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1. INTRODUCTION 
Cells are the basic structural and functional units of life. The human body consists of 

trillions of cells, which can be categorized into around 200 different cell types based on their 

morphological and/or functional characteristics. With a few notable exceptions, the genomic 

DNA sequence is identical in the nuclei of all diploid cells within an organism. Although 

genomic DNA contains all the necessary information for creating any of the organisms’ cell 

types, the fate of an individual cell is defined by the local microenvironment during 

differentiation. The resulting unique gene expression pattern will define the mature cell’s 

function. The genomic determinants of this unique gene expression profile and its functional 

role in the cell’s response to external stimuli are two of the most exciting topics of the post-

genomic era. The cell-type-specific gene expression profile is the result of a series of 

transcriptional regulatory processes, including transcriptional initiation, elongation, transcript 

processing and degradation.  

Transcription regulation in Eukaryotes 

Transcription is the process by which the genetic information stored in the DNA is copied 

into RNAs. Unlike prokaryotes, eukaryotic cells encode for multiple RNA polymerases, 

including Pol I, Pol II and Pol III, which synthesize different types of RNAs. Pol I transcribes 

ribosomal RNAs (rRNAs), Pol III carry out the synthesis of transfer RNAs (tRNAs), small 

RNAs, the 5S rRNA and most long non-coding RNAs (lncRNAs), while Pol II transcribes 

mRNAs, small nuclear RNAs (snRNAs) and micro RNA (miRNA) precursors. The correct 

positioning of Pol II and other proteins, forming the so-called initiation complex, is essential 

to initiate transcription at the start of the gene body. 

A promoter region is defined as the minimal DNA sequence which is sufficient for 

transcription initiation by an RNA polymerase. One of the best example for promoter-like 

elements is the TATA box, located ~25 base pairs upstream of coding regions for certain 

protein- or non-protein-coding (e.g. lncRNA) genes. Other promoter elements have also been 

discovered: the initiator (Inr), the center of which is located at +1 (one nucleotide downstream 

of the transcription start site), and the downstream promoter element (DPE), which is centered 

at +30. These DNA elements provide binding sites for the transcription initiation complex and 

will direct RNA polymerase where to begin transcription.  



 4 

Tissue-specific gene expression variability in multicellular organisms rely on distal 

regulatory regions. These genomics regions, namely enhancers play a major role in the 

transcriptional initiation process, modulating the timing and rate of transcription of the 

associated genes. 

The concept of enhancer 

Enhancers are short DNA sequences that can induce the expression level of a gene, upon 

binding one or more regulatory protein(s) called transcription factors (TFs) and looping to the 

promoter of the regulated gene. An enhancer can regulate multiple genes, and one gene can 

have multiple enhancers. It has also been described that the promoters of certain genes can act 

as enhancers of distal genes. In contrast to promoters, enhancers can exert their gene regulatory 

function in a distance- and direction-independent manner; they do not need to be located near 

to the transcription start site of the gene. 

Typically, tens of thousands of enhancer regions are engaged in transcriptional regulation 

in a given cell type, at a given time point. Enhancers provide gene regulatory flexibility by 

being able to anchor different sets of transcriptional regulators, which may be present under 

only certain circumstances, such as after the exposure to a certain external stimulus. An 

enhancer can exert its gene regulatory function by making a spatial contact with the initiation 

complex at the promoter region of the regulated gene. In theory, almost any distance in the 

nucleus can be bypassed by this so-called promoter-enhancer looping. However, the spatial 

organization of the chromatin, such as the presence of topologically associated domains 

(TADs), puts a constraint on the possible promoter-enhancer interactions. Moreover, it has 

been shown that enhancers can regulate different stages of the transcription cycle, including 

RNAPII recruitment, release of promoter-proximal pause and transcription elongation. 

Therefore, the detection and characterization of enhancers is critical for understanding how 

these elements contribute to cell-type specific functions. 

Identification of enhancer regions 
Identification of the enhancers of a certain gene is challenging for multiple reasons. First, 

the regulatory elements can be located at great distances (up to 1 Mb) both upstream or 

downstream the transcription start site (TSS) of the regulated gene. Moreover, studies have 

shown that not only the non-coding genome, but intronic and exonic regions can also contain 

enhancer elements. Surprisingly, gene promoters can also act as distal regulatory elements. 
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Genes often have more than one enhancers and one enhancer can regulate multiple genes. 

Finally, unlike promoters, there is no general sequence code for enhancers that could be 

predicted by in silico methods. A widely used strategy for enhancer prediction is to map histone 

modifications and other epigenomic marks using high-throughput sequencing-

based techniques such as chromatin immunoprecipitation sequencing (ChIP-seq). 

Histone modifications  

In the eukaryotic nucleus, DNA is packed and ordered by histones in structures called 

nucleosomes. There are five types of histones: H1, which is involved in higher-order structures 

of chromatin (known as linker histones), H2A, H2B, H3 and H4 (core histones constituting the 

so-called histone octamer). Nucleosomes comprise core histones and DNA wrapped around 

them. In human cells, there is about ~2 meters of DNA, but it is about 90 millimeters of 

chromatin in a condensed form. 

Histones can carry various post-translational modifications referred to as histone marks, 

which may regulate gene expression by making DNA less or  more accessible to transcription. 

H3 is one of the most extensively modified protein among the core histones. The modifications 

of H3 can be used to distinguish between hetero or euchromatin states or identify different 

types of  regulatory elements. Trimethylated H3K4 (H3K4me3, three methyl groups to lysine 

4 of histone H3) is enriched around transcription start sites (TSSs) of active genes. In contrast, 

gene bodies of actively transcribed genes are associated with trimethylated H3K36 

(H3K36me3, three methyl groups to lysine 36 of histone H3). Monomethylated H3K4 

(H3K4me1, one methyl group to lysine 4 of histone H3) has been shown to co-localize on 

regulatory regions with pioneer TFs, characterizing general enhancers (irrespectively to 

transcriptional activity), and it is also enriched at promoter regions, although to a lesser extent. 

Finally, the histone H3K27ac (acetylation at the lysine 27 of histone H3) can be found both at 

promoters and enhancers, and marks active transcription. 

Classification of enhancer states based on epigenetic signatures 
In macrophage biology, PU.1 and H3K4me1/2 double-positive regions were considered as 

enhancer-like regulatory regions and active histone marks such as H3K27ac were used to 

distinguish between poised and active enhancers. This classification revealed the existence of 

latent or de novo enhancers which are not marked either by H3K4me1/2 or PU.1 binding prior 

to stimulus but they get activated by signal-dependent transcription factors (SDTFs). Although 
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these studies did not characterize the contribution of chromatin openness which might provide 

a better mechanistic insight into the different stages of enhancer formation.  

2. AIMS OF THIS STUDY 

Aim 1. Evaluation of the contribution of key macrophage TFs to chromatin 

openness and enhancer formation in steady state and polarized mouse 

macrophages 

• Map the genomic binding sites of key TFs including PU.1, IRF8, JUNB, RUNX1 and 

CEBPA in order to examine interrelation the hierarchy among them 

• Apply machine-learning approaches such as Random Forest and Support Vector 

Regression to build predictive models evaluating the contribution of the binding pattern 

of the studied TFs to chromatin openness and enhancer activation 

• Classify the cistromes of the studied TFs based on chromatin openness  and perform 

loss/gain of function experiments to investigate the deterministic role of low accessible 

regions in regulating gene expression in the steady state and/or in response to external 

stimuli 

• Reveal whether there exist distinct TF modules binding low accessible genomic regions 

that regulate specific gene expression programs triggered by various macrophage 

polarizing stimuli 

• Build a formal model using Automata Theory that describe the possible states of 

enhancer formation and transitions among them 

Aim 2. Examination of the role of OCT4 in the early steps of RA-induced 

neurogenesis  

• Map the OCT4 cistrome and investigate its relation to chromatin openness in both naïve 

and ground state ESCs 

• Characterize the interaction between the low accessible OCT4 binding sites and retinoic 

acid signaling pathway playing critical role in the early steps of neuronal differentiation 

• Perform loss of function experiments for OCT4 to delineate its deterministic role in 

forming differentiation-related enhancer and regulate retinoic acid target genes 
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• Construct a composite network using network motifs to describe the dual role of OCT4 

in pluripotency state and in the context of early steps of RA-induced neurogenesis. 

3. MATERIALS AND METHODS 

Differentiation of bone marrow derived macrophages  
Bone-marrow was flushed from the femur of wild-type C57BI6/J male animals. Cells were 

purified through a Ficoll-Paque gradient (Amersham Biosciences, Arlington Heights, IL) and 

cultured in DMEM containing 20% endotoxin-reduced fetal bovine serum and 30% L929 

conditioned medium for 5 days. Isolated bone marrow-derived cells were differentiated for 6 

days in the presence of L929 supernatant. At the 6th day of differentiation, cells were exposed 

to IL-4 (20ng/ml) and LPS (100 ng/ml) for the indicated period of time. 

Embryonic stem cell culture  

Mouse E14 embryonic stem cell cultures were cultured on primary mouse embryonic 

fibroblast (PMEF) feeder cells (5% CO2 at 37 °C). ESC medium was prepared by 

supplementing DMEM Glutamax (Gibco) with 15% FBS (Hyclone), 1,000 U of LIF, 

penicillin/streptomycin, non-essential amino acids, and 2-mercaptoethanol. 2i ESCs were 

adapted for a minimum of five passages to grow in serum-free N2B27-based medium 

supplemented with LIF, PD0326901 (1 mM), and CHIR99021 (3 mM). 

Ligands and Treatment  

ESCs were treated with vehicle (DMSO) or with all-trans RA (Sigma, 1 mM stock in 

DMSO, 1/1,000 dilution). 

siRNA knockdown  

OCT4 and control siRNAs were obtained from Thermo Fisher. Mouse E14 cells were plated 

on gelatinized plates 12 hr before transfection. siRNA transfection was carried out with 

Lipofectamine 3000 (Invitrogen). OCT4 stealth RNAi oligo sequences: siOCT4_A_Fw: 5`-

AUG CUA GUU CGC UUU CUC UUC CGG G-3`, 5`- 

CCCGGAAGAGAAAGCGAACUAGCAU-3`, siOCT4_A_Rev: 5`-CCC GGA AGA GAA 

AGC GAA CUA GCA U-3`, siOCT4_B_Fw: 5`-ACC UUC UCC AAC UUC ACG GCA UUG 

G-3`, siOCT4_B_Rev: 5`- CCAAUGCCGUGAAGUUGGAGAAGGU-3`. Transfected cells 

were cultured in embryonic stem (ES) medium for 24 hr prior to experiments.  Cells were 
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ligand treated for 3-24 hrs before harvesting for eRNA and mRNA experiments, meaning that 

cells were harvested 24+3 or 24+24 hrs following the transfections. Similarly, ChIP 

experiments were performed 24 hrs following the transfection or the latest 48 hrs if ligand 

treatment was applied. 

Microarray analysis  

Control, Nanog RNAi and OCT4 RNAi .CEL files of GSE4189 microarray series were 

downloaded from NCBI/GEO database and imported into GeneSpring (version 13.0). Gene 

Level Experiment was carried out using the following parameters: Threshold raw signals to 

1.0, Normalization algorithm: quantile, Baseline to median of control samples (GSM94856- 

GSM94860), Average over replicates in conditions. Entity lists containing pre-selected RA 

target genes or components of the retinoic acid signaling pathway were used for heatmap 

analysis. 

RT-qPCR  

RNA was isolated with Trizol reagent (Ambion). RNA was reverse transcribed with High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to manufacturer’s 

protocol. Transcript quantification was performed by qPCR reactions using SYBR green 

master mix (BioRad). Transcript levels were normalized to Ppia. 

ChIP-seq  

ChIP was performed as previously described (Barish et al., 2010; Daniel et al., 2014b; 

Siersbaek et al., 2012), with minor modifications. The following antibodies were used: OCT4 

(sc-8628), PU.1 (sc-352), IRF8 (sc-6058x), JUNB (sc-46x), CEBPA (sc-61x), RUNX1 (sc-

8563x), STAT6 (sc-981x), p65 (sc-372), H4ac (millipore 06-866), H3K4me1 (ab8895), 

H3K27ac (ab4729), IgG (Millipore,12-370), OCT4 (Santa Cruz, sc-8628), RXR (Santa Cruz, 

sc-774), RAR (Santa Cruz, sc-773), P300 (Santa Cruz, sc-585), H3K27me3 (Millipore, 07-

449) and RNAPII-pS2 (ab5095). Libraries were prepared by Ovation Ultralow Library 

Systems (Nugen) from two biological replicates according to the manufacturer’s instructions. 

Western blot analysis  

20 µg protein whole cell or nuclear extracts were separated by electrophoresis in 10 or 

12.5% polyacrylamide gels and then transferred to Immobilon-P Transfer Membrane 

(Millipore Crp.,Billerica, Massachusetts). Membranes were probed with anti-Oct3/4 (Santa 
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Cruz;sc-5278), anti-RAR (Santa Cruz, sc-773), or anti-GAPDH (Santa Cruz, sc-32233) 

antibodies according to the manufacturer’s recommendations.  

GRO-seq 

Global Run-On sequencing and library preparation was performed as described earlier 

(Core, Waterfall, & Lis, 2008). Libraries were made from two biological replicates of 

BMDMs. Libraries were sequenced with Illumina HiScanSQ sequencer. 

ChIP-seq, GRO-seq and ATAC-seq analyses 

Primary analysis of the ChIP-seq, GRO-seq, and ATAC-seq raw reads was carried out 

using a ChIP-seq analyze command line pipeline (Barta, 2011). Briefly, Burrows-Wheeler 

Alignment Tool (H. Li & Durbin, 2009) was used to align the reads to mm10 genome assembly 

(GRCm38) with default parameters. MACS2 2.0.10 (Zhang et al., 2008) was used for 

predicting TF peaks (q-value <= 0.01) and findPeaks.pl (with ‘-size 1000’ and ‘-minDist 2500’ 

options) for histone regions with the option ‘-style histone’. Artifacts were removed using the 

ENCODE blacklist (Consortium, 2012). ‘Intergenic’ and ‘Intron’ regions were considered as 

distal elements from HOMER (v4.2) annotation. Reads per kilobase per million mapped reads 

(RPKM) values of the predicted peaks was calculated using BedTools coverageBed and bash 

scripts. DiffBind v2.8.0 was used to infer differential binding sites from duplicates of STAT6 

and p65 from CTR, 1h IL-4 and 1h LPS treated cells (p-value < 0.05), respectively, and from 

RNAPII-pS2 ChIP-seq time course experiments (p-value < 0.05 & FC>2) measured on distal 

regions (normalized DiffBind occupancy > 30) and on gene bodies (normalized DiffBind 

occupancy > 50), using untreated samples as controls. K-means clustering of RNAPII-pS2 

regions both on distal elements and gene bodies (mm10 RefSeq) was performed using 

kmeans() function from the R package stats. GO analyses were performed using the 

clusterProfiler R package. Intersections, subtractions, and merging of the predicted peaks were 

done with BedTools (v2.23.0). Regions were considered overlapping if there was at least one 

common nucleotide. Consensus sets were defined by merging overlapping regions (in at least 

2 samples). Proportional Venn diagrams were generated with VennMaster. Genome coverage 

files (BedGraphs) for visualization purposes were generated by makeUCSCfile.pl, and then 

converted into tdf files using igvtools (IGV2.3, Broad Institute) with the ‘toTDF’ option. 

Genomic distribution was analyzed using HOMER categories provided by annotatePeaks.pl 

(UTR regions were merged). De novo motif discovery was performed in the 150 bp vicinity 



 10 

of the peak summits using findMotifsGenome.pl with options ‘-length –len 

‘12,14,16,18,20,22’ and ‘-size 200’ on the repeat-masked mouse genome (mm10r) from 

HOMER. Integrative Genomics Viewer (IGV2.3, Broad Institute) was used for data browsing 

and creating representative snapshots. Normalized tag counts for Meta histograms and read 

distribution heatmaps (RD plots) were generated by annotatePeaks.pl with ‘-ghist’ and ‘-hist 

25’ options from HOMER on one representative example of duplicates and then visualized by 

R (ggplot2) or Java TreeView. Motif matrices were remapped using annotatePeaks,pl with the 

‘-mscore’ option. Summits used for centering RD plots and motif remapping were identical to 

the summit of the peak with the highest MACS score from those used for deriving the 

consensus region.  

Machine learning  

Machine learning analyses were performed in R using the packages randomForest, e1071 

and custom scripts. For training sets, 1,000 sites were randomly chosen from both labelled and 

‘HighAcc’ categories for Random Forest and Support Vector Machine models (repeat-masked 

mouse genome mm10r). To avoid the well-known issue of ‘overfitting’ in data mining, all 

models were built using a k-fold (k=10) cross validation. In total, 31 Random Forest models 

were generated from all possible TF combination (one TF only, n=5; two TFs, n=10; three 

TFs, n=10; four TFs, n=5; all five TFs - ‘full model’, n=1). For validation sets, another 1,000 

sites were randomly chosen from both labelled and ‘HighAcc’ categories that were not used 

for learning processes. Contribution scores (MeanDecreaseGini) were calculated using 

randomForest function with the ‘importance = T’ option. Sensitivity, Specificity and ROC 

values were calculated with the caret and ROCR packages. Boxplot of the 31 models and the 

ROC plot were generated using ggplot2 R package. For SVM model, Pearson correlation 

coefficient was calculated on an independent validation set using stats packages in R. 

4. RESULTS 

Random Forest classification hints the existence of low accessible PU.1 binding 

sites in macrophages 

We systematically assessed all combinations of the studied TFs (PU.1, IRF8, JUNB, 

CEBPA and RUNX1) by using Random Forest method and measured their prediction 

accuracy. Interestingly, the model where only PU.1 binding pattern was used showed weak 
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prediction accuracy of openness (64.4%), only marginally higher than expected by chance. All 

the other models which accommodated only one of the other key TFs resulted in similarly 

weak predictive powers, however, slightly better than PU.1. While the model in which all the 

TFs were used as input (‘full model’), resulted in a high accuracy prediction on an independent 

validation set (Accuracy = 0.82, Sensitivity = 0.88, Specificity = 0.77, AUC = 0.90. The 

Random Forest classification also revealed that all the other TFs had higher contribution than 

PU.1 in defining chromatin openness indicating that PU.1 binds low accessible genomics 

regions as well. 

 

Based on these analyses we classified the PU.1-bound sites into three classes: (1) binding 

sites that were not associated with predicted NFRs, termed ‘PU.1-labelled’ regulatory elements 

(PU.1-LREs, 46,280 sites); (2) regions where PU.1 binding overlapped with open chromatin 

regions, termed ‘PU.1 pos. HighAcc’ sites (18,448 sites); and (3) PU.1-negative highly 

accessible regions, termed ‘PU.1 neg. HighAcc’ sites (18,967 sites). Strikingly, only one-third 

of the PU.1-bound genomic regions overlapped with NFRs. 

Taken together, these results show that two-thirds of PU.1-bound regions are associated 

with low accessible chromatin and the lack of transcriptional activity; we termed these sites 

LREs. Moreover, both the characterization of ‘PU.1 neg. LowAcc’ sites and the ChromHMM-

based analysis suggest that IRF8, RUNX1 and CEBPA also have labelled fractions and there 

might be unique co-LRE TF modules. 

Key transcriptional regulators of macrophage form labelled regulatory elements 

Our study revealed that LREs are widespread in cistromes of the studied TFs, and  PU.1-

labelled sites are the most prevalent LREs because PU.1 has the largest cistrome and its ability 

to bind alone. Thus, the labelled portion of IRF8, CEBPA and RUNX1 often overlap with PU.1 

and they form co-LREs. Finally, among the possible combinations of co-LREs, PU.1+IRF8 

co-LREs are the most abundant, having around three times as many binding sites than the 

second most abundant combination, which also contain the TFs PU.1 and IRF8. 

The role of PU.1 and IRF8 co-LREs in cellular response to IL-4  

Our findings highlight that PU.1+IRF8 co-LREs can be transformed into active enhancers 

activated by IL-4 stimulus. Using gain and loss of function experimental systems we set out to 

reveal the possible role of PU.1+IRF8 co-LREs in gene regulation. We measured the mRNA 
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level of three well-known IL-4 regulated genes (Retnla, Hbegf, and Arg1) in PUER cells (Pu.1-

/- myeloid progenitor cells containing a PU.1-estrogen receptor ligand binding domain fusion 

protein), whose transcriptional activity can be turned on by adding tamoxifen. Our results in 

the PUER system demonstrated that transcriptionally active PU.1 up-regulated the expression 

of the three IL-4-target genes in the unstimulated state providing the context for efficient IL-

4-mediated induction as well. To test the role of IRF8 in IL-4 regulated expression of the same 

three genes, we used wild type (WT) and Irf8-/-  BMDMs. Our result showed that in the lack 

of Irf8 the inducibility by IL-4 treatment was partially (Hbegf, and Arg1) or completely 

(Retnla) impaired.  

IRF8 maintains low accessible chromatin structure at a subset of labelled 

regulatory elements 
37% of the sites that gained openesss in the absence of Irf8 overlapped with IRF8-LREs, 

suggesting that IRF8 binding is indispensable to prevent chromatin opening at these sites. This 

analysis indicates that IRF8 might have a chromatin compacting effect on a subset of loci, 

potentially through either indirect binding or binding to non-canonical motifs as we neither 

identified PU.1-IRF composite motif nor any other ISRE-like elements. These findings 

highlight the importance of IRF8 as a regulator of chromatin and hints the existence of 

PU.1+IRF8-co-LREs and IRF8-LREs, where IRF8 may maintain low accessible chromatin, 

stabilizing the LRE state.  

Labelled regulatory elements are dynamically utilized by macrophage 

polarization signals 

Comparison of STAT6 (1h IL-4) and p65 (1h LPS) cistromes revealed 10,619 STAT6-

specific, 8,466 p65-specific regions and 3,781 co-bound regulatory elements that are utilized 

by both TFs upon the certain activating signals. Both cistromes of TF had similar fractions of 

de novo, LRE- and highly accessible regions. Co-bound genomic regions showed high overlap 

with highly accessible sites (2,720), but only 892 labelled and a very small set of de novo sites 

(169) were also identified. 

Motif analysis of NF-kB (represented by p65), STAT6 and PU.1 highlighted that: 1) the 

motif of PU.1 was weaker in almost all the cases at de novo sites and LREs compared to highly 

accessible sites, with no regard as to whether it overlapped by STAT6, p65 or both; 2) as 

expected, the p-value of the NF-kB motif was lower at p65-specific sites, and the de novo 
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regions had the strongest motifs. Moreover, co-bound sites possessed a much weaker NF-kB 

motif, while this motif was virtually not detected at STAT6-only sites; 3) the STAT6 motif 

had very similar characteristics to the p65 motif, showing specificity to STAT6-bound regions 

with the highest p-values for this motif at the de novo sites.  

The cistromes of both p65 and STAT6 highly overlapped with PU.1-, PU.1+IRF8- and 

PU.1+IRF8+CEPBA+RUNX1-LREs (“All” group), although a higher portion of the STAT6 

cistrome overlapped with these groups compared to p65’s. Interestingly, p65 showed higher 

enrichment for IRF8-, RUNX1- and CEBPA-LREs than STAT6, suggesting that in certain 

cases, SDTFs preferentially use certain LRE groups (without regard to the number of the co-

bound TFs). Collectively, these findings highlight that the SDTFs of the two main polarization 

programs bind LREs, where the SDTFs do not necessarily prefer co-LREs, and show 

preferential binding to certain TF modules (TF combinations) at LREs. 

Our results highlight that LREs have a contribution to short-term polarization programs. 

To address the question whether co-LREs also have any role in intermediate or long-term 

transcriptional responses, we investigated the activated enhancer network of classical and 

alternative macrophage polarization programs using fine resolution, time course RNAPII-pS2 

ChIP-seq experiments. 

At the global scale, we identified 6,356 LREs that were up-regulated upon IL-4 or LPS 

treatment at least at one time point (FC>2 & p-value < 0.05, compared to the steady state 

BMDMs). Next, we clustered the up-regulated LREs into eight enhancer clusters (ECs), all of 

them with different transcriptional kinetics: EC1, EC2 and EC3 were IL4-specific, while 

clusters EC4-EC8 were specific for LPS. Having analyzed the cluster sizes, we found that 

LREs nearly equally contribute to early, intermediate and late induced TF modules.  

To reveal whether these co-LRE-associated ECs regulate gene expression with similar 

kinetics, we filtered the genes based on two conditions: 1) on the gene body, Pol II S2 signal 

was induced upon IL-4 or LPS compared to the resting BMDM state (1,735, FC>2 & p-value 

< 0.05) and 2) their TSSs was in the 100-kb vicinity of at least one regulated EC. Next, we 

clustered these genes into eight clusters (GBs), and they showed similar transcriptional 

kinetics. 

Our study confirms that LREs are dynamically utilized upon SDTF binding and activation 

both in the  classical and alternative polarization programs of macrophages and have significant 
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role in the early stage of RA-induced neurogenesis. In summary, LREs are widespread both in 

ESCs and macrophages, extending the working model of enhancer formation and providing a 

novel class of the regulatory elements which contribute to dynamic gene expression regulation. 

Modelling enhancer states using Nondeterministic Finite State Automata  
To provide a formal model to describe the states of the chromatin and the transitions among 

them, we defined a Nondeterministic Finite Automaton. In our case, Q is the set of the possible 

states of chromatin which are determined by three components: The first one is Binding 

representing whether or not the given region is bound by any transcription factors (’bound’, 

’unbound’), the second component is Openness (‘low’ or ‘high’ accessibility) determined by 

ATAC-seq signal and the third one is Activity that is represented by the change in active 

histone mark signal  (’down-regulated’, ’inactive’, ’up-regulated’). This automaton can 

describe the interactions between the LDTF(s) and SDTF(s) in macrophages, and the results 

could serve as a new-paradigm which can be tested in other mammalian model systems. 

OCT4-LREs in the context of RA-induced neurogenesis  
Our previous finding raised the inquiring question whether LREs exist in a different 

cellular context as well and if so, these regulatory elements can also be activated in a signal 

specific manner. We identified ~21,000 OCT4 binding sites in naïve (“serum”) and ground 

state (“2i”) ESCs and classified the OCT4 cistrome based on chromatin openness predicted by 

DNase-seq. Notably, 37% of the OCT4 cistrome in ground state was associated to low 

accessible chromatin (OCT4+/DNase high and OCT4+/DNase low). The DNase signal showed 

a good correlation with ATAC-seq signals and this classification was in a good agreement in 

the naïve state as well. 

Pathway analysis on the gene set associated with the OCT4+/DNase low genomic regions 

and found that these sites were enriched for WNT/b-catenin, Axonal Guidance Signaling, 

Epithelial Adherens Junction Signaling, PTEN Signaling, Signaling by Rho Family GTPases 

and RAR signaling pathways including WNT/b-catenin target genes such as Wnt3 and 

T/Brachyury and RAR:RXR including Hoxa1, Prmt8 and Cdx2 were enriched for OCT4.  

Interestingly, upon the knockdown of OCT4 RA target genes showed higher basal mRNA 

expression. In contrast, the depletion of NANOG did not substantially increase the mRNA 

level of these genes. This result confirms that there exists a OCT4-related mechanism by which 

RA-regulated genes such as Hoxa1 are suppressed and this regulation mechanism is 
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independent from the canonical pluripotency gene expression network. qPCR of measurements 

confirmed that OCT4 represses the mRNA level of Hoxa1 gene and the eRNA of a putative 

enhancer 5 kb upstream of the TSS of Hoxa1 bound by OCT4 in the pluripotency state. 

Next, we aimed to characterize the interaction between OCT4 and the RA pathway 

components. Only Rara and Rarg were down-regulated at the mRNA level upon the depletion 

of OCT4, however the latter with much higher induction. qPCR measurements of OCT4 

binding and the eRNA level at the putative regulatory region of Rarg after RNAi transfection 

revealed that OCT4 regulates Rarg in the pluripotent state via direct binding to its putative 

enhancer region.  

Modeling OCT4-related transcriptional circuit using network motifs. 

This accumulated data led us to conceptualize our knowledge on the role of OCT4 in the 

early steps of RA-induced neurogenesis. We built a composite motif network consisting of  

two  fundamental modules: (1) A C1-FFL in which OCT4 directly up-regulates the expression 

level of Rarg in the ESC state and indirectly up-regulates Hoxa1 up RA treatment via 

collaborative binding of the RXR:RAR heterodimer (2) OCT4 and Hoxa1 implement a mutual 

repression motif where either OCT4 is turned on and Hoxa1 is turned off (ESC state) or vice 

versa (long term RA signaling). 

5. DISCUSSION 
In the post-genomic era, one of the biggest challenge is  to integrate, interpret, and 

ultimately create meaningful models based on accumulating Next-Generation Sequencing data   

which require an increasing intellectual contribution from the computer science community. 

Therefore, interdisciplinary teams need to be set up to understand complex molecular biology 

processes by building predictive models, which seem to be essential for deciphering the 

processes of cell functions, replication, transcription, and translation.  

Machine learning methods such as Random Forest and Support Vector Regression serve 

as  novel tools to validate hypotheses by building classifiers and regressive models that can not 

only make predictions, but also determine the relative contribution of the input variables. We 

have demonstrated that chromatin openness profiled by ATAC-seq can be predicted from the 

binding pattern of key TFs using Random Forest classifier and Support Vector Regressor 

models. This computational approach revealed that (1) despite the fact that PU.1 is the most 
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prominent LDTF of macrophages, neither its solo binding nor the solo binding of other key 

TFs are not sufficient to predict NFRs, and (2) the whole TF panel we used in the machine 

learning approach predicted open chromatin with a very high (82%) accuracy, suggesting that 

the most relevant TFs were included in the model. 

This analysis led us to the observation that more than half of the PU.1 binding sites do not 

overlap with NFRs. Therefore, we examined the potential function of this type of PU.1 binding 

sites in classical and alternative polarization programs induced by LPS and IL-4, respectively. 

Our study revealed that a certain part of the ‘labelled’ sites is  opened and activated by the 

binding of STAT6 (induced by IL-4 – alternative polarization) or p65 (induced by LPS - 

classical polarization) in a signal-specific manner. A likely scenario is that in resting 

macrophages, the LDTF(s) attempt to establish open chromatin but no proper TF module is 

available to maintain open chromatin structure permanently. Further extension of our model 

will be possible when binding events can be examined at the single cell level and within the 

time-frame of milliseconds rather that within several minutes and by this way, the biases 

caused by population-based (bulk) techniques such as ChIP-seq can be avoided. Our results 

add another layer to the working model of enhancer activation and underline the importance 

of chromatin openness in shaping cell-type specific enhancer repertoires and gene regulation. 

Collectively, our results lend support for a spectrum model according to which the 

transcriptional responses are tailored by the trade-off of the SDTFs and the available enhancer 

repertoire determined by the LDTFs.  

First, on one end of the spectrum there are de novo enhancers strongly dependent on the 

corresponding SDTF in a sequence-specific manner and the LDTFs can neither open nor bind 

these sites in the resting state. Therefore, at these sites certain SDTFs seem to be mandatory 

factors to initiate and maintain any regulatory events. Second, the newly identified, labeled 

enhancers are bound by LDTF(s) in the unstimulated state, but the LDTF(s) do not have the 

ability to maintain open chromatin permanently. The third class of enhancers is the group of 

poised enhancers, which are already open before the stimuli meaning that they are strongly 

supported by the available TFs in the unstimulated state, but they need the SDTF(s) to become 

activated. In former studies, the binding of PU.1 and H3K4me1/2 was used to define enhancers 

and H3K27ac (active histone marks) to discriminate between poised and active enhancers (5, 

50). Fourth, the up-regulated, constitutively active enhancers can be driven without any stimuli 



 17 

and in some cases the binding of the SDTF(s) can induce further up-regulation. Our results 

show that this group of enhancers requires a lower level of sequence-specificity compared to 

the de novo or labelled enhancers, and this raises the possibility that open chromatin has a 

distinct role in recruiting SDTFs via less-specific DNA binding and/or protein-protein 

interactions.  

The need for formal models capturing the essence of a certain biological process appeared 

in parallel with the emergence of experimental molecular biology, even before the NGS 

Revolution. During the modelling process, the most critical step is abstraction, by which we 

eliminate the unnecessary components and highlight the critical features of the phenomena to 

be modeled. The Operon-model was the first well-characterized regulatory process 

representing a very effective mechanism of prokaryotic gene regulation by which the organism 

can rapidly adapt to external environmental stimuli. Another example, which applied Automata 

Theory approach, is the Chemoton model proposing an automaton to formalize the essential 

properties of life (self-replication, metabolism and a bilayer membrane). In this study, we 

constructed a Nondeterministic Finite Automaton termed Regulation Automaton capturing the 

essential steps of enhancer formation using only the attributes Binding, Openness and Activity.  

We found a similar mechanism in embryonic stem cells. The pluripotency factor OCT4 

occupies genomics regions associated to the genes of signaling pathways such as RA signaling 

that are inactive in the ESC state. These regions are typically low accessible and often positive 

for the repressive histone mark H3K27me3. Upon certain stimuli, however, these regions will 

be bound by SDTFs which subsequently activate them by recruiting co-activators, similarly as 

co-LREs collaborate with STAT6 or p65 upon certain polarization signals in macrophages. 

Notably, OCT4 maintains the gene expression of Rarg in the unstimulated state while at low 

accessible regions it serves as a repressor of RA-target genes such as Hoxa1. In this regard, 

OCT4 is similar to IRF8 which also seems to have such a function, however, delineation of the 

repressive role of IRF8 at low accessible regions needs further studies. To formally describe 

this complex OCT4-related regulatory circuit, we build a composite network from the 

combination of two characteristic network motifs; (1) an C1-FFL depicting the direct and 

positive regulation of Rarg in the unstimulated state and the indirect up-regulation of Hoxa1 

through by RXR:RAR heterodimer,  (2) the mutual repression of OCT4 and Hoxa1 genes 

providing a regulatory switch between one of the most prominent pluripotency factor and the 
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key regulator of early steps of neurogenesis required for the proper patterning of the early 

mouse hindbrain and the associated neural crest. By using such modeling approaches, these 

studies can serve as building blocks for creating a firmly established theory of enhancer 

formation. 

6. SUMMARY 

Summary 1. We have determined the contribution of key macrophage TFs to 

chromatin openness and enhancer activation in steady state and polarized mouse 

macrophages.  

Our findings include 

• Chromatin openness can be accurately predicted from the binding pattern of key TFs using 

machine learning methods such Random Forest and Support Vector Regressor both 

qualitatively and quantitively. 

• The machine learning-based classification has also revealed that more than half of the PU.1 

cistrome is associated to low accessible chromatin regions termed PU-labelled regulatory 

elements (LREs). Moreover our results show that having a remarkable fraction of LREs is a 

general phenomenon among the studied TFs (IRF8, CEBPA and RUNX1). 

• Loss/gain of function experiments for PU.1 (PUER system) and IRF8 (Irf8-/-) has shown 

that PU.1 and IRF8 have an indispensable role in regulating gene expression in the steady 

state and/or in response to IL-4. 

• There are indeed distinct TF modules collaboratively binding labelled regulatory elements 

(co-LREs) that regulate specific gene expression programs with different dynamics initiated 

by various macrophage polarizing stimuli including LPS (classical activation) and IL-4 

(alternative activation). 

• Identification of ~2,300 IRF8-LREs that gained openness in Irf8-/- cells suggesting a 

repressive role for IRF8 at these LREs. 

• A formal model termed Regulation Automaton describing the possible states of enhancer 

formation and transitions among them. 
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Summary 2. We have characterized a novel role of OCT4 in the early steps of RA-

induced neurogenesis.  

Our finding include: 

• Characterization of the OCT4 cistrome and its relation to chromatin openness has revealed 

that there is a remarkably fraction of OCT4 binding that are not associated to open chromatin 

(OCT4-labelled regulatory elements – OCT4-LREs) both in naïve and ground state. 

• Examination of the interaction between OCT4-LREs and retinoic acid signaling pathway 

has uncovered that OCT4 plays a critical role in not only maintaining pluripotency state but 

also in the early steps of neuronal differentiation. 

• siRNA mediated knockdown of OCT4 has shown that OCT4 is essential to activate 

differentiation-related enhancers of retinoic acid target genes such as Hoxa1. 

• Construction of a composite network built from stereotypical network motifs describing 

the dual role of OCT4; maintaining the expression of Rxrg and repressing Hoxa1 in 

pluripotency state and being essential role in mediating the up-regulation of  Hoxa1 via 

RXR:RAR response elements upon 24h RA treatment. 
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