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Abbreviations 

ACC: anterior cingulate cortex 

ADC: apparent diffusion coefficient 

ANN: artificial neural network 

BAT: brain adjacent to tumor 

CNS: central nervous system 

COG: center of gravity 

DF: discriminant function 

DLPFC: dorsolateral prefrontal cortex 

dMRI: diffusion magnetic resonance imaging (i.e. DWI and DTI) 

DTI: diffusion tensor imaging 

DWI: diffusion weighted imaging 

EPI: echo planar imaging 

FLAIR: Fluid Attenuated Inversion Recovery 

fMRI: functional magnetic resonance imaging 

FOV: field of view 

FSL: Functional Magnetic Resonance Imaging of the Brain Software Library 

HGG: high grade glioma 

HGPM: high grade probability map 

LGG: low grade glioma 

LGPM: low grade probability map 

MD: mean diffusivity 

MD: mediodorsal thalamic nucleus 

MDA: multivariate discriminant analysis 

MDmc: mediodorsal thalamic nucleus, magnocellular part 

MDpc: mediodorsal thalamic nucleus, parvocellular part 

MPG: multiple pulsed gradient 

MNI: Montreal Neurological Institute 

MRI: magnetic resonance imaging 

NKI: Nathan Kline Institute 

NMR: nuclear magnetic resonance 

ROI: region of interest 

TE: echo time 

TPM: tumor probability map 

TR: repetition time 

UD-MHSC: University of Debrecen, Medical and Health Science Center 

WHO: World Health Organization 
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1. Introduction 

Water is a fundamental and ample constituent of all living creatures and it is an almost 

trivial statement that tissue water is structured according to the characteristics and intrinsic 

features of any given tissue type. This is undoubtedly the rationale of modern magnetic 

resonance technologies that dominated the field of biomedical and diagnostic imaging of the 

central nervous system for the last two decades. The initial and nearly prophetic enthusiasm 

about this technique led to anticipations that the ubiquitous nuclear magnetic resonance 

(NMR) phenomenon of tissues of the human body could reveal previously unseen details of 

pathologic processes; this could be done by characterizing the relaxation properties of spin 

systems. Here I shortly refer to an early patent of Raymond Damadian from 1972 in which he 

described a new design of an NMR device denoted as “Apparatus and method for detecting 

cancer in tissue” [1]. He correctly predicted that such scanners could pinpoint changes in 

tissue qualities that are brought about by neoplastic transformation.  

One attribute of the uniquely organized pattern of water molecules is their diffusion 

characteristics. As we will elucidate in the thesis, a new family of imaging technologies was 

built upon this phenomenon, namely diffusion magnetic resonance imaging (dMRI). The date 

of this work – 2012 – hallmarks the 25th anniversary of diffusion MRI. Since the first 

depiction of the diffusion process in the human brain significant conceptual and 

methodological developments have been applied to dMRI [2]. While the spatial resolution of 

MR images is typically on the range of a millimeter, a strikingly unique feature of diffusion 

MRI approaches is that they probe the motion of water molecule systems that are happening 

on the micrometer scale. This theoretically means a way to sample the microarchitecture of 

tissue or subcellular water compartments which is extensively used as the rationale of 

diffusion MRI augmented research. 

A significant part the thesis focuses on the application of diffusion tensor magnetic 

resonance imaging and related image processing techniques to characterize normal diffusion 

anisotropy patterns in the human brain. Such work is realized by the possibility to visualize 

and quantify the uniquely ordered structure of the brain’s white matter through probing the 

anisotropic water diffusion. This late twentieth century technique resurrects the explorations 

of the nineteenth century anatomists Theodor Meynert or Joseph Jules Dejerine who 

attributed a prominent role to white matter and fiber pathways in normal and pathological 
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brain functioning [3, 4]. We aim to demonstrate that diffusion MRI can be used for similar 

explorations but at a new level by portraying the connectional anatomy of living human 

subjects and relatively large cohorts. First, we explore the topography of diffusion anisotropy 

and structural connections of the human insula, then similar dissections for the mediodorsal 

thalamic nucleus are provided. 

The second part of our investigations focuses on the anisotropy patterns of diffusion in 

pathological conditions, more specifically, to portray the diffusion characteristics in brain 

neoplasms of glial origin. The most prevalent forms of brain tumors are glial neoplasms 

whereas astrocytic tumors constitute the majority of gliomas, as stated by the last World 

Health Organization (WHO) classification [5]; however, mixed cellular composition is also 

common [6]. Separating gliomas into low-grade and high-grade classes has become the means 

for assessing the neoplastic biological behavior and this partitioning fundamentally 

determines therapy and patients’ survival. Treatment of brain tumor patients remains a major 

challenge of oncology despite revolution of diagnostics and surgical therapies. The ability of 

diffusion MRI to probe the tissue microstructure may give hope for developing new 

radiological image processing methods that finally pinpoint early changes in the neoplastic 

transformation of the brain.  

2. Background and review of literature 

Early pioneers of nuclear magnetic resonance (NMR) research described that it is 

possible to sensitize the MR signal to the motion of water molecules that is caused by their 

self-diffusion [7]. By the same token, MR imaging sequences were developed that not only 

pictured different components of the spins’ relaxation phenomena but responded to the 

microscopic displacements driven by diffusion, taking place in living tissues during the 

acquisition of images. Hence diffusion-weighted magnetic resonance measurements provide 

non-invasive description of in vivo diffusion within elementary image units, voxels [8]. The 

most commonly used parameter to describe the self-diffusion process during dMRI is the 

apparent diffusion coefficient (ADC). The common way to calculate this formulation of the 

diffusion coefficient is to acquire images with and without the pulsed gradients switched on. 

The directionality of these gradients determine the axis where the apparent diffusion 

coefficient is measured; the average degree of the diffusion appearing along the X, Y and Z 

directions is simply referred to as average apparent diffusion coefficient, or again, ADC (or 
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aADC in other terminology). The relationship between the signal intensity on diffusion-

weighted images and the apparent diffusion coefficient is formalized in the following 

equation. 

Eq. 1.  SIDWI = SIT2 * e
-b*ADC 

Where SIDWI is the signal intensity of the voxels on the DWI images, SIT2 means the signal 

intensity on T2 acquisitions (B0 images). ADC is the apparent diffusion coefficient while b is 

the parameter reflecting the strength of diffusion weighting. 

In a glass of water, any water molecule covers the same distance per unit time in all 

directions of space and this isotropic diffusion is represented by a sphere. Such movement is 

only governed by fundamental physical parameters such as the size of particles, the viscosity 

and the absolute temperature (as formalized by the well-known “Stokes-Einstein” equation). 

In living systems the tissue structure determines the movement of the same molecule, i.e., the 

diffusion properties and its magnitude as well. The result of this phenomenon is called 

anisotropic diffusion where the diffusion profile (i.e. the profile of propagation of water 

molecules) can be described by amorphous 3D or ellipsoid geometric solids. Various proteins, 

membranes, cytoskeletal and extracellular matrix elements play an important role in 

characterizing and determining the movement (diffusivity) of water molecules. Such elements 

act as “obstacles”, subsequently modify the diffusion profile and hinder or restrict the 

movement of molecules. Given its specially organized cellular and tissue microarchitecture, 

the central nervous system already gained prominent attention in the pioneering times of 

diffusion MRI research. It was discovered that the intravoxel incoherent motion of water 

molecules shows significant directional preference in white matter when diffusion sensitizing 

gradients are applied and that such direction dependent changes of contrast patterns putatively 

match our previous knowledge about the distribution of major fiber tracts [9]. Since then, a 

great effort was invested into elucidating the main source of this highly ordered anisotropy in 

the white matter of the brain [10]. It is safe to conclude from such studies that the main 

component which contributes to the anisotropic patterns observed in white matter is the dense 

packaging of axonal membranes and that the myelin sheath or intracellular organs and 

proteins have minor influence. 
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2.1. Basics of diffusion tensor imaging 

The direct consequence of the hindered self-diffusion of water molecules in the brain – 

especially in the white matter – is that the observed magnitude of diffusion (i.e. the apparent 

diffusion coefficient) greatly varies depending of the direction of the pulsed gradient used. To 

formalize this direction-dependence of the diffusion process, Basser and Pierpaoli used 

tensors and suggested the use of quantitative diffusion tensor MRI to characterize 

microstructural and physiological features of tissues [11]. Diffusion tensor imaging (DTI) has 

increased sophistication over diffusion-weighted MRI since DTI data have information on the 

magnitude and orientation of anisotropic diffusion as well. In such models, the diffusion 

process is not characterized by a single scalar coefficient but by a symmetric tensor, D that 

describes displacements of water molecules along each axis (Dxx, Dxy, etc.) and the correlation 

between displacements along these axes are formalized in the following equation: 

Eq. 2.    � =
��� ��� ���
��� ��� ���
��� ��� ���

 

This equation forecasts that it is theoretically feasible to obtain all the components of 

the diffusion tensor with diffusion MRI by acquiring images sensitized to 6 different diffusion 

directions. This is achieved by the combination of motion sensitizing gradient pulses along 

the X, Y and Z axes [2, 11]. When acquiring such images, the signal attenuation is given by 

the following equation: 

Eq. 3.   � = exp
−∑ ∑ 
�� ∗ ������,�,����,�,� � 

Where A is the signal attenuation, bij are the elements of a b matrix and Dij are the 

elements of the matrix mentioned previously.  

In order to ease the display of such tensorial data, the concept of diffusion ellipsoids 

were proposed. This ellipsoid is understood as the three-dimensional representation of the 

diffusion distance that is covered by molecules in a given diffusion time. It is calculated by 

“diagonalizing” the diffusion tensor for each image voxel. Diagonalization results in the so-

called principal eigenvector of the tensor, which is the vector where the diffusion appears to 

have the largest magnitude. Furthermore, the ellipsoid is characterized by three eigenvalues 

that describe the extent of the three orthogonal axes. The eigenvalue of the principal 
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eigenvector is denoted with λ1, while the orthogonal components of the ellipsoid are given as 

λ2 and λ3. The tensor dataset and eigenvalues are fundamental in the calculation of secondary 

images, such images allow us to visualize various diffusion characteristics as grayscale 

images and enable thorough statistical analysis. The most commonly used DTI parameters are 

the following. Mean diffusivity (MD) characterizes the overall mean-squared displacement of 

molecules (average ellipsoid size) and the overall presence of obstacles to diffusion. One way 

to describe the degree of anisotropy is to calculate the fractional anisotropy (FA) measure, this 

parameter depicts how much molecular displacements vary in space (eccentricity of the 

ellipsoid) and is related to the coherence of oriented structures. The spatial orientation of the 

structures is described by the main direction of diffusivities (main ellipsoid axes) and referred 

to as the longitudinal diffusivity (along the axis of the principal eigenvector) or perpendicular 

diffusivity. 

2.2. Characterization of normal anatomical connectivity patterns in the human brain 

From the perspective of neuroanatomy research, mapping the structural (i.e. 

anatomical) connections is interesting as the inflow or output of information available to a 

certain brain territory hallmarks its putative function and determines the influence it can has 

over other areas [12]. Given that in brain tissue the densely packed axons are the main sources 

of the diffusion anisotropy, such tensors readily describe the orientation of the dominant fiber 

population in each voxel [10]. Major fiber bundles can be visualized by means of fiber 

tracking. For this purpose, many algorithms were suggested, introducing a previously unseen 

field of biomedical visualizations aiming to depict the anatomy of fiber paths in vivo [13, 14]. 

The initial enthusiasm about this tool as a modality for in vivo virtual dissections of white 

matter anatomy was later transformed to an effort aiming to validate these re-discovered 

neuronal pathways [15]. This was mainly done by means of more conventional 

neuroanatomical approaches [16, 17]. Additionally, it became clear that newer computational 

methods are required to describe the complex intra-voxel distribution of axonal populations, 

such as mapping the propagation of uncertainty of possible fiber trajectories, one of the 

techniques denoted as probabilistic tractography [18]. The science of connectional anatomy – 

hodology – was recently electrified by the advent of fiber tractography and mapping 

techniques [19]. A probabilistic approach to trace the structural connections along trajectories 

that are defined by the diffusion modeling now allows to reveal tracts even adjacent to the 

cortex, or event depict the connections that arise primarily from cortical regions. We 
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hypothesize that a plausible work flow can be implemented that uses DTI data and allows 

studying the normal connectional anatomy of the human cerebral cortex. Our first special 

focus is on mapping the human insular cortex by in vivo diffusion MRI. 

The insula of Reil, located deeply within the lateral sulcus, is known to have a 

multifaceted sensory, motor, visceral and cognitive role and is also considered as a vestibular 

association area. The insular cortex is acknowledged as the anatomical representation for 

interoceptive awareness, i.e., the “sense of the physiological condition of the body” [20]. Its 

functional and anatomical diversity has been described in humans and non-human primates 

[21], with changes in cytoarchitecture that follow a rostroventral to dorsal and posterior 

gradient, from agranular to dysgranular and granular cortex [22, 23]. In humans, functional 

neuroimaging studies by means of resting-state functional MRI (fMRI) have been recently 

used to reinvigorate the relationship of morphology and function of the insula by 

demonstrating consistent changes of patterns of activation or functional connectivity [24]. 

Cauda and colleagues demonstrated the functional connectivity of the insula to various 

cortical and subcortical targets by quantifying the similarities between time coursers of 

functional activations and using this information to reveal coherent connectivity networks. 

Their findings on this functional connectivity revealed two major complementary networks 

involving the ventral-anterior and dorsal-posterior insula. One network connects the anterior 

insula to the middle and inferior temporal cortex and anterior cingulate cortex, and is believed 

to be related to limbic regions which play a role in emotional aspects. The second links the 

middle-posterior insula to premotor, sensorimotor, supplementary motor and middle-posterior 

cingulate cortices, indicating a role for the insula in sensorimotor integration [24]. 

Diffusion tensor imaging offers remarkable possibilities to explicate the properties of 

the hindered biological diffusion while tractography depicts structural connectivity within 

distinct brain regions. Diffusion-based techniques provide the possibility to parcellate the gray 

matter according to its local diffusion properties [25], either by quantifying the connection 

strengths to predefined cortical areas [26], or more generally, to compute similarities between 

connections to remote areas [27]. During this approach, structural connectivity is traced from 

areas of the cortex with probabilistic diffusion tractography and sub-domains are identified 

that present a demarked pattern of connections. Johansen-Berg and co-authors demonstrated 

rapid spatial changes in the connectivity profile between the supplementary motor area 

(SMA) and the pre-SMA, offering an in vivo method to delineate them on an individual basis. 
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Similarly, the technique has already been applied to segment the insula: Nanetti and 

colleagues revealed a rostrocaudal variation of connectivity-based segments dividing the 

insula into two clusters, while Cerliani et al. refined this picture by reporting a more gradual 

change of connectivity patterns along this axis [28, 29]. Our report aims to describe two 

separated regions within the left and right insula that are defined by clustering insular image 

voxels based on their distant cortical connections. Furthermore, we aim to provide evidence 

for interhemispheric variability of the clusters in terms of spatial location, overall volume and 

micro-structural properties of diffusion, for this purpose, we aim to use a cohort of healthy 

volunteers. 

Diffusion tensor imaging augmented with a probabilistic framework of fiber 

tractography allows mapping thalamocortical (or corticothalamic) connections noninvasively. 

This observation gave rise to a number of studies on the normal human thalamus anatomy or 

its putative alterations in pathological conditions [26, 30]. A novel way to picture structural 

connections of the thalamus is to delineate and define regions based on their primary sources 

of afferent or efferent connections [31]. This technique potentially depicts groups of thalamic 

nuclei that are different in terms of interconnections to the cortex or other, pre-defined 

“target” regions. We highlight that connectivity-based segmentation has already passed tests 

of reproducibility [32, 33], applicability in functional neurosurgical planning and correlation 

to neurophysiological mapping [34, 35]. We hypothesize that such approach can be used to 

demonstrate the connectional anatomy of the human thalamus mediodorsal nucleus in a 

relatively large population of healthy volunteers. 

Endeavors to study the role of the mediodorsal thalamic nucleus (MD) already 

postulated it as a possible association hub mediating affective and cognitive functions [36]. In 

non-human primates, evidence comes from a wide range of works describing the 

interconnections of the MD nucleus with several cortical areas, predominantly with the 

prefrontal cortex [37-39]. Changes of connectivity patterns were found to be coherent with the 

classical cytoarchitectural subdivisions of the MD, with the medial and orbital prefrontal 

regions projecting to the medial sector (magnocellular part) and fibers of the dorsolateral 

prefrontal cortex projecting to the lateral sector (parvocellular part) in experimental animals 

[40-42]. Many clinical studies support the active participation of the mediodorsal nucleus in 

higher cognitive functioning, although these investigations mainly concentrated on linking the 
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impairment of cognitive and executive performance to anatomical locations of intrathalamic 

lesions or to volume changes in epilepsy [43-45].  

The impetus for the second part of our study was that in vivo neuroimaging methods 

have successfully been applied to study the connectional anatomy of the mediodorsal nucleus, 

and compelling similarity to the primate thalamocortical networks was revealed [31]. We 

aimed to perform connectivity-based parcellation to reveal subdivisions within the human 

mediodorsal thalamic nucleus by automatically delineating areas that show distinct remote 

connectivity profiles. Our study was designed to unveil the interhemispheric differences and 

intersubject variability in the extent of such connectivity-based domains, for this purpose, we 

accessed the images of a large number of healthy subjects. We assumed that the macroscopic 

anatomy of such subdivisions provide further information on the functional specialization of 

the MD nucleus. This idea stems from the fact that structural connectivity determines the 

territories from where information could reach an area while the efferent connections limit the 

regions which it can directly influence [12]. Therefore, keeping in mind its limited capabilities 

in depicting finely detailed anatomy, we can use tractography-based charting of gray matter to 

obtain information not only about local features, but also about more remote trajectories and 

large circuits passing through that region [15]. The neuroanatomical model of segregated 

“cortico-striato-thalamo-cortical” networks forms the basis for our hypothesis, in which 

circuitry the mediodorsal thalamic nucleus was found to play an intermediary role [46]. 

Neuroimaging studies show that macroscopic anatomical features (e.g., total gray matter 

volume of frontal lobe) show correlation with the intellectual abilities of the individual [47, 

48]. By the same token, individual, imaging-based and connectionist definition of anatomical 

features can be investigated as neuroanatomical correlates of higher cognitive functions. We 

conclude that an initial step in such explorations is to provide normative data on the anatomy 

of humans, preferably using large subject populations and in vivo imaging techniques. 

2.3. Characterization of pathological diffusion anisotropy patterns in the human brain 

As previously described, the highly anisotropic appearance of diffusion in the central 

nervous system is predominantly caused by the dense packaging of ordered axonal 

membranes in white matter [10]. Further components might influence such patterns by 

hindering the diffusion: intracellular proteins, microtubules, neurofilaments, extracellular 

matrix components and the myelin sheath of neurons. In case of changing intra- and 

extracellular structure, for instance the disorganization that accompanies neoplastic 
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transformation, the diffusion characteristics are bound to be altered. Therefore diffusion 

imaging putatively probes the biological microarchitecture and offers hope to correlate such 

measurements with tissue properties in pathological conditions or even to reveal the peculiar 

microstructure of neoplastic tissue. 

Diffusion data are often correlated with cellular physiology and tissue microstructure, 

and has extensively been used in the studies of central nervous system gliomas. Here we 

report the latest findings in glioma imaging from the perspective of diffusion MRI 

applications, with attention to studies that focused on diffusion derived parameters such as 

mean diffusivity or fractional anisotropy. Furthermore, we present the body of literature that 

supports the feasibility of diffusion MRI in the determination of glioma WHO grade or 

separate low and high grade gliomas. Mean diffusivity measures allowed differentiation and 

outlining the central necrotic areas within high-grade gliomas as well as separating 

peritumoral edema from adjacent WM structures; however, tumor infiltration cannot be 

evaluated properly [49, 50]. A strong correlation between tumor cellularity and the apparent 

diffusion coefficient (ADC) may also help to estimate tumor grade [51, 52]. The reliability of 

this grade assessment method, however, is questionable primarily due to a great deal of 

subjectivity involved in histological tumor typing [53]. Meanwhile, data on the association 

between fractional anisotropy values and tumor characteristics, including WHO grade are also 

available. Co-analysis of tensor-related parameters also provides basis for such correlative 

conclusions [54-56]. Combination of variables referring to the apparent diffusion coefficient 

in gliomas (e.g. minimum and maximum value of ADC) and multiparametric approaches 

facilitate tissue characterization and classification [57, 58]. Use of histograms for studying 

distributions of different parameters further improves identification of tumor subtypes [59, 

60]. Despite the endeavors to use conventional MRI for the delineation of high-grade gliomas, 

low sensitivity and specificity was reported [61]. When compared to region of interest 

analysis, construction of histograms to represent the distribution of voxels’ values in a tumor 

was more feasible whilst this approach allowed successful grading of gliomas [62]. 

Dehmeshki and co-authors described that discriminant analysis (DA) is capable of selecting 

the most important features of individual image histograms for classifying cases in different 

pathologies; a practical representation of such features is calculating histogram bins for each 

case [63, 64]. Imaging results have already been interpreted as adequate indicators of not only 

WHO histopathology types (classification), but also as descriptors of tumor pathophysiology 

(proliferation, metabolism, blood flow). Comparing FA values, mean diffusivity to 
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histopathological evaluation of biopsy samples of glioblastoma multiforme tumors proved a 

consistent relationship between the radiology data and tumor cellularity as well as radiology 

measures and the Mib-1 LI (labeling index, assessed with the monoclonal antibody for Ki-67) 

[65, 66]. Further extension of non-invasive tumor evaluation needs to keep in sight those 

striking results which dominate the current neuro-oncopathology literature. It has recently 

become obvious that in addition to traditional morphology molecular features often allow 

estimates of not only disease prognosis but also prediction. The latter activity determines 

individual tumor sensitivity towards a specific chemotherapeutical regimen [67, 68]. 

Various studies on the relationship between imaging parameters and pathology aim to 

develop new ways of depictions that can help to characterize tumors. Nosology – the 

discipline dealing with the classification of diseases – was reinterpreted by Szabo De Edelenyi 

in his report where he uses this term to introduce a new form of an imaging-based parametric 

map [69]. According to this terminology, nosological maps depict the probability of the 

occurrence of certain disease subtypes for each image voxel, based on the image features 

(typically multidimensional) underneath that particular voxel. Such visualizations potentially 

ease the interpretation of multispectral data, such as proton magnetic resonance spectroscopic 

images or diffusion tensor datasets. Literature shows that it is possible to visualize 

biologically diverse regions within a tumor based on image analysis and various modeling 

approaches; a method was reported that depicts histopathological subtypes (i.e. “oligo-like” or 

“astro-like” regions, according to the authors' nomenclature) of low-grade gliomas as color 

maps [70]. Similarly, “nosological images” graphically represented different tumor types by 

performing complex interpretation of MR spectroscopy data and it was practical to use T2 and 

ADC values for tumor xenograft characterization by segmenting tumor images into various 

sub-populations [69, 71, 72].  

Such works form the basis of our next hypothesis that machine-learning algorithms are 

capable of integrating information from preoperative images whilst multidimensional pattern-

recognition techniques could enhance the characterization of gliomas. A practical approach is 

supervised learning where previously determined ground truth is provided by histopathology 

and mathematical models are optimized for finding the correlation of individual, subject-

based data and the tumor classification. One such method, the artificial neural networks 

(ANN) has long been investigated as a potential candidate for oncology decision support 

finding more specific aims as brain tumor classification [73-76]. By the same token, our 
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investigation was designed to introduce a new visualization method that portrays glioma 

grade by incorporating information from postgadolinium T1- and T2-weighted, diffusion-

weighted and parametric images that were computed from diffusion-tensor measurements. We 

focused on the development of an imaging biomarker that estimates tumor grade by 

employing a voxel-wise computational approach based on a supervised learning algorithm.  
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2.4. Study aims 

The primary motivation of the study was to employ in vivo diffusion tensor imaging to 

portray individual anisotropy patterns of cerebral water diffusion in physiological and 

pathological scenarios. We aimed to demonstrate the applicability of DTI data analysis to 

study the normal human anatomy in a relatively large subject population. Furthermore, to 

retrospectively analyze a patient group with brain gliomas to reveal a possible neuro-

oncological application of DTI. The experiments were designed to elucidate the following 

topics, each denoted as a specific (major) aim or secondary (minor) aims.  

A. To show the applicability of DTI to study the connectional anatomy of the human 

cerebral cortex, with special focus on the insula. 

A/1. To use probabilistic diffusion tractography to map the macroscopic structural 

……connections of the insular cortex. 

A/2. To use such data to reveal subdomains within the human insular cortex that are  

……automatically defined by analyzing the patterns of remote connections. 

A/3. To analyze the distribution, location and interhemispheric asymmetry of such 

……connectivity-based insular subdomains and to measure the microstructural 

……properties of water diffusion within the newly defined areas. 

A/4. To compare the subdomains based on the analysis of diffusion anisotropy and 

……tensor data with the classical depictions of major cytoarchitectural domains. 

B. To show the applicability of DTI to study the connectional anatomy of the human 

thalamus, with special attention to the mediodorsal nucleus. 

B/1. To employ probabilistic diffusion tractography to trace the interconnections 

……between the human mediodorsal thalamic nucleus and the cerebral cortex. 

B/2. Similarly to specific aims A/2 and A/3, to define subdomains in the mediodorsal 

……nucleus based on the patterns of remote connectivity. 

B/3. To compare the neuroanatomy of the connectionist definition of the subdomains 

……of the mediodorsal nucleus with the cytoarchitectural subdivisions. 

C. To use DTI to characterize the spatial patterns of diffusion anisotropy within CNS 

gliomas and correlate such findings with histological features that are used to type 

gliomas. 
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C/1. To assess the feasibility of using preoperatively acquired DTI images to grade 

……gliomas. 

C/2. To develop a graphical representation of the imaging-based interpretation of 

……glioma grade. 
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3. Materials and methods 

3.1. Study subjects 

In accordance with the aims (A, B and C) defined previously, three different cohorts of 

subjects were enrolled in the study. For aim A, data of healthy volunteers were accessed from 

the repository of a national collaborator (University of Kaposvár), while for aim B, we used 

the publicly available Rockland Neuroimaging Sample provided by the Nathan Kline Institute 

(NKI, Orangeburg, USA). The original NKI sample consisted of the images of 210 subjects, 

which was sampled and reduced to 155 subjects to have a more homogeneous population 

(according to the criteria outlined in Table 1.). This sample is a freely available, large-scale, 

extensively phenotyped dataset for the purpose of discovery science and contains healthy 

subjects from nearly all age groups. The general characteristics and the inclusion criteria of 

the study populations for specific aims A and B are summarized in Table 1. 

Name of specific 
aim served, 

dataset 
Subjects 

Gender 
(male/female) 

Age 
(mean ± SD ) 

Selection criteria 
Source of 
subjects 

Specific aim A 40 19/21 33.8 ± 12.7 
Right-handed, healthy 

adults 
University of 

Kaposvár 

Specific aim B 155 92/59 38.8 ± 19.4 

Right-handed healthy 
subjects, age range 14-
65 years, available IQ 

data and DTI  

Rockland 
Sample, Nathan 
Kline Institute  

Specific aim C 40 18/22 38.6 ± 16.6 

WHO grade II-IV 
gliomas, DTI scans 
available, no prior 

treatment 

UD-MHSC 

Table 1. Subject characteristics and selection criteria for specific aims A-C. 

Aim C required retrospective data analysis of patients with CNS gliomas and the 

construction of a dataset that was determined by the availability of an adequate pre-operative 

radiological workup including diffusion tensor imaging acquisitions. We collected the images 

and basic clinical data of 40 consecutive subjects meeting the inclusion criteria, diagnosed 

with brain gliomas between 2006 and 2010. Cases were labeled according to WHO grade (Gr. 

II: 26, Gr. III: 3, Gr. IV: 11) and were also divided into low and high grade classes. All 

tumors were histologically classified using either stereotactic biopsy material or specimens of 
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surgical debulking (Institute of Pathology, UD-MHSC). The original diagnoses were 

reviewed blind to the results of radiological analysis. Inclusion criteria were the availability of 

DTI scans and only those glial tumors were selected which had been sampled prior to any 

kind of treatment (i.e., surgical removal, radiotherapy or cytostatic therapy). Patient baseline 

characteristics and a summary of the histopathological diagnoses of the subjects’ tumors are 

demonstrated in Table 2. 

Tumor histopathology Subjects Gender 
(male/female) Age (mean ± SD, range) 

Low grade tumors 26 13/13 34.6 ± 15.9 (8-68) 

astrocytoma gr. II. or  
astrocytoma fibrillare gr. II. 

13 7/6 30.6 ± 16.9 (8-59) 

oligoastrocytoma gr. II. 7 ¾ 37.9 ± 18.4(11-68) 

oligodendroglioma gr. II. 6 3/3 42.2 ± 9.9 (34-59) 

High grade tumors 14 5/9 47.3 ± 15.4 (13-68) 

oligoastrocytoma gr. III. 3 0/3 52.0 ± 2.6 (50-55) 

glioblastoma multiforme 11 5/6 45.7 ± 17.6 (13-68) 

Overall 40 18/22 38.6 ± 16.6 (8-68) 

Table 2. Preoperative assessment of glioma grade through the analysis of diffusion tensor 

images (specific aim C): subject baseline characteristics and histopathological composition 

of the subjects’ tumors. 

During the construction of each dataset, participants gave informed written consent to 

procedures approved by the relevant Institutional Review Boards. Further information of the 

study cohort for specific aim B is provided on the website of the International Neuroimaging 

Data-sharing Initiative, the INDI [77]. 

3.2. Image acquisition protocols 

Due to the fact that three institutions contributed to the imaging datasets of the study, I 

report the MRI acquisition protocols according to the specific aim served by the relevant 

scans of the institutions. As a general rule, high-resolution anatomical, T1-weighted imaging 
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was performed for each subject in each cohort, which was complemented by diffusion tensor 

imaging. Details of the MRI and DTI acquisitions are given in Table 3. 

  Specific aim A Specific aim B Specific aim C 

 Institution University of Kaposvár Nathan Kline Institute UD-MHSC 

 
Scanner type 

(Field strength, 
vendor) 

1.5 T MRI system 
(MagnetomAvanto, 
Siemens, Erlangen, 

Germany) 

3.0 T MRI system 
(Magnetom Trio Tim, 
Siemens, Erlangen, 

Germany) 

1.5 T MRI system 
(GE Signa Excite 
TwinGradient, GE 
Medical Systems, 
Milwaukee, WI) 

A
na

to
m

ic
al

 im
ag

in
g Applied sequence 

3DT1 MPRAGE 
(native) 

3DT1 MPRAGE 
(native) 

3DT1 SPGR (Gadolinium 
contrast agent 
administration) 

TE/TR 4.2 / 1160 ms 3.5 / 2500 ms 6 / 21 ms 

Image matrix 384 * 512 256 * 256 512 * 512 

Voxel size 0.45 * 0.45 * 0.83 mm 1 * 1 * 1 mm 0.68 * 0.68 * 1.1 mm 

D
iff

us
io

n 
te

ns
or

 im
ag

in
g Applied sequence Spin echo EPI 

Spin echo EPI, 
GRAPPA parallel 

imaging (acceleration 
factor: 3) 

Spin echo EPI 

TE/TR 118 / 10000 ms 91 / 10000 ms 98 / 10000 ms 

MPG 12 64 25 

b-factor 1000 s/mm2 1000 s/mm2 1000 s/mm2 

Voxel size 1 * 1 mm 2 * 2 mm 1.5 * 1.5 mm 

Slice thickness 3 mm 2 mm 3.3 mm 

Table 3. Anatomical MRI and DTI acquisition protocols used for the subject cohorts of 

specific aims A-C. FOV: field of view, EPI: echo planar imaging, TR: repetition time, TE: 

echo time, MPG: number of multiple pulsed gradients. 

3.3. Image and data processing protocols 

3.3.1. Calculating the microstructural descriptors of diffusion 

The acquisition of raw, diffusion weighted images allowed the voxel-wise estimation 

of the diffusion tensors for each subject. The diffusion tensor is described by the principal 
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eigenvector and three eigenvalues. To formulate the tensors based on the DWI data we relied 

on the built-in estimation algorithm of the FMRIB Diffusion Toolbox in the FSL software 

package (University of Oxford, [78]). All specific aims required the calculation of secondary 

images that are derived from the diffusion tensor; these are referred to as parametric or scalar 

images. The calculation of such parameters is extensively described by other studies; we refer 

to the technical reports and manuals of the applied algorithm, the dtifit (FMRIB Diffusion 

Toolbox. FSL, University of Oxford [78]). The following parametric maps were generated: B0 

images, which are acquired without diffusion sensitization thus conveying T2-weighted 

information; directionally averaged DWI images; fractional anisotropy maps (Eq. 4.); 

longitudinal (Eq. 5.) and radial diffusivity component maps (Eq. 6.), trace maps (Eq. 7.) and 

the MD (Eq. 8.). We used the following equations to calculate the parametric maps from the 

components of the diffusion tensor.  

Eq. 4.  
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Eq. 5.  λ║= λ1 

Eq. 6.  λ┴ = (λ2+λ3)/2 

Eq. 7.  Trace = λ1 + λ2 + λ3  

Eq. 8.   MD=ADC= (λ1 + λ2 + λ3)/3 

where λ1, λ2 and λ3 are the three eigenvalues of the diffusion tensor. FA: fractional 

anisotropy. λ║: longitudinal diffusivity, λ┴: radial diffusivity.  

3.3.2. In vivo mapping of connections with probabilistic diffusion tractography 

To study the properties of normal connectional anatomy for specific aims A and B, the 

following processing steps of the DTI data were performed: (1) fitting a symmetric tensor to 

the DWI data and using the tensor’s eigenvalues to calculate secondary, parametric maps, 

such as the fractional anisotropy image, (2) spatial standardization, i.e. registration of T1-

weighted and DTI data to a standard neuroimaging template space, (3) estimation of intra-

voxel distribution of fiber populations and (4) performing probabilistic tracking of structural 

connections arising from the investigated region. DTI processing steps were carried out using 
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the FMRIB Diffusion Toolbox in the FSL software package, we refer to this toolbox by 

naming the algorithm or built-in scripts used. 

We performed non-linear spatial standardization of images to enable inter-subject 

comparison of anatomy. For each subject, the calculated fractional anisotropy images were 

used to determine a deformation field which transforms it to a common neuroimaging 

reference space (MNI space), namely the FMRIB58 fractional anisotropy template 

(distributed with the FSL tool). Image registration steps were done by accessing the FLIRT 

(initial, mutual information-based, linear registration with 12 degrees of freedom) and the 

FNIRT (non-linear warping) algorithm in the FSL software package. For anatomical images, 

the T1-weighted scans of each subject were transformed to the T1-weighted MNI152 template 

with the procedure described for the DTI standardization. Subsequently, anatomical images 

and tractography results were stored in a standard MNI152 neuroimaging space. This allowed 

to define the “seeding” masks (i.e., the volume from which probabilistic fiber tracing samples 

will emerge) for diffusion tractography by using only one template image for every subject 

assuming good anatomical overlaps, and therefore the tracking of neuronal connections were 

performed in the native diffusion spaces of individual subjects, only transforming the seeding 

masks and resulting images from and to the standard space. 

The characterization of fiber distributions was carried out with a standard procedure, 

the BedpostX script. For more information on the probabilistic diffusion tractography 

procedure, see the relevant work by Behrens et al. [18]. This algorithm was set to search for 

two fiber populations in each image voxel in a way that the possible orientations of diffusion 

displacements best fit the observed raw, diffusion weighted data. Next, probabilistic tracking 

of structural connections were initiated by using the ProbtrackX program. The connection 

strength between each seeding voxel and every remote brain voxel was estimated as the 

probability of tracts reaching their target through a trajectory guided by the model of local 

diffusion characteristics. A non-linear registration was used to map the coordinates of seed 

voxels to the space of the diffusion images and then to project the tractograms back to the 

standard space. Each entry in such tractogram image shows the probability of that particular 

brain voxel to be interconnected to the seeding area. 
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3.3.3. Calculating the connectivity-based subdomains of the insular cortex  

The specific aim A was to use the diffusion anisotropy data and diffusion tensors to 

study the connectional anatomy of the human cerebral cortex, with special focus on the insula. 

One way to study the connectional anatomy of the cortex is to perform the probabilistic 

tracking of structural connections from a specific seed area (aim A/1), and use this 

information to parcellate the original territory into subdomains that differ in terms of the 

patterns of connectivity (aim A/2). This “hodologist” definition of cortical of subcortical areas 

require a mathematical approach that separates such fiber trajectories and maps the origin of 

each fiber cluster back to the examined brain region. For studying the insula, we first accessed 

the mask of the insular cortex from the Harvard-Oxford Cortical Atlas (FSL), and then the 

T1-weighted image template in the MNI152 space was used to review and refine the borders 

of the insular cortex. The final region of interest (ROI) comprised only the band of gray 

matter voxels surrounded by the extreme capsule and the periinsular sulci. 

Tractography was initiated from the reviewed insular cortical masks in the MNI152 

space, with the procedure described in the report previously. We aimed to perform 

connectivity-based segmentation; hence an alternative way to store diffusion tractography 

results was applied, similarly to a number of works in this field [79-83]. For each subject, a 

connectivity matrix (M * N) was stored where each row (M) represented the seed voxels 

while the columns corresponding to the brain voxels (N), as stored in a low resolution, 4 * 4 * 

4 mm space. This down-sampling was carried out to ease the computational and memory 

burden of the procedure. Elements of the matrix represented the probability of existing 

structural connections between corresponding seed and brain voxels. Next, a cross-correlation 

matrix was constructed (M * M), for each seed voxel quantifying the similarities of their 

connectivity patterns. Seed voxels were partitioned into two groups with a k-means clustering 

algorithm maximizing the within-group similarity of connection patterns (Ccops program, 

FSL). During the k-means algorithm, random initialization of cluster centers was employed, 

with an iterative search for the second cluster center to be the furthest away from the first; this 

method provides feasible within-subject reproducibility without performing multiple 

clustering, in contrast to other works [28]. Each voxel in the seed area (rows of the matrix) 

was assigned a label according to the cluster number it was classified previously. As this step 

was done in the standard neuroimaging space, the cluster membership labels were 
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consequently mapped back to the native space (T1-weighted anatomical) for each subject 

using the inverted spatial transformation of the standardization procedure. 

In this paragraph, we report the methods that were used to evaluate and describe the 

anatomy of the newly formed connectivity-based subdivisions of the insular cortex, as 

outlined in the specific aim A/3. Based on the contours of each connectivity cluster, three-

dimensional objects were formed and for each model the center of gravity point (COG) was 

determined in the MNI152 stereotactical space. The COG or the center of mass calculation 

was based on averaging the vertex coordinates of 3D meshes. This measure was done in order 

to reveal the spatial scatter of the connectivity-based domains through the study population. 

Hence the spatial consistency was measured as the scatter of COGs and the variability of 

absolute cluster volumes. For volumetric evaluations, each insular mask volume and its newly 

clustered partitions were transformed back to the subject’s native anatomical space by using 

the inverted transformation of the standardization step (i.e. registration of the T1-weighted 

images to the MNI152 T1-weighted template). A population-averaged representation of the 

partitioning was computed by assigning the label value to each reference-space insular voxel 

that was most likely to be found in the individual cluster maps, i.e. the mode of the 4D object 

was determined. This 3D dataset of the most common cluster assignment was then used to 

create a 3D mesh for each cluster. To demonstrate the intersubject variability of the 

discovered clusters across the study population, we calculated and visualized images 

representing the 95th, 90th, 50th, 10th and 5th percentiles of the label assignments.  

Specific aim A/4 was to evaluate whether the connectivity-based partitions present 

different diffusion microenvironment. To achieve this, the fractional anisotropy (FA) and 

mean diffusivity (MD) was provided for clusters in both hemispheres; the calculation was 

done using the standard equations provided previously. A morphological operation, namely 

erosion with a 3 * 3 * 3 voxel box kernel was performed on the cluster masks. We assume 

that this operation reduced the influence of partial volume effect by the adjacent cerebrospinal 

fluid voxels and therefore the diffusion scalar values can safely be measured in the 

connectivity-based insular subdomains.  

To reveal the anatomical correspondence of the fiber tracts emerging from the newly 

defined insular subdivisions, we performed probabilistic tractography for each subject, 

initiated from the voxels representing the discovered insular clusters. As the clustering 

algorithm was forced to search for two domains, this method provided two different 



24 

 

tractograms for each subject. For each voxel in the brain in each subject, a label was assigned 

indicating whether that voxel is most likely to be connected to the first cluster (label:1), 

second cluster (label:2) or no connections to the insula (label:0). Corresponding maps were 

summed over the subjects and the resulting back-projected tract distributions were visualized 

(i.e. separately computing maps projected from the 1st and 2nd clusters), in the same way as 

visualized in the study Menke et al. 2010, Figure 3. [82]. This population-based 

representation of connectional anatomy of the insula was observed and we described the 

major connections of the newly defined subdivisions in relation to the territories of widely 

used digital brain atlases. This visualization step was carried out with the FSLVIEW tool 

(FSL). 

3.3.4. Mapping connectivity-based subdomains of the mediodorsal thalamic nucleus 

Aim B was to demonstrate the applicability of DTI to study the connectional anatomy 

of the human thalamus, with special attention to the mediodorsal nucleus. Probabilistic 

diffusion tractography was performed to trace the interconnections between the human 

mediodorsal thalamic nucleus and the cerebral cortex. This part of the work flow required 

special measures to delineate the nucleus. 

The masks of the left and right mediodorsal nucleus were drawn in the standard 

MNI152 neuroimaging space. To define these borders, we used results from a previous work 

of our collaborators where a mean representation of the human thalamus anatomy was 

provided by the histological workup of seven thalami [84, 85]; this work is the three-

dimensional generalization of the Morel Atlas of the Human Thalamus and Basal Ganglia and 

therefore contains the depictions of thalamic subdivisions based on cyto- and 

myeloarchitecture [86]. The idea of using such multi-subject atlases is to incorporate the inter-

subject variability of the observed structures. As described in the work by Krauth and co-

authors [85], a statistical shape model was constructed that describes this geometrical 

variability as a multidimensional point cloud, each transformed to a standard stereotactic 

space, defined by the anterior commissure and posterior commissure landmarks. These data 

allowed us to use a statistical shape model driven registration method to non-linearly match 

the outlines of the template’s MRI visible thalamus and the corresponding structure from the 

3D mean thalamus atlas [87, 88]. Therefore we had access to the borders of the putative 

borders of the mediodorsal thalamic nucleus in standard space, as defined by the Morel Atlas 

[86]. This also allowed us to make comparisons with the classical, cytoarchitecture-based 



25 

 

depictions of the anatomy of the mediodorsal nucleus (specific aim B/3.). In the standard 

space, the 3D outlines of its two subdivisions were accessed (MDmc - magnocellular part and 

MDpc - parvocellular part). 

Similarly to the methodology to characterize the connectivity-based divisions of the 

insular cortex, we employed the following steps to process DTI data. Estimation of two fiber 

directions in each image voxel of the brain was carried out by using BedpostX (FSL), 

probabilistic diffusion tractography was initiated from the mask of the mediodorsal thalamic 

nucleus and probabilistic tractograms were stored in M * N matrices representing the seed 

voxels (M, rows) and down-sampled brain voxels (N, columns). Cluster analysis by the k-

means algorithm was utilized to partition the M seed voxels into two groups that featured the 

most distinct distribution of connections. Finally, cluster membership labels were mapped 

back to the reference space for each subject using the inverted spatial transformation of the 

standardization procedure (specific aim B/2.). 

In order to study the spatial distribution of circuits and to localize distant regions 

connected to the connectivity-based mediodorsal thalamic clusters, a population-based 

representation of connectional anatomy was required. Probabilistic tractograms for each 

subject were accessed, and the emerging tract distribution images from the newly defined 

subdivisions were separated. For each brain voxel, we have assigned a label based on its 

highest probability of connection to either clusters (separately for left and right hemispheric 

clusters). Then these labeled maps were correspondingly summed through the 155 subjects. 

The pattern of this averaged tract anatomy was compared to digital atlas-based gray matter 

and white matter regions (Harvard-Oxford Cortical Atlas and Juelich Atlas of Fiber Tract 

Anatomy). Interhemispheric and inter-subject variability was estimated for the volumes of the 

connectivity-based subdivisions. Their spatial scatter from the group centroid (i.e. the average 

of coordinates) was determined in the MNI152 space. We have constructed three-dimensional 

meshes representing the 50th percentile volumes of connectivity-based domains through the 

examined population, such objects were visually compared to the atlas-based mediodorsal 

thalamic nuclei borders (specific aim B/3.). 

3.3.5. Glioma characterization: general methods 

We aimed to use DTI to characterize the spatial patterns of diffusion anisotropy in a 

pathological scenario, namely in patients with CNS gliomas and correlate such findings with 
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histological features that are used to type gliomas (aim C). More specifically, to perform 

analysis based on image features of DTI derived parametric maps, derived from the voxels of 

the tumor volumes. The final aim therefore is to reveal DTI-based imaging features that can 

be used noninvasively, preoperatively to predict the WHO grade of CNS gliomas. We also 

aimed to elucidate whether such DTI-based data are suitable for the creation of a predictive 

model that would allow determination of the grade of new cases. For this, we describe two 

main methods: the histogram approach (specific aim C/1) and glioma grade maps (specific 

aim C/2).  

Extracting imaging features for this step was carried out in the space of the diffusion 

tensor images, no registration or transformation of DTI parametric maps was performed. A 

crucial step during each procedure was the definition of tumor borders and the delineation of 

from the brain adjacent to tumor areas (BAT). The extent of the tumors and areas of tumor-

associated edema were visually inspected on postcontrast T1-weighted, T2-weighted and 

FLAIR images. Regions of interests (ROI) were placed in two aspects: the tumor core and 

tumor periphery. The peripheral region was defined as the maximum high intensity 

abnormality seen on the unweighted, B0 images (non-enhancing, T2 abnormality), while the 

tumor core was outlined inside that region, on the central, low value abnormality seen on 

fractional anisotropy images. This method is similar to that of Wang et al. where they 

evaluated the feasibility of using FA and anisotropic diffusion component (q) maps to 

precisely assess changes in diffusion which are brought about by tumorous infiltration of the 

white matter [89]. Care was taken to ensure that no regions of cerebrospinal fluid are included 

inside the tumor borders and also to avoid the inclusion of the peritumoral edema in the 

analysis. In high grade tumors, the outlined tumor core were identical to the enhancing T1 

abnormality while in low grade tumors this comparison was not appropriate due to the low 

number of enhancing lesions. For the extraction of image features for assessing tumor grade, 

only the gross tumor core volumes were used, this step followed the inspection of ROIs by a 

qualified neuroradiologist. Tumor delineation procedure is illustrated in Figure 1. 
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Figure 1. Outlining tumors on B0 and fractional anisotropy images. First row shows axial 

images of a patient with GBM while the second row presents a typical case on a non-

enhancing low grade glioma. Tumor regions were manually drawn on DTI parametric maps. 

White border delineates the following two areas: high intensity abnormal region on B0 

images (outside) and low intensity abnormal region on FA maps (inside). (a) and(d): 

postcontrast T1-weighted; (b), (e): B0 image; (c), (f): fractional anisotropy map. 

3.3.6. Glioma characterization: extracting imaging features as histograms 

We hypothesized that the characteristic shape of voxel values’ distribution over the 

entire tumor volume is represented more efficiently as histograms than the classical 

descriptors of the voxel values’ distribution. Compared with the approach of calculating the 

mean or median values of various DTI-based metrics over the tumor value, individual 

histogram channels (or bins) could be used as meaningful image features describing the 

distribution of values. We assume that the pathological attributes which characterizes a WHO 

grade II or WHO grade IV change the appearance of such histograms in a way that can be 

revealed with statistical analysis using a supervised learning method. 

To support this hypothesis, more conventional statistical parameters of regional 

diffusion distribution (i.e. means and standard deviations of diffusion tensor metrics: averaged 
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DWI, FA, longitudinal and parallel diffusivity, trace and B0) for the whole volume of each 

tumor were determined. We compared these values in low and high grade glioma groups by 

using Mann-Whitney-Wilcoxon non-parametric tests. 

The steps for determining image features as histograms were the following. Histogram 

resolution and range was uniformly defined for every image type. The interval between the 

minimum and maximum pixel values was divided into 25 equally spaced bins. The number of 

voxels in histogram bins was normalized by the total number of voxels in the sample, and 

frequency counts were plotted as a function of the bin locations. This allowed storing a 

normalized histogram for each subject and for each DTI parametric image type. Histogram 

data were saved and translated into the environment of statistical analysis. For this purpose 

and for image analysis, a dedicated program code (i.e. macro) was used in the ImageJ 

software package (National Institutes of Health, USA) [90]. Individual and group-averaged 

histograms of the tumorous voxel values on DWI, FA, trace, etc. images were generated and 

visually inspected. 

3.3.7. Glioma characterization: statistical evaluations 

Specific aim C/1 was to determine if statistical analysis on histogram bins derived 

from diffusion tensor datasets is capable of classifying gliomas according to their grade. To 

resolve this classification task, we used multivariate discriminant function analysis (MDA), 

which was carried out with the SPSS 16.0 for Windows software (SPSS Inc., Chicago, IL, 

USA).  

Multivariate discriminant function analysis, as described by Fisher [91], is a statistical 

classification method which gives insight into the relationship between group membership 

and the variables used to predict group membership. During stepwise discriminant analysis, 

variables (for specific aim C/1: normalized values of histogram channels) are reviewed and 

evaluated in order to select the ones which contribute most to the discrimination between 

groups and eventually, a discriminant score is calculated which determines predicted group 

membership. In our study, 150 variables from the histograms bins of 6 different images (i.e. 

6*25 from the following maps: B0, averaged DWI, FA, longitudinal and radial diffusivity, 

trace) were available. This approach incorporates finding a set of coefficients which, when 

multiplied by each value in the histogram, gives a score that optimally discriminates between 

the subgroups under consideration. The resulting model allows prediction of the categorical 
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variable (i.e. group) of new cases when only the independent variables are known. Further 

details on MDA can be found in the works by Rippley et al. [92] and Webb et al. [93]. 

As outlined previously, each case for the aim C was labeled in agreement with the 

results of a repeated pathological evaluation of WHO grade, this data was used as ground 

truth for the classifier approach. MDA was employed to classify cases according to their 

dichotomous group membership (i.e. high grade or low grade glioma). Additionally, 

classification into 3 categories in accordance with the WHO grades (II-III-IV) was also 

performed. To evaluate the feasibility of classification on a more homogeneous patient 

database, analysis was also executed after removing the cases of oligodendroglial 

components. 

We utilized forward stepwise analysis to select the histogram bins that allowed the 

best classification of the patient dataset. Default vales of the discriminant analysis function in 

the SPSS software environment were used for this. The success rate of classification was 

described by two values. First, the classification accuracy was determined with all cases left 

in, which means post hoc prediction of the group membership. We found it necessary to 

perform a priori prediction therefore the validity of the model was assessed by a leave-one-

out cross validation method. This method estimates the success of classification of each 

individual case by omitting it from the model and calculating the average rate over the 40 

cases, hence yielding a more realistic error rate which might be expected for new 

observations, i.e., new cases. For more details on the estimation of a classifier performance 

with cross-validation, see [94]. The discriminating power of the discriminant function (DF) is 

described by the Wilks’ lambda value ranging between zero and 1 (lower values mean higher 

discriminating power). 

3.3.8. Construction of glioma grade maps 

Specific aim C/2 was to introduce a new visualization approach that portrays glioma 

grade by incorporating information from postgadolinium T1- and T2-weighted, diffusion-

weighted and parametric images that were computed from diffusion tensor measurements. 

This would mean the voxel-wise interpretation of imaging features from a multidimensional 

dataset, where each dimension is a DTI derived parameter or T1 image intensity. The 

correlation of the multidimensional feature set and a global variable, the class of the tumor 

(i.e. the grade) is determined by a classifier algorithm. This rationale is similar to the 
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nosological maps introduced by De Edelenyi et al. [69] or the “oligo-like” and “astro-like” 

graphical representation of gliomas by Khayal and Nelson [70]. 

Similarly to the image processing steps for the aim C/1, six DTI derived parametric 

maps were calculated: T2-weighted images (DWI without diffusion sensitization – B0), 

directionally averaged raw DWI images, fractional anisotropy, longitudinal and radial 

diffusivity images, mean diffusivity maps. To obtain anatomical correspondence through the 

imaging modalities, postcontrast T1 scans were coregistered with the B0 images (FLIRT affine 

registration algorithm, FSL) and finally, all images were re-sampled to smaller matrices of 

128 * 128 voxels. Intensity normalization of the T1-weighted images was performed with the 

built-in “enhance contrast” command in the ImageJ software tool [90]. Tumor outlines were 

defined identically to the method described in the section “Glioma characterization: general 

methods”. 

In the next two paragraphs, we describe the steps that were carried out to build a 

database for the classifier training. The data acquisition and image processing work flow for 

the specific aim C/2 is summarized in Figure 3. We utilized image information of the 40 

patients to generate two different databases for the classifier training procedure. In each 

database, samples represented consecutive voxels’ values on the images and a categorical 

variable was also assigned voxel-wise resulting in a total number of 8 variables per voxel. 

Database “A” provided ground truth for separating the voxels sampled from a low grade 

tumor or a high grade tumor. In contrast, the aim of database “B” was to separate tumorous 

regions from non-tumorous regions, as later described, this was only considered important for 

visualizing the results. Database “A” was built by sampling exclusively the intratumoral 

regions, the categorical variable was the tumor grade as determined by the histopathology 

workup (low grade=0; high grade=1) and this was assigned case-wise, without prior spatial 

control of the histology sampling. Database “B” included every cerebral voxels, whereas the 

eighth, dichotomous variable described whether the voxel was intratumoral (value: 1) or of 

normal-appearing brain tissue (value: 0) as determined by the tumor-mask. Database structure 

is exemplified in Figure 2. 

The relationship between imaging data and the categorical variables (i.e. tumor grade, 

tumor or normal-appearing brain tissue) was analyzed voxel-wise by utilizing a feed-forward, 

back propagation multilayer perceptron artificial neural network algorithm (ANN) in the 

SPSS 17.0 for Windows software (SPSS Inc., Chicago, IL, USA). The training regime 
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wasbased on the random splitting of the dataset into three groups, as offered by the statistical 

software: training (70% of all voxels), testing (20%) and holdout samples (10%). This 

supervised learning method resulted in two distinctive models, the first aiming to predict the 

grade of the glioma while the other assesses if the voxel is sampled from a tumor or from the 

normal-appearing brain tissue. 

After the classifier training, the image dataset was re-evaluated for each patient and 

outputs were mapped to grayscale images. The voxel-wise outputs of the neural network were 

continuous variables that estimated the likelihood of voxel group memberships. Grade map 

generation consisted of the following steps. First, we run the a priori trained neural net based 

on database “A” to generate an image yielding low- and high grade voxel membership 

probability maps (LGPM and HGPM). The value of this classifier output averaged over the 

every delineated tumorous voxels is defined as the grade index. As the cut-off value of 0.5 

was used for the ANN classifier to distinguish between a low grade or high grade voxel, by 

the same token, a total tumor grade index below 0.5 would indicate a low grade tumor and 0.5 

– 1 values would indicate a high grade tumor. Next, the second neural network estimation – 

previously trained with database “B” – resulted in an image that quantified the probability of 

tumor-like regions (tumor probability map, TPM). To provide a graphical representation, 

LGPM and HGPM images were weighted with the tumor probability maps. Eventually, we 

defined the glioma grade map as a color-coded composite image where the color lookup table 

was specified as follows. Blue shade represents low grade regions (LGPM), red shade is for 

high grade regions (HGPM), the opacity is derived from the TPM, overlaid on the co-

registered anatomical T1-weighted image. Resulting images are exemplified in Figure 4. 

  



32 

 

 

Figure 2. Dataset structure for training an artificial neural network classifier. Individual 

samples are image voxels of 40 subjects, each given a categorical variable: tumor label (e.g. 

1 if the voxel was sampled from inside or 0 if outside a tumor), histopathological diagnosis 

(1: low grade glioma, 2: high grade glioma). Values of 6 imaging features are exemplified. 

 

Figure 3. Major data acquisition and image processing steps for specific aim C/2: to develop 

a graphical representation of the imaging-based interpretation of glioma grade referred to as 

“gliomas grade maps”. 
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Figure 4. Glioma grade map generation: calculation of intermediate grayscale images and 

the color-coded glioma grade map (study specific aim C/2). (a) Low grade tumor probability 

map (LGPM), (b) High grade tumor probability map (HGPM), (c) Tumor probability map 

(TPM), (d,e) LGPM and HGPM weighted with the  TPM, (f) T1-weighted anatomical image. 

(g) Glioma grade maps are generated by assigning color-code to the probability maps (d,e) 

and merging them with the postcontrast T1 images. 

  



 

4.1. In vivo description

Our aim was to use

cortex, with special focus on the insula.

insular subregions were successfully identified in both hemispheres. 

and illustrations of the probabilistic diffusion tractography procedure is summarized in Figure 

5. 

Figure 5. Specific aim A: characterization of connectivity

cortex. (a) Seeding mask 

neuroimaging space; (b) 3D visualization of all probabilistic tracing samples emerging from 

the insular cortex for the study subjects; (c) A reordered cross

connectivity-based clusters in the seed area;

between the seed voxels’ remote connections (Page 19.).

based clusters of one subject, overlaid on the native, T1
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4. Results 

description of the connectional anatomy of the insular cortex

Our aim was to use DTI to study the connectional anatomy of the human cerebral 

cortex, with special focus on the insula. Based on the variability of remote connections, two 

re successfully identified in both hemispheres. The work flow of aim A 

and illustrations of the probabilistic diffusion tractography procedure is summarized in Figure 

. Specific aim A: characterization of connectivity-based subdomains of the i

mask of probabilistic diffusion tracing samples

neuroimaging space; (b) 3D visualization of all probabilistic tracing samples emerging from 

the insular cortex for the study subjects; (c) A reordered cross-correlat

based clusters in the seed area; elements in the matrix represent the similarities 

between the seed voxels’ remote connections (Page 19.). (d) Back-projected connectivity

based clusters of one subject, overlaid on the native, T1-weighted anatomical image. 

of the connectional anatomy of the insular cortex 

DTI to study the connectional anatomy of the human cerebral 

Based on the variability of remote connections, two 

The work flow of aim A 

and illustrations of the probabilistic diffusion tractography procedure is summarized in Figure 

 

subdomains of the insular 

of probabilistic diffusion tracing samples in the standard 

neuroimaging space; (b) 3D visualization of all probabilistic tracing samples emerging from 

correlation matrix for finding 

elements in the matrix represent the similarities 

projected connectivity-

weighted anatomical image.  
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The stereotactic coordinates of the COGs of the newly defined insular clusters were 

consistent, with low deviation from the mean coordinates of each cluster. The spatial scatters 

from the group center were the following: X axis: 0.36 – 0.49 mm, Y axis:2.27 – 3.88 mm, Z 

axis: 1.2 – 3.73 mm. 

The population-averaged cluster map was controlled for correspondence to major 

anatomical landmarks (Figure 6.) and also, we compared results with the cytoarchictectonic 

map of the human insula (Figure 7.). As a result of the connectivity-based subdividing of the 

insular cortex, we defined an anterior (AI) and posterior insula (PI), the former extending to 

approximately one-third of the antero-posterior(AP) axis of the insula, delimited by a curved 

plane perpendicular to the AP axis. In both hemispheres, the AI comprised the limen of the 

insula and the anterior short gyri enclosed by the precentral insular sulcus and this partition 

also included the antero-ventral part of the long insular gyri. When comparing the 

connectivity-based domains with the depiction of cytoarchitectonic subdivisions, we noted a 

match between the AI and the agranular subdivision plus antero-dorsal dysgranular area was 

observed. The intersubject variability across the study population (n=40) in terms of cluster 

volumes is visualized in Figure 8. 

In the next three paragraphs, we report the quantitative results of the specific aims A/3 

and A/4. The total volume of insular gray matter was not different between the hemispheres. 

In the left hemisphere, the anterior division of the insular gray matter was found to be 

significantly larger than the posterior cluster (difference: 34.5%) while on the right side the 

two partitions were equal in volume. This asymmetry, as expressed by the AI volume to PI 

volume ratio, showed significant interhemispheric differences.  

For each connectivity cluster, the scalar properties of intra-voxel diffusion were 

determined. The degree of diffusion anisotropy, as expressed by the FA value did not present 

significant interhemispheric variability and neither was different measured on the AI/PI 

clusters in the left hemisphere. The FA value of the right AI was significantly higher than the 

PI. In both hemispheres, the mean diffusivity was consistently and significantly larger in the 

anterior connectivity partition. Cluster volumes and regional diffusion properties are 

summarized in Table 4. 

Furthermore, we visually controlled the interconnections from each (AI or PI) 

connectivity-based subdivision. In both hemispheres, tract distributions from the AI revealed 
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connections with the temporal and occipital lobe, opercular and orbitofrontal cortex, 

triangular and opercular parts of the inferior frontal gyrus. The density of pathways 

approaching the orbitofrontal and inferior frontal cortex appeared larger in left hemisphere. 

The PI subdivision showed extensive connections to the parietal and frontal lobes, 

predominantly to parts of the somatosensory, motor and premotor cortices adjacent to the 

midline. An overlap of AI/PI connections in the occipital lobe was noted. Cingular and 

thalamic connections of each connectivity-based cluster were only observed in a small 

number of cases. The AI connections were found projecting to the MD nucleus and the PI 

reaching the ventrolateral thalamus. Images showing the major domains of connections 

emerging from each insular subdivision are demonstrated in Figure 9. 

 

 Left hemisphere Right hemisphere 

 Anterior 
cluster 

Posterior 
cluster 

AI / PI 
ratio 

Anterior 
cluster 

Posterior 
cluster 

AI / PI ratio 

Volume (mm3) 
3912 
± 946 

3466 
 ± 1027 

1.35  
± 0.9 

3560 
 ± 719 

3848 
± 842 

0.99  
±0.38 

(Sig. of antero-
posterior volume 

difference) 

(p=0.047)  (p=0.104)  

Sig. of left / right 
volume asymmetry p=0.065 p=0.073 p=0.027    

Fractional anisotropy 
0.181 
± 0.01 

0.178 
 ± 0.02 

1.02  
±0.09 

0.182 
± 0.02 

0.174 
± 0.01 

1.05  
±0.09 

(Sig. of antero-
posterior FA 

difference) 

(p=0.382)  (p=0.01)  

Mean diffusivity  
(*10-3 mm/s2) 

1.13 
 ± 0.1 

0.97 
± 0.06 

1.17  
± 0.14 

1.17 
± 0.15 

0.932  
± 0.05 

1.26  
± 0.16 

(Sig. of antero-
posterior MD 

difference) 

(p<0.001)  (p<0.001)  

Table 4. Basic characteristics and measurements of the microstructural properties of water 

diffusion within the newly defined insular subdivisions, based on their patterns of remote 

connectivity (study aims A/2 and A/3). Volumes, volume ratios of the connectivity-based 

insular clusters in the subjects' native space are given. We calculated the regional values of 

diffusion characteristics: the fractional anisotropy and the mean diffusivity (MEAN ± SD). P 

values indicate the level of significance of paired, two-sided Student’s t-tests. 



 

Figure 6. Connectivity-based

weighted MR image overlaid with the connectivity

through 40 subjects. Black outline: posterior insula (PI), white outline: anterior insula (A

Bottom row: three-dimensional mesh representing the averaged anterior (white) and 

posterior insular connectivity clusters, overlay:

center-of-gravity points of the AI subdivision of individual subjects in the sta

stereotactical space, cross markers

subjects. 
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based clusters of the human insular cortex. Top row: sagittal T1

weighted MR image overlaid with the connectivity-based cortical subdivisions averaged 

through 40 subjects. Black outline: posterior insula (PI), white outline: anterior insula (A

dimensional mesh representing the averaged anterior (white) and 

posterior insular connectivity clusters, overlay: major insular sulci. Rectangle markers

gravity points of the AI subdivision of individual subjects in the sta

space, cross markers: center-of-gravity of the PI subdivision of individual 

 

clusters of the human insular cortex. Top row: sagittal T1-

cortical subdivisions averaged 

through 40 subjects. Black outline: posterior insula (PI), white outline: anterior insula (AI). 

dimensional mesh representing the averaged anterior (white) and 

major insular sulci. Rectangle markers: 

gravity points of the AI subdivision of individual subjects in the standard 

gravity of the PI subdivision of individual 
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Figure 7. Correspondence between insular anatomy and various subdivision approaches and 

imaging methods. Top left: clustering based on similarities of structural connectivity (DTI), 2-

way clustering. Top right: clustering based on similarities of structural connectivity (DTI), 3-

way clustering. Bottom left: three systems of functional connectivity identified using fMRI 

(schematic drawing based on the paper by Deen et al. 2011). Bottom right: major 

cytoarchitectural domains of the human insula. aps: anterior periinsular sulcus; sis: short 

insular sulcus; pcis: precentral insular sulcus; cis: central insular sulcus; pis: postcentral 

insular sulcus; sps: superior periinsular sulcus; ips: inferior periinsular sulcus; AI, PI: 

anterior, posterior insula; MI: dorsomedial insula (in 3-way clustering); vAI: ventro-anterior 

insula; dAI: dorso-anterior insula; Ia: agranular, Id: dysgranular, Ig: granular insula; G: 

hypergranular subdivision; VENs: von Economo neurons.  

Image credits:  Bottom right figure is based on unpublished work by Gallay et al. on the 

cytoarchitectonic map of the human insula (2010 with permission). 



 

Figure 8. Inter-subject of DTI 

were generated by accessing the 95th, 90th, 50th, 10th and 5th percentile volumes of each 

cluster assignment across the population (n=40). Major anatomical landmarks have been 

illustrated (for description 

Figure 9. Cross-sectional images demonstrating the fiber t

based insular subdivisions 

weighted template (MNI152). Connection probability estimates (n=40, averaged) from the 

anterior and posterior insular subdivision depicted in three different sagittal images.

distance from the midline in stereotactic space is given.
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subject of DTI connectivity-based clustering of the insular cortex. 3D surfaces 

were generated by accessing the 95th, 90th, 50th, 10th and 5th percentile volumes of each 

cluster assignment across the population (n=40). Major anatomical landmarks have been 

 of the nomenclature, see Figure 7.). 

sectional images demonstrating the fiber tract anatomy of the connectivity

 (specific aim A/2), overlaid on a standard neuroimaging MRI 

152). Connection probability estimates (n=40, averaged) from the 

anterior and posterior insular subdivision depicted in three different sagittal images.

distance from the midline in stereotactic space is given. 

 

clustering of the insular cortex. 3D surfaces 

were generated by accessing the 95th, 90th, 50th, 10th and 5th percentile volumes of each 

cluster assignment across the population (n=40). Major anatomical landmarks have been 

 

ract anatomy of the connectivity-

, overlaid on a standard neuroimaging MRI T1-

152). Connection probability estimates (n=40, averaged) from the 

anterior and posterior insular subdivision depicted in three different sagittal images. The 
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4.2. In vivo description of the connectional anatomy of the mediodorsal thalamic nucleus 

The plane separating the connectivity-based clusters was observed to be parallel to the 

midline resulting in a medial (MDmed) and lateral (MDlat) subdivision of the mediodorsal 

nucleus. The clusters had a consistently similar shape across subjects, the center-of-gravity 

(COG) points of the three-dimensional volumes were found to be very similar, the standard 

deviation of their coordinates were below 1 mm in all axes. The medial domain was 

significantly larger than the lateral; this difference was on average 36% in both hemispheres. 

No significant interhemispheric asymmetry was observed for the cluster volumes and the 

ratios of the medial and lateral segments. Volumetric data are summarized in Table 5. which 

also includes the reproducibility of connectivity based clustering, marked by the standard 

deviations of the COG points of each cluster. 

 Left hemisphere Right hemisphere 

 MDmed MD lat med/lat ratio MDmed MD lat med/lat ratio 

Volume (mm3) 
674 
± 98 

535 
 ± 98 

1.33  
± 0.41 

680 
 ± 92 

517 
± 92 

1.39  
±0.44 

(Sig. of medial-lateral 
volume difference) 

(p<0.001)  (p<0.001)  

Sig. of left / right 
volume asymmetry p=0.535 p=0.051 p=0.174    

Spatial scatter of 
centroids, X axis (mm) 0.66 0.82  0.69 0.58  

Spatial scatter of 
centroids, Y axis (mm) 0.53 0.64  0.53 0.46  

Spatial scatter of 
centroids, Z axis (mm) 0.96 0.98  0.8 0.76  

Table 5. Connectivity-based clusters of the human mediodorsal thalamic nucleus: volumetric 

measurements and center-of-gravity coordinates. Volumes, volume ratios of the connectivity-

based insular clusters are given in the subjects' native space. P values indicate the level of 

significance of paired, two-sided Student’s t-tests. 

Next, we controlled the results for the cytoarchitecture-based subdivisions of the 

mediodorsal nucleus by comparing its borders with the nonlinearly registered thalamus atlas 

definitions of cytoarchitecture. This investigation revealed only a limited agreement between 

the average borders of the MDmed and the MDmc. The MDmed cluster extended approximately 

to one half of the latero-lateral diameter of the MD nucleus, and unlike the borders of the 

MDmc, it proportionally extends superiorly and anteriorly. The topography of the MD 
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connectivity-based clusters and the atlas-based depiction of classical anatomy are visualized 

in Figure 10.  

For each hemisphere, population-based representations of fiber tract anatomy were 

created. The probabilistic fiber tracking framework allowed following tracts until they reach 

the cortex, and even further, when the uncertainty of possible trajectories rise. Therefore we 

were able to review the clusters’ connections to atlas-defined cortical and subcortical regions. 

The MDlat cluster was the source of fibers propagating predominantly into the anterior 

thalamic radiation and terminating in the superior and middle frontal gyri. The MDmed cluster 

mainly gave rise to pathways that partially joined the inferior fronto-occipital fasciculus and 

the inferior longitudinal fasciculus, reaching the frontal orbital cortex and various temporal 

loci. No marked interhemispheric asymmetry was observed for the averaged fiber anatomy. 

For a more detailed description on interconnections of the MD clusters, see Figure 11. 

 

Figure 10. Visualization of the connectivity-based clusters of the human mediodorsal 

thalamic nucleus. Top and middle image: coronal and axial MRI images of the thalamus, with 

the connectivity-based clusters overlaid onto the MNI152 T1-weighted template. The outlines 

of the atlas-basedMDmc and MDpc+pl borders are depicted [86]). Bottom image: 3D 

representation of the 50th percentile volumes of the medial (MDmed) and lateral (MDlat) 

subdivisions, visualized with the center-of-gravity points of the segments for each subject 

(n=155). 



 

Figure 11. Anatomy of fiber tracts

mediodorsal thalamic nucleus

population, connection probabilities were overlaid onto the sagittal and coronal cross

sectional images of the MNI152

from the MDmc cluster. Red overlay: tract trajectories from the MD

description of connections 

Talairach Daemon nomenclature) and white matter 

Atlas and Talairach Daemon nomenclature).

4.3. Glioma grading

We assumed that the 

tumor volume is represented 

assess the grade of gliomas (study aim C/1). Moreover, we aimed to prove that there is no 

clear correlation between the mean values of diffusion parameters over the tumor values and 

the tumor grade. Statistical descriptors of voxel
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Anatomy of fiber tracts emerging from the connectivity-based

nucleus (study aim B/2). Averaged representation of the examined 

population, connection probabilities were overlaid onto the sagittal and coronal cross

sectional images of the MNI152 T1-weighted MR template. Blue overlay: tract trajectories 

from the MDmc cluster. Red overlay: tract trajectories from the MDlat 

description of connections to gray matter areas (Harvard-Oxford Cortical Atlas and 

Talairach Daemon nomenclature) and white matter structures (Jüelich Anatomical Fibers 

Atlas and Talairach Daemon nomenclature). 

Glioma grading by using histogram analysis of diffusion anisotropy

We assumed that the characteristic shape of voxel values’ distribution over the entire 

epresented efficiently as histograms and this information can be used to 

assess the grade of gliomas (study aim C/1). Moreover, we aimed to prove that there is no 

clear correlation between the mean values of diffusion parameters over the tumor values and 

Statistical descriptors of voxel-value distribution in the tumor ROIs were not 

 

based subdivisions of the 

. Averaged representation of the examined 

population, connection probabilities were overlaid onto the sagittal and coronal cross-

verlay: tract trajectories 

 cluster. We provide a 

Oxford Cortical Atlas and 

structures (Jüelich Anatomical Fibers 

histogram analysis of diffusion anisotropy 

characteristic shape of voxel values’ distribution over the entire 

efficiently as histograms and this information can be used to 

assess the grade of gliomas (study aim C/1). Moreover, we aimed to prove that there is no 

clear correlation between the mean values of diffusion parameters over the tumor values and 

value distribution in the tumor ROIs were not 
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significantly different between the groups of high grade (HGG) and low grade gliomas 

(LGG); however, in high grade cases, a tendency towards higher trace values (HGG: 3.779 ± 

0.382, LGG: 3.638 ± 0.485) was discovered. The least significant group difference was 

observed when values of the directionally averaged DWI images were compared (HGG: 236.1 

± 40.1, LGG: 238.7 ± 35.1). The low significance of differences between groups suggested 

that classification is not feasible by using ROI analysis over the entire tumor volumes.  

We examined LGG and HGG group averaged histograms representing the B0, FA, 

DWI, longitudinal and radial diffusivity and trace value distributions in low and high grade 

gliomas. Groups appeared different, suggesting that classification of individual tumors may 

be possible. MDA revealed that 6 histogram bins are feasible enough for the discrimination: 3 

from the DWI images (value ranges: 100-120; 320-340; 340-360) and single bins from the B0 

(value range: 720-800), fractional anisotropy (0.1-0.12) and the longitudinal diffusivity 

images’ histograms (2.2-2.4). Figure 12. exemplifies the differences between the averaged 

histograms of low-grade (LGG) and high (HGG) grade cases. Results of the MDA evaluation 

are demonstrated in this image in a way that the histogram bins allowing the most successful 

classification of glioma subtypes are marked. A discriminant score was calculated by using 

these bins, and classification was based on these scores.  

With all cases left in, the model reached 92.5% precision in classifying cases 

according to their grade (post hoc classification). The “leave-one-out” cross-validation of the 

same dataset resulted in 87.5% success rate (a priori classification), this model resulted in 

high specificity (88.46%) and high sensitivity (85.71%) in identifying HG gliomas. The low 

Wilks’ lambda value (0.33) and high chi-square score (38.45) indicated good significance in 

discrimination for this model. Three LG gliomas were incorrectly classified as HG gliomas. 

One of these tumors was a Gr. II. oligoastrocytoma according to WHO histopathology 

criteria. It is noteworthy that 65% of the tumor cells of this lesion carried mutant p53 protein. 

The latter feature is ominous and may suggest imminent progression to a secondary 

glioblastoma multiforme. No histopathological characteristics seemed to explain the error in 

the other two cases, both of which were also Gr. II. oligoastrocytomas, unless the samples for 

histopathology were not representative. Preoperative classification of two glioblastoma 

multiforme cases was also incorrect as they were identified as LG tumors. Next, we evaluated 

the discriminant analysis on a slightly modified database: the cases with oligodendroglial 

components were omitted. This approach resulted in high specificity (100%) with low 
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sensitivity (72.7%), classification accuracy for both the training and the cross-validation 

scenario was 87%. Classifying the tumors using the histogram approach, the WHO grade II-

III-IV. separation agreed with the grading of the pathologist in 90% of the cases. By means of 

cross validation, a success rate of 80% was obtained for grouping the cases. Despite the 

relatively high overall accuracy, we must emphasize that it was not possible to classify the 

grade III. cases correctly, all the 3 cases were incorrectly categorized either as grade II. or IV. 

 

Figure 12. Averaged diffusion-tensor scalar map histograms depicting the differences 

between low grade (dotted lines) and high grade gliomas (solid lines). Six calculated images 

were used for the analysis. Although many histograms overlap, there are histogram regions 

where the percentages of the voxel populations show distinct features. Areas filled with gray 

represent the range of histogram bins that were selected during the multivariate discriminant 

analysis in order to precisely discriminate between LG and HG gliomas. 
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4.4. Characterization of gliomas by grade maps 

For the specific aim C/2, we have applied an ANN-based classifier to create 

parametric maps depicting locally interpreted gliomas grade. This classification was based on 

a multidimensional dataset consisting of features from the diffusion tensor dataset and T1 

weighted images of the subjects. Here we report the voxel-wise precision of these two 

classifiers in terms of classifying samples (voxels). The first neural network predicted the 

grade of voxels inside the tumor borders with 82.12 ± 1.84% accuracy (average of 10 runs, 

tested on the independent holdout sample, putatively marking the accuracy for new 

observations). Next, the intratumoral voxel membership was estimated correctly in 86.44 ± 

0.41% of the samples. Grade index was calculated for each outlined tumor volume. For low 

grade cases it was 0.281 ± 0.164 (range 0.012 – 0.601) while in high grade lesions it was 

0.646 ± 0.148 (range 0.331 – 0.837), the difference was significant (p<0.001, Mann-Whitney 

U test). Additionally, the grade index showed high correlation with the WHO grade (i.e. II, III 

or IV); Pearson score: 0.709, p<0.001. With the cut-off point set to 0.5, the grade index could 

identify high grade cases with 92.31% specificity, 85.71% sensitivity, AUC: 0.967.  

Visual assessment of the TPM (tumor probability map) images, T1 anatomical scans 

and tumor outline ground truth data revealed good correspondence with the predicted borders, 

with the following exceptions. Normal-appearing brain regions contained false positive voxels 

with either blue or red appearance, mainly matching the borders of the gray matter and the 

cerebrospinal fluid. This error was reported in 8 cases and could presumably be attributed to 

partial voluming or coregistration artifacts (Figure 13/e, white arrow). Six illustrative images 

of various glioma subtypes and WHO grades were selected to demonstrate the diagnostic 

features of grade maps (Figure 13). 

The appearance of astrocytoma, oligoastrocytoma grade II and oligodendroglioma 

grade II tumors on the color-coded grade maps was blue (Figure13/a). Sparse high-grade 

regions were identified in about six of the 17 non-enhancing and otherwise homogeneous 

low-grade tumors (Figure13/b) while the focal heterogeneity as marked by contrast-

enhancement was revealed correctly in 77.8% (7/9) by regions of red hue in low grade 

gliomas. WHO grade III (high grade) oligoastrocytomas (Figure13/c) and glioblastoma 

multiformes predominantly appeared purple to red, with marked heterogeneity as indicated by 

blue patches (Figure13/d). In 4 of 40 cases, classification by the grade index proved incorrect, 

for which the following facts are assumed to be responsible. In a patient with a voluminous 
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glioblastoma multiforme (Figure13/f) this could be putatively ascribed to the relatively high 

presence of necrotic areas in the tumor, unmasked during the classifier training, hence areas 

inside necrotic masses were predominantly recognized as low-grade with markedly high-

grade rims that closely resembled the contrast-enhancing areas on T1 scans. In the other 

misclassified high-grade case we found no justification for the result, although the designated 

grade index was just below the cut-off point.  The grade indices for the misclassified 

glioblastoma multiforme tumors were 0.331 and 0.48, respectively. Two low-grade tumors 

were improperly classified. In one case the pathologist described high Mib-1 labeling index 

(20%), hyperchromatic nuclei, geometric neovascularisation and a cellular atypia almost 

reaching the criteria for grade III classification; further on, closer clinical inspection was 

suggested for the neuro-oncology team. A cross-section image from the grade map of this 

case is shown in Figure13/e. 
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Figure 13. Graphical representation of the imaging-based interpretation of glioma grade 

(study specific aim C/2). Color-coded glioma grade maps depicting various glioma cases. (a) 

astrocytoma gr. II. tumors are shown as predominantly blue lesions. (b) oligoastrocytoma gr. 

II. In a number of cases where the histopathological evaluation judged the lesion as low-

grade, the grade maps revealed focal heterogeneity. (c) this astrocytoma gr. III. displays 

pronounced regional heterogeneity on the glioma grade map; whereas the contrast enhancing 

regions are well co-localized with the red regions resembling high grade characteristics. (d) 

Glioblastoma multiforme tumor. (e) a misclassified low-grade case with high cellular atypia. 

Coregistration and partial volume errors are observed outside the lesion (arrow). (f) 

glioblastoma multiforme with voluminous necrotic areas, incorrectly classified as low-grade. 
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5. Discussion 

During the last 25 years, diffusion MRI (dMRI) has been widely investigated as a 

promising modality to image and characterize neurological disorders. dMRI is generally 

acknowledged as a noninvasive tool to study the white matter organization and 

microstructure. This rationale gave rise to a new field of research that uses DTI and a new 

family of image processing techniques to discover brain connectivity and white matter 

anatomy in living patients and normal subjects [2, 95]. It has been suggested that the subtle 

changes of diffusion microenvironment can precede macroscopic anatomical alterations and 

hence diffusion MRI potentially unveils pathological processes in a way that is not accessible 

with conventional (i.e. T1 or T2 weighted) magnetic resonance imaging [96, 97]. 

The main focus of our investigation was to use DTI and related image processing 

methodologies to characterize individual anisotropy patterns of cerebral water diffusion in 

physiological and pathological scenarios. First, to demonstrate the applicability of DTI in 

portraying new aspects of the macroscopic anatomy of the human brain, we chose to study the 

connectional anatomy of the insula and the mediodorsal thalamic nucleus. 

5.1. Using DTI to study the connectional anatomy of the insula 

Early endeavors to map the human cortex, such as works by K. Brodmann and Von 

Economo, discovered a limited agreement between macroscopic structures of the brain (gyral 

or sulcal anatomy) and the organization defined by fine microstructural features like the 

cytoarchitecture [98, 99]. The same ambiguity is present when attempting to define cortical 

areas based on similarities in activation patterns when performing executive or cognitive 

tasks, evidence comes from a large number of neuroimaging studies employing functional 

MRI. Revitalized by tractography and related techniques, the hodological (i.e. connectionist) 

approach identifies cortical regions that receive or send out similar connections [100, 79, 81]. 

Such parcellations potentially generate interest by exploring the human connectional 

neuroanatomy, nonetheless facilitating the understanding of the cortical representations of 

major neurocognitive networks. 

We used diffusion tractography data to reveal changes in insular connectivity profile 

by executing a k-means clustering method that labels adjacent areas based on the similarities 

in the distribution of remote connections. As an initial hypothesis, the algorithms were forced 
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to search for two segments in the insular gray matter. The impetus for this assumption was 

that most studies on functional connectivity utilizing resting-state fMRI (r-fMRI) 

predominantly described a twofold division of the insula into an anteroventral and 

posterodorsal cluster [24], however, a threefold functional parcellation was also suggested  

[101]. Parcellating the insula based on diffusion tensor tractography demonstrated a gradual 

change in tractography patterns with a rostrocaudal trajectory [102]. 

We conclude that the DTI-based segmentation greatly overlaps with the same 

depictions of studies using fMRI [24, 101]. It is noteworthy that connections of the ventral 

part of the long insular gyri and the anterior short insular gyri are similar, this coherence was 

more pronounced on the structural connectivity segmentations where a larger proportion of 

the long gyri were included in the area denoted as anterior insula (AI). There is evidence from 

primates [21-23, 103] and humans that the anterior insula presents a significantly different 

cytoarchitecture as well as afferent and efferent connectivity than the posterior division. The 

AI, as defined by its connections, embodied the agranular and part of dysgranular insula 

which is known to be interconnected to the frontal, orbitofrontal cortex and the amygdaloid 

body in macaque monkeys [104, 105].  

Connectivity data of the human insula is relatively sparse and limited to observations 

from resting state fMRI measurements or depictions of anatomical connectivity by means of 

diffusion tensor tractography. A study by Cauda and co-authors [24] concluded that the 

ventralmost anterior insula is functionally interconnected (i.e., shows temporal correlation of 

activation patterns) to the rostral anterior cingulate cortex, middle and inferior frontal cortex 

and the temporoparietal cortex while the dorsal posterior insula is connected to various 

cortical targets like the dorsal-posterior cingulate, premotor, supplementary motor, temporal 

and occipital cortex. While tract tracing studies from primates describe complex, region-

specific thalamic projections to both the anterior and posterior insula [106], a human fMRI 

study conflicts with such observations by reporting less pronounced or non-existing posterior 

insular connection with the thalamus [24]. When controlling the fiber tract anatomy from each 

connectivity cluster in both hemispheres, we discovered tracts anatomy similar to those of 

resting state fMRI studies.  

Our findings imply that connections of the anterior insula have larger leftward 

representation relative to the total insular gray matter volume; this leftward dominance of 

prefrontal and frontal connections coincides with the observations on forebrain asymmetry 
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[107] or lateralization of prefrontal activations, the latter already described as a biomarker for 

ingestive behavior [108]. Our result of a larger connectome of the left AI partially conflicts 

with the observation by Cauda et al., where it was shown that the anterior cluster is rightward 

dominant. However, this type of interhemispheric dominance is marked by the strength 

(degree of temporal correlation) of functional and not structural connectivity [24]. In contrast 

to a previous study using high-resolution MRI scans to assess the structural asymmetries 

[109], we reported no interhemispheric differences of the overall volume of insular gray 

matter. It is disputable whether our findings of larger left anterior cluster can be attributed to 

the structural asymmetry of the AI shown by Watkins et al., as our interpretation of the 

anterior division was independent of gyral anatomy. Further support for our results on 

interhemispheric differences comes from a study by Cao et al. [110] which demonstrated a 

marked L-R asymmetry of anisotropy (i.e. the “orderliness” of diffusion) of the subinsular 

white matter, implying a putative interhemipsheric asymmetry in the trajectory or density of 

pathways emerging from or projecting to the insula. The higher mean diffusivity, which is a 

directionless descriptor of the magnitude of diffusion, hallmarks different water 

microenvironment in the anterior insula albeit not displaying pronounced interhemispheric 

variability. 

5.2. Using DTI to study the connectional anatomy of the thalamus mediodorsal nucleus  

In order to further demonstrate the applicability of DTI to study the connectional 

anatomy of the human brain, we focused on the mediodorsal thalamic nucleus. As outlined in 

the study specific aims B/1 – B/3, we aimed to use probabilistic diffusion tractography to 

trace the interconnections between the human mediodorsal thalamic nucleus and the cerebral 

cortex. Such data can be used to define connectivity-based subdomains in the mediodorsal 

nucleus (MD), similarly to our study on the insula. This was done by automatically defining 

two regions within the MD that presented a coherent and correlated distribution of remote 

connections. As a continuation of studies attempting to discern the human corticothalamic 

networks [111, 112, 31], we report the identification of two separated cortico-mediodorsal 

networks that did not require the subsequent definition of atlas-based cortical targets when 

performing tractography. This is a major difference compared to the study by Klein et al., 

where the delineation of the putative dorsolateral prefrontal cortex (DLPFC), lateral 

orbitofrontal cortex (LOFC) and anterior cingulate cortex (ACC) was necessary. The 

approach by Klein’s workgroup was found feasible to localize subdivisions of the human 
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mediodorsal nucleus (namely the MDpc, MDfi and caudodorsal MD) based on prior 

knowledge about cortical projections; moreover, they unveiled remarkable similarities with 

the macaque brain. 

We identified two subdomains in the human mediodorsal nucleus that are separated by 

a border almost parallel to the sagittal plane: medial part (MDmed) and lateral part (MDlat). We 

controlled the appearance of the connectivity-based subdivisions to the non-linearly matched, 

histology-based atlas regions. This separation created a medial segment which is similar to the 

magnocellular part of the mediodorsal nucleus (MDmc), but slightly larger than that and 

incorporates more than half of the total MD volume. When comparing this observation with 

earlier tract tracer studies in primates, it was noticeable that such experiments also revealed a 

sagittally oriented, band-like organization in the MD connectivity patterns [113, 114, 40]. The 

fiber tracts arising from the connectivity-based segments are in accordance with previous 

findings using in vivo techniques [112, 31]. The medial band has interconnections with the 

orbitofrontal cortex and the most rostral parts of the frontal convexities, the frontal pole; while 

the lateral band is connected to cortical strips that are more superiorly located, e.g. the 

dorsolateral prefrontal cortex. Klein and colleagues reported a third, cortico-mediodorsal 

circuit that matched the predictions from macaque: projections from the anterior cingulate 

cortex (ACC) and the lateral orbitofrontal cortex are separately located in the mediodorsal 

nucleus, namely in the caudo-dorsolateral parts [115]. Our experiments did not allow 

separating more than two components of the cortex-mediodorsal thalamus circuitry. Hence it 

is assumed that the thalamic sector with interconnections to the ACC remained 

undistinguishable from the MDlat cluster. 

We revealed connections between the medial band of the MD (MDmed) and three target 

loci in the temporal lobe: the temporal pole, amygdala and the anterior part of the 

parahippocampal gyrus. Such connections to the amygdala are in agreement with the findings 

in Cynomolgus monkeys where predominantly the basal group gave rise to axons connecting 

to the magnocellular (medial) part of the mediodorsal thalamic nucleus [116]. Classical tract 

tracing studies in primates confirm the existing connection between the temporopolar cortex 

and the magnocellular division of the mediodorsal thalamic nucleus [117]. The 

parahippocampal gyrus was found to be interconnected to both the caudal sector of the MD 

and the MDmc [118], this only partially overlaps with our observation that the medial band 

sends connections to the anterior parts of the parahippocampal gyrus. Inputs to the MD from 
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visually responsive regions were also reported in cats, these were mainly projecting to the 

anterior and central sectors of the MD [119], such connections were presumably located to the 

MDmed volume in our definition. 

Neuroanatomical models describe at least five distinct, segregated frontal-subcortical 

(i.e., cortico-striato-pallidal-thalamocortical) circuits [46, 120]. It is acknowledged that these 

networks are organized in parallel but remain partially segregated from each other, especially 

at subcortical levels. Literature supports our observation that the segregated nature of such 

networks can be studied by using in vivo probabilistic diffusion tractography or functional 

MRI and strong correlation can be revealed with previously reported invasive tracing studies 

[121, 122]. Two segregated networks are known to be involved in motor functioning, 

originating in the supplementary motor area and the frontal eye fields and mediating 

somatomotor and oculomotor functions, respectively. Masterman and colleagues emphasized 

that three of these circuits are particularly mediating aspects of cognition and behavior and the 

mediodorsal nucleus is accepted as an intermediary relay station for such functions, this role 

was acknowledged and used as a basis for other works as well [123,124]. These circuits are 

acknowledged to originate from the DLPFC, orbitofrontal cortex and the ACC. The 

trajectories of two “cognitive” circuits greatly coincide with the results of the present study 

suggesting that the two revealed subdivisions might be the thalamic representations of the 

DLPFC (MDlat) and the orbitofrontal (MDmed) segregated networks. This is further supported 

by the fact that in our study, the algorithms were forced to search for two networks that pass 

through or originate from the mediodorsal thalamic nucleus and differ from each other with 

the largest possible degree. 

Our approach to study the connectional anatomy of the human thalamus has several 

limitations. Diffusion tensor imaging and tractography methods were found plausible in 

recognizing major white matter structures but it is impossible to identify functional 

connections, individual synapses or tract polarity. Data acquisition is limited to elementary 

volumes of 4-8 mm3 which is potentially composed of tens of thousands of individual axons 

that are not necessarily coherent but cross, converge or diverge. Thus the estimation of 

multiple fiber directions per voxels is necessary, the applied protocol and the relatively high 

angular resolution of diffusion-weighting (64 directions) allowed us to approximate two of 

such populations. Furthermore, the definition of gross mediodorsal nucleus borders represents 

a further possible source of errors. In our case, a mean representation of thalamus geometry 
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and a non-linear matching method was used that have limited capabilities in tackling with 

individual variations of fine intrathalamic anatomy. Further studies are required to 

quantitatively study and validate such of atlas-to-patient registrations.  

When studying the connectional anatomy of the insula, the number of diffusion 

weighting directions (12) allowed estimating one fiber population per voxel, this inherently 

affects the result of probabilistic tracking of connections. While it is generally acknowledged 

that brain voxels tend to have multiple fiber directions (e.g. as crossing-fibers), a study on the 

added-value of multi-orientation models concluded that secondary fibers become less 

important when performing connectivity-based segmentations; e.g., in the thalamus [125]. 

The quality of the DTI acquisitions for the specific aim A was also compromised by the 

anisotropic size of image voxels, i.e. 1.5 * 1.5 * 3.3 mm. We also highlight that to overcome 

the possible limitations of using a single modality, it would be necessary to conduct 

confirmatory studies using task based or resting-state fMRI, where the main goal would be to 

reveal similar subdivision patterns and interactions with psychological measurements.  

5.3. Characterization of gliomas by histogram analysis of diffusion anisotropy 

Previously in this study, we have shown the applicability of diffusion tensor imaging 

and mapping of structural connections to study the normal anatomy of the human brain. We 

further hypothesized that DTI can be used to characterize the spatial patterns of diffusion 

anisotropy within CNS gliomas and the correlation of such findings with histological features 

are beneficial in typing (i.e., grading) gliomas. 

We aimed this part of our work at the clarification of the interrelationship between the 

anisotropy patterns of cerebral water diffusion and various grades of gliomas (study aim C). 

To meet this goal, B0, directionally averaged DWI, FA, longitudinal, radial diffusivity and 

mean diffusivity (=trace) were analyzed retrospectively. We discarded the hypothesis that 

mean voxel values over ROIs might be sufficient enough to assess tumor grade or match any 

other type of tumor classification. A feature selection from the dataset of individual histogram 

bins was performed in order to assign a discriminant score (MDA) that allows the best 

discrimination between tumor classes (grades or histopathological types). Therefore, the 

MDA score incorporates information from the entire histogram in a way that has been 

optimized to place the most emphasis on those parts that contribute most to the separation of 

the groups. A classifier model using 6 histogram variables was feasible enough to delineate 
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low- and high-grade tumors: evaluating this discriminant function on these particular 

histogram bins of any new case would yield an estimated tumor grade, the discriminant score 

was significantly different between the two grade classes (p<0.001). Most variables were 

selected from the DWI histograms. It appears that the heterogeneity among high-grade tumors 

results in a more deviated and less kurtotic distribution of DWI values while the low-grade 

cases tend to have  modal value of 250 (Figure 12.) and relatively less deviation. The 

histogram approach revealed that histogram channels far from the peak can discriminate 

between the two groups. Others reported a correlation between the information obtained from 

fractional anisotropy of diffusion coefficient images and tumors’ grade [126, 127]. According 

to these reports there exists a correlation between the information obtained from fractional 

anisotropy of diffusion coefficient images and tumors’ grade. Our results contradict this 

statement since we found no significant differences between mean FA values which 

characterize different tumor grades. The explanation for the variables selected still remains 

mathematical; however, it can be concluded that – with the histogram approach – radial 

diffusivity and trace (ADC*3) maps cannot discriminate between LG and HG tumors when 

tumors with various tissue compositions are used in the database. 

Our observations support the hypothesis that intratumoral heterogeneity can be 

depicted by calculating histograms for the tumor volume. Clonal selection within tumors is 

common and is indicated by locally altered diffusion characteristics which result in the 

modified distribution of voxels’ values as indicated by a new peak on the histogram. Such 

changes do not necessarily affect the mean or median values of the entire voxel population, 

but significantly change the value of an individual histogram bin. 

Preoperative classification of gliomas based on diffusion tensor imaging requires a 

complex dissection of data. This includes creation of histograms which properly represent 

individual variations of diffusion values inside the tumors and thus more precise 

characterization of gliomas becomes possible. This particular statistical approach to tumor 

classification is superior to those employing single parameters, like employing histogram 

peak position determination in order to characterize any given histogram. We here 

quantitatively show that it is more efficient to use MDA of histograms than rely on statistical 

descriptors (like mean values or standard deviations) of unimodal histograms. The MDA 

score is adequate for the decision on which group does any individual histogram belong to. 

Arvinda and colleagues presented a method that employed data from perfusion- and diffusion-
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weighted imaging and defined cut-off values for accurate classification [128]. Our results 

regarding the differentiation of LG and HG gliomas had similar specificity values (Arvinda et 

al.: 87.1% vs. our 88.4%) while the sensitivity was lower in our approach (Arvinda et al.: 90-

95% vs. our 85.7%). In our investigation, the estimation of the classifier performance was 

defined after leave-one-out cross-validation resulting in an inherently lower specificity and 

sensitivity compared to the studies that evaluate the discrimination power on the original 

database. 

Important limitations of the present study are the relatively low number of cases (40) 

on the one hand and the unequal representation of LG and HG cases on the other (13 vs. 27). 

There is also an ambiguity about the correctness of the pathology workup due to the fact that 

tissue sampling is not representative for the entire lesion. Even though the radiological 

workup was prepared to represent the whole tumor volume, the diagnoses used to “train” the 

database originated from the histopathological findings. We also point out that the 

discrimination of WHO grade III. cases was insufficient.  

Despite all the benefits of multimodal imaging, borders of especially low grade 

gliomas remain ill-defined and therefore ROI placement is a major cornerstone in the 

statistical analysis of radiological data. We find it important to minimize the involvement of 

voxels from non-tumorous areas in the statistical analysis and we suggest the exclusion of 

displaced or infiltrated WM tracts from the histogram construction; however, eventually 

measurements of various zones within any given tumor seem inevitable. When delineating 

HG tumors, the contrast enhancing rims engulfing a necrotic center putatively marks the 

active part of the tumor, however, this distinction is yet impossible for low grade gliomas. We 

applied fractional anisotropy images to visualize regions within the tumor where white matter 

integrity is severely disrupted (i.e. this is hallmarked by low FA values). For such tumors, this 

region was used as a guidance to outline the three-dimensional volume for the statistical 

analysis. Similarly, defining the BAT in low grades is not possible unambiguously. We note 

that the displaced, splayed tracts surrounding the main tumor parts on FA images may 

indicate relatively spared white matter, but the modality to assess the magnitude of tumorous 

infiltration is not available yet.   

The variations in fractional anisotropy histograms were insignificant between low- and 

high-grade tumors but the discriminant analysis included an FA bin as well (Figure 12.) 

consequently highlighting the vulnerability of this unsupervised method for the selection of 
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features to discriminate between tumor grades. It is highly likely that increasing the number of 

cases will result in a parallel increase in the reliability of the model therefore it would be 

desirable to validate the results on a larger set of patients in future studies. The clinical 

importance of this evolution is obvious: an interdependent evaluation of radiographic 

(imaging) and morphological (histopathological) data will definitely serve the improvement 

of therapeutic interventional thinking in glioma patients’ proper care. 

5.4. Characterization of gliomas by grade maps 

The current gold standard for determining glioma subtype and grade is surgical biopsy 

which is subject to sampling errors. Small volume surgical samples may not represent the 

entire tumor and due to the marked focal heterogeneity of gliomas it may lead to the false 

determination of subtype. Valuable radiological features of high-grade gliomas on 

gadolinium-enhanced MR images are signal intensity heterogeneity, necrosis, hemorrhage, 

degree of edema and mass effect. To precisely characterize an entity of pronounced 

heterogeneity like gliomas, further information is required: perfusion studies, MR 

spectroscopy and diffusion measurements were found feasible for this objective.  Such 

modalities allow calculating functional maps and imaging biomarkers and have been shown to 

play a complementary role in assessing therapy response or pattern of recurrence [129, 130, 

67, 58, 68]. 

The specific aim C/2 of our study was to develop a graphical representation of the 

imaging-based interpretation of glioma grade. This was done by correlating the DTI and post 

gadolinium T1-weighted image derived parameters’ in every voxel with the grade of the 

tumor assigned by a pathologist, and training (optimizing) a neural network-based software 

classifier to feasibly discriminate every voxel from a low grade and a high grade glioma. Two 

databases comprising voxel-wise image data of 40 glioma patients were construed whereas 

artificial neural network computing was utilized to re-classify the original image voxels and 

by the same token, it becomes possible to classify voxels of undiagnosed cases. Grayscale 

images were generated that depicted the probabilities of tumor classification (LGPM and 

HGPM). Eventually, they were combined to produce color-coded composite images, the 

grade map (Figure 4.). The neural network approach was effective in determining tumor grade 

of individual voxels whereas a new variable calculated from the voxel-wise outputs of the 

classifier – the grade index of entire tumor volumes – allowed sufficient classification. In 

terms of the correct determination of glioma grade, our results exceed the diagnostic power of 
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conventional MR imaging as described by Law et al. (postgadolinium MRI: 72.5% 

sensitivity, 65% specificity; grade index classification: 85.7% sensitivity, 92.3% specificity); 

however, it was reported that the feasibility of using perfusion MRI data vastly improves 

(95% sensitivity; 57.5% specificity) [61]. Arvinda and co-authors found that ADC, perfusion 

measurements and their combination could be successfully employed to characterize glioma 

grade [128]. Herein we report similar results, the grade index being more specific compared 

to the ADC values alone (92.3% and 87.1%, respectively). While conventional MR imaging 

provides usable features to discriminate grade IV (GBM) tumors from grade II malignancies, 

the separation of grade III. anaplastic astrocytomas from low grades is inefficient. White and 

co-authors described that fractional anisotropy (FA) values and descriptors of the distribution 

of such values over the tumor volume can increase the sensitivity of grade II. – III. 

discrimination [131]. Our method provides a novel way to incorporate FA as a feature. 

The presented grade map method has several limitations. The reproducibility of the 

artificial neural network (ANN) algorithm is often disputed; it is generally considered as a 

“black box” rather than an analytical approach. Increasing the number of processing layers in 

the ANN will reduce the classification error but consequently causes a loss of generalizability 

[74]. In our investigation, the number of samples (i.e. voxels) was high and the resulting 

network structure was kept simple, hence we conclude that the network is not overtrained. It 

is believed that reproducibility issues would partially be resolved by employing other 

algorithms such as support vector machines which has already been shown promising in 

glioma grading [132]. Nevertheless, prospective clinical testing is necessary to evaluate 

whether a radiologist can perform better with the presented tool than without it. We 

hypothesized that during the training procedure it is feasible to assign the same categorical 

diagnosis for each voxel in one particular tumor; however, this presumption required that 

pathological diagnoses were made from the analyses of representative tissue samples. 

Matching a specific set of voxels to the position of the surgical sampling would enable better 

correlation of voxel-wise imaging data and tumor grade. If the assumption is true that the 

grade index is a quantitative biomarker for depicting alterations in glioma microstructure 

representative for biological progression, it may also be hypothesized that the values of this 

biomarker for grade III. tumors are between the values of grade II. and IV. gliomas. Albeit 

this was not confirmed by our study, the two grade III case had higher grade indices compared 

to low grade samples: 0.673 ± 0.161 and 0.281 ± 0.164. This unusual distribution of grade 

indices in grade III. tumors could be attributed to the low number of cases. Another limitation 
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in our study design is the inclusion of tumors with mixed tissue composition like 

oligodendrogliomas. It is not evident that the same characteristic changes occur in terms of 

diffusion or relaxation parameters during the transition from any glioma subtype to higher 

grades therefore making it harder to generalize this phenomenon. 

Szabo De Edelenyi and colleagues found that multidimensional MRI data could be 

used to create images demonstrating the classification or “nosology” of brain neoplasms; 

moreover, they suggested incorporating diffusion data in similar future studies [69]. To the 

best of our knowledge, this is the first study that performs glioma characterization using 

machine-learning algorithms that combine imaging data of T1- and T2-weighted, diffusion 

anisotropy and apparent diffusion coefficient information.  
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5.5 Conclusions 

Specific aim A/1. In vivo probabilistic tracking of structural connections using diffusion 

tensor data provides a novel window on neuroanatomy that was previously unavailable. We 

used a representative subject population of 40 people to demonstrate the averaged tract 

anatomy emerging from the human insula. Such fiber tracts were clustered into two distinct 

populations, originating from the anterior and posterior insula. We provided evidence that the 

in vivo tract anatomy is similar to the depiction of trajectories by tract tracing studies in 

primates. 

Specific aim A/2. Two subdomains in the human insular cortex were revealed using a k-

means approach to cluster the structural connections from this region. We defined them as 

anterior insula (AI) and posterior insula (PI). Reproducibility across the subject was good, 

with a marked rostro-caudal variability of the fiber trajectories. 

Specific aim A/3. We observed interhemispheric asymmetry in the volumes of connectivity-

based subdivisions. This putatively marked a leftward functional dominance of the anterior 

insula and its reciprocally interconnected targets which influences the size of insular area 

where similar connections are represented. The mean diffusivity (i.e. magnitude of diffusion) 

was higher in the anterior insula in both hemispheres while the anisotropy was not different. 

Specific aim A/4. The outlines of the change in connectivity profile did not respect the known 

cytoarchitectural subdivisions and were shown to be independent from the gyral anatomy. 

Similarly to the literature, we demonstrated a rostro-caudal changing pattern of connectivity 

domains. 

Specific aim B/1. Similarly to the relevant studies in this area, diffusion tractography was 

plausible to reveal the distribution of thalamocortical (or cortico-thalamic) connectivities. 

Details about the fiber tract anatomy arising from the mediodorsal thalamic nucleus were 

provided, which presents a good overlap with the classical descriptions of thalamocortical 

connections in primates or with other in vivo studies on humans. 

Specific aim B/2. Two subdivisions were described within the thalamus mediodorsal nucleus; 

the areas were defined based on the similarities of the remote connections. The separation 

border of the connectivity-based clusters was observed to be parallel to the midline resulting 
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in a medial (MDmed) and lateral (MDlat) subdivision of the mediodorsal nucleus, this 

separation was very reproducible across a population of 155 subjects. 

Specific aim B/3. This investigation revealed only a limited agreement between the borders of 

the connectivity-based subdivisions and the classical, cytoarchitecturally described areas (e.g.: 

MDmed vs. MDmc). The MDmed cluster extended approximately to one half of the latero-

lateral diameter of the MD nucleus, and unlike the borders of the MDmc, it proportionally 

extends superiorly and anteriorly. 

Specific aim C/1. Constructing histograms of preoperative radiological images over the tumor 

volume is a feasible technique to extract image features. DTI derived parameters such as 

values from the B0, fractional anisotropy, mean diffusivity, etc. images can be incorporated in 

such a method. When using parametric images from diffusion tensor datasets, this approach 

allows representation of the grade and enables discrimination of LG and HG gliomas 

plausibly which has been confirmed by histopathology. 

Specific aim C/2. Grade maps are graphical representations of tumor subtype and 

heterogeneity whilst the grade index was defined as an overall estimate of tumor grade as 

determined by the assignments of classifiers. In a number of cases, our findings allowed 

identification of tumors with prominent regional heterogeneity and marked biological 

progression. The glioma grade map might serve as an imaging biomarker for the 

characterization of brain gliomas and complement preoperative information available for 

clinicians. 
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6. Summary 

Water is a fundamental constituent of living creatures and tissue water is structured 

according to the characteristic features of any given tissue type. A unique property of the 

brain is that the propagation of water molecules is hindered by microscopic obstacles like the 

axonal membranes, myelin sheath or the extracellular matrix, resulting in anisotropic 

diffusion. Diffusion tensor magnetic resonance imaging (DTI) provides non-invasive 

depiction of diffusion through sampling the magnitude and orientation of diffusion 

anisotropy. Our first study aim was to apply DTI and related image processing techniques to 

describe normal diffusion anisotropy patterns in the human brain in vivo. We assume that such 

technique can provide information on the connectional topography of different brain areas 

over large subject groups; we aimed to reveal the distribution of structural connections from 

the human insular cortex and the mediodorsal nucleus (MD) of the thalamus. Secondly, we 

focused on the anisotropy patterns of diffusion in pathological conditions, more specifically, 

to portray the diffusion characteristics in brain neoplasms of glial origin of various WHO 

grades.  
We utilized standard image processing techniques to describe the connectional 

anatomy of the human insula and the mediodorsal thalamic nucleus. Our explorations 

included the analysis of 40 and 155 healthy volunteers when studying the normal anisotropy 

patterns; whereas we used 40 glioma patients for the second aim. Probabilistic DTI 

tractography was used to map the fiber pathways emerging from the observed areas. 

Subdomains were mathematically separated that were different in terms of remote 

interconnections. For the glioma patients, histograms of DTI derived images were fed into a 

discriminant function analysis based classifier which correlated the features with the 

histopathologically defined grade. 

Fiber tracts were separated into two clusters, originating from the anterior and 

posterior insula and interhemispheric asymmetry was revealed in such connectivity-based 

clusters; mean diffusivity values were higher in the anterior insula. We confirmed a rostro-

caudal changing pattern of connectivity domains. We provide a description of the two 

connectivity-based clusters in the MD. Patterns of diffusion anisotropy of preoperative DTI 

images allowed the prediction of glioma grade with 88.5% specificity and 85.7% sensitivity 

by using the histogram analysis method. 

In vivo probabilistic tracking of structural connections using DTI data provides a 

novel window on neuroanatomy that was previously unavailable. We provided evidence that 

the in vivo tract anatomy of the insula and MD is similar to the depiction of trajectories by 

tract tracing studies in primates. Connectivity-based parcellation of the insular cortex and the 

mediodorsal thalamic nucleus revealed distinct and separated networks originating from these 

territories. The characterization of anisotropy patterns in brain gliomas allowed us to construct 

a classifier model that is feasible for the non-invasive, imaging based preoperative 

determination of grade. 
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Összefoglalás 

A víz alapvető összetevője az élő szervezeteknek, a víz eloszlása, “strukturáltsága” 

jellegzetes módon követi az adott szöveti környezet szerkezetét. Az agyszövetek 

mikroszkopikus felépítése különleges, a vízmolekulák mozgását bizonyos alkotóelemek 

korlátozzák és a vízdiffúziót anizotróppá teszik – ilyen bizonyított struktúrák az 

axonmembránok, myelinhüvely vagy az extracelluláris mátrix. A diffúziós tenzor mágneses 

rezonanciás képalkotás (DTI) a diffúziós folyamat non-invazív ábrázolását teszi lehetővé a 

diffúziós anizotrópia és diffúziós irányok mérésével. Kutatásunk első célja a DTI és 

képfeldolgozó módszerek alkalmazása volt a normál agyszövetek diffúziós anizotrópia 

mintázatának feltárására. E technikák segítségével az anatómiai kapcsolatok topográfiája is 

meghatározható nagyobb esetcsoportokban; a humán insuláris cortex és a thalamus nucleus 

mediodorsalis (MD) kapcsolatrendszerének jellemzését is célul tűztük ki. Második célunk a 

diffúziós terek kóros körülmények közötti jellemzése volt, mely célból különböző WHO 

grádusú agyi glioma DTI adatait elemeztük  

A DTI képfeldolgozás és során standard módszereket alkalmaztunk, mellyel a humán 

insula és MD kapcsolati anatómiája jól leírható in vivo. E célok eléréséhez 40 valamint 155 

egészséges alany felvételeit használtuk; a gliomákat tartalmazó adatbázisunk 40 beteg képeit 

tartalmazta. Probabilisztikus DTI traktográfiát alkalmaztunk a vizsgálati területekről eredő 

rostrendszerek kimutatására; alterületeket különítettünk a távoli kapcsolati mintázatok 

matematikai elemzésével. A gliomás betegcsoport esetén a DTI-ből származtatható képek 

hisztogramjainak elemzésével hoztunk létre egy diszkriminancia analízis alapú klasszifikációs 

modellt, ami ezeket a tulajdonságokat a grádusbecslésre alkalmazza. . 

Eredményeink a következők. Az insulából származó rostrendszer alapján anterior és 

posterior insularis területeket különítettünk el, melyek féltekék közötti méretbeli aszimmetriát 

mutattak, az anterior insula átlagos diffuzivitás értékei magasabbak voltak a hátulsó 

területénél. A kapcsolati anatómia rostro-caudalis irányú változását mutattuk ki. A thalamus 

MD mag két szeparált alterületének konnektivitási anatómiáját leírtuk. A diffúziós mintázatok 

hisztogram technikával való elemzése a gliomás betegek esetében a szövettanilag 

meghatározott grádust 88.5%-os specificitással és 85.7% szenzitivitással becsülte. 

Az agy strukturális kapcsolatrendszereinek meghatározásában az in vivo 

probabilisztikus DTI traktográfia korábban nem látott lehetőségeket teremt. Az insula és az 

MD rostrendszerének anatómiájáról gyűjtött eredményeink az állatkísérletes rostkövetéses 

kutatások eredményeivel jól korrelálnak. A kapcsolatrendszer alapú alterületek kijelölése az 

insulában és az mediodorsalis thalamusmagban két, egymástól elszeparált kapcsolati hálózatot 

fedett fel. Az agyi gliomákban mérhető diffúziós anizotrópia mintázatok segítségével olyan 

módszert mutattunk be, amely nem invazív módon, preoperatív képalkotás segítségével a 

grádus becslését lehetővé teszi. 
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