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Glycogen phosphorylase (GP) is a peculiar glycoenzyme in-
volved in the breakdown of the storage polysaccharide glycogen.1

The liver isoform of GP is the rate limiting enzyme of glycogen
metabolism and is, therefore, directly responsible for regulating
blood sugar levels. Evidence are accumulating that in the non-insu-
lin dependent (type 2) form of diabetes mellitus,2 comprising more
than 90% of all diagnosed cases,3,4 elevated hepatic glucose output
is the most important cause of hyperglycemia.5–8 Thus, GP is a val-
idated target for the treatment of type 2 diabetes and its inhibition
appears of great interest in both academia and industry.9–11 GP has
six known binding sites for which several inhibitors have been
identified.12,13 Among these, glucose-based compounds represent
a large family with the capability of binding at the catalytic site
of the enzyme in most cases with very high selectivity.14–16

N-Acetyl-b-D-glucopyranosylamine17 (1, Chart 1) was among
the first efficient glucose analogue inhibitors of rabbit muscle
GPb (RMGPb). Analogous compounds with aromatic substituents
as 217,18 and 319 showed weaker binding properties, and 419 was
only slightly better than 1. As a corollary of early inhibitor design
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based on glucose derivatives, spiro-hydantoin 518,20 reached the
low micromolar range and its thiohydantoin analogue 618 proved
similarly efficient. Extensive protein crystallographic investiga-
tions of the corresponding GP-inhibitor complexes showed that a
H-bridge between the b-anomeric NH and His 377 main chain car-
bonyl of the enzyme exists for both N-acyl-b-D-glucopyranosylam-
ines17,21 1–4 and spiro-hydantoins22–24 5 and 6 (see outline A in
Chart 1). This feature was then considered as a main contribution
to the strong binding of glucose analogues at the catalytic site of
GP, and became almost a dogma for further inhibitor design. In
the cases of the spiro-hydantoins, the rigid structure of the planar
(thio)hydantoin rings, and that of the bicyclic ring system as a
whole was also accounted for the tight binding.22,23

In recent years, we have introduced several new classes of glu-
cose-based compounds as inhibitors of GP displaying inhibition
constants in the low micromolar range, among others N-acyl-N0-
b-D-glucopyranosyl ureas13,16,25–28 7–10 and C-(b-D-glucopyrano-
syl) derivatives of aromatic heterocycles such as 1,3,4-oxadiazole,
benzothiazole and benzimidazole,29,30 as well as 1,2,4-oxadiaz-
oles.31,32 The latter heterocyclic derivatives (apart from the benz-
imidazole) cannot form H-bridges similar to those discussed
above because of the lack of suitable hydrogens. On the other hand
. Lett. (2008), doi:10.1016/j.bmcl.2008.08.052
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Chart 1. Some glucose-based GP inhibitors (1–10) with their inhibition constants
(Ki against RMGPb); characteristic binding mode of some inhibitors (A); and general
structure of the spiro-bicyclic inhibitors (B).
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Rand rather surprisingly, the absence of this particular H-bond to
His 377 was demonstrated by crystallography for 8–1025,27,28 (note
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Scheme 1. Synthetic route to the glucopyranosylidene-spiro-oxathiazoles 14a–d. Reag
45 min; (c) NaOMe, MeOH, rt. *Inhibition constants (Ki) measured for 14 against RMGPb
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that 7 binds to the enzyme in a different conformation25 in which
the b-anomeric NH is involved in an intramolecular H-bridge with
the acetyl CO). Comparison of the efficiency of inhibition for the
pairs 2 and 8, 3 and 9 and 4 and 10 shows a significant increase
in affinity to the enzyme in favour of the acyl ureas by a factor of
�18, �89 and �29, respectively. Thus, even in the absence of that
most important H-bond, very strong binding is possible which
must be ascribed to the interactions of the inhibitor with the so-
called b-channel9,16 (an empty space in the direction of the b-ano-
meric substituent of bound D-glucose surrounded by amino acid
side chains of mixed character) of the enzyme next to the catalytic
site. This is further corroborated by the comparison of inhibition by
9 and 10 (�14-fold increase) showing that the orientation of the
aromatic part of the molecule is extremely important in order to
properly fit into the b-channel as it was also demonstrated by X-
ray crystallography.28

Based on these findings, we envisaged that a novel design prin-
ciple for efficient glucose-based inhibitors of GP can be set up
which unifies the properties of the best inhibitors (see generalized
formula B in Chart 1): (i) such molecules should have a rigid spiro-
bicyclic scaffold in which a (preferably five-membered het-
ero)cycle is attached to the anomeric carbon of b-D-glucopyranose,
(ii) this cycle, although it may, should not necessarily be a H-bond
donor towards His 377 and (iii) a suitably oriented, large aromatic
appendage must be present on this cycle to fit into the b-channel.

In this letter we present some glucopyranosylidene-spiro-oxa-
thiazoles as the first compounds which meet the above design
principle and one of them is the most efficient glucose analogue
inhibitor of GP known to date.

The synthesis of glycopyranosylidene-spiro-oxathiazoles in a
minimum number of steps was previously reported.33,34 Besides
the known 14a,33 we synthesized substituted phenyl derivatives
14b and 14c as well as 2-naphthyl derivative 14d (Scheme 1).
Reaction of nitrile oxides, obtained in situ by base treatment of
hydroximoyl chlorides,35 with the readily available 2,3,4,6-tetra-
O-acetyl-1-thio-b-D-glucopyra-nose36 (11) afforded the corre-
sponding thiohydroximates 12a–d37 in good yields. The spiro-
cyclization under photochemical conditions afforded the acety-
lated glucopyranosylidene-spiro-oxathiazoles 13a–d38 and subse-
quent deacetylation under basic transesterification conditions
provided the O-unprotected target molecules 14a–d.39 The spiro-
cyclization process was stereoselective with the oxygen atom
adopting predominantly the axial position as previously demon-
b O

RO
RO

RO
RO

O N

S
Ar

13
(R = Ac) 

c 14
(R = H) 

Yield (%) Yield (%) Ki* [μM] 

4633 9033 26 ± 2.1

3033 79 28 ± 2.8

69 79 8 ± 0.9

36 94 0.16 ± 0.04

ents and conditions: (a) ArC(Cl)@NOH, Et3N, CH2Cl2, rt; (b) NBS, hm, CCl4, reflux,
.
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strated and the main product was isolated by column
chromatography.

The GP inhibitor candidates were evaluated for their inhibition
against RMGPb enzyme as previously described40 and the obtained
inhibitor constants (Ki) are shown in Scheme 1. The phenyl deriv-
ative 14a proved �5 times weaker inhibitor than the correspond-
ing acyl urea 8. Substitution of the phenyl ring in the 4-position
by a fluorine (14b) brought about no change probably due to the
similar size of the H and F atoms. Introduction of a methoxy group
into the same position (14c) made a �3 times better inhibitor than
14a suggesting that a bulky substituent on the phenyl ring can be
beneficial. Finally, the 2-naphthyl derivative (14d) inhibited the
enzyme �2 times stronger than 10. These preliminary results dem-
onstrate that the combination of a rigid spiro-bicyclic structure
with the introduction of a large hydrophobic aromatic moiety in
a proper orientation for an optimal interaction with the enzyme
significantly improves the biological activity of the molecules.

The 2-naphthyl substituted derivative 14d is the most potent
glucose-based inhibitor of GP to date with an inhibition in the
nanomolar range. Based on these preliminary results, we are now
synthesizing a more populated family of glucopyranosylidene-
spiro-oxathiazoles for their biological evaluation as GP inhibitors.
These molecules are expected to bind at the catalytic site of GP
and further enzymatic and crystallographic investigations will be
reported elsewhere.
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(m, 1H, H-ar); 13C NMR (75 MHz, CD3OD) d 62.0 (C-6), 70.7, 72.7, 76.2, 77.5 (C-
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