QQUptr—2 + -+ QrU, (TL > O)

for some integers ay,as, ..., a,, where a, # 0. We assumed that the
terms of such a sequence satisfy the divisibility property, that is for
every pair of indices m | n we have u,, | u,. Without losing generality,
we considered aq,as,...,a, to be coprime and chose the initial terms
as up = 0 and u; = 1. Further, we note that w is called non-degenerate
whenever the quotient of any two distinct roots of the polynomial

" —ai"t - —a,

is not a root of unity.

We split our results into three cases depending on the order ». When
r = 1, we have the following simple statement.
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Proposition 7.1 (Szikszai, 2017). Let u = u(ay) be a linear recurrence
and let T" be a subset of Zg, where S is any set of primes. If either
|up| € T U{0}, or |ug| € T and there is a prime p | a1 such that v,(x)
is bounded for every x € T' holds, then both ¢,(T) and G, (T) exist and
9u(T) = G(T) = 2. In particular, g, and G, ezist if and only if either
lug| > 2, or |up| =1 and |ay| > 2 holds.

From the representation of terms of linear recurrences as generalized
power sums it follows that if » = 2, then we work with so-called Lucas
sequences of the first kind. These are sequences with strong arith-
metic properties that distinguish them from other linear divisibility
sequences. First, we proved the following general result.

Theorem 7.2 (Hajdu and Szikszai [39], 2012). Let u be a non-degene-
rate Lucas sequence of the first kind and let T be a subset of Zg, where
S is a finite set of primes. Then, both g,(T) and G, (T) exist and we
have

Gu(T) < Go(T) < 20(2|S| + 30) log(2]S| + 30).

Restricting 7" to T' = {1} we made a much stronger statement.

Theorem 7.3 (Hajdu and Szikszai [39], 2012). Let u = u(aq, az) be a
Lucas sequence of the first kind. Then g, and G, exist if and only if
(a1,az) is not one of (0,£1) or (£1,1). In case g, and G, exist, we
have g, = G, = 17, except the sequences listed in Table 6.

Observe that Theorem 7.3 completely solves the corresponding form
of Problem 1 in Lucas sequences. We also note that our proof of said
result answers a problem of Beukers [7] concerning terms of Lucas
sequences of the first kind with £1 values.

Our last result concerning linear divisibility sequences includes every
non-degenerate sequence of order at least 3, thus completing the pic-
ture.
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(a1, az) gu Gy
(£1 ,ag),aQ # — —-3,—-5 25 25
(a1, —aj + 1), |a1| > 1 43 43
(12, —55), (£12, —377) 31 31
(1, -3) 45 45
(£1,-5) 49 51
(+1,-2) 107 107

Table 6: Values of g, and G, for exceptional Lucas sequences.

Theorem 7.4 (Hajdu and Szikszai [39], 2012). Let u be a non-degene-
rate linear divisibility sequence of order r > 3 and let T be a subet of
Zs, where S is a finite set of primes. Then G,(T), and hence g,(T),
exist and

Based on our results related to linear recurrences it may seem that the
existence of g and GG are almost automatic. However, the divisibility
property plays a central role in the proofs. To study what happens if
we drop these assumptions, we considered so-called Lucas sequences
of the second-kind. These are second-order linear recurrences v =
(vn)22, with initial terms vy = 2 and v; = a; and they satisfy only
slightly weaker properties than divisibility. However, we showed that
this minor difference already leads to a major changes in the existence
of g; and Gi.

Theorem 7.5 (Hajdu and Szikszai [41], 2015). Let v = v(ay, aq) be a
non-degenerate Lucas sequence of the second kind.

i) If ay is even and ag is odd, then both g, and G, exist and g, =
G, = 2.

i1) If both a1 and ay are odd and coprime, then G, does not exist,
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but g, does and

171, ifay = +1,
Gy = 3417 if GQZ(P2+1)/2,

6, otherwise.
i11) If ay is odd and ay is even, then neither g, nor G, exists.

We have seen that in the investigation of linear recurrences, the pres-
ence or absence of the divisibility property considerably impacts the
behavior of the quantities g and GG. Question arose what results can
be obtained if the strong arithmetic remains intact but we drop the
linearity. Elliptic divisibility sequences are bilinear recurrences which
can be constructed from the points of a curve given by a generalized
Weierstrass equation over Q

E y2 + a1y + azy = 3+ a2x2 + a4 + ag.

Let P be a rational affine point. Then we can write

A, C,
b= (3‘%73—3) (nz1)

where A, B,,,C,, € Z and gcd(A,C,, B,) = 1. Choosing By = 0
we call the sequence B = (B(E, P) = (B,)2, an elliptic divisibility
sequence. These have essentially the same divisibility properties as
the Lucas sequences of the first kind. In Section 4, we obtained the
following related result.

Theorem 7.6 (Hajdu and Szikszai [40], 2014). Let B = B(E, P) be
an elliptic divisibility sequence and let T' be a subset of Zg, where S is
a finite set of primes. Then both gg(T) and Gg(T) exist and

g(T) < Gp(T) < C(E,|S|,max 5),

where C(E,|S|,maxS) is an effective constant depending on E, |S|
and max S only. In particular, g, and G, exist and are effectively
bounded in terms of E only.
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In the last section, that is, in Section 5, we considered a Diophantine
application concerning effective results using g. Let B = (B,), be
an elliptic divisibility sequence and consider the equation

BuBuia. .. Borgena =" (7.1)

in unknown positive integers n, d, k, y, and ¢ with gcd(m, d) = 1, where
k,¢ > 2. Note that the study of related equations has a wide literature.
Here, we refer to the works [21, 34, 6, 16, 47, 13].

Let us introduce the notations
Py(B) = {n: B, is an (th power}

and

Ny = |Pu(B)| and M, = max n.
n€Py(B)

The last result of the thesis established ineffective finiteness of the
solutions to equation (7.1). Further, with additional conditions, we
obtained both a computational effective upper bound and and efficient
algorithm for explicit enumeration of the solutions.

Theorem 7.7 (Hajdu, Laishram, and Szikszai [36], 2016). Let ¢ >
2 be fized. Then (7.1) has only finitely many solutions. Further, if
(n,d, k,y) is a solution, then

max(n,d, k,y) < C(Ng, My),

where C' is an effectively computable constant depending on Ny and M,
only. In particular, if Py(B) is given explicitly, then all the solutions
to (7.1) can be effectively determined.



