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Abstract

Including the Haar measure we show that the effective potential of the

regularized SU(2) Yang-Mills theory has a minimum at vanishing Wilson-

line W = 0 for strong coupling, whereas it develops two degenerate minima

close to W = ±1 for weak coupling. This suggests that the non-abelian

character of SU(2) as contained in the Haar measure might be responsible

for confinement.
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Concerning the finite temperature effective potential of SU(2) Yang-Mills theory

it was established by Weiss [1] that the tree level contribution of the timelike ‘gluons’

due to the Haar measure is cancelled by a piece of the 1-loop contribution of the

longitudinal gluons. This finding has a far reaching importance for the understanding of

confinement. If the non-abelian character of SU(2) is the crucial factor for confinement

one would expect the Haar measure to play an important role. Consequently, it should

induce a contribution to the effective potential dominating at large distances. On the

other hand if it does not contribute at all (as suggested by the results of Weiss) this

supports the idea propagated e.g. by Gribov [2] that only the strength of the interaction

is crucial.

The 2–loop contributions of the order g2 to the effective potential have been

established in the perturbative regime [3], i.e. for non-vanishing Wilson line W =

±1. Allowing for arbitrary values of W , we show now explicitly that the cancellation

observed by Weiss does not hold in the order g2, i.e. the 1-loop contribution of the Haar

measure is not cancelled by the 2-loop contribution due to the usual Yang-Mills self-

interaction. Thus the Haar measure contributes to the effective potential and leads

to a minimum at W = 0 for sufficiently strong coupling. A similar result has been

obtained for SU(2) lattice gauge theory in Ref. [4]. For weak coupling we shall recover

the results obtained in Ref. [1].

General arguments were given that a deconfining phase transition occurs with

increasing temperature if the Yang-Mills theory is confining at zero temperature [5, 6].

It was also shown that lattice gauge theory does not confine static quarks if the Haar
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measure is replaced by the Euclidean one [7]. Here we show that the minimum found

at W = 0 corresponds to confinement. How the continuum limit can be taken and to

what extent the non-trivial minimum does survive remains of course an open question

which can only be answered by renormalization group analysis being out of the scope

of the present letter.

Similarly to [1] we use a time independent, diagonal gauge, and periodic boundary

conditions for the spatial components of the vector potential in the ‘time’ direction. We

allow for the non-vanishing vacuum expectation value v ≡ 〈a−1βgA03〉 ≡ a−1βC (Aµa

the gluon vector potential, µ and a the Lorentz and SU(2) colour indices, respectively).

Throughout this paper we use the notations of Ref. [1] and use the same cut-off

regularization. The UV cut-off Λ is interpreted in terms of the lattice spacing a used

for the definition of the path integral via a−3 = (2π)−3
∫

Λ

0
d3k with Λ = (6π2)1/3a−1

and d3k the volume element in 3-momentum space. The same spacing a is assumed in

‘time’ direction.

Let us write for the timelike gluon field A03(~x) = C/g + δφ(~x) and for the spatial

components Aia(~x, t) (i = 1, 2, 3; a = 1, 2, 3). Expanding the Haar measure in powers

of the fluctuation δφ(~x) and including all terms up to the order g2, we obtain the tree

level effective action, Seff = S0 + S1 + S2 where

S0 =
1

2a4

∫ β

0

dt
∫

d3x
[

a2(∇δφ)2 + (a∂0Ai + C3̂ × Ai)2 +
1

2
a2(∂iAj − ∂jAi)2

]

−
1

a3

∫

d3x ln(1 − cos v) +
1

2a3

g2a−2β2

1 − cos v

∫

d3x(δφ)2 (1)
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(3̂ is the unit vector in the direction 3 of colour space), S1 and S2 are the cubic and

quartic self-interaction terms, respectively. The last term of S0 proportional to g2 was

neglected in Ref. [1], as well as the self-interaction S1 and S2. In order to calculate the

finite temperature effective potential, we determine the partition function Z treating

S1 and S2 as perturbations of the ‘free’ theory defined by S0. The free propagator of

the field δφ acquires now the mass term a−1g2β(1 − cos v)−1 ≡ M2a2 due to the Haar

measure generated quadratic self-interaction.

The effective potential is given in terms of the one-particle irreducible part of

the logarithm of the partition function, Veff(β; v) = −(βV )−1 ln Z1PI = V0(β; v) +

∆V (β; v). The effective potential for the ‘free’ theory V0(β; v) = VW (β; v) + VH(β; v)

consists of the term VW (β; v) of the order g0 found by Weiss [1] and the term VH(β; v)

of the order g2 generated by the Haar measure:

VH(β; v) =
1

βV

∫

d3k

(2π)3
ln

(

g2a−1β

a2k2(1 − cos v)
+ 1

)

≈
g2

a4α0 sin2(v/2)
+ O(g4) (2)

with α0 = (6π2)1/2 for β/a → ∞. The 2-loop contribution ∆V (β; v) was obtained by

carrying out the Matsubara sums with the standard techniques of finite temperature

field theory [10]. UV-divergences have been removed by subtracting from each 2-loop

diagram those with the same structure but a single loop taken in the limit β → ∞

in all possible ways. The IR momentum cut-off µ was chosen in an UV cut-off (a)

dependent way by requiring that the free energy of the perturbative vacuum does not

depend on µ. Then the free energy of the perturbative vacuum turned out to be a
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temperature independent constant which was subtracted. As a result of this choice of

the IR cut-off µ all terms of ∆V (β, v) depending on µ vanish in the β/a → ∞ limit

and we obtain:

∆V (β, v) =
g2

24β4

{

1 +
8

π2

∣

∣

∣

∣

sin
v

2

∣

∣

∣

∣

(∣

∣

∣

∣

sin
v

2

∣

∣

∣

∣

−
2π

3

)

+
1

π4

(

4π2

3
+ G(v)

)

G(v)

+
21

4π4e2

sin2 v

(cosh 1 − cos v)2
(1 − e−1)(2 − 5e−1)

}

(3)

with

G(v) =
2

e

(

cos v − e−1

1 + e−2 − 2e−1 cos v
−

1

1 − e−1

)

(4)

and e the basis of the natural logarithm. Our conclusion is that the 2-loop contribution

∆V due to the non-abelian gluon self-interaction S1 + S2 does not cancel the 1-loop

contribution VH due to the Haar-measure. We also see that the v-dependent terms

of ∆V vanish for vanishing background field v = 0. For v = 0 we obtained ∆Vv=0 =

1

24
g2β−4 which is identical to the 2-loop contribution of gluons and ghosts found in

[3]. It needs further investigation how our results would be modified by using lattice

regularized propagators for the calculation of the loop integrals.

Let us express the effective potential in terms of the vacuum expectation value

of the Wilson line operator,

W (~x) =

〈

1

2
tr





β/a
∏

j=1

exp
{

igφ(~x)τ 3/2
}





〉

≈ cos
(

v

2

)

≡ W (5)

for R = g2(β/a)4 fixed and β/a → ∞ (|W | ≤ 1). For β/a → ∞ we can neglect the

2-loop contribution ∆V as compared to the Haar measure term VH . It turns out that
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v = 0, i.e. W = 0 is a minimum of the effective potential for R > Rc ≡ 2α0/3, i.e. for

strong coupling and it turns over in a maximum for R < Rc, i.e. for weak coupling. In

the latter case we obtain two minima positioned at W ≈ ±(1−(R/8Rc)
1/2) for R ≪ Rc,

and at W ≈ ±(1− (R/Rc))
1/2 for R ≈ Rc (R < Rc). Thus the effective potential in the

approximation used exhibits the features of a second order phase transition with the

order parameter |W | vanishing smoothly for R → Rc (see Fig. 1). The infinite values

of VH at W = ±1 occur due to the fact that the expansion used for the Haar-measure

potential is not valid for v = 0 and ±2π. Unluckily the critical temperature Tc defined

by g2(aTc)
−4 = Rc = 5.1 decreases rather slowly with decreasing coupling (aTc ∼ 0.94

to 0.71 for 4/g2 ∼ 1 to 3) and does not agree quantitatively with the numerical results

of lattice gauge simulations [4]. The relation between these two approaches has to be

further investigated.

It is rather intriguing to extract information on the behaviour of the correlator

of Wilson-lines. For strong coupling the vacuum is characterized by v = π and the free

energy of a static quark-antiquark pair increases linearly with their separation distance

in leading order:

Fqq̄ = −β−1 ln〈W(~x)W(~y)〉 = β−1M |~x − ~y| + β−1 ln
|~x − ~y|

a
+ const. (6)

This corresponds to the string tension κ = β−1M = β−2[aR/(2β)]1/2. For weak

coupling R ≪ 1 the degenerate vacua are at v = ǫ and ±(2π − ǫ) with 0 < ǫ2 =

(8R/Rc)
1/2 ≪ 1 and the correlator of the Wilson lines the Debye-screened Coulomb
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law Fqq̄ ∼ e−M |~x−~y|/|~x− ~y| with the screening length 1/M = β(β/a)1/2

√

2/R → ∞ for

R → 0.

Summarizing, we established that the finite temperature effective potential of the

regularized SU(2) Yang-Mills theory exhibits rather different qualitative behaviour in

the strong coupling and weak coupling limits. For strong coupling (R ≫ Rc) the

effective potential has a single minimum for vanishing Wilson-line W = 0 (v = π),

and the vacuum state is confining. On the other hand, there are degenerate minima

at W → 1 (v → 0) and W → −1 (v → ±2π) and a maximum at W = 0 for weak

coupling (R → 0). These minima correspond to a vacuum state in which static quarks

are not confined.

The results obtained hint to the possibility that the Haar measure induced vertices

could be responsible for confinement. If proven this would be of fundamental impor-

tance. For a proof, however, a resummation of the contributions of all induced vertices

to the effective potential is needed. Furthermore an investigation of the renormaliza-

tion group trajectories is needed to establish the effective potential in the continuum

limit.

Acknowledgement. One of the authors (K.S.) is greatly indebted to J. Polonyi

for the valuable discussions.

References

7



[1] N. Weiss, Phys. Rev. D24, 475 (1981); Phys. Rev. D25, 2667 (1982).

[2] V.N. Gribov, Orsay Lectures on Confinement I and II, (June 1993), hep-ph-

9403218, hep-ph-9404332.

[3] J. I. Kapusta, Nucl. Phys. B148, 461 (1979).
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Figure Caption

Fig. 1 The order parameter |W | of the deconfining phase transition vs. R/Rc.
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