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ACC: anterior cingulate cortex

ADC: apparent diffusion coefficient

ANN: artificial neural network

BAT: brain adjacent to tumor

CNS: central nervous system

COG: center of gravity

DF: discriminant function

DLPFC: dorsolateral prefrontal cortex

dMRI: diffusion magnetic resonance imaging (i.e. Dalid DTI)
DTI: diffusion tensor imaging

DWI: diffusion weighted imaging

EPI: echo planar imaging

FLAIR: Fluid Attenuated Inversion Recovery

fMRI: functional magnetic resonance imaging

FOV: field of view

FSL: Functional Magnetic Resonance Imaging of trerBSoftware Library
HGG: high grade glioma

HGPM: high grade probability map

LGG: low grade glioma

LGPM: low grade probability map
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MD: mediodorsal thalamic nucleus

MDA: multivariate discriminant analysis

MDmc: mediodorsal thalamic nucleus, magnocellubat p
MDpc: mediodorsal thalamic nucleus, parvocellulart p
MPG: multiple pulsed gradient

MNI: Montreal Neurological Institute

MRI: magnetic resonance imaging

NKI: Nathan Kline Institute

NMR: nuclear magnetic resonance

ROI: region of interest

TE: echo time

TPM: tumor probability map

TR: repetition time

UD-MHSC: University of Debrecen, Medical and Hedhtience Center
WHO: World Health Organization



1. Introduction

Water is a fundamental and ample constituent divatig creatures and it is an almost
trivial statement that tissue water is structuredoading to the characteristics and intrinsic
features of any given tissue type. This is undalliptéhe rationale of modern magnetic
resonance technologies that dominated the fieldiahedical and diagnostic imaging of the
central nervous system for the last two decades.iffitial and nearly prophetic enthusiasm
about this technique led to anticipations that thquitous nuclear magnetic resonance
(NMR) phenomenon of tissues of the human body coedéal previously unseen details of
pathologic processes; this could be done by chenattg the relaxation properties of spin
systems. Here | shortly refer to an early paterR@aymond Damadian from 1972 in which he
described a new design of an NMR device denotéd\pgaratus and method for detecting
cancer in tissue” [1]. He correctly predicted tlsath scanners could pinpoint changes in

tissue qualities that are brought about by neaplastnsformation.

One attribute of the uniquely organized patterrwater molecules is their diffusion
characteristics. As we will elucidate in the thesisiew family of imaging technologies was
built upon this phenomenon, namely diffusion magnetsonance imaging (dMRI). The date
of this work — 2012 — hallmarks the 25th anniveysaf diffusion MRI. Since the first
depiction of the diffusion process in the human irbraignificant conceptual and
methodological developments have been applied tRId¥]. While the spatial resolution of
MR images is typically on the range of a millimetarstrikingly unique feature of diffusion
MRI approaches is that they probe the motion ofewatolecule systems that are happening
on the micrometer scale. This theoretically meangag to sample the microarchitecture of
tissue or subcellular water compartments which xgeresively used as the rationale of

diffusion MRI augmented research.

A significant part the thesis focuses on the appibbim of diffusion tensor magnetic
resonance imaging and related image processingitpes to characterize normal diffusion
anisotropy patterns in the human brain. Such werealized by the possibility to visualize
and quantify the uniquely ordered structure of ltin@n’s white matter through probing the
anisotropic water diffusion. This late twentietmtiey technique resurrects the explorations
of the nineteenth century anatomists Theodor Meywer Joseph Jules Dejerine who

attributed a prominent role to white matter ancefilpathways in normal and pathological



brain functioning [3, 4]. We aim to demonstratetti&fusion MRI can be used for similar
explorations but at a new level by portraying tlerectional anatomy of living human
subjects and relatively large cohorts. First, welese the topography of diffusion anisotropy
and structural connections of the human insulay 8imilar dissections for the mediodorsal

thalamic nucleus are provided.

The second part of our investigations focuses erathisotropy patterns of diffusion in
pathological conditions, more specifically, to payt the diffusion characteristics in brain
neoplasms of glial origin. The most prevalent forafsbrain tumors are glial neoplasms
whereas astrocytic tumors constitute the majorftygleomas, as stated by the last World
Health Organization (WHO) classification [5]; hoveey mixed cellular composition is also
common [6]. Separating gliomas into low-grade aigihtgrade classes has become the means
for assessing the neoplastic biological behaviod dhis partitioning fundamentally
determines therapy and patients’ survival. Treatneébrain tumor patients remains a major
challenge of oncology despite revolution of diagimssand surgical therapies. The ability of
diffusion MRI to probe the tissue microstructure yngive hope for developing new
radiological image processing methods that fingllypoint early changes in the neoplastic

transformation of the brain.
2. Background and review of literature

Early pioneers of nuclear magnetic resonance (NW#Rearch described that it is
possible to sensitize the MR signal to the motibrvater molecules that is caused by their
self-diffusion [7]. By the same token, MR imaginggsiences were developed that not only
pictured different components of the spins’ rela@atphenomena but responded to the
microscopic displacements driven by diffusion, makiplace in living tissues during the
acquisition of images. Hence diffusion-weighted metgc resonance measurements provide
non-invasive description of in vivo diffusion withielementary image units, voxels [8]. The
most commonly used parameter to describe the galkiwn process during dMRI is the
apparent diffusion coefficient (ADC). The commonywa calculate this formulation of the
diffusion coefficient is to acquire images with andhout the pulsed gradients switched on.
The directionality of these gradients determine thes where the apparent diffusion
coefficient is measured; the average degree ofliffiesion appearing along the X, Y and Z

directions is simply referred to as average appateéfusion coefficient, or again, ADC (or



aADC in other terminology). The relationship betweie signal intensity on diffusion-
weighted images and the apparent diffusion coeffiiciis formalized in the following

equation.
Eqg. 1. Shw = Sk, * e?AP¢

Where S)w is the signal intensity of the voxels on the DWWages, Sb means the signal
intensity on T2 acquisitions §Bmages). ADC is the apparent diffusion coefficihile b is
the parameter reflecting the strength of diffusigighting.

In a glass of water, any water molecule coversstmae distance per unit time in all
directions of space and this isotropic diffusiomapresented by a sphere. Such movement is
only governed by fundamental physical parametech si3 the size of particles, the viscosity
and the absolute temperature (as formalized byvidleknown “Stokes-Einstein” equation).
In living systems the tissue structure determihesmovement of the same molecule, i.e., the
diffusion properties and its magnitude as well. Tasult of this phenomenon is called
anisotropic diffusion where the diffusion profilee{ the profile of propagation of water
molecules) can be described by amorphous 3D @sellil geometric solids. Various proteins,
membranes, cytoskeletal and extracellular matrigments play an important role in
characterizing and determining the movement (dw¥fty9 of water molecules. Such elements
act as “obstacles”, subsequently modify the diffusiprofile and hinder or restrict the
movement of molecules. Given its specially orgashizellular and tissue microarchitecture,
the central nervous system already gained promia#gention in the pioneering times of
diffusion MRI research. It was discovered that thigavoxel incoherent motion of water
molecules shows significant directional preferemcevhite matter when diffusion sensitizing
gradients are applied and that such direction digr@rchanges of contrast patterns putatively
match our previous knowledge about the distribubbmajor fiber tracts [9]. Since then, a
great effort was invested into elucidating the nmsoarce of this highly ordered anisotropy in
the white matter of the brain [10]. It is safe tonclude from such studies that the main
component which contributes to the anisotropicgratt observed in white matter is the dense
packaging of axonal membranes and that the mydleath or intracellular organs and

proteins have minor influence.



2.1. Basics of diffusion tensor imaging

The direct consequence of the hindered self-dibffusif water molecules in the brain —
especially in the white matter — is that the obsdrinagnitude of diffusion (i.e. the apparent
diffusion coefficient) greatly varies dependingtioé direction of the pulsed gradient used. To
formalize this direction-dependence of the diffusiprocess, Basser and Pierpaoli used
tensors and suggested the use of quantitative sifiu tensor MRI to characterize
microstructural and physiological features of tess{iL1]. Diffusion tensor imaging (DTI) has
increased sophistication over diffusion-weighted IMRce DTI data have information on the
magnitude and orientation of anisotropic diffusias well. In such models, the diffusion
process is not characterized by a single scaldficieat but by a symmetric tensab, that
describes displacements of water molecules alodlg &ss (D, Dyy, etc.) and the correlation

between displacements along these axes are foedahzhe following equation:

Dy ny Dy,
Eq. 2. D =Dy, Dyy Dy,
Dy, Dyz D,,

This equation forecasts that it is theoreticallgsible to obtain all the components of
the diffusion tensor with diffusion MRI by acquignmages sensitized to 6 different diffusion
directions. This is achieved by the combinatiomudtion sensitizing gradient pulses along
the X, Y and Z axes [2, 11]. When acquiring suclages, the signal attenuation is given by

the following equation:

Eqg. 3. A= eXp(— Zi:x,y,sz:x,y,ZQij *Ql])

Where A is the signal attenuation;, &re the elements of mmatrix and ) are the

elements of the matrix mentioned previously.

In order to ease the display of such tensorial,dhtaconcept of diffusion ellipsoids
were proposed. This ellipsoid is understood asthinee-dimensional representation of the
diffusion distance that is covered by moleculesiigiven diffusion time. It is calculated by
“diagonalizing” the diffusion tensor for each imagexel. Diagonalization results in the so-
called principal eigenvector of the tensor, whishhe vector where the diffusion appears to
have the largest magnitude. Furthermore, the ellips characterized by three eigenvalues

that describe the extent of the three orthogonasaxhe eigenvalue of the principal



eigenvector is denoted with, while the orthogonal components of the ellipsarid given as

A2 andiz. The tensor dataset and eigenvalues are fundahiernlke calculation of secondary
images, such images allow us to visualize varioiffsision characteristics as grayscale
images and enable thorough statistical analysis.riidst commonly used DTI parameters are
the following. Mean diffusivity (MD) characterizéise overall mean-squared displacement of
molecules (average ellipsoid size) and the overalsence of obstacles to diffusion. One way
to describe the degree of anisotropy is to caleula¢ fractional anisotropy (FA) measure, this
parameter depicts how much molecular displacemeatyg in space (eccentricity of the
ellipsoid) and is related to the coherence of dedrstructures. The spatial orientation of the
structures is described by the main direction ftidivities (main ellipsoid axes) and referred
to as the longitudinal diffusivity (along the axithe principal eigenvector) or perpendicular

diffusivity.
2.2. Characterization of normal anatomical connectiity patterns in the human brain

From the perspective of neuroanatomy research, imgpghe structural (i.e.
anatomical) connections is interesting as the wftr output of information available to a
certain brain territory hallmarks its putative ftioo and determines the influence it can has
over other areas [12]. Given that in brain tishweedensely packed axons are the main sources
of the diffusion anisotropy, such tensors readégatibe the orientation of the dominant fiber
population in each voxel [10]. Major fiber bundlean be visualized by means of fiber
tracking. For this purpose, many algorithms werggssted, introducing a previously unseen
field of biomedical visualizations aiming to depibe anatomy of fiber paths in vivo [13, 14].
The initial enthusiasm about this tool as a mogdbr in vivo virtual dissections of white
matter anatomy was later transformed to an effortirg to validate these re-discovered
neuronal pathways [15]. This was mainly done by mseaf more conventional
neuroanatomical approaches [16, 17]. Additionallpecame clear that newer computational
methods are required to describe the complex irdre! distribution of axonal populations,
such as mapping the propagation of uncertainty asfsiple fiber trajectories, one of the
techniques denoted as probabilistic tractograpBy. [Lhe science of connectional anatomy —
hodology — was recently electrified by the adveftfiber tractography and mapping
techniques [19]. A probabilistic approach to tréwoe structural connections along trajectories
that are defined by the diffusion modeling now @&Koto reveal tracts even adjacent to the
cortex, or event depict the connections that apsenarily from cortical regions. We



hypothesize that a plausible work flow can be im@ated that uses DTI data and allows
studying the normal connectional anatomy of the d&rerebral cortex. Our first special

focus is on mapping the human insular cortex byiwo diffusion MRI.

The insula of Reil, located deeply within the latesulcus, is known to have a
multifaceted sensory, motor, visceral and cognittde and is also considered as a vestibular
association area. The insular cortex is acknowlédag the anatomical representation for
interoceptive awareness, i.e., the “sense of thysiplogical condition of the body” [20]. Its
functional and anatomical diversity has been dbedrin humans and non-human primates
[21], with changes in cytoarchitecture that foll@wrostroventral to dorsal and posterior
gradient, from agranular to dysgranular and granctatex [22, 23]. In humans, functional
neuroimaging studies by means of resting-statetiumal MRI (fMRI) have been recently
used to reinvigorate the relationship of morphologgd function of the insula by
demonstrating consistent changes of patterns @fagicn or functional connectivity [24].
Cauda and colleagues demonstrated the functionaheotivity of the insula to various
cortical and subcortical targets by quantifying thieilarities between time coursers of
functional activations and using this informatian reveal coherent connectivity networks.
Their findings on this functional connectivity raled two major complementary networks
involving the ventral-anterior and dorsal-posteiimsula. One network connects the anterior
insula to the middle and inferior temporal cortexl @nterior cingulate cortex, and is believed
to be related to limbic regions which play a raleemotional aspects. The second links the
middle-posterior insula to premotor, sensorimogoipplementary motor and middle-posterior

cingulate cortices, indicating a role for the irssirl sensorimotor integration [24].

Diffusion tensor imaging offers remarkable posdiless to explicate the properties of
the hindered biological diffusion while tractogrgptepicts structural connectivity within
distinct brain regions. Diffusion-based technigpesvide the possibility to parcellate the gray
matter according to its local diffusion properti@s], either by quantifying the connection
strengths to predefined cortical areas [26], orexg@nerally, to compute similarities between
connections to remote areas [27]. During this aggmo structural connectivity is traced from
areas of the cortex with probabilistic diffusiomadtography and sub-domains are identified
that present a demarked pattern of connectionandam-Berg and co-authors demonstrated
rapid spatial changes in the connectivity profiletween the supplementary motor area
(SMA) and the pre-SMA, offering an in vivo methaddelineate them on an individual basis.



Similarly, the technique has already been appliedségment the insula: Nanetti and
colleagues revealed a rostrocaudal variation ofneotivity-based segments dividing the
insula into two clusters, while Cerliani et al.inefd this picture by reporting a more gradual
change of connectivity patterns along this axis, [28]. Our report aims to describe two
separated regions within the left and right inghlst are defined by clustering insular image
voxels based on their distant cortical connectiénsthermore, we aim to provide evidence
for interhemispheric variability of the clustersterms of spatial location, overall volume and
micro-structural properties of diffusion, for thisirpose, we aim to use a cohort of healthy

volunteers.

Diffusion tensor imaging augmented with a probabdi framework of fiber
tractography allows mapping thalamocortical (orticothalamic) connections noninvasively.
This observation gave rise to a number of studrethe normal human thalamus anatomy or
its putative alterations in pathological conditid@é, 30]. A novel way to picture structural
connections of the thalamus is to delineate anshel@égions based on their primary sources
of afferent or efferent connections [31]. This teigue potentially depicts groups of thalamic
nuclei that are different in terms of interconnect to the cortex or other, pre-defined
“target” regions. We highlight that connectivitydsal segmentation has already passed tests
of reproducibility [32, 33], applicability in funictnal neurosurgical planning and correlation
to neurophysiological mapping [34, 35]. We hypoitbheghat such approach can be used to
demonstrate the connectional anatomy of the hurhatarhus mediodorsal nucleus in a
relatively large population of healthy volunteers.

Endeavors to study the role of the mediodorsalatha nucleus (MD) already
postulated it as a possible association hub mediatifective and cognitive functions [36]. In
non-human primates, evidence comes from a wide eranfj works describing the
interconnections of the MD nucleus with severaltical areas, predominantly with the
prefrontal cortex [37-39]. Changes of connectiyatterns were found to be coherent with the
classical cytoarchitectural subdivisions of the Mmth the medial and orbital prefrontal
regions projecting to the medial sector (magnotallpart) and fibers of the dorsolateral
prefrontal cortex projecting to the lateral sedjmarvocellular part) in experimental animals
[40-42]. Many clinical studies support the activatipation of the mediodorsal nucleus in
higher cognitive functioning, although these inigegions mainly concentrated on linking the

10



impairment of cognitive and executive performanzemnatomical locations of intrathalamic

lesions or to volume changes in epilepsy [43-45].

The impetus for the second part of our study was itih vivo neuroimaging methods
have successfully been applied to study the commeadtanatomy of the mediodorsal nucleus,
and compelling similarity to the primate thalamdimal networks was revealed [31]. We
aimed to perform connectivity-based parcellationrégeal subdivisions within the human
mediodorsal thalamic nucleus by automatically asliing areas that show distinct remote
connectivity profiles. Our study was designed teaihthe interhemispheric differences and
intersubject variability in the extent of such centivity-based domains, for this purpose, we
accessed the images of a large number of healttjgta. We assumed that the macroscopic
anatomy of such subdivisions provide further infation on the functional specialization of
the MD nucleus. This idea stems from the fact staictural connectivity determines the
territories from where information could reach a@sawhile the efferent connections limit the
regions which it can directly influence [12]. Thienee, keeping in mind its limited capabilities
in depicting finely detailed anatomy, we can usetvgraphy-based charting of gray matter to
obtain information not only about local featurest Blso about more remote trajectories and
large circuits passing through that region [15]e Tieuroanatomical model of segregated
“cortico-striato-thalamo-cortical” networks forms$et basis for our hypothesis, in which
circuitry the mediodorsal thalamic nucleus was fbun play an intermediary role [46].
Neuroimaging studies show that macroscopic anatniegatures (e.g., total gray matter
volume of frontal lobe) show correlation with theellectual abilities of the individual [47,
48]. By the same token, individual, imaging-based eonnectionist definition of anatomical
features can be investigated as neuroanatomicedlates of higher cognitive functions. We
conclude that an initial step in such exploratim® provide normative data on the anatomy

of humans, preferably using large subject poputat@nd in vivo imaging techniques.

2.3. Characterization of pathological diffusion ansotropy patterns in the human brain

As previously described, the highly anisotropic egmance of diffusion in the central
nervous system is predominantly caused by the dgradkaging of ordered axonal
membranes in white matter [10]. Further componantght influence such patterns by
hindering the diffusion: intracellular proteins, arotubules, neurofilaments, extracellular
matrix components and the myelin sheath of neurdémscase of changing intra- and

extracellular structure, for instance the disorganon that accompanies neoplastic
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transformation, the diffusion characteristics aurd to be altered. Therefore diffusion
imaging putatively probes the biological microatebture and offers hope to correlate such
measurements with tissue properties in pathologicaditions or even to reveal the peculiar

microstructure of neoplastic tissue.

Diffusion data are often correlated with celluldrypiology and tissue microstructure,
and has extensively been used in the studies dfatemervous system gliomas. Here we
report the latest findings in glioma imaging frorhet perspective of diffusion MRI
applications, with attention to studies that focusa diffusion derived parameters such as
mean diffusivity or fractional anisotropy. Furtheyra, we present the body of literature that
supports the feasibility of diffusion MRI in the tdemination of glioma WHO grade or
separate low and high grade gliomas. Mean difftsivieasures allowed differentiation and
outlining the central necrotic areas within higladg gliomas as well as separating
peritumoral edema from adjacent WM structures; hawetumor infiltration cannot be
evaluated properly [49, 50]. A strong correlatiatviieen tumor cellularity and the apparent
diffusion coefficient (ADC) may also help to estitmaumor grade [51, 52]. The reliability of
this grade assessment method, however, is queskomaimarily due to a great deal of
subjectivity involved in histological tumor typin®3]. Meanwhile, data on the association
between fractional anisotropy values and tumorattaristics, including WHO grade are also
available. Co-analysis of tensor-related paramedéss provides basis for such correlative
conclusions [54-56]. Combination of variables refey to the apparent diffusion coefficient
in gliomas (e.g. minimum and maximum value of AD&)d multiparametric approaches
facilitate tissue characterization and classifwat]57, 58]. Use of histograms for studying
distributions of different parameters further imypee identification of tumor subtypes [59,
60]. Despite the endeavors to use conventional fdRthe delineation of high-grade gliomas,
low sensitivity and specificity was reported [6M)/hen compared to region of interest
analysis, construction of histograms to repredeatdistribution of voxels’ values in a tumor
was more feasible whilst this approach allowed essful grading of gliomas [62].
Dehmeshki and co-authors described that discrimhinaalysis (DA) is capable of selecting
the most important features of individual imagedasams for classifying cases in different
pathologies; a practical representation of suctufea is calculating histogram bins for each
case [63, 64]. Imaging results have already betemgreted as adequate indicators of not only
WHO histopathology types (classification), but aésodescriptors of tumor pathophysiology
(proliferation, metabolism, blood flow). ComparinGA values, mean diffusivity to

12



histopathological evaluation of biopsy samples lafldastoma multiforme tumors proved a
consistent relationship between the radiology @aiz tumor cellularity as well as radiology
measures and the Mib-1 LI (labeling index, assesgtidthe monoclonal antibody for Ki-67)

[65, 66]. Further extension of non-invasive tumealaation needs to keep in sight those
striking results which dominate the current neunceapathology literature. It has recently
become obvious that in addition to traditional ntaiogy molecular features often allow
estimates of not only disease prognosis but alsdigiion. The latter activity determines

individual tumor sensitivity towards a specific anaherapeutical regimen [67, 68].

Various studies on the relationship between imag@a@meters and pathology aim to
develop new ways of depictions that can help torasttarize tumors. Nosology — the
discipline dealing with the classification of disea — was reinterpreted by Szabo De Edelenyi
in his report where he uses this term to introducew form of an imaging-based parametric
map [69]. According to this terminology, nosolodicaaps depict the probability of the
occurrence of certain disease subtypes for eaclgerwaxel, based on the image features
(typically multidimensional) underneath that pastar voxel. Such visualizations potentially
ease the interpretation of multispectral data, proton magnetic resonance spectroscopic
images or diffusion tensor datasets. Literaturewshdhat it is possible to visualize
biologically diverse regions within a tumor based image analysis and various modeling
approaches; a method was reported that depictgphi$tological subtypes (i.e. “oligo-like” or
“astro-like” regions, according to the authors' mmwlature) of low-grade gliomas as color
maps [70]. Similarly, “nosological images” grapHigaepresented different tumor types by
performing complex interpretation of MR spectroscdpata and it was practical to use T2 and
ADC values for tumor xenograft characterizationdggmenting tumor images into various
sub-populations [69, 71, 72].

Such works form the basis of our next hypothesas mlachine-learning algorithms are
capable of integrating information from preoperatimages whilst multidimensional pattern-
recognition techniques could enhance the charaeaten of gliomas. A practical approach is
supervised learning where previously determinediggiatruth is provided by histopathology
and mathematical models are optimized for findihg torrelation of individual, subject-
based data and the tumor classification. One suethaod, the artificial neural networks
(ANN) has long been investigated as a potentiadickte for oncology decision support
finding more specific aims as brain tumor clasatiicn [73-76]. By the same token, our

13



investigation was designed to introduce a new Vizai@on method that portrays glioma
grade by incorporating information from postgadioim T1- and T2-weighted, diffusion-

weighted and parametric images that were compubed diffusion-tensor measurements. We
focused on the development of an imaging biomarkett estimates tumor grade by

employing a voxel-wise computational approach based supervised learning algorithm.
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2.4. Study aims

The primary motivation of the study was to empioyivo diffusion tensor imaging to
portray individual anisotropy patterns of cerebvahter diffusion in physiological and
pathological scenarios. We aimed to demonstrateafipdicability of DTI data analysis to
study the normal human anatomy in a relatively dasgbject population. Furthermore, to
retrospectively analyze a patient group with brgliomas to reveal a possible neuro-
oncological application of DTI. The experiments eatesigned to elucidate the following

topics, each denoted as a specific (major) ainecorsdary (minor) aims.

A. To show the applicability of DTI to study the costienal anatomy of the human

cerebral cortex, with special focus on the insula.

A/1. To use probabilistic diffusion tractographyn@p the macroscopic structural
connections of the insular cortex.

A/2. To use such data to reveal subdomains witierhuman insular cortex that are
automatically defined by analyzing the patternseofiote connections.

A/3. To analyze the distribution, location and rhismispheric asymmetry of such
connectivity-based insular subdomains and to medasgr microstructural
properties of water diffusion within the newly dedd areas.

A/4. To compare the subdomains based on the arafsiiffusion anisotropy and

tensor data with the classical depictions of maydoarchitectural domains.

B. To show the applicability of DTI to study the costienal anatomy of the human

thalamus, with special attention to the mediodans&leus.

B/1. To employ probabilistic diffusion tractograptoytrace the interconnections
between the human mediodorsal thalamic nucleusrenderebral cortex.

B/2. Similarly to specific aims A/2 and A/3, to def subdomains in the mediodorsal
nucleus based on the patterns of remote conngctivit

B/3. To compare the neuroanatomy of the connedial@finition of the subdomains

of the mediodorsal nucleus with the cytoarchitegdtaubdivisions.

C. To use DTI to characterize the spatial patterrgiffidision anisotropy within CNS
gliomas and correlate such findings with histolagjfeatures that are used to type

gliomas.
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C/1. To assess the feasibility of using preopeeftiacquired DTI images to grade
gliomas.
C/2. To develop a graphical representation of thaging-based interpretation of

glioma grade.
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3. Materials and methods

3.1. Study subjects

In accordance with the aims (A, B and C) definesvmusly, three different cohorts of
subjects were enrolled in the study. For aim Aadsdthealthy volunteers were accessed from
the repository of a national collaborator (Univeref Kaposvar), while for aim B, we used
the publicly available Rockland Neuroimaging Sampievided by the Nathan Kline Institute
(NKI, Orangeburg, USA). The original NKI sample swsted of the images of 210 subjects,
which was sampled and reduced to 155 subjects e hamore homogeneous population
(according to the criteria outlined in Table 1.hig sample is a freely available, large-scale,
extensively phenotyped dataset for the purposeismfodery science and contains healthy
subjects from nearly all age groups. The generatagteristics and the inclusion criteria of

the study populations for specific aims A and Bsausmmarized in Table 1.

Name of specific

. . Gender Age . o Source of

alrga?z;\é?d, Subjects (maleffemale)  (mean + SD) Selection criteria subjects
Specific aim A 40 19/21 33.8+12.7 Right-handed, healthy  University of

e adults Kaposvar

gh aned heal, . Rosand

Specific aim B 155 92/59 38.8+19.4 ) » age rang Sample, Nathan
65 years, available IQ Kline Institute
data and DTI
WHO grade II-IV
Specific aim C 40 18/22 386+166 Jiomas DTiscans —p \iece

available, no prior
treatment

Table 1. Subject characteristics and selectioredit for specific aims A-C.

Aim C required retrospective data analysis of pasievith CNS gliomas and the
construction of a dataset that was determined eyathailability of an adequate pre-operative
radiological workup including diffusion tensor imag acquisitions. We collected the images
and basic clinical data of 40 consecutive subjewt®ting the inclusion criteria, diagnosed
with brain gliomas between 2006 and 2010. Cases labeled according to WHO grade (Gr.
[I: 26, Gr. lll: 3, Gr. IV: 11) and were also diwd into low and high grade classes. All

tumors were histologically classified using eitstgreotactic biopsy material or specimens of

17



surgical debulking (Institute of Pathology, UD-MHBCThe original diagnoses were
reviewed blind to the results of radiological arsady Inclusion criteria were the availability of
DTI scans and only those glial tumors were seleethth had been sampled prior to any
kind of treatment (i.e., surgical removal, radioHpy or cytostatic therapy). Patient baseline
characteristics and a summary of the histopathcébgliagnoses of the subjects’ tumors are
demonstrated in Table 2.

Tumor histopathology Subjects (mjéa/?grirale) Age (mean * SD, range)
Low grade tumors 26 13/13 34.6 £ 15.9 (8-68)
astrocytoma gr. Il. or 13 716 30.6 + 16.9 (8-59)
astrocytoma fibrillare gr. 11.

oligoastrocytoma gr. Il. 7 Ya 37.9+£18.4(11-68)
oligodendroglioma gr. Il. 6 3/3 42.2 +9.9 (34-59)
High grade tumors 14 5/9 47.3 £15.4 (13-68)
oligoastrocytoma gr. lll. 3 0/3 52.0 £ 2.6 (50-55)
glioblastoma multiforme 11 5/6 45.7 +17.6 (13-68)
Overall 40 18/22 38.6 £ 16.6 (8-68)

Table 2. Preoperative assessment of glioma gradeugih the analysis of diffusion tensor
images (specific aim C): subject baseline charasties and histopathological composition

of the subjects’ tumors.

During the construction of each dataset, partidpgave informed written consent to
procedures approved by the relevant Institutior&li®&v Boards. Further information of the
study cohort for specific aim B is provided on thebsite of the International Neuroimaging
Data-sharing Initiative, the INDI [77].

3.2. Image acquisition protocols

Due to the fact that three institutions contributedhe imaging datasets of the study, |
report the MRI acquisition protocols according be tspecific aim served by the relevant

scans of the institutions. As a general rule, higgolution anatomical, T1-weighted imaging
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was performed for each subject in each cohort, hvihias complemented by diffusion tensor

imaging. Details of the MRI and DTI acquisitiong @iven in Table 3.

Institution

Specific aim A

University of Kaposvar

Specific aim B

Nathan Kline Institute

Specific aim C

UD-NBE

Scanner type
(Field strength,
vendor)

1.5 T MRI system

(MagnetomAvanto,

Siemens, Erlangen,
Germany)

3.0 T MRI system
(Magnetom Trio Tim,
Siemens, Erlangen,
Germany)

1.5 T MRI system
(GE Signa Excite
TwinGradient, GE
Medical Systems,
Milwaukee, WI)

Applied sequence

3DT1 MPRAGE

3DT1 MPRAGE

3DT1 SPGR (Gadolinium

contrast agent

(@] . .
native
% (native) ( ) administration)
£
E TE/TR 4.2 /1160 ms 3.5/2500 ms 6/21 ms
€
8 Image matrix 384 *512 256 * 256 512 *512
z
Voxel size 0.45*0.45 * 0.83 mm 1*1*1mm 0.68 * 0.68 *1lmm
Spin echo EPI,
. . GRAPPA parallel .
.g, Applied sequence Spin echo EPI imaging (acceleration Spin echo EPI
= factor: 3)
£
5 TE/TR 118 /10000 ms 91 /10000 ms 98 /10000 ms
(2]
c
L MPG 12 64 25
c
(@]
Iz b-factor 1000 s/mr 1000 s/mrh 1000 s/mrh
a Voxel size 1*1mm 2*2mm 1.5*1.5mm
Slice thickness 3 mm 2 mm 3.3 mm

Table 3. Anatomical MRI and DTI acquisition prottecased for the subject cohorts of
specific aims A-C. FOV: field of view, EPI: echadr imaging, TR: repetition time, TE:

echo time, MPG: number of multiple pulsed gradients
3.3. Image and data processing protocols
3.3.1. Calculating the microstructural descripwirgliffusion

The acquisition of raw, diffusion weighted imagdlewaed the voxel-wise estimation

of the diffusion tensors for each subject. Theusibn tensor is described by the principal

19



eigenvector and three eigenvalues. To formulateehsors based on the DWI data we relied
on the built-in estimation algorithm of the FMRIBiffdsion Toolbox in the FSL software
package (University of Oxford, [78]). All specifaims required the calculation of secondary
images that are derived from the diffusion tentiwgse are referred to as parametric or scalar
images. The calculation of such parameters is sktely described by other studies; we refer
to the technical reports and manuals of the apmigdrithm, thedtifit (FMRIB Diffusion
Toolbox. FSL, University of Oxford [78]). The folldng parametric maps were generateg: B
images, which are acquired without diffusion semaiton thus conveying T2-weighted
information; directionally averaged DWI images; cianal anisotropy maps (Eq. 4.);
longitudinal (Eq. 5.) and radial diffusivity compemt maps (Eq. 6.), trace maps (Eg. 7.) and
the MD (Eqg. 8.). We used the following equationséiculate the parametric maps from the

components of the diffusion tensor.

e E A=A+ (A (- A

Eqg. 4.
Jﬁ+ﬁ+ﬁ
Eqg. 5. A|=21
Eq. 6. A= (\+ha)/2
Eq. 7. Trace 1+ + A3
Eq. 8. MD=ADC= {; + 1, +A3)/3

where 1;, 4, and /3 are the three eigenvalues of the diffusion tengok: fractional

anisotropy.|: longitudinal diffusivity /1. radial diffusivity.
3.3.2. In vivo mapping of connections with probaii¢ diffusion tractography

To study the properties of normal connectional amgtfor specific aims A and B, the
following processing steps of the DTI data werdqened: (1) fitting a symmetric tensor to
the DWI data and using the tensor’s eigenvaluesatoulate secondary, parametric maps,
such as the fractional anisotropy image, (2) spat@ndardization, i.e. registration of T1-
weighted and DTI data to a standard neuroimagingpkate space, (3) estimation of intra-
voxel distribution of fiber populations and (4) feeming probabilistic tracking of structural

connections arising from the investigated regioml processing steps were carried out using
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the FMRIB Diffusion Toolbox in the FSL software page, we refer to this toolbox by
naming the algorithm or built-in scripts used.

We performed non-linear spatial standardizationinohges to enable inter-subject
comparison of anatomy. For each subject, the catledlfractional anisotropy images were
used to determine a deformation field which tramaf it to a common neuroimaging
reference space (MNI space), namely the FMRIB5&tifsaal anisotropy template
(distributed with the FSL tool). Image registratisteps were done by accessing BW¢RT
(initial, mutual information-based, linear registoa with 12 degrees of freedom) and the
FNIRT (non-linear warping) algorithm in the FSL softwgr@ckage. For anatomical images,
the T1-weighted scans of each subject were tramgfdrto the T1-weighted MNI152 template
with the procedure described for the DTI standatiin. Subsequently, anatomical images
and tractography results were stored in a standi&td 52 neuroimaging space. This allowed
to define the “seeding” masks (i.e., the volumearfrehich probabilistic fiber tracing samples
will emerge) for diffusion tractography by usinglpmne template image for every subject
assuming good anatomical overlaps, and therefardéréttking of neuronal connections were
performed in the native diffusion spaces of indiatisubjects, only transforming the seeding
masks and resulting images from and to the starsjace.

The characterization of fiber distributions wasriea out with a standard procedure,
the BedpostXscript. For more information on the probabilistiiffusion tractography
procedure, see the relevant work by Behrens ¢18]). This algorithm was set to search for
two fiber populations in each image voxel in a vlagt the possible orientations of diffusion
displacements best fit the observed raw, diffusi@ighted data. Next, probabilistic tracking
of structural connections were initiated by usihg ProbtrackX program. The connection
strength between each seeding voxel and every eeim@iin voxel was estimated as the
probability of tracts reaching their target througtrajectory guided by the model of local
diffusion characteristics. A non-linear registratiwas used to map the coordinates of seed
voxels to the space of the diffusion images anda tioeproject the tractograms back to the
standard space. Each entry in such tractogram irslages the probability of that particular

brain voxel to be interconnected to the seeding.are
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3.3.3. Calculating the connectivity-based subdomairthe insular cortex

The specific aim A was to use the diffusion anigpyr data and diffusion tensors to
study the connectional anatomy of the human celrebreex, with special focus on the insula.
One way to study the connectional anatomy of theegois to perform the probabilistic
tracking of structural connections from a specifieed area (aim A/l), and use this
information to parcellate the original territorytonsubdomains that differ in terms of the
patterns of connectivity (aim A/2). This “hodolotjidefinition of cortical of subcortical areas
require a mathematical approach that separatesfighrajectories and maps the origin of
each fiber cluster back to the examined brain redior studying the insula, we first accessed
the mask of the insular cortex from the Harvardd@pafCortical Atlas (FSL), and then the
T1-weighted image template in the MNI152 space wsedl to review and refine the borders
of the insular cortex. The final region of interdROI) comprised only the band of gray
matter voxels surrounded by the extreme capsuldgrenderiinsular sulci.

Tractography was initiated from the reviewed insuartical masks in the MNI152
space, with the procedure described in the repoevigusly. We aimed to perform
connectivity-based segmentation; hence an altesnatiay to store diffusion tractography
results was applied, similarly to a number of woirkshis field [79-83]. For each subject, a
connectivity matrix (M * N) was stored where eadwr(M) represented the seed voxels
while the columns corresponding to the brain voxHls as stored in a low resolution, 4 * 4 *
4 mm space. This down-sampling was carried outatse dhe computational and memory
burden of the procedure. Elements of the matrixesgnted the probability of existing
structural connections between corresponding seédain voxels. Next, a cross-correlation
matrix was constructed (M * M), for each seed vogahntifying the similarities of their
connectivity patterns. Seed voxels were partitioméal two groups with a k-means clustering
algorithm maximizing the within-group similarity afonnection patternsC¢ops program,
FSL). During the k-means algorithm, random iniiation of cluster centers was employed,
with an iterative search for the second clustetareio be the furthest away from the first; this
method provides feasible within-subject reprodditibi without performing multiple
clustering, in contrast to other works [28]. Eadxel in the seed area (rows of the matrix)
was assigned a label according to the cluster numles classified previously. As this step

was done in the standard neuroimaging space, thetecl membership labels were
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consequently mapped back to the native space (Tdhteel anatomical) for each subject
using the inverted spatial transformation of ttesdardization procedure.

In this paragraph, we report the methods that weeal to evaluate and describe the
anatomy of the newly formed connectivity-based subns of the insular cortex, as
outlined in the specific aim A/3. Based on the oo of each connectivity cluster, three-
dimensional objects were formed and for each mtdelkcenter of gravity point (COG) was
determined in the MNI152 stereotactical space. TREG or the center of mass calculation
was based on averaging the vertex coordinates oh8ghes. This measure was done in order
to reveal the spatial scatter of the connectivagdd domains through the study population.
Hence the spatial consistency was measured asc#tiersof COGs and the variability of
absolute cluster volumes. For volumetric evaluaj@ach insular mask volume and its newly
clustered partitions were transformed back to thigext's native anatomical space by using
the inverted transformation of the standardizastep (i.e. registration of the T1l-weighted
images to the MNI152 T1-weighted template). A papioh-averaged representation of the
partitioning was computed by assigning the labélieyao each reference-space insular voxel
that was most likely to be found in the individgalster maps, i.e. the mode of the 4D object
was determined. This 3D dataset of the most comahaster assignment was then used to
create a 3D mesh for each cluster. To demonstiaeiritersubject variability of the
discovered clusters across the study population, caleulated and visualized images
representing the 95th, 90th, 50th, 10th and 5thgmeiies of the label assignments.

Specific aim A/4 was to evaluate whether the cotivieggbased partitions present
different diffusion microenvironment. To achievasththe fractional anisotropy (FA) and
mean diffusivity (MD) was provided for clusters looth hemispheres; the calculation was
done using the standard equations provided prelyioAsmorphological operation, namely
erosion with a 3 * 3 * 3 voxel box kernel was penfied on the cluster masks. We assume
that this operation reduced the influence of paviidume effect by the adjacent cerebrospinal
fluid voxels and therefore the diffusion scalar ued can safely be measured in the

connectivity-based insular subdomains.

To reveal the anatomical correspondence of the filaets emerging from the newly
defined insular subdivisions, we performed prohsid tractography for each subject,
initiated from the voxels representing the discedeinsular clusters. As the clustering

algorithm was forced to search for two domainss thiethod provided two different
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tractograms for each subject. For each voxel irbtlén in each subject, a label was assigned
indicating whether that voxel is most likely to bennected to the first cluster (label:1),
second cluster (label:2) or no connections to tisella (label:0). Corresponding maps were
summed over the subjects and the resulting bagkegsa tract distributions were visualized
(i.e. separately computing maps projected fromlsteand 2nd clusters), in the same way as
visualized in the study Menke et al. 2010, Figure [82]. This population-based
representation of connectional anatomy of the msmas observed and we described the
major connections of the newly defined subdivisiamselation to the territories of widely
used digital brain atlases. This visualization stegs carried out with th&SLVIEW tool
(FSL).

3.3.4. Mapping connectivity-based subdomains oftlediodorsal thalamic nucleus

Aim B was to demonstrate the applicability of D®ldtudy the connectional anatomy
of the human thalamus, with special attention te thediodorsal nucleus. Probabilistic
diffusion tractography was performed to trace theéerconnections between the human
mediodorsal thalamic nucleus and the cerebral xoifthis part of the work flow required

special measures to delineate the nucleus.

The masks of the left and right mediodorsal nuclewse drawn in the standard
MNI152 neuroimaging space. To define these bordeesysed results from a previous work
of our collaborators where a mean representatiothef human thalamus anatomy was
provided by the histological workup of seven thaldB8v, 85]; this work is the three-
dimensional generalization of the Morel Atlas of tHuman Thalamus and Basal Ganglia and
therefore contains the depictions of thalamic swbdins based on cyto- and
myeloarchitecture [86]. The idea of using such raubject atlases is to incorporate the inter-
subject variability of the observed structures. described in the work by Krauth and co-
authors [85], a statistical shape model was cooidu that describes this geometrical
variability as a multidimensional point cloud, eachnsformed to a standard stereotactic
space, defined by the anterior commissure and pastmmissure landmarks. These data
allowed us to use a statistical shape model drregistration method to non-linearly match
the outlines of the template’s MRI visible thalanargl the corresponding structure from the
3D mean thalamus atlas [87, 88]. Therefore we lambss to the borders of the putative
borders of the mediodorsal thalamic nucleus indateshspace, as defined by the Morel Atlas

[86]. This also allowed us to make comparisons wiité classical, cytoarchitecture-based
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depictions of the anatomy of the mediodorsal nl@specific aim B/3.). In the standard
space, the 3D outlines of its two subdivisions wareessed (MDmc - magnocellular part and

MDpc - parvocellular part).

Similarly to the methodology to characterize thargectivity-based divisions of the
insular cortex, we employed the following stepgtocess DTI data. Estimation of two fiber
directions in each image voxel of the brain wasriedrout by usingBedpostX(FSL),
probabilistic diffusion tractography was initiatédm the mask of the mediodorsal thalamic
nucleus and probabilistic tractograms were storeti* N matrices representing the seed
voxels (M, rows) and down-sampled brain voxels ¢dhlumns). Cluster analysis by the k-
means algorithm was utilized to partition the Mds&exels into two groups that featured the
most distinct distribution of connections. Finallsijuster membership labels were mapped
back to the reference space for each subject ubmgnverted spatial transformation of the
standardization procedure (specific aim B/2.).

In order to study the spatial distribution of citsuand to localize distant regions
connected to the connectivity-based mediodorsalarhia clusters, a population-based
representation of connectional anatomy was requiRFdbabilistic tractograms for each
subject were accessed, and the emerging tractbdistm images from the newly defined
subdivisions were separated. For each brain vaxelhave assigned a label based on its
highest probability of connection to either clustéseparately for left and right hemispheric
clusters). Then these labeled maps were correspgigdsummed through the 155 subjects.
The pattern of this averaged tract anatomy was eosapto digital atlas-based gray matter
and white matter regions (Harvard-Oxford Corticdlad and Juelich Atlas of Fiber Tract
Anatomy). Interhemispheric and inter-subject vahgbwas estimated for the volumes of the
connectivity-based subdivisions. Their spatial tezdtom the group centroid (i.e. the average
of coordinates) was determined in the MNI152 sp¥¢e.have constructed three-dimensional
meshes representing the 50th percentile volume®mfectivity-based domains through the
examined population, such objects were visually mared to the atlas-based mediodorsal
thalamic nuclei borders (specific aim B/3.).

3.3.5. Glioma characterization: general methods

We aimed to use DTI to characterize the spatidepad of diffusion anisotropy in a

pathological scenario, namely in patients with Cilifmas and correlate such findings with
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histological features that are used to type gliorfaasy C). More specifically, to perform
analysis based on image features of DTI derivedmatric maps, derived from the voxels of
the tumor volumes. The final aim therefore is teesd DTI-based imaging features that can
be used noninvasively, preoperatively to prediet WiHO grade of CNS gliomas. We also
aimed to elucidate whether such DTI-based datssaitable for the creation of a predictive
model that would allow determination of the gradenew cases. For this, we describe two
main methods: the histogram approach (specific @itt) and glioma grade maps (specific
aim C/2).

Extracting imaging features for this step was earout in the space of the diffusion
tensor images, no registration or transformatiod®f parametric maps was performed. A
crucial step during each procedure was the dedmitif tumor borders and the delineation of
from the brain adjacent to tumor areas (BAT). Thieet of the tumors and areas of tumor-
associated edema were visually inspected on pdsasvnTl-weighted, T2-weighted and
FLAIR images. Regions of interests (ROI) were pthae two aspects: the tumor core and
tumor periphery. The peripheral region was defiresl the maximum high intensity
abnormality seen on the unweighted, iBlages (non-enhancing, T2 abnormality), while the
tumor core was outlined inside that region, on c¢katral, low value abnormality seen on
fractional anisotropy images. This method is simiia that of Wang et al. where they
evaluated the feasibility of using FA and anisoizodiffusion component (q) maps to
precisely assess changes in diffusion which aredirabout by tumorous infiltration of the
white matter [89]. Care was taken to ensure thatgmns of cerebrospinal fluid are included
inside the tumor borders and also to avoid theusioh of the peritumoral edema in the
analysis. In high grade tumors, the outlined tuare were identical to the enhancing T1
abnormality while in low grade tumors this companisvas not appropriate due to the low
number of enhancing lesions. For the extractiormafge features for assessing tumor grade,
only the gross tumor core volumes were used, thig ®llowed the inspection of ROIs by a

qualified neuroradiologist. Tumor delineation prdgee is illustrated in Figure 1.
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Figure 1. Outlining tumors on Band fractional anisotropy images. First row shoasal
images of a patient with GBM while the second rawsents a typical case on a non-
enhancing low grade glioma. Tumor regions were nadlyudrawn on DTI parametric maps.
White border delineates the following two areasghhiintensity abnormal region ongB
images (outside) and low intensity abnormal regimm FA maps (inside). (a) and(d):
postcontrast T1-weighted; (b), (e)s Bnage; (c), (f): fractional anisotropy map.

3.3.6. Glioma characterization: extracting imadeagtures as histograms

We hypothesized that the characteristic shape wélvealues’ distribution over the
entire tumor volume is represented more efficierdly histograms than the classical
descriptors of the voxel values’ distribution. Caargd with the approach of calculating the
mean or median values of various DTI-based metoiesr the tumor value, individual
histogram channels (or bins) could be used as megfuiimage features describing the
distribution of values. We assume that the patholattributes which characterizes a WHO
grade Il or WHO grade IV change the appearanceuch $istograms in a way that can be

revealed with statistical analysis using a suped/iearning method.

To support this hypothesis, more conventional stiaél parameters of regional
diffusion distribution (i.e. means and standardiagwns of diffusion tensor metrics: averaged
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DWI, FA, longitudinal and parallel diffusivity, tcg and B) for the whole volume of each
tumor were determined. We compared these valuésnsrand high grade glioma groups by

using Mann-Whitney-Wilcoxon non-parametric tests.

The steps for determining image features as higtogmwere the following. Histogram
resolution and range was uniformly defined for gvwenage type. The interval between the
minimum and maximum pixel values was divided infoe2jually spaced bins. The number of
voxels in histogram bins was normalized by theltatanber of voxels in the sample, and
frequency counts were plotted as a function of hire locations. This allowed storing a
normalized histogram for each subject and for dath parametric image type. Histogram
data were saved and translated into the environwfestatistical analysis. For this purpose
and for image analysis, a dedicated program co@e Iifnacro) was used in the ImageJ
software package (National Institutes of Health AY$0]. Individual and group-averaged
histograms of the tumorous voxel values on DWI, EAce, etc. images were generated and

visually inspected.
3.3.7. Glioma characterization: statistical evabrs

Specific aim C/1 was to determine if statisticablgsis on histogram bins derived
from diffusion tensor datasets is capable of chgisg gliomas according to their grade. To
resolve this classification task, we used mult@tridiscriminant function analysis (MDA),
which was carried out with the SPSS 16.0 for Wind®aeftware (SPSS Inc., Chicago, IL,
USA).

Multivariate discriminant function analysis, as da@sed by Fisher [91], is a statistical
classification method which gives insight into tteationship between group membership
and the variables used to predict group memberghipng stepwise discriminant analysis,
variables (for specific aim C/1: normalized valwédshistogram channels) are reviewed and
evaluated in order to select the ones which cauibnost to the discrimination between
groups and eventually, a discriminant score isutated which determines predicted group
membership. In our study, 150 variables from tretdgrams bins of 6 different images (i.e.
6*25 from the following maps: BO, averaged DWI, Hangitudinal and radial diffusivity,
trace) were available. This approach incorporaitedirfg a set of coefficients which, when
multiplied by each value in the histogram, givescare that optimally discriminates between

the subgroups under consideration. The resultindeainallows prediction of the categorical
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variable (i.e. group) of new cases when only theependent variables are known. Further
details on MDA can be found in the works by Rippéal. [92] and Webb et al. [93].

As outlined previously, each case for the aim C \e&®led in agreement with the
results of a repeated pathological evaluation of Qvgtade, this data was used as ground
truth for the classifier approach. MDA was employtedclassify cases according to their
dichotomous group membership (i.e. high grade av Ilgrade glioma). Additionally,
classification into 3 categories in accordance wvittk WHO grades (ll-11I-IV) was also
performed. To evaluate the feasibility of classifion on a more homogeneous patient
database, analysis was also executed after remotheg cases of oligodendroglial

components.

We utilized forward stepwise analysis to select liietogram bins that allowed the
best classification of the patient dataset. Defaalés of the discriminant analysis function in
the SPSS software environment were used for the. Juccess rate of classification was
described by two values. First, the classificat@ouracy was determined with all cases left
in, which meangost hocprediction of the group membership. We found itessary to
performa priori prediction therefore the validity of the model wassessed by laave-one-
out cross validationmethod. This method estimates the success ofifataisn of each
individual case by omitting it from the model analaulating the average rate over the 40
cases, hence yielding a more realistic error ratgchv might be expected for new
observations, i.e., new cases. For more detailherestimation of a classifier performance
with cross-validation, see [94]. The discriminatpawer of the discriminant function (DF) is
described by the Wilks’ lambda value ranging betweero and 1 (lower values mean higher

discriminating power).

3.3.8. Construction of glioma grade maps

Specific aim C/2 was to introduce a new visual@atapproach that portrays glioma
grade by incorporating information from postgadioim T1- and T2-weighted, diffusion-
weighted and parametric images that were computad fliffusion tensor measurements.
This would mean the voxel-wise interpretation oagimg features from a multidimensional
dataset, where each dimension is a DTI derivednpater or T1 image intensity. The
correlation of the multidimensional feature set andlobal variable, the class of the tumor

(i.e. the grade) is determined by a classifier @llgm. This rationale is similar to the
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nosological maps introduced by De Edelenyi et @] [or the “oligo-like” and “astro-like”
graphical representation of gliomas by Khayal amtsbi [70].

Similarly to the image processing steps for the &ifh, six DTI derived parametric
maps were calculated: T2-weighted images (DWI withdiffusion sensitization — BO),
directionally averaged raw DWI images, fractionalisatropy, longitudinal and radial
diffusivity images, mean diffusivity maps. To obtanatomical correspondence through the
imaging modalities, postcontrast T1 scans weregistered with the Bimages FLIRT affine
registration algorithm, FSL) and finally, all imeggevere re-sampled to smaller matrices of
128 * 128 voxels. Intensity normalization of the-Wgighted images was performed with the
built-in “enhance contrast” command in the Imagefivsare tool [90]. Tumor outlines were
defined identically to the method described in $leetion “Glioma characterization: general

methods”.

In the next two paragraphs, we describe the stegiswere carried out to build a
database for the classifier training. The data stiipn and image processing work flow for
the specific aim C/2 is summarized in Figure 3. Wiized image information of the 40
patients to generate two different databases ferdhassifier training procedure. In each
database, samples represented consecutive voxaigsvon the images and a categorical
variable was also assigned voxel-wise resulting itotal number of 8 variables per voxel.
Database “A” provided ground truth for separatihg tvoxels sampled from a low grade
tumor or a high grade tumor. In contrast, the afndatabase “B” was to separate tumorous
regions from non-tumorous regions, as later desdrithis was only considered important for
visualizing the results. Database “A” was built sgmpling exclusively the intratumoral
regions, the categorical variable was the tumodgras determined by the histopathology
workup (low grade=0; high grade=1) and this wasgassl case-wise, without prior spatial
control of the histology sampling. Database “B”luded every cerebral voxels, whereas the
eighth, dichotomous variable described whethervityeel was intratumoral (value: 1) or of
normal-appearing brain tissue (value: 0) as detezthby the tumor-mask. Database structure
is exemplified in Figure 2.

The relationship between imaging data and the oat=) variables (i.e. tumor grade,
tumor or normal-appearing brain tissue) was analyzeel-wise by utilizing a feed-forward,
back propagation multilayer perceptron artificiadunal network algorithm (ANN) in the
SPSS 17.0 for Windows software (SPSS Inc., Chicdlgo,USA). The training regime
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wasbased on the random splitting of the datasettimee groups, as offered by the statistical
software: training (70% of all voxels), testing 8D and holdout samples (10%). This
supervised learning method resulted in two distmecinodels, the first aiming to predict the
grade of the glioma while the other assesses it/thxel is sampled from a tumor or from the

normal-appearing brain tissue.

After the classifier training, the image dataseswerevaluated for each patient and
outputs were mapped to grayscale images. The weisel-outputs of the neural network were
continuous variables that estimated the likelihoddoxel group memberships. Grade map
generation consisted of the following steps. Fing,run thea priori trained neural net based
on database “A” to generate an image yielding lamnd high grade voxel membership
probability maps (LGPM and HGPM). The value of thiassifier output averaged over the
every delineated tumorous voxels is defined asgthee index. As the cut-off value of 0.5
was used for the ANN classifier to distinguish betw a low grade or high grade voxel, by
the same token, a total tumor grade index belowv@dd indicate a low grade tumor and 0.5
— 1 values would indicate a high grade tumor. Nth, second neural network estimation —
previously trained with database “B” — resultechimimage that quantified the probability of
tumor-like regions (tumor probability map, TPM). Twovide a graphical representation,
LGPM and HGPM images were weighted with the tumbpbility maps. Eventually, we
defined the glioma grade map as a color-coded csitgpmnage where the color lookup table
was specified as follows. Blue shade representsgi@de regions (LGPM), red shade is for
high grade regions (HGPM), the opacity is deriveant the TPM, overlaid on the co-

registered anatomical T1-weighted image. Resultimgpes are exemplified in Figure 4.
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Patient Voxel Tumor | Pathology T1 B0 DWI FA ADC vy hi
number | number label
1 1 0 1 14 63 11 0.234 2450 1.873 1.153
1 2 1 1 126 1120 234 0.124 1.622 1.556 1.334
1 442 338 0 1 12 43 9 0.225 2.674 1.664 1.231
2 442 339 | 2 113 325 336 0.351 2.440 1.231 1.119

Figure 2. Dataset structure for training an arti¢ neural network classifier. Individual
samples are image voxels of 40 subjects, each givetegorical variable: tumor label (e.g.
1 if the voxel was sampled from inside or O if me&sa tumor), histopathological diagnosis

(1: low grade glioma, 2: high grade glioma). Valu#s$ imaging features are exemplified.

Preop. Diffusion Preop. Structural MRI
Tensor Imaging scans

r
v Surgical

DTI scalars: removal of

1.BO Intensity tumors
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3. Anisotropy (FA)

4. Longitudinal diff. v v

5. Radial diff.

6. ADC Tumor Diagnostic
annotation histopathology
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Image co-registration, downsampling

Voxel-based dataset of Diagnosis (HGG or
imaging features and LGG) assigned to
tumor annotations each case

Voxel-wise training using neural networks

v Y

Glioma grade maps Evaluation of classifier
accuracy, correlation

with pathology

Figure 3. Major data acquisition and image procesgssteps for specific aim C/2: to develop
a graphical representation of the imaging-basee@iiptetation of glioma grade referred to as

“gliomas grade maps”.
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Figure 4. Glioma grade map generation: calculatiohintermediate grayscale images and
the color-coded glioma grade map (study specifio @/2). (a) Low grade tumor probability
map (LGPM), (b) High grade tumor probability mapGRM), (c) Tumor probability map

(TPM), (d,e) LGPM and HGPM weighted with the TRN T1-weighted anatomical image.
(g) Glioma grade maps are generated by assigningremde to the probability maps (d,e)

and merging them with the postcontrast T1 images.
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4. Results

4.1. In vivodescription of the connectional anatomy of the insular corte

Our aim was to u¢ DTI to study the connectional anatomy of the hunsarebral
cortex, with special focus on the insi Based on the variability of remote connections,
insular subregions we successfully identified in both hemispheThe work flow of aim A
and illustrations of the probabilistic diffusiorattography procedure is summarized in Fi¢
5.

Figure 5 Specific aim A: characterization of connecti-basedsubdomains of thensular
cortex. (a) Seedingmask of probabilistic diffusion tracing sampl in the standard
neuroimaging space; (b) 3D visualization of all patilistic tracing samples emerging frc
the insular cortex for the study subjects; (c) Arcered cros-correlation matrix for finding
connectivitybased clusters in the seed ai elements in the matrix represent the similari
between the seed voxels’ remote connections (P8g¢ (d) Backprojected connectivi-

based clusters of one subject, overlaid on theveali --weighted anatomical imag
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The stereotactic coordinates of the COGs of thelyneefined insular clusters were
consistent, with low deviation from the mean cooaties of each cluster. The spatial scatters
from the group center were the following: X axis3®— 0.49 mm, Y axis:2.27 — 3.88 mm, Z

axis: 1.2 —3.73 mm.

The population-averaged cluster map was contrditedcorrespondence to major
anatomical landmarks (Figure 6.) and also, we coatpeesults with the cytoarchictectonic
map of the human insula (Figure 7.). As a resuthefconnectivity-based subdividing of the
insular cortex, we defined an anterior (Al) andtpdsr insula (PI), the former extending to
approximately one-third of the antero-posterior(ARjs of the insula, delimited by a curved
plane perpendicular to the AP axis. In both henmesps, the Al comprised the limen of the
insula and the anterior short gyri enclosed byphexentral insular sulcus and this partition
also included the antero-ventral part of the lomgular gyri. When comparing the
connectivity-based domains with the depiction abaychitectonic subdivisions, we noted a
match between the Al and the agranular subdivipias antero-dorsal dysgranular area was
observed. The intersubject variability across thuel\s population (n=40) in terms of cluster

volumes is visualized in Figure 8.

In the next three paragraphs, we report the quaivet results of the specific aims A/3
and A/4. The total volume of insular gray matteswat different between the hemispheres.
In the left hemisphere, the anterior division o€ timsular gray matter was found to be
significantly larger than the posterior clusterff@hence: 34.5%) while on the right side the
two partitions were equal in volume. This asymme#aty expressed by the Al volume to PI

volume ratio, showed significant interhemispheiftedences.

For each connectivity cluster, the scalar properté intra-voxel diffusion were
determined. The degree of diffusion anisotropyexressed by the FA value did not present
significant interhemispheric variability and neitheas different measured on the Al/PI
clusters in the left hemisphere. The FA value efriight Al was significantly higher than the
Pl. In both hemispheres, the mean diffusivity wassistently and significantly larger in the
anterior connectivity partition. Cluster volumesdamegional diffusion properties are

summarized in Table 4.

Furthermore, we visually controlled the intercortiets from each (Al or PI)

connectivity-based subdivision. In both hemisphetest distributions from the Al revealed
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connections with the temporal and occipital lobg@ercular and orbitofrontal cortex,

triangular and opercular parts of the inferior tadngyrus. The density of pathways
approaching the orbitofrontal and inferior frontalrtex appeared larger in left hemisphere.
The PI subdivision showed extensive connectionsthie parietal and frontal lobes,

predominantly to parts of the somatosensory, matat premotor cortices adjacent to the
midline. An overlap of Al/Pl connections in the qutal lobe was noted. Cingular and
thalamic connections of each connectivity-basedteluwere only observed in a small
number of cases. The Al connections were foundeptinjg to the MD nucleus and the PI
reaching the ventrolateral thalamus. Images showimg major domains of connections

emerging from each insular subdivision are dematedrin Figure 9.

Left hemisphere Right hemisphere
Anterior Posterior Al /Pl Anterior Posterior Al / Pl ratio
cluster cluster ratio cluster cluster
Volume (mm3) 3912 3466 1.35 3560 3848 0.99
+ 946 + 3027 +0.9 + Z19 + ;342 +0.38
(Sig. of antero- (p=0.047) (p=0.104)
posterior volume
difference)

Sig. of left / right

volume asymmetry p=0.065  p=0.073 p=0.027

Fractional anisot 0.181 0.178 1.02 0.182 0.174 1.05
raclionalanisoiiory + 001 +£0.02 009 | +0.02 +£0.01 +0.09
. '
(Sig. of antero- (p=0.382) (p=0.01)
posterior FA
difference)
Mean diffusivity 1.13 0.97 1.17 1.17 0.932 1.26
(*10°mm/s)  +0.1 +0.06 +0.14 | +0.15 +0.05 +0.16
(Sig. of antero- (p<0.001) (p<0.001)
posterior MD
difference)

Table 4. Basic characteristics and measurementheimicrostructural properties of water

diffusion within the newly defined insular subdms, based on their patterns of remote
connectivity (study aims A/2 and A/3). Volumesuma ratios of the connectivity-based
insular clusters in the subjects' native space gik@n. We calculated the regional values of
diffusion characteristics: the fractional anisotippnd the mean diffusivity (MEAN = SD). P

values indicate the level of significance of pajrieb-sided Student’s t-tests.

36



Left insular cortex Right insular cortex

Figure 6. Connectivitypasec clusters of the human insular cortex. Top row: gagiT1-
weighted MR image overlaid with the connect-based cortical subdivisions average
through 40 subjects. Black outline: posterior irs(@Pl), white outline: anterior insula ).
Bottom row: threedimensional mesh representing the averaged ante(winite) anc
posterior insular connectivity clusters, overl major insular sulci. Rectangle mark:
center-ofgravity points of the Al subdivision of individuaubjects in the sndard
stereotacticalspace, cross marke: center-ofgravity of the Pl subdivision of individu

subjects.
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Figure 7. Correspondence between insular anatondy\aarious subdivision approaches and
imaging methods. Top left: clustering based onlamities of structural connectivity (DTI), 2-
way clustering. Top right: clustering based on $amiies of structural connectivity (DTI), 3-
way clustering. Bottom left: three systems of fionetl connectivity identified using fMRI
(schematic drawing based on the paper by Deen et2@ll1). Bottom right: major
cytoarchitectural domains of the human insula. agsterior periinsular sulcus; sis: short
insular sulcus; pcis: precentral insular sulcusscicentral insular sulcus; pis: postcentral
insular sulcus; sps: superior periinsular sulcugsi inferior periinsular sulcus; Al, PI:
anterior, posterior insula; MI: dorsomedial insu{an 3-way clustering); VAI: ventro-anterior
insula; dAl: dorso-anterior insula; la: agranuladd: dysgranular, Ig: granular insula; G:

hypergranular subdivision; VENs: von Economo nesron

Image credits: Bottom right figure is based on wibigshed work by Gallay et al. on the
cytoarchitectonic map of the human insula (2010 \p#&rmission).
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Left insular cortex Right insular cortex

Sps
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I 00%
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Anterior Insula (Al)

Posterior Insula (P1)

Figure 8. Intersubject of DT connectivity-basedlustering of the insular cortex. 3D surfac
were generated by accessing the 95th, 90th, 5@t 4nd 5th percentile volumes of e:
cluster assignment across the population (n=40))dvi@natomical landmarks have be

illustrated (for descriptiorof the nomenclature, see Figure 7.).

Left hemisphere Right hemisphere

DISTANCE ANTERIOR insular cluster POSTERIOR insular cluster ANTERIOR insular cluster POSTERIOR insular cluster

from midline

Figure 9. Crosssectional images demonstrating the fibract anatomy of the connectiv-
based insular subdivisior(specific aim A/2)overlaid on a standard neuroimaging MT1-
weighted template (MNb2). Connection probability estimates (n=40, agsd) from the

anterior and posterior insular subdivision depictedthree different sagittal image The

distance from the midline in stereotactic spacgiven
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4.2. In vivo description of the connectional anatomof the mediodorsal thalamic nucleus

The plane separating the connectivity-based clsistas observed to be parallel to the
midline resulting in a medial (MR¢ and lateral (ML}, subdivision of the mediodorsal
nucleus. The clusters had a consistently similapshacross subjects, the center-of-gravity
(COG) points of the three-dimensional volumes werend to be very similar, the standard
deviation of their coordinates were below 1 mm ih axes. The medial domain was
significantly larger than the lateral; this diffae was on average 36% in both hemispheres.
No significant interhemispheric asymmetry was obseérfor the cluster volumes and the
ratios of the medial and lateral segments. Voluimekata are summarized in Table 5. which
also includes the reproducibility of connectivitpded clustering, marked by the standard

deviations of the COG points of each cluster.

Left hemisphere Right hemisphere
MD 1ed MD jat med/lat ratio | MD peq MD at med/lat ratio
A
(Sig. of medial-lateral (p<0.001) (p<0.001)

volume difference)

Sig. of left / right

volume asymmetry p=0.535  p=0.051 p=0.174

Spatial scatter of
centroids, X axis (mm) 0.66 0.82 0.69 0.58
Spatial scatter of

centroids, Y axis (mm) 023 0.64 0.53 0.46

Spatial scatter of

centroids, Z axis (mm) 0.96 0.98 0.8 0.76

Table 5. Connectivity-based clusters of the humadiodorsal thalamic nucleus: volumetric
measurements and center-of-gravity coordinatesuiek, volume ratios of the connectivity-
based insular clusters are given in the subjecitive space. P values indicate the level of

significance of paired, two-sided Student’s t-tests

Next, we controlled the results for the cytoardttiiee-based subdivisions of the
mediodorsal nucleus by comparing its borders withionlinearly registered thalamus atlas
definitions of cytoarchitecture. This investigaticevealed only a limited agreement between
the average borders of the M@ and the MDmc. The M4 cluster extended approximately
to one half of the latero-lateral diameter of th® Mucleus, and unlike the borders of the

MDmc, it proportionally extends superiorly and amdy. The topography of the MD
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connectivity-based clusters and the atlas-basettta®p of classical anatomy are visualized
in Figure 10.

For each hemisphere, population-based represamgatib fiber tract anatomy were
created. The probabilistic fiber tracking framewatlowed following tracts until they reach
the cortex, and even further, when the uncertaoftgossible trajectories rise. Therefore we
were able to review the clusters’ connections lasatlefined cortical and subcortical regions.
The MDg cluster was the source of fibers propagating predantly into the anterior
thalamic radiation and terminating in the supeand middle frontal gyri. The M4 cluster
mainly gave rise to pathways that partially joirted inferior fronto-occipital fasciculus and
the inferior longitudinal fasciculus, reaching tfiental orbital cortex and various temporal
loci. No marked interhemispheric asymmetry was olesk for the averaged fiber anatomy.

For a more detailed description on interconnectadrthe MD clusters, see Figure 11.

Figure 10. Visualization of the connectivity-basellisters of the human mediodorsal
thalamic nucleus. Top and middle image: coronal aril MRI images of the thalamus, with
the connectivity-based clusters overlaid onto tHeIM2 T1-weighted template. The outlines
of the atlas-basedMDmc and MDpc+pl borders are digal [86]). Bottom image: 3D
representation of the 50th percentile volumes &f thedial (MQ9 and lateral (MDy)
subdivisions, visualized with the center-of-graypyints of the segments for each subject
(n=155).
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Name of
connectivity
cluster

MNI coordinate, Y: 0 mm

MNI coordinate, X: -15 mm

Major connections from
clusters, GM areas

Major connections from
MD clusters, WM areas

Medial cluster

Frontal pole / Brodmann
area 10. (orbitobasal
parts)

Frontal orbital cortex
Frontal medial cortex
Temporal pole

Parahippocampal gyrus,
anterior division

Amygdala

Lateral occipital cortex.
superior division

Anterior thalamic
radiation

Intemnal capsule, anterior
limb

Corpus callosum.
forceps minor

Corpus callosum, genu

Inferior fronto-occipital
fasciculus, anterior parts

Inferior longitudinal
fasciculus, anterior parts

Uncinate fasciculus

Lateral cluster

MNI coordinate, Y: 54 mm

Frontal pole / Brodmann
area 10.
(superior parts)

Superior frontal gyrus

Middle frontal gyrus,
anterior part

Inferior frontal gyrus,
pars triangularis

Supplementary motor
cortex

Anterior thalamic
radiation

Internal capsule, anterior
limb

Corpus callosum.
forceps minor

Corpus callosum. genu
Corpus callosum, body

Inferior fronto-occipital
fasciculus, anterior parts

External capsule,
anterior part

Figure 11.Anatomy of fiber trac emerging from the connectivibase( subdivisions of the
mediodorsal thalamiqucleu: (study aim B/2) Averaged representation of the exami
population, connection probabilities were overlashto the sagittal and coronal crc-
sectional images of the MNI1 T1-weighted MR template. Blugeslay: tract trajectories
from the MDmc cluster. Red overlay: tract trajectsr from the Ml cluster. We provide a
description of connectionto gray matter areas (Harvar@®xford Cortical Atlas ani
Talairach Daemon nomenclature) and white mastructures (Juelich Anatomical Fibe
Atlas and Talairach Daemon nomenclatu

4.3.Glioma grading by usinghistogram analysis of diffusion anisotrop

We assumed that ttcharacteristic shape of voxel values’ distributauer the entire
tumor volume is epresentecefficiently as histograms and this information das used t
assess the grade of gliomas (study aim C/1). M@weove aimed to prove that there is
clear correlation between the mean values of ddfuparameters over the tumor values

the tumor gradeStatistical descriptors of voy-value distribution in the tumor ROIs were 1
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significantly different between the groups of higrade (HGG) and low grade gliomas
(LGG); however, in high grade cases, a tendencwtdsvhigher trace values (HGG: 3.779 £
0.382, LGG: 3.638 + 0.485) was discovered. Thetlasggnificant group difference was
observed when values of the directionally averdg®@d images were compared (HGG: 236.1
*+ 40.1, LGG: 238.7 = 35.1). The low significancedifferences between groups suggested
that classification is not feasible by using RO&lgsis over the entire tumor volumes.

We examined LGG and HGG group averaged histograpeesenting the § FA,
DWI, longitudinal and radial diffusivity and tras@lue distributions in low and high grade
gliomas. Groups appeared different, suggesting dlaassification of individual tumors may
be possible. MDA revealed that 6 histogram binsf@asible enough for the discrimination: 3
from the DWI images (value ranges: 100-120; 320:-340@-360) and single bins from the BO
(value range: 720-800), fractional anisotropy (0.12) and the longitudinal diffusivity
images’ histograms (2.2-2.4). Figure 12. exemdifiee differences between the averaged
histograms of low-grade (LGG) and high (HGG) gradses. Results of the MDA evaluation
are demonstrated in this image in a way that tegram bins allowing the most successful
classification of glioma subtypes are marked. Acuiisinant score was calculated by using
these bins, and classification was based on tloeses

With all cases left in, the model reached 92.5%cipren in classifying cases
according to their gradgd@st hocclassification). The “leave-one-out” cross-validatof the
same dataset resulted in 87.5% success aatgi¢ri classification), this model resulted in
high specificity (88.46%) and high sensitivity (85%) in identifying HG gliomas. The low
Wilks’ lambda value (0.33) and high chi-square ec(#8.45) indicated good significance in
discrimination for this model. Three LG gliomas wencorrectly classified as HG gliomas.
One of these tumors was a Gr. Il. oligoastrocytamcaording to WHO histopathology
criteria. It is noteworthy that 65% of the tumoils®f this lesion carried mutant p53 protein.
The latter feature is ominous and may suggest iramtimprogression to a secondary
glioblastoma multiforme. No histopathological claesistics seemed to explain the error in
the other two cases, both of which were also Golifjoastrocytomas, unless the samples for
histopathology were not representative. Preoperatiassification of two glioblastoma
multiforme cases was also incorrect as they weasstified as LG tumors. Next, we evaluated
the discriminant analysis on a slightly modifiedtatmse: the cases with oligodendroglial
components were omitted. This approach resultedigh specificity (100%) with low
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sensitivity (72.7%), classification accuracy forthbdhe training and the cross-validation
scenario was 87%. Classifying the tumors usinghieegram approach, the WHO grade II-
[lI-1V. separation agreed with the grading of trehmwlogist in 90% of the cases. By means of
cross validation, a success rate of 80% was olataioe grouping the cases. Despite the
relatively high overall accuracy, we must emphasim it was not possible to classify the
grade llIl. cases correctly, all the 3 cases weseriectly categorized either as grade Il. or IV.
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Figure 12. Averaged diffusion-tensor scalar maptdgsams depicting the differences
between low grade (dotted lines) and high gradergés (solid lines). Six calculated images
were used for the analysis. Although many histogranerlap, there are histogram regions
where the percentages of the voxel populations ghsinct features. Areas filled with gray
represent the range of histogram bins that werectetl during the multivariate discriminant

analysis in order to precisely discriminate betwéé&hand HG gliomas.
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4.4. Characterization of gliomas by grade maps

For the specific aim C/2, we have applied an ANNdwh classifier to create
parametric maps depicting locally interpreted glasngrade. This classification was based on
a multidimensional dataset consisting of featuresnfthe diffusion tensor dataset and T1
weighted images of the subjects. Here we reportvirel-wise precision of these two
classifiers in terms of classifying samples (voxeEhe first neural network predicted the
grade of voxels inside the tumor borders with 82t12.84% accuracy (average of 10 runs,
tested on the independent holdout sample, putgtiverking the accuracy for new
observations). Next, the intratumoral voxel memhigravas estimated correctly in 86.44 +
0.41% of the samples. Grade index was calculateedoh outlined tumor volume. For low
grade cases it was 0.281 + 0.164 (range 0.012 61pwhile in high grade lesions it was
0.646 £ 0.148 (range 0.331 — 0.837), the differamas significant (p<0.001, Mann-Whitney
U test). Additionally, the grade index showed haginrelation with the WHO grade (i.e. II, IlI
or 1IV); Pearson score: 0.709, p<0.001. With theaftipoint set to 0.5, the grade index could
identify high grade cases with 92.31% specific®y,71% sensitivity, AUC: 0.967.

Visual assessment of the TPM (tumor probability Jnapages, T1 anatomical scans
and tumor outline ground truth data revealed gamdespondence with the predicted borders,
with the following exceptions. Normal-appearingibreegions contained false positive voxels
with either blue or red appearance, mainly matchiggborders of the gray matter and the
cerebrospinal fluid. This error was reported ina8es and could presumably be attributed to
partial voluming or coregistration artifacts (Figut3/e, white arrow). Six illustrative images
of various glioma subtypes and WHO grades werectmleto demonstrate the diagnostic

features of grade maps (Figure 13).

The appearance of astrocytoma, oligoastrocytomdegth and oligodendroglioma
grade Il tumors on the color-coded grade maps was @-igurel3/a). Sparse high-grade
regions were identified in about six of the 17 remirancing and otherwise homogeneous
low-grade tumors (Figurel3/b) while the focal heggmeity as marked by contrast-
enhancement was revealed correctly in 77.8% (7¥Q)egions of red hue in low grade
gliomas. WHO grade Il (high grade) oligoastrocyasn(Figurel3/c) and glioblastoma
multiformes predominantly appeared purple to reith warked heterogeneity as indicated by
blue patches (Figurel3/d). In 4 of 40 cases, dlaatbn by the grade index proved incorrect,

for which the following facts are assumed to bepoesible. In a patient with a voluminous
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glioblastoma multiforme (Figurel3/f) this could peatatively ascribed to the relatively high
presence of necrotic areas in the tumor, unmaskedglthe classifier training, hence areas
inside necrotic masses were predominantly recogna=e low-grade with markedly high-
grade rims that closely resembled the contrastresihg areas on T1 scans. In the other
misclassified high-grade case we found no justificafor the result, although the designated
grade index was just below the cut-off point. Téwade indices for the misclassified
glioblastoma multiforme tumors were 0.331 and 0#48pectively. Two low-grade tumors
were improperly classified. In one case the patfistodescribed high Mib-1 labeling index
(20%), hyperchromatic nuclei, geometric neovaseaéion and a cellular atypia almost
reaching the criteria for grade Il classificatidinther on, closer clinical inspection was
suggested for the neuro-oncology team. A crosseseainage from the grade map of this

case is shown in Figurel3/e.
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Figure 13. Graphical representation of the imagimgsed interpretation of glioma grade
(study specific aim C/2). Color-coded glioma gradaps depicting various glioma cases. (a)
astrocytoma gr. Il. tumors are shown as predomilyablue lesions. (b) oligoastrocytoma gr.
II. In a number of cases where the histopatholdgealuation judged the lesion as low-
grade, the grade maps revealed focal heterogenglythis astrocytoma gr. Ill. displays
pronounced regional heterogeneity on the gliomadgrenap; whereas the contrast enhancing
regions are well co-localized with the red regiorsembling high grade characteristics. (d)
Glioblastoma multiforme tumor. (e) a misclassifled-grade case with high cellular atypia.
Coregistration and partial volume errors are obssuv outside the lesion (arrow). (f)

glioblastoma multiforme with voluminous necrotieas, incorrectly classified as low-grade.
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5. Discussion

During the last 25 years, diffusion MRI (dMRI) hbsen widely investigated as a
promising modality to image and characterize negichl disorders. dMRI is generally
acknowledged as a noninvasive tool to study thetevhnatter organization and
microstructure. This rationale gave rise to a nabdfof research that uses DTl and a new
family of image processing techniques to discoveirb connectivity and white matter
anatomy in living patients and normal subjects9®g]. It has been suggested that the subtle
changes of diffusion microenvironment can prece@eroscopic anatomical alterations and
hence diffusion MRI potentially unveils patholodipaocesses in a way that is not accessible

with conventional (i.e. T1 or T2 weighted) magne&sonance imaging [96, 97].

The main focus of our investigation was to use RMd related image processing
methodologies to characterize individual anisotrgayterns of cerebral water diffusion in
physiological and pathological scenarios. Firstdemonstrate the applicability of DTI in
portraying new aspects of the macroscopic anatdnttyeohuman brain, we chose to study the

connectional anatomy of the insula and the medsaldhalamic nucleus.

5.1. Using DTI to study the connectional anatomy dhe insula

Early endeavors to map the human cortex, such aksway K. Brodmann and Von
Economo, discovered a limited agreement betweemaseapic structures of the brain (gyral
or sulcal anatomy) and the organization definedfibg microstructural features like the
cytoarchitecture [98, 99]. The same ambiguity isspnt when attempting to define cortical
areas based on similarities in activation pattemhen performing executive or cognitive
tasks, evidence comes from a large number of n@aging studies employing functional
MRI. Revitalized by tractography and related teghes, the hodological (i.e. connectionist)
approach identifies cortical regions that receivsend out similar connections [100, 79, 81].
Such parcellations potentially generate interest dxploring the human connectional
neuroanatomy, nonetheless facilitating the undedstg of the cortical representations of

major neurocognitive networks.

We used diffusion tractography data to reveal ckang insular connectivity profile
by executing a k-means clustering method that sabdjacent areas based on the similarities
in the distribution of remote connections. As aitiahhypothesis, the algorithms were forced
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to search for two segments in the insular gray enafthe impetus for this assumption was
that most studies on functional connectivity utilg resting-state fMRI (r-fMRI)
predominantly described a twofold division of thesula into an anteroventral and
posterodorsal cluster [24], however, a threefoldcfional parcellation was also suggested
[101]. Parcellating the insula based on diffusiensor tractography demonstrated a gradual
change in tractography patterns with a rostrocaudpdctory [102].

We conclude that the DTI-based segmentation greatigrlaps with the same
depictions of studies using fMRI [24, 101]. It isteworthy that connections of the ventral
part of the long insular gyri and the anterior shsular gyri are similar, this coherence was
more pronounced on the structural connectivity sagations where a larger proportion of
the long gyri were included in the area denotedrdsrior insula (Al). There is evidence from
primates [21-23, 103] and humans that the antensula presents a significantly different
cytoarchitecture as well as afferent and efferemnectivity than the posterior division. The
Al, as defined by its connections, embodied theamgjar and part of dysgranular insula
which is known to be interconnected to the frontahitofrontal cortex and the amygdaloid

body in macaque monkeys [104, 105].

Connectivity data of the human insula is relativeharse and limited to observations
from resting state fMRI measurements or depictioihanatomical connectivity by means of
diffusion tensor tractography. A study by Cauda aodauthors [24] concluded that the
ventralmost anterior insula is functionally intenoected (i.e., shows temporal correlation of
activation patterns) to the rostral anterior ciagelcortex, middle and inferior frontal cortex
and the temporoparietal cortex while the dorsaltgra® insula is connected to various
cortical targets like the dorsal-posterior cingelgtremotor, supplementary motor, temporal
and occipital cortex. While tract tracing studieenfi primates describe complex, region-
specific thalamic projections to both the anteaod posterior insula [106], a human fMRI
study conflicts with such observations by reportiegs pronounced or non-existing posterior
insular connection with the thalamus [24]. Whentoahng the fiber tract anatomy from each
connectivity cluster in both hemispheres, we distetd tracts anatomy similar to those of

resting state fMRI studies.

Our findings imply that connections of the anteriasula have larger leftward
representation relative to the total insular gragttar volume; this leftward dominance of

prefrontal and frontal connections coincides wile bbservations on forebrain asymmetry
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[107] or lateralization of prefrontal activatioribe latter already described as a biomarker for
ingestive behavior [108]. Our result of a largenmwectome of the left Al partially conflicts
with the observation by Cauda et al., where it gla®wn that the anterior cluster is rightward
dominant. However, this type of interhemispheriandtance is marked by the strength
(degree of temporal correlation) of functional amad structural connectivity [24]. In contrast
to a previous study using high-resolution MRI scémsassess the structural asymmetries
[109], we reported no interhemispheric differencésthe overall volume of insular gray
matter. It is disputable whether our findings afyer left anterior cluster can be attributed to
the structural asymmetry of the Al shown by Watketsal., as our interpretation of the
anterior division was independent of gyral anatorRyrther support for our results on
interhemispheric differences comes from a studyChy et al. [110] which demonstrated a
marked L-R asymmetry of anisotropy (i.e. the “ohaesss” of diffusion) of the subinsular
white matter, implying a putative interhemipsheasymmetry in the trajectory or density of
pathways emerging from or projecting to the insiilae higher mean diffusivity, which is a
directionless descriptor of the magnitude of ditbns hallmarks different water
microenvironment in the anterior insula albeit wiigplaying pronounced interhemispheric

variability.
5.2. Using DTI to study the connectional anatomy dhe thalamus mediodorsal nucleus

In order to further demonstrate the applicabilify@rI'l to study the connectional
anatomy of the human brain, we focused on the ndedsal thalamic nucleus. As outlined in
the study specific aims B/1 — B/3, we aimed to psababilistic diffusion tractography to
trace the interconnections between the human mediabithalamic nucleus and the cerebral
cortex. Such data can be used to define conngebeised subdomains in the mediodorsal
nucleus (MD), similarly to our study on the insuldis was done by automatically defining
two regions within the MD that presented a cohead correlated distribution of remote
connections. As a continuation of studies attengptm discern the human corticothalamic
networks [111, 112, 31], we report the identifioatiof two separated cortico-mediodorsal
networks that did not require the subsequent defmiof atlas-based cortical targets when
performing tractography. This is a major differerammpared to the study by Klein et al.,
where the delineation of the putative dorsolatguegéfrontal cortex (DLPFC), lateral
orbitofrontal cortex (LOFC) and anterior cingulatertex (ACC) was necessary. The
approach by Klein's workgroup was found feasibleldoalize subdivisions of the human
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mediodorsal nucleus (namely the MDpc, MDfi and calatsal MD) based on prior
knowledge about cortical projections; moreoverythaveiled remarkable similarities with

the macaque brain.

We identified two subdomains in the human mediocalanacleus that are separated by
a border almost parallel to the sagittal plane:ialgzhrt (MDyeg and lateral part (MR). We
controlled the appearance of the connectivity-basdutlivisions to the non-linearly matched,
histology-based atlas regions. This separationedea medial segment which is similar to the
magnocellular part of the mediodorsal nucleus (MPnlwit slightly larger than that and
incorporates more than half of the total MD volurdhen comparing this observation with
earlier tract tracer studies in primates, it wasceable that such experiments also revealed a
sagittally oriented, band-like organization in ® connectivity patterns [113, 114, 40]. The
fiber tracts arising from the connectivity-basedjreents are in accordance with previous
findings using in vivo techniques [112, 31]. Thedia band has interconnections with the
orbitofrontal cortex and the most rostral partshef frontal convexities, the frontal pole; while
the lateral band is connected to cortical stripst thre more superiorly located, e.g. the
dorsolateral prefrontal cortex. Klein and colleagyueported a third, cortico-mediodorsal
circuit that matched the predictions from macaquejections from the anterior cingulate
cortex (ACC) and the lateral orbitofrontal cortere @&eparately located in the mediodorsal
nucleus, namely in the caudo-dorsolateral part][1Dur experiments did not allow
separating more than two components of the cortedimdorsal thalamus circuitry. Hence it
is assumed that the thalamic sector with intercotmes to the ACC remained

undistinguishable from the MPcluster.

We revealed connections between the medial battted¥1D (MDy,e¢9 and three target
loci in the temporal lobe: the temporal pole, amalgdand the anterior part of the
parahippocampal gyrus. Such connections to the dalgare in agreement with the findings
in Cynomolgus monkeys where predominantly the bgsalp gave rise to axons connecting
to the magnocellular (medial) part of the mediodbthalamic nucleus [116]. Classical tract
tracing studies in primates confirm the existingiroection between the temporopolar cortex
and the magnocellular division of the mediodorsaklamic nucleus [117]. The
parahippocampal gyrus was found to be intercondetctéboth the caudal sector of the MD
and the MDmc [118], this only partially overlapstivour observation that the medial band

sends connections to the anterior parts of thehggwacampal gyrus. Inputs to the MD from
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visually responsive regions were also reportedaits,cthese were mainly projecting to the
anterior and central sectors of the MD [119], scohnections were presumably located to the

MD neq Volume in our definition.

Neuroanatomical models describe at least five rdistisegregated frontal-subcortical
(i.e., cortico-striato-pallidal-thalamocorticalycuits [46, 120]. It is acknowledged that these
networks are organized in parallel but remain pHytsegregated from each other, especially
at subcortical levels. Literature supports our obetgon that the segregated nature of such
networks can be studied by using in vivo probatldigliffusion tractography or functional
MRI and strong correlation can be revealed withviongsly reported invasive tracing studies
[121, 122]. Two segregated networks are known toirbw®lved in motor functioning,
originating in the supplementary motor area and fitemtal eye fields and mediating
somatomotor and oculomotor functions, respectiviglgsterman and colleagues emphasized
that three of these circuits are particularly megdgaaspects of cognition and behavior and the
mediodorsal nucleus is accepted as an intermeday station for such functions, this role
was acknowledged and used as a basis for othersvasrkvell [123,124]. These circuits are
acknowledged to originate from the DLPFC, orbitoted cortex and the ACC. The
trajectories of two “cognitive” circuits greatly iomide with the results of the present study
suggesting that the two revealed subdivisions mightthe thalamic representations of the
DLPFC (MDg) and the orbitofrontal (Mg Segregated networks. This is further supported
by the fact that in our study, the algorithms wieneed to search for two networks that pass
through or originate from the mediodorsal thalamicleus and differ from each other with

the largest possible degree.

Our approach to study the connectional anatomyefhiuman thalamus has several
limitations. Diffusion tensor imaging and tractoging methods were found plausible in
recognizing major white matter structures but it imspossible to identify functional
connections, individual synapses or tract polafidgta acquisition is limited to elementary
volumes of 4-8 mm3 which is potentially composedenfs of thousands of individual axons
that are not necessarily coherent but cross, cgever diverge. Thus the estimation of
multiple fiber directions per voxels is necessding applied protocol and the relatively high
angular resolution of diffusion-weighting (64 ditens) allowed us to approximate two of
such populations. Furthermore, the definition afsgrmediodorsal nucleus borders represents

a further possible source of errors. In our casmean representation of thalamus geometry
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and a non-linear matching method was used that haned capabilities in tackling with
individual variations of fine intrathalamic anatomyurther studies are required to

quantitatively study and validate such of atlap&tient registrations.

When studying the connectional anatomy of the mstihhe number of diffusion
weighting directions (12) allowed estimating onleefi population per voxel, this inherently
affects the result of probabilistic tracking of o@ctions. While it is generally acknowledged
that brain voxels tend to have multiple fiber direcs (e.g. as crossing-fibers), a study on the
added-value of multi-orientation models concluddtttsecondary fibers become less
important when performing connectivity-based segatens; e.g., in the thalamus [125].
The quality of the DTI acquisitions for the specifiim A was also compromised by the
anisotropic size of image voxels, i.e. 1.5 * 1.8.3 mm. We also highlight that to overcome
the possible limitations of using a single modality would be necessary to conduct
confirmatory studies using task based or restiatedMRI, where the main goal would be to

reveal similar subdivision patterns and interaciwith psychological measurements.

5.3. Characterization of gliomas by histogram analsis of diffusion anisotropy

Previously in this study, we have shown the applidg of diffusion tensor imaging
and mapping of structural connections to studyntwenal anatomy of the human brain. We
further hypothesized that DTI can be used to cherae the spatial patterns of diffusion
anisotropy within CNS gliomas and the correlatidrsuch findings with histological features

are beneficial in typing (i.e., grading) gliomas.

We aimed this part of our work at the clarificatiointhe interrelationship between the
anisotropy patterns of cerebral water diffusion aadous grades of gliomas (study aim C).
To meet this goal, 8 directionally averaged DWI, FA, longitudinal, raddiffusivity and
mean diffusivity (=trace) were analyzed retrospedyi. We discarded the hypothesis that
mean voxel values over ROIs might be sufficientugyioto assess tumor grade or match any
other type of tumor classification. A feature sétatfrom the dataset of individual histogram
bins was performed in order to assign a discrintireoore (MDA) that allows the best
discrimination between tumor classes (grades odtopashological types). Therefore, the
MDA score incorporates information from the enthisstogram in a way that has been
optimized to place the most emphasis on those gaatscontribute most to the separation of

the groups. A classifier model using 6 histogramaldes was feasible enough to delineate
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low- and high-grade tumors: evaluating this disament function on these particular
histogram bins of any new case would yield an esth tumor grade, the discriminant score
was significantly different between the two gradasses (p<0.001). Most variables were
selected from the DWI histograms. It appears thatieterogeneity among high-grade tumors
results in a more deviated and less kurtotic d¢hstron of DWI values while the low-grade
cases tend to have modal value of 250 (Figure 489 relatively less deviation. The
histogram approach revealed that histogram charfaelérom the peak can discriminate
between the two groups. Others reported a coroeldtetween the information obtained from
fractional anisotropy of diffusion coefficient imagyand tumors’ grade [126, 127]. According
to these reports there exists a correlation betwkerninformation obtained from fractional
anisotropy of diffusion coefficient images and tusiograde. Our results contradict this
statement since we found no significant differendetween mean FA values which
characterize different tumor grades. The explanati the variables selected still remains
mathematical;, however, it can be concluded thatith whe histogram approach — radial
diffusivity and trace (ADC*3) maps cannot discriraia between LG and HG tumors when

tumors with various tissue compositions are usdtiérdatabase.

Our observations support the hypothesis that imtnatal heterogeneity can be
depicted by calculating histograms for the tumoluree. Clonal selection within tumors is
common and is indicated by locally altered diffussioharacteristics which result in the
modified distribution of voxels’ values as indicatby a new peak on the histogram. Such
changes do not necessarily affect the mean or medilmes of the entire voxel population,

but significantly change the value of an individhatogram bin.

Preoperative classification of gliomas based offusiibn tensor imaging requires a
complex dissection of data. This includes creatbrhistograms which properly represent
individual variations of diffusion values inside ethtumors and thus more precise
characterization of gliomas becomes possible. Pphmicular statistical approach to tumor
classification is superior to those employing senglarameters, like employing histogram
peak position determination in order to characeereny given histogram. We here
quantitatively show that it is more efficient toeuSIDA of histograms than rely on statistical
descriptors (like mean values or standard devigji@f unimodal histograms. The MDA
score is adequate for the decision on which groagsdany individual histogram belong to.
Arvinda and colleagues presented a method thatemgldata from perfusion- and diffusion-
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weighted imaging and defined cut-off values forumate classification [128]. Our results
regarding the differentiation of LG and HG glionted similar specificity values (Arvinda et
al.: 87.1% vs. our 88.4%) while the sensitivity iaser in our approach (Arvinda et al.: 90-
95% vs. our 85.7%). In our investigation, the eation of the classifier performance was
defined after leave-one-out cross-validation résglin an inherently lower specificity and
sensitivity compared to the studies that evalubte discrimination power on the original

database.

Important limitations of the present study are tblatively low number of cases (40)
on the one hand and the unequal representatioGaid HG cases on the other (13 vs. 27).
There is also an ambiguity about the correctnesbeopathology workup due to the fact that
tissue sampling is not representative for the enlfision. Even though the radiological
workup was prepared to represent the whole tumhumwe, the diagnoses used to “train” the
database originated from the histopathological ifigs. We also point out that the

discrimination of WHO grade lll. cases was insuéfid.

Despite all the benefits of multimodal imaging, dens of especially low grade
gliomas remain ill-defined and therefore ROI plaeaiis a major cornerstone in the
statistical analysis of radiological data. We fibhdmportant to minimize the involvement of
voxels from non-tumorous areas in the statisticellysis and we suggest the exclusion of
displaced or infiltrated WM tracts from the histagr construction; however, eventually
measurements of various zones within any given tugeem inevitable. When delineating
HG tumors, the contrast enhancing rims engulfingearotic center putatively marks the
active part of the tumor, however, this distinctisryet impossible for low grade gliomas. We
applied fractional anisotropy images to visualiegions within the tumor where white matter
integrity is severely disrupted (i.e. this is hahked by low FA values). For such tumors, this
region was used as a guidance to outline the tiraensional volume for the statistical
analysis. Similarly, defining the BAT in low gradissnot possible unambiguously. We note
that the displaced, splayed tracts surrounding ni@én tumor parts on FA images may
indicate relatively spared white matter, but thedaly to assess the magnitude of tumorous

infiltration is not available yet.

The variations in fractional anisotropy histogramese insignificant between low- and
high-grade tumors but the discriminant analysiduided an FA bin as well (Figure 12.)

consequently highlighting the vulnerability of thussupervised method for the selection of
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features to discriminate between tumor grades.highly likely that increasing the number of
cases will result in a parallel increase in theatelity of the model therefore it would be
desirable to validate the results on a larger $gpatients in future studies. The clinical
importance of this evolution is obvious: an intgrdedent evaluation of radiographic
(imaging) and morphological (histopathological) alatill definitely serve the improvement
of therapeutic interventional thinking in gliomatigats’ proper care.

5.4. Characterization of gliomas by grade maps

The current gold standard for determining gliombtgpe and grade is surgical biopsy
which is subject to sampling errors. Small volunuegeal samples may not represent the
entire tumor and due to the marked focal heteragewé gliomas it may lead to the false
determination of subtype. Valuable radiological tieas of high-grade gliomas on
gadolinium-enhanced MR images are signal intenséterogeneity, necrosis, hemorrhage,
degree of edema and mass effect. To precisely desizee an entity of pronounced
heterogeneity like gliomas, further information i®quired: perfusion studies, MR
spectroscopy and diffusion measurements were fdeadible for this objective. Such
modalities allow calculating functional maps anégimg biomarkers and have been shown to
play a complementary role in assessing therapyorespor pattern of recurrence [129, 130,
67, 58, 68].

The specific aim C/2 of our study was to develographical representation of the
imaging-based interpretation of glioma grade. Mrs done by correlating the DTI and post
gadolinium T1-weighted image derived parametersevuery voxel with the grade of the
tumor assigned by a pathologist, and training (oging) a neural network-based software
classifier to feasibly discriminate every voxelrfr@a low grade and a high grade glioma. Two
databases comprising voxel-wise image data of #ingl patients were construed whereas
artificial neural network computing was utilized re-classify the original image voxels and
by the same token, it becomes possible to classikels of undiagnosed cases. Grayscale
images were generated that depicted the probabilaf tumor classification (LGPM and
HGPM). Eventually, they were combined to producéorcooded composite images, the
grade map (Figure 4.). The neural network appreeheffective in determining tumor grade
of individual voxels whereas a new variable caledafrom the voxel-wise outputs of the
classifier — the grade index of entire tumor volgsmeallowed sufficient classification. In

terms of the correct determination of glioma grame, results exceed the diagnostic power of

56



conventional MR imaging as described by Law et (@ostgadolinium MRI: 72.5%
sensitivity, 65% specificity; grade index classfion: 85.7% sensitivity, 92.3% specificity);
however, it was reported that the feasibility ofngsperfusion MRI data vastly improves
(95% sensitivity; 57.5% specificity) [61]. Arvindand co-authors found that ADC, perfusion
measurements and their combination could be suctigsemployed to characterize glioma
grade [128]. Herein we report similar results, ¢inade index being more specific compared
to the ADC values alone (92.3% and 87.1%, respelglivWhile conventional MR imaging
provides usable features to discriminate gradeGBNI) tumors from grade Il malignancies,
the separation of grade lll. anaplastic astrocy®fnam low grades is inefficient. White and
co-authors described that fractional anisotropy)(F&lues and descriptors of the distribution
of such values over the tumor volume can incredse densitivity of grade Il. — Il

discrimination [131]. Our method provides a novelywio incorporate FA as a feature.

The presented grade map method has several liomgatiThe reproducibility of the
artificial neural network (ANN) algorithm is oftetisputed; it is generally considered as a
“black box” rather than an analytical approachréasing the number of processing layers in
the ANN will reduce the classification error buinsequently causes a loss of generalizability
[74]. In our investigation, the number of samples. (voxels) was high and the resulting
network structure was kept simple, hence we comctudt the network is not overtrained. It
is believed that reproducibility issues would palyi be resolved by employing other
algorithms such as support vector machines which dieeady been shown promising in
glioma grading [132]. Nevertheless, prospectivenictil testing is necessary to evaluate
whether a radiologist can perform better with thespnted tool than without it. We
hypothesized that during the training procedurs ifeasible to assign the same categorical
diagnosis for each voxel in one particular tumarswhaver, this presumption required that
pathological diagnoses were made from the analggesepresentative tissue samples.
Matching a specific set of voxels to the positidrir@ surgical sampling would enable better
correlation of voxel-wise imaging data and tumoadg. If the assumption is true that the
grade index is a quantitative biomarker for depigtalterations in glioma microstructure
representative for biological progression, it mégoee hypothesized that the values of this
biomarker for grade lll. tumors are between theugalof grade Il. and IV. gliomas. Albeit
this was not confirmed by our study, the two grdtlease had higher grade indices compared
to low grade samples: 0.673 + 0.161 and 0.281 4.This unusual distribution of grade
indices in grade lll. tumors could be attributedhie low number of cases. Another limitation
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in our study design is the inclusion of tumors withixed tissue composition like
oligodendrogliomas. It is not evident that the sarharacteristic changes occur in terms of
diffusion or relaxation parameters during the tidms from any glioma subtype to higher

grades therefore making it harder to generalizeghenomenon.

Szabo De Edelenyi and colleagues found that moigdsional MRI data could be
used to create images demonstrating the classificatr “nosology” of brain neoplasms;
moreover, they suggested incorporating diffusiotada similar future studies [69]. To the
best of our knowledge, this is the first study tpatforms glioma characterization using
machine-learning algorithms that combine imagintadz T1- and T2-weighted, diffusion

anisotropy and apparent diffusion coefficient imfation.
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5.5 Conclusions

Specific aim A/l.In vivo probabilistic tracking of structural corst®ns using diffusion

tensor data provides a novel window on neuroanattiratywas previously unavailable. We
used a representative subject population of 40 Ipetip demonstrate the averaged tract
anatomy emerging from the human insula. Such fitsats were clustered into two distinct
populations, originating from the anterior and pastr insula. We provided evidence that the
in vivo tract anatomy is similar to the depictioh toajectories by tract tracing studies in

primates.

Specific aim A/2.Two subdomains in the human insular cortex wexealked using a k-

means approach to cluster the structural connextiimm this region. We defined them as
anterior insula (Al) and posterior insula (Pl). Regucibility across the subject was good,

with a marked rostro-caudal variability of the filieajectories.

Specific aim A/3.We observed interhemispheric asymmetry in the mels of connectivity-

based subdivisions. This putatively marked a leftiManctional dominance of the anterior
insula and its reciprocally interconnected targetsch influences the size of insular area
where similar connections are represented. The mgfsivity (i.e. magnitude of diffusion)

was higher in the anterior insula in both hemisphlarhile the anisotropy was not different.

Specific aim A/4.The outlines of the change in connectivity proélld not respect the known

cytoarchitectural subdivisions and were shown tonoependent from the gyral anatomy.
Similarly to the literature, we demonstrated anmsfudal changing pattern of connectivity

domains.

Specific aim B/1.Similarly to the relevant studies in this areafusifon tractography was

plausible to reveal the distribution of thalamomatt (or cortico-thalamic) connectivities.
Details about the fiber tract anatomy arising frtim mediodorsal thalamic nucleus were
provided, which presents a good overlap with thessital descriptions of thalamocortical

connections in primates or with other in vivo sesglon humans.

Specific aim B/2 Two subdivisions were described within the thalaimediodorsal nucleus;

the areas were defined based on the similaritieth@fremote connections. The separation

border of the connectivity-based clusters was ofeseto be parallel to the midline resulting
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in a medial (MBd and lateral (MR subdivision of the mediodorsal nucleus, this
separation was very reproducible across a populatid55 subjects.

Specific aim B/3This investigation revealed only a limited agreatsetween the borders of

the connectivity-based subdivisions and the clagsoytoarchitecturally described areas (e.g.:
MD eq VS. MDmMc). The MRieq Cluster extended approximately to one half of ldtero-
lateral diameter of the MD nucleus, and unlike lloeders of the MDmc, it proportionally

extends superiorly and anteriorly.

Specific aim C/1Constructing histograms of preoperative radiologiteages over the tumor

volume is a feasible technique to extract imageufea. DTI derived parameters such as
values from the B fractional anisotropy, mean diffusivity, etc. iges can be incorporated in
such a method. When using parametric images frdfusthn tensor datasets, this approach
allows representation of the grade and enablesrimis@tion of LG and HG gliomas

plausibly which has been confirmed by histopathglog

Specific _aim C/2. Grade maps are graphical representations of tunuintyge and

heterogeneity whilst the grade index was definecdra®verall estimate of tumor grade as
determined by the assignments of classifiers. imumber of cases, our findings allowed
identification of tumors with prominent regional tegeneity and marked biological
progression. The glioma grade map might serve asinaaging biomarker for the

characterization of brain gliomas and complememrtoperative information available for

clinicians.
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6. Summary

Water is a fundamental constituent of living creasuand tissue water is structured
according to the characteristic features of anyemgitissue type. A unique property of the
brain is that the propagation of water moleculdsinslered by microscopic obstacles like the
axonal membranes, myelin sheath or the extracellmatrix, resulting inanisotropic
diffusion Diffusion tensor magnetic resonance imaging (DPphovides non-invasive
depiction of diffusion through sampling the magd#u and orientation of diffusion
anisotropy. Our first study aim was to apply DTHaelated image processing techniques to
describe normal diffusion anisotropy patterns mtikiman braiim vivo. We assume that such
technique can provide information on the conneetidopography of different brain areas
over large subject groups; we aimed to reveal theiloution of structural connections from
the human insular cortex and the mediodorsal nac{#D) of the thalamus. Secondly, we
focused on the anisotropy patterns of diffusiopathological conditions, more specifically,
to portray the diffusion characteristics in braieoplasms of glial origin of various WHO
grades.

We utilized standard image processing techniquesddscribe the connectional
anatomy of the human insula and the mediodorsdhritia nucleus. Our explorations
included the analysis of 40 and 155 healthy volerstevhen studying the normal anisotropy
patterns; whereas we used 40 glioma patients fer gdbcond aim. Probabilistic DTI
tractography was used to map the fiber pathwaysrginge from the observed areas.
Subdomains were mathematically separated that vdifferent in terms of remote
interconnections. For the glioma patients, histograf DTI derived images were fed into a
discriminant function analysis based classifier alhicorrelated the features with the
histopathologically defined grade.

Fiber tracts were separated into two clusters,iratgng from the anterior and
posterior insula and interhemispheric asymmetry weagaled in such connectivity-based
clusters; mean diffusivity values were higher ie #mterior insula. We confirmed a rostro-
caudal changing pattern of connectivity domains. Wevide a description of the two
connectivity-based clusters in the MD. Patternglifision anisotropy of preoperative DTI
images allowed the prediction of glioma grade v@815% specificity and 85.7% sensitivity
by using the histogram analysis method.

In vivo probabilistic tracking of structural conniens using DTI data provides a
novel window on neuroanatomy that was previouslgvailable. We provided evidence that
the in vivo tract anatomy of the insula and MD imitar to the depiction of trajectories by
tract tracing studies in primates. Connectivitydshparcellation of the insular cortex and the
mediodorsal thalamic nucleus revealed distinct samhrated networks originating from these
territories. The characterization of anisotropytgais in brain gliomas allowed us to construct
a classifier model that is feasible for the nonasive, imaging based preoperative
determination of grade.
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Osszefoglalas

A viz alapveb Osszetetje az éb szervezeteknek, a viz eloszlasa, “strukturaltsaga”
jellegzetes modon koveti az adott szOveti kornyeseerkezetét. Az agyszovetek
mikroszkopikus felépitése kulonleges, a vizmolekuthozgasat bizonyos alkotoelemek
korlatozzak és a vizdiffaziotanizotroppa teszik — ilyen bizonyitott strukturak az
axonmembranok, myelinhlvely vagy az extracellulamétrix. A diffiziés tenzor magneses
rezonancias képalkotas (DTI) a diffaziés folyaman+invaziv abrazolasat teszi lebvt a
diffaziés anizotropia és diffuziés iranyok mérédévKutatasunk ek célja a DTI és
képfeldolgoz6 moddszerek alkalmazéasa volt a norngisaivetek diffuzids anizotropia
mintazatanak feltarasara. E technikak segitséggwelnatdmiai kapcsolatok topografigja is
meghatarozhat6 nagyobb esetcsoportokban; a hursatéiis cortex és a thalamus nucleus
mediodorsalis (MD) kapcsolatrendszerének jellentzisséélul tiztik ki. Masodik célunk a
diffaziés terek koros korilmények kozotti jellemeésolt, mely célbdl kulénbdz WHO
gradusu agyi glioma DTI adatait elemeztik

A DTI képfeldolgozas és soran standard modszemkatmaztunk, mellyel a human
insula és MD kapcsolati anatomiaja jol leirhatdvivo. E célok eléréséhez 40 valamint 155
egészséges alany felvételeit hasznaltuk; a gliotmakalmaz6 adatbazisunk 40 beteg képeit
tartalmazta. Probabilisztikus DTI traktografiat alkaztunk a vizsgélati terlletékrered
rostrendszerek kimutataséra; alterlleteket kiltiiik a tavoli kapcsolati mintazatok
matematikai elemzésével. A gliomas betegcsoporiersa DTI-Hl szarmaztathatdo képek
hisztogramjainak elemzésével hoztunk létre egykdisanancia analizis alapu klasszifikacios
modellt, ami ezeket a tulajdonsagokat a graduséseshlkalmazza. .

Eredményeink a kovetkék. Az insulabdl szarmazd rostrendszer alapjan mmtés
posterior insularis tertleteket kilonitettiink eklpek féltekék kdzotti méretbeli aszimmetriat
mutattak, az anterior insula &tlagos diffuzivitagékei magasabbak voltak a hatulso
terileténél. A kapcsolati anatomia rostro-caudiadinyl valtozasat mutattuk ki. A thalamus
MD mag két szeparalt altertletének konnektivit@gitamiajat leirtuk. A difflzidés mintazatok
hisztogram technikaval val6é elemzése a gliomas ge&teesetében a szovettanilag
meghatarozott gradust 88.5%-0s specificitassabe®/B szenzitivitassal becsiilte.

Az agy strukturdlis kapcsolatrendszereinek megbaésaban azin vivo
probabilisztikus DTI traktografia kordbban nem tatehetségeket teremt. Az insula és az
MD rostrendszerének anatémigjaroliggtt eredményeink az allatkisérletes rostkovetéses
kutatdsok eredményeivel jol korrelalnak. A kapcseladszer alapu alteriletek kijelblése az
insulaban és az mediodorsalis thalamusmagbandyhéstol elszeparalt kapcsolati haldzatot
fedett fel. Az agyi gliomakban mérlsediffizids anizotropia mintdzatok segitségével nlya
modszert mutattunk be, amely nem invaziv médonppgerativ képalkotas segitségével a
gradus becslését leldge teszi.
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