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Abstract 1 

Purpose: We set out to characterize the mechanical effects of myeloperoxidase (MPO) in 2 

isolated left ventricular human cardiomyocytes. Oxidative myofilament protein modifications 3 

(sulfhydryl (SH) group oxidation and carbonylation) induced by the peroxidase and 4 

chlorinating activities of MPO were additionally identified. The specificity of the MPO-5 

evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant 6 

amino acid Met. 7 

Results: The combined application of MPO and its substrate, hydrogen peroxide (H2O2), 8 

largely reduced the active force (Factive), increased the passive force (Fpassive) and decreased 9 

the Ca
2+

 sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone 10 

had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I 11 

blocked both the peroxidase and chlorinating activities, while Met selectively inhibited the 12 

chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented 13 

by the MPO-I and Met. Both H2O2 alone and MPO+H2O2 reduced the SH content of actin 14 

and increased the carbonylation of actin and myosin-binding protein C to the same extent. 15 

Neither the SH-oxidation nor the carbonylation of the giant sarcomeric protein titin was 16 

affected by these treatments.  17 

Conclusions: MPO activation induces a cardiomyocyte dysfunction by affecting Ca
2+

-18 

regulated active and Ca
2+

-independent passive force production and myofilament Ca
2+

 19 

sensitivity, independently of protein SH oxidation and carbonylation. The MPO-induced 20 

deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO 21 

may be a promising therapeutic target to limit myocardial contractile dysfunction during 22 

inflammation.  23 

Keywords: cardiomyocyte contractile function, myeloperoxidase, hydrogen peroxide, 24 

oxidative post-translational protein modifications, antioxidants 25 
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Introduction 1 

Oxidative stress-related myofilament protein alterations have been shown to play key roles in 2 

the impaired cardiomyocyte contractility in response to myocardial inflammation, ischemia-3 

reperfusion injury and left ventricular (LV) remodeling following a myocardial infarction 4 

(MI) [1, 2]. In particular, reactive oxygen species (ROS) oxidize cellular components [3], 5 

leading to cardiomyocyte contractile dysfunction, myocyte apoptosis or cardiac hypertrophy 6 

[4, 5].  7 

Myeloperoxidase (MPO; EC 1.11.2.2) is a member of the heme peroxidase 8 

superfamily, synthesized by neutrophils, monocytes and macrophages, stored in their 9 

azurophilic granules and released in substantial amount upon leukocyte activation [6]. MPO 10 

has beneficial effects in the innate host defense mechanisms [7]. Considerable evidence has 11 

emerged to suggest, that ROS formation by MPO promotes various deleterious action in the 12 

cardiovascular (CV) system and contributes to the development of CV diseases [6]. 13 

Individuals with a total or subtotal MPO deficiency (a defect with a frequency of ≈1 in every 14 

2000 to 4000 Caucasians) are protected from CV diseases [6]. An elevated level of 15 

circulating MPO is a prognostic marker of mortality and predicts the risks of subsequent 16 

major adverse cardiac events in patients with acute coronary syndrome (ACS) [8], 17 

particularly in association with a low LV ejection fraction [9]. MPO also contributes to 18 

adverse LV remodeling after a MI [10]. MPO exerts adverse effects on the vasculature, 19 

oxidizes low-density lipoprotein (LDL) [11], impairs the high-density lipoprotein (HDL) 20 

function [12] and reduces the bioavailability of nitric oxide (NO) [13]. MPO can therefore 21 

serve as a valuable biomarker of inflammation in coronary artery disease (CAD) and ACS 22 

[14]. The serum level of MPO correlates positively with the severity of the LV dysfunction 23 

and seems to be an essential factor in the development and exacerbation of heart failure (HF) 24 

[15, 16]. Interestingly, the MPO concentration was earlier found not to differ in ischemic and 25 
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non-ischemic cardiomyopathy, suggesting that MPO has an independent pathogenic role in 1 

the LV dysfunction [17].  2 

 MPO is known to generate numerous reactive oxidants and diffusible radical species 3 

via its peroxidase and chlorinating activities, which are capable of promoting an array of 4 

reversible and irreversible post-translational protein modifications [18, 19]. The relative 5 

concentrations of chloride and the reducing substrate determine whether MPO uses its 6 

substrate hydrogen peroxide (H2O2) for peroxidation or chlorination. MPO amplifies the 7 

oxidative potential of H2O2 [20-22], which may originate from a number of sources in vivo, 8 

including leukocyte NADPH oxidases, xanthine oxidase and uncoupled NO synthase (NOS) 9 

[23, 24]. The perfusion of isolated rat hearts with H2O2 led to disulfide cross-bridge 10 

formation in actin and tropomyosin (Tm) [25]. In one of our previous studies, the sulfhydryl 11 

(SH) oxidation of actin and myosin light chain-1 (MLC-1) was suggested as the mechanism 12 

in the H2O2-evoked depressed cardiomyocyte contractility [26].  13 

MPO is unique in its ability to create hypochlorous acid (HOCl, a potent antimicrobial 14 

agent) through its chlorinating activity [22]. Interestingly, the cardiac tissue is highly 15 

susceptible to oxidation even by physiological concentrations of HOCl [27]. Importantly,  16 

HOCl is much more effective than H2O2 in oxidizing proteins in the myocardium [27], it 17 

causes SH oxidation [28] and carbonylation in myofilament proteins [29], it disturbs Ca
2+

 18 

homeostasis and Ca
2+

 handling [30], it increases the intracellular Ca
2+

 concentration in 19 

isolated rat [31] and rabbit [32] ventricular cardiomyocytes, and it induces cardiomyocyte 20 

death in rats [33]. It is also very important to consider, how far H2O2 or HOCl can diffuse on 21 

the cellular scale and whether these substances are capable to penetrate the cell membranes. 22 

H2O2 is stable [34], membrane permeable [35], although, in vivo concentration of H2O2 23 

highly depends on its generation and consumption rates [36, 37]. HOCl appears to be more 24 

toxic and reactive and can also penetrate through cell membranes, but has a much shorter 25 
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lifespan. An in vitro study revealed that HOCl production by neutrophils can be as high as 1 

450 mM/h, which was shown to be less in an in vivo model [38]. MPO generates HOCl in 2 

micro-molar concentration [39], but in inflammatic tissue it is estimated to be as high as 5 3 

mM [40].  4 

The antioxidant amino acid Met acts as a scavenger of HOCl and has been shown to 5 

prevent the HOCl-induced morphological changes and contractile dysfunction in murine 6 

myocytes [41]. Moreover, the fact that MPO-derived chlorinating compounds can serve as 7 

specific biomarkers for disease progression has attracted considerable interest in the 8 

development of therapeutically useful MPO inhibitors (MPO-Is) [42].  9 

 Although the role of MPO-derived oxidants in the pathogenesis of myocardial 10 

ischemia and HF is relatively well established, only limited data are available as concerns the 11 

exact cellular and subcellular mechanisms through which MPO could directly affect the 12 

contractility of the myocardial cells, especially at the level of the myofibrillar proteins. In this 13 

study, therefore, we set out (1) to characterize the functional effects of MPO and its substrate 14 

H2O2 on single, permeabilized human cardiomyocytes; (2) to identify the biochemical 15 

alterations induced by the peroxidase and chlorinating activities of MPO; (3) to investigate 16 

the specificity of the MPO-induced contractile changes by using the MPO inhibitor (MPO-I) 17 

4-aminobenzhydrazide and the antioxidant amino acid Met; and (4) to explore the MPO-18 

related reversible and irreversible oxidative myofilament protein modifications in the human 19 

LV myocardium. 20 

 21 

 22 

 23 
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Materials and methods 1 

 2 

I. Human myocardial samples 3 

LV myocardial tissue was obtained from the hearts of four general organ-donor patients (41- 4 

and 46-year-old women, and 53- and 57-year-old men). All of these patients were free of any 5 

cardiac abnormalities and had not received any medication except for plasma volume 6 

expanders, dobutamine and furosemide. The cause of death included cerebral contusion, 7 

cerebral hemorrhage and subarachnoidal hemorrhage. All biopsies were transported in 8 

cardioplegic solution (pH 7.4; in mM: NaCl 110, KCl 16, MgCl2 1.6, CaCl2 1.2, NaHCO3 5) 9 

and were frozen in liquid nitrogen and stored at -80 °C at the laboratory. The experiments on 10 

human tissues complied in full with the Helsinki Declaration of the World Medical 11 

Association and were approved by the Hungarian Ministry of Health (No. 323-8/2005-12 

1018EKU) and by the Institutional Ethical Committee at the University of Debrecen, 13 

Hungary.  14 

 15 

II. Force measurements in permeabilized cardiomyocyte preparations  16 

Force measurements were performed as described previously [43]. In brief, frozen tissue 17 

samples were first defrosted and mechanically disrupted in cell isolation solution (Iso) (in 18 

mM: KCl 100, ethyleneglycoltetraacetic acid (EGTA) 2, MgCl2 1, Na2ATP 4, imidazole 10; 19 

pH 7.0) containing phenylmethylsulfonyl fluoride (PMSF, 0.5 mM, Sigma-Aldrich, St. Louis, 20 

MO, USA), leupeptin (40 μM, Sigma, St. Louis, MO, USA) and E-64 (10 μM, Sigma-21 

Aldrich, St. Louis, MO, USA) protease inhibitors. The mechanically isolated cells were 22 

skinned by incubation in Iso supplemented with 0.5% (v/v) Triton X-100 (Sigma-Aldrich, St. 23 

Louis, MO, USA) for 5 min. Triton-X-100 was removed by washing at least three times in 24 

Iso (1 ml in each washing step) and the skinned myocytes were kept in cell Iso on ice until 25 
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the measurements. A skinned single cardiomyocyte was mounted between two thin needles, 1 

which were attached to a force transducer element (SensoNor, Horten, Norway) and an 2 

electromagnetic motor (Aurora Scientific Inc., Aurora, Canada) through the use of silicone 3 

adhesive (DAP, Baltimore, MD, USA) for determination of the mechanical parameters. The 4 

measurements were performed at 15
°
C on the stage of a light microscope. The average 5 

sarcomere length was adjusted to 2.3 μm. 6 

The compositions of the relaxing and activating solutions used during force 7 

measurements were calculated as described previously [43]. Both solutions were 8 

supplemented with protease inhibitors: leupeptin (40 μM) and E-64 (10 μM). The pCa, i.e. 9 

the -log10[Ca
2+

] values of the relaxing and activating solutions (pH 7.2), were 9.0 and 4.75, 10 

respectively. Solutions with intermediate free [Ca
2+

] levels were obtained by mixing 11 

activating and relaxing solutions [44]. Isometric force production was measured after the 12 

preparation had been transferred from the relaxing solution to a set of Ca
2+

-containing 13 

solutions. When a steady force level had been reached, the length of the myocyte was 14 

reduced by 20% within 2 ms, and the myocyte was then quickly restretched (release-restretch 15 

maneuver). As a result, the force first dropped from the peak isometric level to zero 16 

(difference = total peak isometric force, Ftotal) and then started to redevelop. About 6 s after 17 

the onset of force redevelopment, the cardiomyocyte was returned to the relaxing solution, 18 

where the length of the myocyte was again reduced by 20% for 8 s to determine the Ca
2+

-19 

independent passive force component (Fpassive). The Ca
2+

-activated isometric force (Factive) 20 

was calculated by subtracting Fpassive from Ftotal. Factive at submaximal levels of activation was 21 

normalized to that at maximal activation (pCa 4.75). Thereafter, the normalized force values 22 

were plotted against the Ca
2+

 concentration of the activating solutions to create a sigmoidal 23 

curve, in order to determine the Ca
2+

 sensitivity of force production (pCa50). Maximal active 24 
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force was also tested at the end of the experiments at pCa 4.75. Experiments that yielded a 1 

value below 80% of the initial value were discarded.  2 

To determine the mechanical consequences of myofilament protein oxidation, 3 

cardiomyocytes were exposed to Iso supplemented with H2O2 (30 μM, Sigma-Aldrich, St. 4 

Louis, MO, USA) for 15 min; MPO+H2O2 (8 U/l, Abcam, Cambridge, UK) for 15 min;  5 

MPO+H2O2+MPO-I 4-aminobenzhydrazide (50 µM, Cayman Chemicals, Ann Arbor, MI, 6 

USA) for 15 min; or MPO+H2O2+Met (10 mM, Sigma-Aldrich, St. Louis, MO, USA) for 15 7 

min at 15 °C. The reversibility of MPO+H2O2 evoked effects were examined by the 8 

application of the reducing agent dithiotreitol (DTT, Sigma-Aldrich, St. Louis, MO, USA, 10 9 

mM, 30 min) to MPO+H2O2-treated cardiomyocytes. Force-pCa relationships and pCa50 10 

values were determined before and after the application of these agents. The effects of the 11 

applied agents on Factive and Fpassive were expressed relative to their control (untreated, before 12 

application of the agent at pCa 4.75 and pCa 9.0, respectively). Changes in Factive and Fpassive 13 

upon application of the agents were compared with the force values measured after 14 

incubation of the cardiomyocytes in Iso for 15 min (time control).   15 

 16 

III. Measurements of MPO activities 17 

MPO chlorination and peroxidation assay kits (Cayman Chemicals, Ann Arbor, MI, USA) 18 

were used. The chlorination activity assay utilizes a nonfluorescent substrate (APF, 2-(6-(4-19 

aminophenoxy)-3-oxo-3H-xanthen-9-yl)benzoic acid), which is cleaved by the MPO- 20 

generated hypochlorite (OCl
-
) to produce highly fluorescent fluorescein. The peroxidase 21 

activity assay uses a nonfluorescent substrate (ADHP, 10-acetyl-3,7-dihydroxyphenoxazine) 22 

which is converted by MPO to the fluorescent resorufin. Fluorescence was detected with a 23 

NovoStar Microplate Reader (BMG Labtech, Ortenberg, Germany) at λex 485 nm, λem 520 nm 24 

in the chlorination assay, and at λex 544 nm, λem 590 nm in the peroxidase assay. The reaction 25 
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solution contained the nonfluorescent substrate (APF (18 µM) or ADHP (45 µM)), assay 1 

buffer (phosphate-buffered saline (PBS), pH 7.4) and H2O2 (30 µM), or MPO+H2O2 (38 U/l), 2 

or MPO+H2O2+MPO-I (50 µM) or MPO+H2O2+Met (10 mM). Activities were measured for 3 

5 min at 24-s intervals. Fluorescence intensities were fitted by linear regression analysis 4 

(before saturation) and the slope of this relation was used to calculate MPO activities. Values 5 

were corrected for the background (the activity determined in the absence of MPO).  6 

 7 

IV. Biochemical assays for the identification of oxidative protein modifications 8 

1. Ellman’s reaction 9 

Overall myofilament SH group content was determined by Ellman’s reaction. Skinned 10 

cardiomyocytes were treated with Iso (time control) or with Iso supplemented with H2O2 and 11 

MPO as described for the mechanical experiments. Washing steps followed the treatments 12 

and the cardiomyocytes were then incubated for 15 min in Ellman’s reagent (5,5’-dithio-13 

bis(2-nitrobenzoic acid), DTNB; Sigma-Aldrich, St. Louis, MO, USA), which reacts with 14 

myofilament SH groups and produces the yellow 2‐nitro‐5‐thiobenzoic acid (NTB). The 15 

absorbance of NTB was measured with NovoStar Microplate Reader at 412 nm. N-Acetyl-L-16 

cysteine (NAC, Sigma-Aldrich, St. Louis, MO, USA) was used to calibrate the NTB 17 

absorbance in relation to the amount of SH groups. A known concentration of NAC was 18 

reacted with Ellman’s reagent and the absorbance at 412 nm, fitted with a single exponential, 19 

served as calibration curve. The SH contents in 1-mg lyophilized myocardial samples were 20 

calculated from the measured absorbance, the tissue weight and the calibration curve. 21 

Measurements were performed in triplicates.   22 

 23 

 24 

 25 
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2. Protein SH oxidation  1 

Cardiomyocytes were isolated from LV myocardial samples (25 mg wet weight) similarly as 2 

for the functional measurements, and were treated in Iso (150 µl) containing H2O2 (30 µM) or 3 

MPO+H2O2 (38 U/l) for 15 min. Cardiomyocytes exposed to dithiodipyridine (DTDP, 2.5 4 

mM, for 2 min) were used as positive control. Protein SH groups were labeled with EZ-Link 5 

Iodoacetyl-LC-Biotin (Thermo Scientific, Rockford, IL, USA, for 60 min in the dark, at room 6 

temperature) in a reaction buffer (containing EDTA 5 mM, Tris-HCl 50 mM pH 8.3 and 0.1 7 

mg/ml biotin) according to the manufacturer’s instructions (biotin was solved in 8 

dimethilformamide (DMF, Sigma-Aldrich, St. Louis, MO, USA) and diluted in reaction 9 

buffer to 0.1 mg/ml). After the biotinylation process, the myocytes were solubilized in sample 10 

buffer (containing 8 M urea, 2 M thiourea, 3% (w/v) sodium dodecyl sulphate (SDS), 75 mM 11 

DTT, Tris-HCl pH 6.8, 10% (v/v) glycerol, bromophenol blue, 10 µM E-64 and 40 µM 12 

leupeptin (1 h, under continuous agitation). Protein concentration was determined in the 13 

supernatant with a dot-blot-based method, using bovine serum albumin (BSA, Sigma-14 

Aldrich, St. Louis, MO, USA) as a standard. Protein concentration was adjusted to 1 mg/ml. 15 

2% (strengthened with 0.5% agarose), 4%, 10% and 15% polyacrylamide gels and 4-15% 16 

gradient gels (BioRad, Hercules, CA, USA) were used to separate myofilament proteins 17 

before blotting to nitrocellulose membranes. Protein was quantitated with the fluorescent 18 

Sypro Ruby Protein Blot Stain (Invitrogen, Eugene, OR, USA). Membranes were blocked 19 

with 10% (w/v) milk powder diluted in PBS containing 0.1% (v/v) Tween-20 (PBST). 20 

Biotin-labeled SH groups were probed with peroxidise-conjugated streptavidin (Jackson 21 

ImmunoResearch, West Grove, PA, USA) at a final concentration of 5 ng/ml for 30 min. 22 

Signal intensities of biotin-labeled SH groups were visualized by an enhanced 23 

chemiluminescence (ECL) method and normalized for those assessed with the Sypro Ruby 24 

Protein Blot Stain.  25 
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3. Protein disulfide cross-bridge formation 1 

Similarly to the experiments by Canton et al. [45] human LV myocardial samples were 2 

solubilized in reducing (1x Laemmli sample buffer (Sigma-Aldrich, St. Louis, MO, USA) 3 

containing 2% SDS, 10% glycerol, 5% β-mercaptoethanol (β-ME), 0.0625 M Tris-HCl, pH 4 

6.8) and non-reducing (same buffer without β-ME) sample buffer after H2O2 or MPO+H2O2 5 

treatment. SDS-PAGE was performed using 10% polyacrylamide gels, thereafter proteins 6 

were transferred onto nitrocellulose membranes. After blocking the non-specific binding sites 7 

membranes were probed with monoclonal anti-tropomyosin (1:10.000, clone CH1) or 8 

monoclonal anti-actin (1:1000, clone HHF35, Dako Cytomation, Glostrup, Denmark) 9 

antibodies.  10 

 11 

4. Detection of protein carbonyl groups 12 

Cardiomyocytes from LV myocardial tissue (15 mg wet weight) were incubated with H2O2 13 

and MPO, as described above. Cardiomyocytes treated with Fenton reagent (50 µM FeSO4, 6 14 

mM ascorbic acid and 1.5 mM H2O2 for 7 min) were used as positive controls for protein 15 

carbonylation. Cardiomyocytes were washed after treatment and solubilized in sample buffer 16 

containing 8 M urea, 3% (w/v) SDS, 50 mM Tris-HCl (pH 6.8), 10 µM E-64 and 40 µM 17 

leupeptin for 1 h by vortexing. The samples were then centrifuged (16,000 g for 5 min) and 18 

the supernatants were used for cabonyl group derivatization based on the formation of 2,4-19 

dinitrophenylhydrazone (DNPhydrazone) from 2,4-dinitrophenylhydrazine (DNPH) 20 

(OxyBlot
TM

 Protein Oxidation Detection Kit, Millipore, Billerica, MA, USA). After 21 

derivatization (15 min), samples were centrifuged (1000 g for 1 min) and the pellet was 22 

dissolved in a buffer containing 8 M urea, 2 M thiourea, 3% (w/v) SDS, 75 mM DTT, 0.05 M 23 

Tris-base (pH 14), 10% (v/v) glycerol and bromophenol blue (30 min, shaking).  Derivatized 24 

samples were centrifuged (16,000 g for 5 min) and the protein concentrations of the 25 
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supernatants were determined with a dot-blot-based method, using a BSA standard. The 1 

protein concentration of the samples was adjusted to 1 mg/ml. Polyacrylamide gel 2 

electrophoresis with 2% (strengthened with 0.5% agarose), 4%, 10% and 15% 3 

polyacrylamide gels and 4-15% gradient gels was carried out to separate myofilament 4 

proteins. Proteins were transferred onto nitrocellulose membranes and visualized with the 5 

Sypro Ruby Protein Blot Stain. The membranes were then blocked with 2% (w/v) BSA in 6 

PBST for 30 min and probed with primary and secondary antibodies (rabbit anti-DNP 7 

antibody 1:150, 1 h and goat anti-rabbit IgG 1:300, 1 hour) diluted in 1% (w/v) BSA-PBST 8 

according to the manufacturer’s intructions. Protein bands were visualized by the ECL 9 

method. Signal intensities determined by OxyBlot
TM

 assay were normalized for those 10 

assessed with the Sypro Ruby Protein Blot Stain. The extent of carbonylation was expressed 11 

as carbonylation index (CI=1 in the time control samples).  12 

 13 

V. Data analysis and statistics 14 

Cardiomyocyte force generation was measured with a custom-built system (utilizing the 15 

DAQ platform produced by National Instruments, Austin, TX, USA) and recorded by a 16 

custom-built LabVIEW (National Instruments) module. Results were evaluated in Excel 17 

(Microsoft, 2007) and GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, California, 18 

USA).  19 

Ca
2+

-force relations were fitted to a modified Hill equation:  20 

Ftotal = Fmax[Ca
2+

]
nHill

/(pCa50
nHill 

+ [Ca
2+

]
nHill

) + Fpassive 21 

where Fmax is the maximal force, Fpassive is the passive force, Ftotal = Fmax + Fpassive, [Ca
2+

] is the 22 

calculated Ca
2+

 concentration, nHill is a constant, and pCa50 corresponds to the [Ca
2+

] at 23 

which Ftotal - Fpassive = Fmax/2. 24 
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The results of the measurements for each cardiomyocyte were fitted individually. Factive and 1 

Fpassive values were normalized to the cardiomyocyte cross-sectional area and expressed in 2 

kN/m
2
. The number of experiments in each group varied between 5 and 12 from 3 or 4 3 

different hearts. 4 

Western immunoblot assays were performed in triplicates. Intensities of protein bands 5 

were quantified by determining the area under intensity curves by a Gaussian fit using ImageJ 6 

(NIH, Bethesda, MD, USA) and Magic Plot (Saint Petersburg, Russia) software. Graphs were 7 

created in GraphPad Prism 5.0 software.  8 

Differences between groups were calculated by analysis of variance (ANOVA 9 

followed by Bonferroni’s post hoc test) or multilevel mixed-effects linear regression analysis, 10 

to appropriately address non-independence between multiple observations from the same 11 

heart. The null hypothesis for all group means being equal was tested, followed by pairwise 12 

between-groups comparisons based on the variance-covariance matrix of the fixed effects. 13 

Comparisons of normalized pCa-force relationships determined upon subsequent applications 14 

of the agents were performed with paired and unpaired t tests. Group descriptions were based 15 

on the mean and SEM values. Statistical significance was accepted at p < 0.05. 16 

http://www.nih.gov/about/visitor/index.htm
http://en.wikipedia.org/wiki/Saint_Petersburg
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Results 1 

 2 

MPO+H2O2 impairs the contractile function in human cardiomyocytes 3 

When permeabilized human LV cardiomyocytes (Fig. 1A) were treated with isolating 4 

solution (Iso) containing MPO (8 U/l) and H2O2 (30 μM), a significant decrease in the 5 

maximal Ca
2+

-dependent (pCa 4.75) Factive and a marked increase in the Ca
2+

-independent 6 

(pCa 9.0) Fpassive were observed (to 57.7±4.1% and 179.6±14.6% of untreated, respectively, 7 

n=12) (Fig. 1B). The decrease in the isometric force at various free Ca
2+

 concentrations was 8 

significantly larger in response to MPO+H2O2 application than that in the presence of H2O2 9 

alone (Fig. 1C). Incubation of cardiomyocytes with Iso (time control) resulted in only a minor 10 

change in Factive (to 89.0±1.6%). The MPO-induced increase in Fpassive was significanly higher 11 

than that evoked by H2O2 alone (79.6±14.6% vs. 23.9±7.4%, p<0.001) (Fig. 1D). When the 12 

peak contractile forces measured at intermediate Ca
2+

 concentrations were normalized to their 13 

respective maximum, a significant rightward shift in the pCa-force relationship, i.e. a 14 

decrease in the Ca
2+

 sensitivity of force production (pCa50) was observed after MPO+H2O2 15 

treatment (from 5.83±0.02 to 5.66±0.02, p<0.001) (Fig. 1E). In contrast, the application of 16 

H2O2 alone did not alter pCa50 (5.85±0.05 vs. 5.82±0.03, p=0.55) (Fig. 1F). The differences in 17 

the baseline cardiomyocyte maximal Factive, Fpassive and pCa50 were 5.4%, 5.5% and 0.9%, 18 

respectively. The light microscopic morphology did not reveal visible alterations in the cross-19 

striation pattern of the cardiomyocytes upon MPO+H2O2 or H2O2 treatments (data not 20 

shown). 21 

 22 

Met inhibits the chlorinating, but not the peroxidase activity of MPO 23 

To identify the biochemical mechanism underlying the functional effects of MPO, we 24 

measured its chlorinating and peroxidase activities in the presence of the MPO-I and Met 25 
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(Fig. 2A, B). The MPO-I diminished both the chlorinating and the peroxidase activities of 1 

MPO (to 0.3±0.2% and 10.4±6.0%, respectively, p<0.001, n=4). However, Met selectively 2 

inhibited the chlorinating activity of MPO (to 2.3±1.3%, p<0.001, n=4), without significantly 3 

affecting on its peroxidase activity (78.4±8.6%, n=4). 4 

 5 

MPO-I and Met completely prevent, while DTT partially reverses the MPO-induced 6 

cardiomyocyte dysfunction 7 

To assess whether the MPO-I or Met is also able to prevent the deleterious mechanical effects 8 

of MPO, cardiomyocytes were incubated with MPO+H2O2 in the presence of the MPO-I (50 9 

μM) or Met (10 mM). Both the MPO-I and Met prevented the MPO-induced decrease in 10 

Factive (to 80.0±5.3% and 80.1±3.6% of untreated, respectively, p<0.001) (Fig. 3A) and the 11 

increase in Fpassive (to 147.7±6.1% and 139.9±8.7% of untreated, respectively, p<0.05, n=5-6) 12 

(Fig. 3B). Factive and Fpassive measured after the application of the MPO-I or Met to 13 

MPO+H2O2 were similar to those determined after H2O2 treatment. Moreover, the MPO-I 14 

(Fig. 3C) or Met (Fig. 3D) completely abolished the rightward shift in the pCa-force 15 

relationships observed upon combined MPO+H2O2 treatment (5.88±0.07 vs. 5.66±0.02, 16 

p<0.05 and 5.81±0.04 vs. 5.66±0.02, respectively, p<0.001 vs. MPO+H2O2, n=5-6). The 17 

changes in pCa50 measured after H2O2, MPO+H2O2, MPO-I and Met treatments are illustrated 18 

in Fig. 3E. The reversibility of the MPO+H2O2-evoked functional alterations was tested by 19 

application of the reducing agent DTT (10 mM) to the cardiomyocytes (n=6). The increase in 20 

Fpassive after MPO+H2O2 (Fpassive 89.327.3% compared to untreated) was almost completely 21 

reversed after DTT treatment (Fpassive 9.7±10.4% compared to untreated, p<0.05). DTT, 22 

however, did not significantly affect Factive (to 57.7±4.1% and to 43.8±5.1% of untreated after 23 

MPO+H2O2 and DTT administration, respectively, p=0.13) (figure not shown). 24 
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Effects of MPO+H2O2 on the SH oxidation and carbonylation of myofilament proteins 1 

Attempts were made to identify the changes in the oxidative status of myofilament proteins 2 

contributing to the MPO-induced cardiomyocyte dysfunction in parallel with the functional 3 

measurements. Relative SH contents were determined in human LV skinned cardiomyocytes. 4 

The baseline SH content of myofilament proteins in the donor heart samples varied between 5 

98.04.6% and 104.13.9% (p=0.35). Ellman’s reaction revealed a small, but significant 6 

decrease in the overall amount of SH groups in response to H2O2 (to 90.4±1.5%, p<0.05, 7 

n=3) or MPO+H2O2 treatments (to 86.7±4.0%, p<0.01, n=3) (Fig. 4A). An SH group 8 

biotinylation assay was applied to identify individual myofibrillar proteins affected by MPO-9 

mediated SH oxidation. Samples treated with the oxidative agent DTDP were used as positive 10 

controls. H2O2 and MPO+H2O2 lowered the SH content of actin to similar extents (to 11 

75.9±7.1%, p<0.01, n=4, and 84.2±4.4%, p<0.05 vs. time control,  respectively, n=9) (Fig. 12 

4B). In contrast, the SH contents of myosin-binding protein C (MyBP-C, Fig. 4C) and the 13 

more compliant (N2BA) and stiffer (N2B) isoforms of the giant sarcomeric protein titin were 14 

not affected by these treatments (Fig. 4D-F). Using immunoblots a Tm and an actin 15 

containing complex was observed at on approximately 90 kDa molecular weight level under 16 

non-reducing conditions (in a buffer not containing β-ME), however, no increase in its 17 

intensity and that of Tm and actin could be detected after H2O2 and MPO+H2O2 treatments 18 

(Fig. 5). 19 

Protein carbonylation assays revealed a modest, but significant increase in the 20 

carbonylation of actin upon H2O2 treatment (CI=1.1±0.05, p<0.05 vs. the time control, n=5), 21 

which was not further affected by the addition of MPO (CI=1.1±0.05, p=0.1 vs. the time 22 

control, n=11) (Fig. 6A). Similarly as for actin, a slight, but significant increase in the 23 

carbonyl content of MyBP-C was observed both after H2O2 (CI=1.5±0.2, p<0.05 vs. the time 24 

control, n=2) and after MPO+H2O2 application (CI=1.4±0.2, p<0.05 vs. the time control, 25 
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n=4)  (Fig. 6B). The extent of carbonyl group formation in the N2BA and N2B titin isoforms 1 

remained unaltered after H2O2 or MPO+H2O2 treatment (CI=0.9±0.2 and CI=1.0±0.2 for 2 

N2BA; CI=1.0±0.1 and CI=0.9±0.1 for N2B, respectively) (Fig. 6C-E).  3 
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Discussion 1 

 2 

This is the first reported investigation of the direct effects of MPO on the contractile function 3 

of single, isolated human myocardial cells. The in vitro model experiments revealed that (1) 4 

MPO impairs Ca
2+

-dependent isometric force generation,  increases the Ca
2+

-independent 5 

Fpassive and decreases the Ca
2+

 sensitivity of force production; (2) the MPO-induced functional 6 

changes can be prevented by an MPO-I and the antioxidant Met; (3) the levels of SH 7 

oxidation in actin and of carbonylation in actin and MyBP-C are increased by the application 8 

of MPO+H2O2 or H2O2 alone; (4) the MPO-evoked functional effects are probably mediated 9 

by the chlorinating activity of MPO. 10 

Myocardial inflammation and ischemia-reperfusion injury are characterized by 11 

enhanced extents of oxidative stress and contractile dysfunction [46]. The application of 12 

MPO+H2O2 to human cardiomyocytes appreciably reduced the Ca
2+

-activated Factive and 13 

markedly decreased pCa50. In contrast, H2O2 (30 μM) alone induced a smaller decrease in 14 

Factive. Consistent with our findings, a lower concentration of H2O2 (10 μM) did not result in a  15 

decrease in the maximal Ca
2+

-activated force in skinned rat heart preparations [47, 48]. This 16 

suggests that the action of H2O2 on contractile force generation is concentration-dependent. 17 

Lower concentrations have no measurable effects, whereas higher concentrations affect the 18 

cardiomyocyte contractility. The deleterious effect on Factive can be explained by the MPO-19 

mediated H2O2-derived production of HOCl. In a previous study, HOCl treatment alone (10 20 

μM and 50 μM for 1 min) evoked a significant decrease in the maximum Ca
2+

-activated force 21 

[47], similarly to the result of MPO+H2O2 treatment in the present study. Interestingly, 22 

neither the H2O2- nor the MPO-induced functional changes were related to any deterioration 23 

in the cross-striation pattern of the cardiomyocytes under the light microscope. It is important 24 
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to note, however, that electron microscopy has revealed a myofilament lattice disruption after 1 

HOCl treatment [47].  2 

The subtle increase after H2O2 application and the marked elevation in the Ca
2+

-3 

independent Fpassive upon MPO+H2O2 treatment in the present study are consistent with the 4 

observations that H2O2 at low (<10 µM) concentration did not alter Fpassive, while HOCl (10 5 

μM and 50 μM) induced a significant rise in Fpassive of skinned rat trabeculae [48]. It is well 6 

established that the giant sarcomeric protein titin plays a key role in the development of 7 

Fpassive in permeabilized cardiomyocytes by acting as a molecular spring in the sarcomere 8 

[49]. The cardiomyocyte Fpassive can be modulated by the titin isoform switch (between the 9 

short and stiff N2B and the longer and more compliant N2BA isoforms [50]) and by several 10 

post-translational modifications, including phosphorylation [51], SH oxidation [52] and 11 

potentially carbonylation. One elegant study demonstrated that the oxidative stress-induced 12 

formation of disulfide bridges within the titin molecule (N2B unique sequence, N2B-Us) 13 

reduced the contour length of the N2B-Us, leading to stiffening of the whole titin molecule 14 

[52]. In the present study, neither SH oxidation nor carbonylation of the N2B and N2BA titin 15 

isoforms was found to be affected by MPO or H2O2 treatment. This may be explained by the 16 

distinct sensitivities of the titin N2B isoform, actin and MyBP-C to oxidative changes based 17 

on the differences in their ultrastructures and SH group contents. Our results indicate that 18 

modifications other than titin SH oxidation or carbonylation might be responsible for the 19 

marked elevation in Fpassive after MPO treatment in human cardiomyocytes. 20 

The significant decrease observed in pCa50 after MPO+H2O2 in this study is in marked 21 

contrast with the previous finding of an increase in pCa50 in skinned rat trabeculae in 22 

response to HOCl treatment [48]. This apparently conflicting result might be explained by (1) 23 

the different concentration of HOCl produced by the MPO under our experimental 24 

conditions; (2) a difference in susceptibility of the myofilaments to HOCl between the two 25 
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species; and (3) the difference in the experimental setting, permeabilized, single 1 

cardiomyocytes presenting a negligible diffusion obstacle in comparison with trabeculae. 2 

Further, the pronounced MPO-induced decrease in pCa50 suggests that different myofilament 3 

protein modifications occur and contribute to pCa50 in the course of MPO and H2O2 4 

treatments. Under these experimental conditions H2O2 more probably induced a structural, 5 

rather than a regulatory alteration in the contractile apparatus because pCa50 was not affected. 6 

The deleterious effect on the maximal Factive and the modest increase in Fpassive upon H2O2 7 

administration implies that the H2O2-induced contractile alterations could be explained by a 8 

reduction in the number of force-generating cross-bridges due to the diminished longitudinal 9 

transmission of force along the sarcomeres. These findings are consistent with the 10 

observations of MacFarlane et al., who exposed the superoxide anion (from which H2O2 11 

formed endogenously through spontaneous or superoxide dismutase-catalyzed dismutation) 12 

to chemically skinned rat cardiac muscles. They also found a dose-dependent reduction in the 13 

maximal Factive without any alteration in the pCa50 and concluded that some aspect of the 14 

cross-bridge behavior is particularly vulnerable to superoxide [53]. 15 

A substantial number of data indicate that the inhibition of MPO may well be useful 16 

in CV pathologies characterized by elevated MPO levels (myocardial inflammation, 17 

ischemia-reperfusion injury and acute MI). Thus, despite the fact that MPO-Is may have 18 

adverse effects on the function of MPO in the innate host-defense mechanisms, potential 19 

therapeutic interventions through which to inhibit MPO have aroused considerable interest 20 

[42]. In the present study, both the MPO-I 4-aminobenzhydrazide (50 µM) and the 21 

antioxidant amino acid Met (10 mM) were equally able to prevent all of the MPO-evoked 22 

deleterious contractile effects in skinned human cardiomyocytes, the latter potentially by 23 

scavenging the HOCl generated by MPO. MPO activity assays suggested that the Met-24 

inhibited chlorinating activity is responsible for the MPO-evoked functional changes. HOCl 25 
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reacts most rapidly with the sulfur-containing residues (Met and Cys) [54]. It is likely, 1 

therefore, that the high concentration of Met used in this study diminished the HOCl-evoked 2 

oxidative capacity. The oxidation of Met residues results in the generation of Met-sulfoxide 3 

(MetSO), a process that may be reversed by MetSO reductase [55]. Met is therefore 4 

considered to play a protective role against the deleterious effects of protein oxidation [28]. 5 

Interestingly, the incomplete reversion and oxidation of physiologically relevant Met residues 6 

has been shown to contribute to the impaired function of proteins [56], including actin [57]. It 7 

is important to note, that other HOCl scavenging substances than Met (e.g. glutathione, 8 

taurine and L-ascorbic acid) were also tested recently in HOCl scavenging assays [58]. Given 9 

the rapid reaction rates of HOCl with biological materials, however, much higher doses of L-10 

ascorbic acid and thiols were required to effectively protect against the direct oxidative 11 

damage induced by HOCl. This latter suggests that inhibiting the generation of HOCl may be 12 

a better choice than scavenging HOCl after its generation, for amelioration of HOCl induced 13 

biological damage. 14 

The distinct effect of the reducing agent DTT on Factive and Fpassive after MPO+H2O2 15 

treatment found in this study might be explained by different modifications on the structural 16 

conformation or functional activity of the contractile and regulatory myofilament proteins. 17 

The precise nature of the redox-dependent functional changes upon H2O2 and MPO+H2O2 18 

treatment is complex and determined also by the type and site of the induced post-19 

translational modifications on individual proteins within the sarcomere [59]. SH residues of 20 

Cys can undergo both reversible and irreversible modifications. The reaction between the Cys 21 

thiolate anion and H2O2 results in formation of intra- or intermolecular disulfide bonds, which 22 

is reversible, but further oxidation can generate sulfinic or sulfonic acid, which are 23 

considered irreversible alterations [60]. The HOCl-induced protein carbonylation is thought 24 
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to be irreversible, while methionine oxidation can be reversed by MetSO-reductase [28] or 1 

can lead to an irreversible product (methionine-sulfone) [55]. 2 

The extent of overall SH oxidation observed after MPO treatment in this study was 3 

comparable to that in heart tissue slices exposed to high-dose HOCl [27]. There is 4 

biochemical evidence that oxidative modifications modulate the architecture of the 5 

myofilament protein actin [61] and myosin [62]. In vitro exposure of permeabilized human 6 

LV cardiomyocytes to the oxidative agent DTDP resulted in a decrease in maximal Ca
2+

-7 

activated force production with a parallel reduction in the SH content of actin and MLC-1 8 

[26]. Consistent with this, in the present study H2O2 decreased the SH content of actin. 9 

However, despite the marked reduction in Factive, no additional decrease in this parameter was 10 

detected after MPO+H2O2 application, suggesting that SH oxidation may not be the main 11 

contributor to the MPO-evoked decrease in Factive under these experimental conditions. 12 

Moreover, formation of an actin and a Tm containing protein complex observed in this study 13 

is also unlikely to be responsible for the contractile changes observed in the cardiomyocytes 14 

after H2O2 and MPO+H2O2 administration. The possible functional consequences of the 15 

observed protein complexes require further examinations. 16 

 In a mouse model of experimental MI, we recently identified the increased 17 

carbonylation of actin and myosin heavy chain (MHC) in the infarcted area [2]. Similarly to 18 

MPO, in vitro Fenton-based myofilament carbonylation decreased pCa50, irrespectively of the 19 

phosphorylation status of the myofilaments. Moreover, pCa50 correlated strongly with the 20 

myofilament carbonylation levels. In accord with this, a marked (3-fold) increase in carbonyl 21 

group formation in actin was observed after 1 mM, but not after 0.1 mM H2O2 treatment [25]. 22 

The application of H2O2 to cardiomyocytes at a concentration higher than 0.1 mM was 23 

hindered by its inhibitory effect on the activity of MPO [42]. 30 μM H2O2 lowered Factive in 24 

parallel with a slight, but significant increase in the carbonylation of actin and MyBP-C. 25 
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Similarly to SH oxidation, carbonylation of these myofilament proteins was not further 1 

affected by the addition of MPO, despite its noteworthy effects on cardiomyocyte active and 2 

passive force production. This implies that the physiological effects of MPO-catalyzed 3 

oxidative processes are independent of SH group oxidation or carbonylation of human 4 

myocardial proteins. 5 

 Oxidative modifications in the myocardium primarily have been considered to result 6 

in reduced force generation, as also demonstrated in the present study. However, recent 7 

evidence suggests a more complex picture. Reactive oxygen and nitrogen species can activate 8 

protective mechanisms and signaling pathways (redox regulation) [60] or even increase 9 

cardiac performance [63]. Mild oxidative stress induced S-nitrosylation at specific Cys 10 

residues was shown to be cardioprotective [64]. Subtle increases in ROS production may 11 

even enhance cardiac contractility under physiological conditions [65]. Indeed, certain 12 

oxidative myofilament modifications can lead to positive functional consequences, such as 13 

nitroxyl (HNO), a reactive nitrogen species related to nitric oxide, induces formation of actin-14 

Tm heterodimers, which correlates with the increase in Ca
2+

 sensitivity and dimeric forms of 15 

MHC and MLC-1, which are associated with increased force generation [63]. HNO was also 16 

shown to increase maximum tension and Ca
2+

 sensitivity of trabeculae sarcomeres 17 

functioning in situ [66]. These results strongly suggest that the beneficial or deleterious 18 

functional outcome is likely dictated by the strength and the nature of the oxidizing agent and 19 

the redox milieu of the myofilament compartment. 20 

Since isolation of cardiomyocytes and assessment of myofilament properties was 21 

performed on LV biopsies of unused donor hearts, possible changes in the phosphorylation 22 

and oxidative status of the myofilament proteins occurring before or during tissue sampling 23 

may have been interfered with the results of this study. In addition, activation of the β-24 

adrenergic signaling and various oxidative pathways might also influence the baseline 25 
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mechanical and biochemical characteristics of the cardiomyocytes. We have checked the 1 

baseline functional parameters of the cells in the study and found no major differences in the 2 

cardiomyocyte mechanical properties. Moreover, the baseline myofilament SH contents were 3 

also similar in the LV samples used for the cardiomyocyte isolation. These observations are 4 

in line with those found in our previous study, in which the reducing agent DTT did not affect 5 

Factive and pCa50 of cardiomyocytes derived from human donor hearts [26]. 6 

In this study LV heart samples were frozen and their functional and biochemical 7 

properties were evaluated upon thawing. To validate the use of defrosted biopsy samples, in 8 

one of our previous studies [67] force recordings of cardiomyocytes isolated from a biopsy 9 

sample immediately after procurement were compared to those of cardiomyocytes isolated 10 

from a defrosted biopsy of the same patient. These force recordings yielded identical results. 11 

In addition, the extent of tissue heterogeneity was also addressed in previous studies using 12 

explanted hearts [68, 69]
 
or surgically procured biopsies [70]. In these studies the variability 13 

of force measurements of cardiomyocytes isolated from different portions of the heart was 14 

always less than 5%. 15 

It is also important to note that several additional MPO-sensitive processes, such as 16 

protein halogenation [71], protein nitration [72], Met oxidation, sulfonic acid generation 17 

(Cys), [73] or protein degradation [28], might be responsible for the observed functional 18 

alterations. Further studies are clearly required to elucidate the relative contributions of these 19 

processes to the overall pump function during human cardiac pathologies associated with 20 

elevated MPO levels.  21 

 22 

Conclusion 23 

MPO-derived oxidants contribute to myocardial contractile dysfunction by decreasing 24 

the cardiomyocyte force production and the myofilament Ca
2+

 sensitivity and increasing 25 
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Fpassive in human cardiomyocytes. These effects could be prevented by MPO inhibition and 1 

the antioxidant Met. The associated functional and biochemical  alterations may provide a 2 

pharmacological tool for the prevention and/or reversion of MPO-induced contractile protein 3 

alterations, which could have therapeutic implications in cardiac pathologies characterized by 4 

elevated MPO levels. 5 

 6 
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Figure captions 1 

 2 

FIG. 1. Myeloperoxidase (MPO) and hydrogen peroxide (H2O2) impair the force 3 

generation of human permeabilized cardiomyocytes. (A) A single cardiomyocyte (isolated 4 

from a human left ventricle myocardium) mounted between a sensitive force transducer and 5 

an electromagnetic motor. (B) Original force recordings of maximal Ca
2+

-activated active 6 

(Factive) and Ca
2+

-independent passive (Fpassive) force components before (left panel) and after 7 

MPO+H2O2 treatment (right panel) at pCa (i.e -log10[Ca
2+

]) 4.75 and pCa 9.0, respectively. 8 

MPO + H2O2 were applied in Iso for 15 min. (C) pCa-force relationships determined before 9 

and after H2O2 or MPO+H2O2 treatments (number of cardiomyocytes, n=7 and 12, 10 

respectively). Force levels are expressed relative to the values measured before the 11 

treatments. (* vs. Before H2O2, # vs. Before MPO+H2O2,  vs. After H2O2; 
*,#,

p<0.05) (D) 12 

Changes in Fpassive measured in the presence of Iso and after sequential applications of H2O2 13 

or MPO+H2O2. (E) Significant rightward shift (i.e. decrease in the Ca
2+

 sensitivity of force 14 

production (pCa50)) in the normalized pCa-force relationships in response to MPO+H2O2, but 15 

no change after H2O2 treatment (F). (Data are expressed as mean±SEM.) 16 

 17 

FIG. 2. Similar effects of the MPO inhibitor (MPO-I), but distinct actions of methionine 18 

(Met) on the chlorinating and peroxidase activities of myeloperoxidase (MPO). Met 19 

inhibits the chlorinating (A), but not the peroxidase (B) activity of MPO. Values are 20 

expressed relative to the MPO activity measured in the presence of Iso and hydrogen 21 

peroxide (H2O2). (Data are expressed as mean±SEM, *p<0.05).  22 

 23 

FIG. 3. The myeloperoxidase inhibitor (MPO-I) and methionine (Met) prevent the 24 

MPO-induced changes in isometric force production of human cardiomyocytes. 25 

Maximal (pCa 4.75) Ca
2+

-dependent active (Factive) (A) and Ca
2+

-independent (pCa 9) passive 26 
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(Fpassive) force (B) in left ventricular cardiomyocytes treated in isolating solution (Iso) 1 

supplemented with hydrogen peroxide (H2O2) or myeloperoxidase (MPO)+H2O2, MPO-I or 2 

Met. Forces are expressed relative to the values measured before the subsequent treatments. 3 

The MPO-I (C) and Met (D) prevent the MPO-evoked rightward shift in the normalized pCa-4 

force relationships. Dashed lines indicate force-pCa relationships determined in Iso. (E) 5 

Changes in the Ca
2+

 sensitivity of force production (pCa50) upon H2O2, MPO+H2O2, MPO-I 6 

or Met treatments. (Data are expressed as mean±SEM, *p<0.05) 7 

 8 

FIG. 4. Myeloperoxidase (MPO) and hydrogen peroxide (H2O2) similarly alter 9 

sulfhydryl (SH) group oxidation in myofilament proteins. (A) SH group oxidation in a 10 

cardiomyocyte suspension treated in isolating solution (Iso) supplemented with H2O2 and 11 

MPO (Ellman’s reaction). (B-E) Representative examples of SH content determination in 12 

actin (B), myosin-binding protein C (MyBP-C) (C), N2BA (D, E) and N2B (D, F) titin 13 

isoforms after H2O2 or MPO+H2O2 treatments through use of a protein biotinylation assay. 14 

T2 indicates the titin degradation product.  Samples exposed to dithiodipyridine (DTDP, 2.5 15 

mM, for 2 min) were used as positive control. Total protein amount was determined with the 16 

Sypro Ruby Protein Blot Stain. Values are expressed relative to the SH group content 17 

determined in Iso (time control). (Data are expressed as mean±SEM, *p<0.05 vs. Iso.) 18 

 19 

FIG. 5. No additional disulfide cross-bridge formation after hydrogen-peroxide (H2O2) 20 

and myeloperoxidase (MPO) treatment. Left ventricular myocardial samples solubilized in 21 

non-reducing (-β-mercaptoethanol (β-ME)) or reducing (+β-ME) sample buffers and probed 22 

with anti-tropomyosin (Tm) (left panel) and anti-actin (right panel) antibodies after 23 

immunoblotting. (Protein amount was determined with the Sypro Ruby Protein Blot Stain, 24 

MW - molecular weight.)  25 
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 1 

FIG. 6. Myeloperoxidase (MPO) and hydrogen peroxide (H2O2) increase the 2 

carbonylation of actin and myosin-binding protein C (MyBP-C), but not that of titin. 3 

Representative examples and measurement of carbonyl group formation in actin (A), MyBP-4 

C (B), N2BA (C, D) and N2B (C, E) titin isoforms treated with isolating solution (Iso) 5 

supplemented with H2O2 or MPO+H2O2. Left ventricular myocardial samples treated with 6 

Fenton reagent (FeSO4, H2O2 and ascorbic acid) served as positive control. Protein 7 

carbonylation is expressed as carbonylation index (CI) (CI=1, carbonyl group content 8 

measured in Iso). Total protein amount was determined with the Sypro Ruby Protein Blot 9 

Stain. (Data are expressed as mean±SEM, *p<0.05) 10 

 11 


