
Accepted Manuscript

Title: Changes in DNA methylation pattern of apple long-term
in vitro shoot culture and acclimatized plants

Authors: Andrea Gulyás, Judit Dobránszki, Erzsébet Kiss,
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Abstract 

DNA methylation is a process of epigenetic modification that can alter the functionality of a genome. 

Using whole-genome bisulfite sequencing, this study quantify the level of DNA methylation in the 

epigenomes of two diploid apple (Malus x domestica) scion cultivars ('McIntosh' and 'Húsvéti 

rozmaring') derived from three environmental conditions: in vivo mother plants in an orchard, in vitro 

culture, and acclimatized in vitro plants. The global DNA methylation levels were not dependent on 

the source of plant material, and the average level of DNA methylation was 49.77%, 34.65% and 

8.77% in CpG, CHG and CHH contexts, respectively. Significant differences in DNA methylation 

were identified in 586 (specifically 334, 201 and 131 in CpG, CHG and CHH contexts, respectively) 

out of 45,116 genes, including promoter and coding sequences. These were classified as differentially 

methylated genes (DMGs). This is a 1.3% difference in the level of DNA methylation of genes in 

response to a change in the environment. Differential methylation was visualised by MA plots and 

functional genomic maps were established for biological processes, molecular functions and cellular 

components. When the DMGs were considered, in vitro tissue culture resulted in the highest level of 

methylation, but it was lower in acclimatized in vitro plants which was similar to that in the mother 
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tree. Methylation patterns of the two scions differed, indicating cultivar-specific epigenetic regulation 

of gene expression during adaptation to various environments. After selecting genes that displayed 

differences larger than ±10% in CpG and CHG contexts, or larger than ±1.35% in the CHH context 

from among the DMGs, they were annotated in Blast2GO v5.1.12 for Gene Ontology. DMGs 

identified as MD07G1113000 (protein transport), MD08G1041600 (extracellular space), 

MD09G1054800 (phosphatidic acid binding), and MD10G1265800 (not annotated) were methylated 

in all three contexts in in vitro shoots. These DNA methylation results suggest that epigenetic changes 

may contribute to the adaptation of apple to environmental changes by modifying the epigenome and 

thereby gene expression. 

 

Keywords: epigenetic; Malus sp.; tissue culture; whole-genome bisulfite sequencing 

 

Introduction 

The firstly published high-quality draft genome sequence of domesticated apple (Malus x domestica 

Borkh.) was by Velasco et al. (2010), who used Sanger sequencing and 454 pyrosequences. The 

domesticated apple genotype is highly heterozygous, while sequencing and assembly is a technical 

challenge. Velasco et al. (2010) described 57,386 putative genes, 31,678 transposable element (TE)-

related open reading frames (ORFs), 11,444 apple-specific genes and 4,021 transcription factor genes. 

Daccord et al. (2017) resequenced the M. x domestica genome with the latest sequencing and optical 

mapping technologies. They reduced the estimated number of annotated genes in apple to 42,140 and 

the genome size to 649.7 Mb. 

Apart from changes to DNA sequences, various epigenetic modifications in the genome, 

including DNA methylation, chromatin methylation and acetylation, as well as changes to siRNA, 

contribute to the actual operation and functionality of a genome due to modifications in gene 

expression (Probst and Scheid, 2015; Hewezi, 2018; Lee and Seo, 2018). A DNA methylation pattern 

can be inherited over several generations, and the molecular pathways responsible for this pattern may 

induce natural variation (Niederhuth et al., 2016). When methylation occurs, the level of methylated 

cytosine (5mC) varies by as much as 30% in plants (Cokus et al., 2008). 
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In plants, C methylation may or may not be linked, as CpG, CHG and CHH, where G is guanine, 

and H may represent any other nucleotide other than G. While CHG is symmetric, CHH is an 

asymmetric sequence (Gouil and Baulcombe, 2016). In plants, CpG, CHG and CHH play important 

roles, and CpG is the most methylated area, CHG is moderately methylated, while CHH is the least 

methylated region. In plants, CG methylation is maintained by DNA methyltransferase 1 (MET1), 

which is a homologue of the conserved mammalian DNA methyltransferase 1 (DNMT1) (Cao et al., 

2000). A high level of CHG context in Arabidopsis thaliana L. Heynh. (thale cress) is maintained by a 

plant-specific CHROMOMETHYLASE 3 (CMT3), whereas CHH methylation and to some extent 

CHG methylation are generally maintained by domains rearranged methyltransferases (DRMs) and 

CMT2 methyltransferase (Zemach et al., 2013). Cytosine methylation is frequently found in 

transposons, TEs and other repeated sequences in a wide range of plant species (Zemach et al., 2010). 

DNA methylation can deactivate TEs, whose reactivation is prevented while methylated (Tirado-

Magallanes et al., 2017). In the model plant A. thaliana, the methylation of CpG, CHG and CHH 

amounts to 24%, 6.7% and 1.7%, respectively (Cokus et al., 2008), while in maize (Zea mays L.), 

these values are 86.4%, 70.9%, and 1.2%, respectively (West et al., 2014). In both plant species, 

methylated and highly methylated levels (80-100%) in CpG regions, non-methylated and partially 

methylated levels (20-100%) in CHG regions and non-methylated and weakly methylated levels (~ 

10%) in CHH regions have been observed (Cokus et al., 2008; Lister et al., 2008). A green alga, 

Chlamydomonas reinhardtii, has the lowest level of DNA methylation among plants, with 5.4%, 2.6% 

and 2.5% CpG, CHG and CHH contexts, respectively (Bartels, 2018). Rice (Oryza sativa L.) leaves 

have 58.4%, 31.0% and 5.1% of CpG, CHG and CHH sites methylated, respectively (Niederhuth et 

al., 2016). In Capsicum annuum L. (pepper), the DNA in 19.9%, 30.5% and 49.6% of CpG, CHG and 

CHH contexts, respectively is methylated (Rawoof et al., 2019). These values are very different from 

other plants, but roughly similar to tomato (Solanum lycopersicum L.) (Zhong et al., 2013). The 

findings by Rawoof et al. (2019) indicate that C. annuum has the highest recorded global cytosine 

methylation level among different methylation contexts compared to potato (Solanum tuberosum L.) 

and maize (Wang et al., 2018), soybean (Glycine max (L.) Merr.) (An et al., 2017) and field mustard 

(Sinapis arvensis L.) (Chen et al., 2015; Liu et al., 2018). The average global DNA methylation level 
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in black cottonwood (Populus trichocarpa Torr. & A.Gray ex. Hook.) at CG, CHG and CHH sites was 

43.99%, 29.84% and 11.57%, respectively (Liang et al., 2019). In different Poaceae species the 

methylation of CHH occurred mainly in short, highly methylated regions, while in soybean it occurred 

mainly in long regions with lower levels of methylation (Niederhuth et al., 2016). DNA methylation 

and the silencing of repetitive DNA sequences in the genome are closely associated, and this 

influences the epigenome (Bewick and Schmitz, 2017). 

Larkin and Scowcroft (1981) were among the first scientists to discover phenotypic and genotypic 

differences among independent individuals of the same clone raised from in vitro plant cultures. These 

differences, which they referred to as somaclonal variation, are well characterised in certain tissue-

cultured plants (Miguel and Marum, 2011; Neelakandan and Wang, 2012). In vitro maize plants 

showed a close correlation between the levels of DNA methylation and gene expression, with 

significantly higher levels of methylation relative to non-micropropagated plants (Brown et al., 1991; 

Kaeppler, 1992, 1993). In vitro rice tissue cultures activated epimutation (i.e., differences in DNA 

methylation between plants in vitro and control mother plants), and induced changes in chromatin 

structure (Brown et al., 1990; Müller et al., 1990). Genomic stability is not a literal stable or default 

state of a plant’s genome, but is an active process that includes continuous maintenance, control and 

balance (Pardue, 1991). DNA hypomethylation was induced during plant tissue culture with a 15% 

increase in methylation observed in in vivo plants relative to in vitro plants, and molecular structural 

changes were induced as a result of the stress caused by tissue culture, primarily by the application of 

different plant growth regulators (PGRs) that are added to the culture medium, such as auxin (Kumar 

and Van Staden, 2017). These early studies confirmed Pardue’s hypothesis (1991) that maintenance of 

a continuous balance in a plant’s genome can be overturned or altered by in vitro tissue culture. 

Machczyńska et al. (2014) used RP-HPLC to determine the genomic DNA methylation of double 

haploid winter triticale (Triticosecale) cultured in different in vitro propagation environments, using 

different in vitro culture methods and resulting in regenerated progenies of regenerants. They noted 

that the genomic DNA methylation of in vitro regenerants depended on both the regeneration method 

and genotype of donor plants because they found differences in DNA methylation between different 

genotypes and regeneration methods (mean values were 25.39±0.14 for donor plants, 24.68±0.41 for 
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shed microspore culture, 24.43±0.47 for anther culture, and 23.19±0.44 for immature zygotic culture). 

Using plants that had been regenerated in vitro using meristem culture, Kitimu et al. (2015) analyzed 

the genome-wide changes in DNA methylation between different varieties of cassava (Manihot 

esculenta Crantz) with methylation-sensitive amplified polymorphism (MSAP) and sequencing-based 

methylation sensitive genotyping. They found that the differences in DNA methylation patterns that 

were detected by MSAP were not random but were instead induced by micropropagation, and were 

thus likely associated with cell and tissue differentiation. In addition, Kitimu et al. (2015) determined 

105 unique sequences with different levels of DNA methylation between propagation systems with 

sequencing-based methylation sensitive genotyping. Rathore et al. (2015) used MSAP markers to 

asses DNA methylation and detect methylation polymorphism in Salvadora persica L. (mustard tree), 

Commiphora wightii (Arn.) Bhandari (Indian bdellium-tree), Simmondsia chinensis (Link) C. K. 

Schneid. (jojoba), Jatropha curcas L. (physic nut), and Withania coagulans (Stocks) Dunal (paneer 

booti) leaf tissues growing in vivo and in vitro, determining that the percentage of the polymorphism 

in methylated DNA was 8.71–13.98%. Goyali et al. (2018) used MSAP to detect DNA methylation 

patterns in lowbush blueberry (Vaccinium angustifolium Aiton) grown using conventional vegetative 

propagation, softwood cuttings, and in vitro tissue culture environments. They found 106 and 107 

amplified DNA fragments in QB9C and Fundy plants, respectively that were derived from softwood 

cuttings, but 105 and 109 DNA fragments in tissue cultured QB9C and Fundy plants, respectively. 

Whole genome bisulfite sequencing (WGBS) generates unbiased genome-wide DNA methylation 

profiles and has been successfully applied in several studies to find different patterns and functional 

effects on DNA methylation (Feng et al., 2010a, 2010b; Zemach et al., 2010) in different plant species, 

such as A. thaliana (Xu et al., 2018; Zhou et al., 2019), rice (Li et al., 2012), tomato (Zhong et al., 

2013), field mustard (Liu et al., 2018), cabbage (Brassica oleracea L.) (Parkin et al., 2014), and black 

cottonwood (Liang et al., 2019). 

The aim of this study was to examine the epigenomes of two diploid apple scion cultivars from 

three distinct environments: 1) in vitro shoots maintained for 16 years in tissue culture; 2) in vivo 

mother trees (20 years old); 3) acclimatized in vitro plants (one year after acclimatization). Using 

WGBS, the level of DNA methylation, as well as the DNA methylation pattern, was measured in these 
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three biological samples to determine whether an epigenetic footprint was left within the epigenome of 

apple due to different environments (in vivo mother tree vs. in vitro) or a change in the environment 

(in vitro culture to acclimatized stage). 

 

Methods 

Sources and sampling of plant materials 

Plant material was collected from three sources. The first source was in vitro leaves from four-week-

old in vitro shoot cultures of two Malus x domestica Borkh. scion cultivars 'McIntosh' and 'Húsvéti 

rozmaring'. Shoot cultures were maintained for 16 years and subcultured monthly on Murashige and 

Skoog (MS) basal medium (Murashige and Skoog, 1962) supplemented with 4.4 µM 6-benzyladenine 

(BA; Sigma-Aldrich, Budapest, Hungary) and 1.48 µM indole-3-butyric acid (IBA; Sigma-Aldrich) 

under a 16-h photoperiod, a photosynthetic photon flux density of 105 µM s-1 m-2 and at 22±2°C. The 

second source was in vivo leaves collected from in vivo mother trees of both cultivars from which in 

vitro cultures had been originally established 16 years earlier. The third source was leaves collected 

randomly from rooted in vitro apple shoots (three leaves/tree; three trees sampled) one year after 

acclimatization. For acclimatization, we collected in vitro shoots from the proliferation media which 

we described above. Four-week-old and 45-50 mm long in vitro shoots were placed vertically into root 

induction medium (MS basal medium at half strength with 4.9 µM IBA). Cultures were incubated at 

26°C in the dark for one week before transferring to PGR-free root elongation medium. After two 

weeks, rooted shoots were rinsed gently in tap water to remove any attached medium and then planted 

in Jiffy-7® pellets (Magyar-Tábori et al., 2009). Before planting, pellets were soaked with sterilized 

MS salt solution (0.1× strength) supplemented with 0.15% Previcur® (Bayer, Leverkusen, Germany) 

and then were incubated in the light in growth chambers under the same conditions described for in 

vitro shoot cultures. After 2-3 weeks, when roots began emerge from the pellets, each plant was gently 

removed and transferred to a plastic pot (8 cm in diameter) filled with black mould and placed in 

growth chambers at 70-80% relative humidity at 22±2°C under cool white fluorescent tube lights (16-

h photoperiod, 50-60 µM s-1 m-2), as was suggested by Bolar et al. (1998). 
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Sample preparation and WGBS 

DNA was extracted and purified from all three samples of each cultivar with a NucleoSpin plant II 

DNA extraction kit (Macherey-Nagel, Düren, Germany), following the manufacturer's instructions. 

We used three biological replicates and three technical replicates for the in vitro shoots, in vivo mother 

plants and one-year acclimatized plants, which were pooled for DNA extraction. Bisulfite was applied 

to determine the status of cytosine methylation with the Pico MethylSeq Library Prep kit (Zymo 

Research, Irvine, CA, USA) using 100 ng of genomic DNA based on the user manual. WGBS was 

performed on a Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) with Illumina paired-end (PE) 

reads, and differential methylation analysis between the three treatment groups. 

 

Whole genome assembly and methylation extraction 

The quality of DNA reads obtained from WGBS sequencing was assessed using FastQC v0.11.5 

(https://github.com/s-andrews/FastQC). Illumina adapter sequences left in reads were removed using 

cutadapt v1.15 (Martin, 2011). Low quality reads at the 3′ and 5′ ends of the reads were trimmed with 

Trimmomatic v0.36 (Bolger et al., 2014). After sequence quality control, an average of 9.7 Gb/sample 

of Illumina PE reads (approximate sequencing depth = 17x) were separately assembled using Bowtie 

v2.3.4 (Langmead et al., 2009) based on the Malus x domestica GDDH13 Whole Genome v1.1 apple 

genome data (Daccord et al., 2017). DNA methylation analysis and gene clustering analysis to assess 

methylation patterns were performed with Bismark v0.17.0 (Krueger and Andrews, 2011). 

 

Statistical analysis and evaluation 

Differential methylation, statistical analysis in log fold change (LFC), DNA methylation distribution 

plots and gene clustering were performed with SeqMonk v1.41.0 (https://github.com/s-

andrews/SeqMonk), using a bisulphite pipeline over sets of 50 CpGs, CHGs and CHHs. Unreplicated 

differential methylation was performed with a χ2 test (P < 0.05), based on the generated LFC values. 

Genes that displayed significant differences in DNA methylation in either their promoter or coding 

regions according to the χ2 test were classified as differentially methylated genes (DMGs). The χ2 test 

was visualised with a SeqMonk-generated MA plot (Bland-Altman plot) in which the differences in 
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measurements between any of the three samples in all permutations were assessed by transforming, 

using SeqMonk, the data onto M (log ratio) and A (mean average) scales, then plotting these values 

(Bland and Altman, 1999). 

 

Function and GO annotation 

All assembled DMGs (based on the χ2 test) were considered for functional mapping of biological 

processes, molecular functions and cellular compounds. The functions of all DMGs in the three 

environments were determined by Gene Ontology (GO) annotation, focusing on biological processes, 

molecular functions and cellular components of green plants (Viridiplantae), as these might have 

important roles during in vitro culture. GO annotation was performed with Blast2GO v5.1.12 (Conesa 

and Götz, 2008) based on the Malus x domestica GDDH13 Whole Genome v1.1 mRNA sequences 

(Daccord et al., 2017). DMGs were then selected for GO annotation when differences were larger than 

±10.00% in CpG and CHG, or larger than the average change in methylation (±1.35%) in CHH, based 

on the χ2 results for differences in DNA methylation patterns and their comparisons. For functional 

mapping and GO annotation, several databases were used [NCBI Nr: non-redundant protein database 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/); Swissprot-Uniprot database (https://www.uniprot.org/); Kyoto 

Encyclopedia of Genes and Genomes (KEGG; https://www.genome.jp/kegg/); GO; InterproScan; 

https://www.ebi.ac.uk/interpro/] by BlastX-fast with the E-value cut-off set to 10-3. 

 

Results and discussion 

In plants, gene regulation is also related to the level of DNA methylation, and this epigenetic 

mechanism is intricately linked to growth and development, including in vitro such as in somatic 

embryogenesis (Kumar and Van Staden, 2017). Studies on pineapple and cocoa (Scherer et al., 2015; 

Quinga et al., 2017) showed significant differences in the level of global genomic DNA methylation 

between in vitro and mother plants. In contrast, in the present study on apple, when studying the level 

of global DNA methylation, no significant differences were found in in the degree of methylated 

cytosine positions (CpG, CHG and CHH) between apple scion cultivars ('McIntosh' and 'Húsvéti 

rozmaring') or between three tested environments (acclimatized, in vitro tissue-cultured, and mother 
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plant) (Fig. 1). Average levels of DNA methylation in the examined scions and their environments 

were 49.77%, 34.65% and 8.77% in CpG, CHG, and CHH contexts, respectively (Fig. 1A). These 

levels were similar to those recorded by Daccord et al. (2017) (49%, 39%, and 12%, respectively) for 

dihaploid apple genotypes when leaves and young fruits were analyzed. As far as the authors are 

aware, no other studies in plant tissue culture have assessed the relative changes in patterns of DNA 

methylation between in vitro plants and their acclimatized counterparts by using WGBS. 

Analysis of DNA methylation at the level of the entire genome showed significant differences in 

C methylation between some genes in either their promoters or coding regions. A total of 45,116 

genes, including their promoters and coding regions, were studied (Suppl. Tables 1-3). Significant 

differences in DNA methylation were identified in 586 genes, i.e. DMGs (Fig. 1B), specifically 334, 

201, and 131 in CpG, CHG and CHH contexts, respectively, 446 of which were found in the Blas2GO 

database (Suppl. Tables 4-6). This indicates a 1.3% difference in the level of DNA methylation of 

genes in response to a change in environment, i.e. in vivo vs. in vitro, or after replacing the in vitro 

environment with an in vivo environment. Considering these three contexts, 72 DMGs were identical 

in CHG and CpG, five in CHG and CHH, and seven in CpG and CHH. Moreover, four DMGs were 

identical in all three contexts while 259, 128 and 123 DMGs were specifically linked to CpG, CHG 

and CHH contexts, respectively (Fig. 1B). DMGs identified as MD07G1113000 (protein transport), 

MD08G1041600 (extracellular space), MD09G1054800 (phosphatidic acid binding), and 

MD10G1265800 (not annotated) were methylated in all three contexts in in vitro shoots (Suppl. 

Tables 4-6). In vitro tissue culture had the highest level of methylated DMGs. Some DMGs that 

participate in oxidation-reduction processes, metabolism and biosynthesis, and that are not essential 

during in vitro culture (Kawakatsu et al., 2017; Bouyer et al., 2017), were primarily methylated. The 

level of DNA methylation of DMGs was lower in 'McIntosh' than in 'Húsvéti rozmaring' (Suppl. 

Tables 4-6; Suppl. Fig. 4). The level of methylation in DMGs decreased after acclimatization. 

According to GO annotation of all DMGs, a total of 235, 310 and 189 DMGs play important roles 

in biological processes (Fig. 1C), molecular functions (Fig. 1D), and cellular components (Fig. 1E). 

 

Comparison of differences in DNA methylation patterns 
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Four MA plot (Bland-Altman plot) analyses were applied to determine and compare the DNA 

methylation patterns of samples from different environments in both scion cultivars. Paired 

comparisons in DNA methylation patterns in CpG, CHG and CHH contexts were made between 

acclimatized and in vitro plants, acclimatized and mother plants, and in vitro and mother plants of each 

cultivar separately, in 'McIntosh' (Fig. 2) and 'Húsvéti rozmaring' (Fig. 3), and by considering the 

average of both cultivars (Fig. 4). Inter-cultivar DNA methylation patterns were also compared 

between in vitro, acclimatized and mother plants of 'McIntosh' and 'Húsvéti rozmaring' (Fig. 5). 

Considering DMGs, functional genomic maps were established for their biological processes (Suppl. 

Fig. 1), molecular functions (Suppl. Fig. 2) and cellular components (Suppl. Fig. 3). DMGs were 

annotated by GO where the difference in DNA methylation was larger than ±10.00% in CpG and 

CHG contexts, or larger than ±1.35% in the CHH context (Suppl. Fig. 4). 

When comparing the DNA methylation patterns of 'McIntosh', DMGs were downregulated in in 

vitro plants compared to acclimatized plants (Fig. 2A, 2D, 2G). The level of methylation was higher in 

in vitro plants than in mother plants, i.e., DMGs were upregulated causing the level of methylation to 

be lower in the mother plant (Fig. 2C, 2F, 2I). No considerable directional changes were detected in 

the MA plots when acclimatized and mother plants were compared (Fig. 2B, 2E, 2H) indicating that 

after acclimatization the DNA methylation pattern became similar to that of the mother plant. 

According to the GO annotation function of the DMGs, DMGs most frequently encode: i) metabolic 

processes, cellular, phosphorylation, and biosynthetic processes among their biological functions; ii) 

regulatory sequences for catalytic, kinase and transferase activity among their molecular functions; 

and (iii) sequences characteristic of membrane components, intracellular parts and cell parts among 

their cellular components (Suppl. Fig. 4). When the differences in DNA methylation patterns of 

'Húsvéti rozmaring' were compared, a similar tendency was observed in all three contexts (CpG, Fig. 

3A, 3B, 3C; CHG, Fig. 3D, 3E, 3F; CHH, Fig. 3G, 3H, 3I), as for 'McIntosh'. According to the GO 

annotation function and taking all contexts (CpG, CHG and CHH) into consideration, the genes 

involved most frequently encode: i) metabolic, phosphorylation, and biosynthetic processes, and 

biological regulation among their biological functions; ii) regulatory sequences for catalytic, kinase 

and transferase activity among their molecular functions; and iii) sequences characteristic of 
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membrane components and cell parts among the cellular components (Suppl. Fig. 4). 

We identified several DMGs between three different environmental conditions, which confirm 

the findings in a series of studies that have also implicated DNA methylation in the regulation of genes 

controlling pathways in plant developmental progression or tissue differentiation, during 

embryogenesis, apical dominance regulation and leaf formation under in vitro propagation (Us-Camas 

et al., 2014). DNA methylation plays an important role in gene expression and plant development 

under stress conditions (Crisp et al., 2016; Lämke and Bäurle, 2017). The in vitro environment can 

constitute a stressful abiotic environment for explants in in vitro tissue culture, as was shown for 

potato nodal explants that had been cut, which, after transcriptomic analyses, demonstrated the up- and 

down-regulation of several differentially expressed genes related to abiotic stress (Teixeira da Silva et 

al., 2019). 

When the two scion cultivars, 'McIntosh' and 'Húsvéti rozmaring', were compared, both up- and 

downregulation of DMGs were observed in all three contexts (CpG, Fig. 4A, 4B, 4C; CHG, Fig. 4D, 

4E, 4F; CHH, Fig. 4G, 4H, 4F), independent of the environment. Establishment of GO annotation 

functions based on CpG, CHG and CHH contexts showed that the most frequent genes encode: i) 

metabolic cellular, biosynthetic and transfer processes, as well as phosphorylation among their 

biological functions; ii) catalytic, transferase, kinase and hydrolase activities among their molecular 

functions; iii) membrane compounds, cell parts, intracellular parts and cytoplasmic parts among their 

cellular components (Suppl. Fig. 4). Methylation patterns of the two scion cultivars differed, 

indicating different and cultivar-specific regulation of the epigenome during the adaptation of apple to 

various environments (Suppl. Tables 4-6; Suppl. Fig. 4). Our results suggest that the potential role of 

cultivar-specific DNA methylation patterns constitute an important regulatory mechanism for sensing 

and responding to stress conditions by regulating stress-responsive gene expression, such as occurs 

during drought and salinity (Rajkumar et al., 2019), as well as the response and adaptation to other 

biotic and abiotic stresses (Viggiano and de Pinto, 2017). 

In general, significant differences in DNA methylation pattern were detected in both cultivars and 

in all three contexts (CpG, CHG and CHH). The following trends were observed: i) in vitro plants 

were highly methylated compared to acclimatized plants, i.e. in vitro plants were downregulated (Fig. 
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5A, 5D, 5G); ii) in vitro plants were downregulated relative to mother plants (Fig. 5C, 5F, 5I); iii) 

DNA methylation patterns were similar when acclimatized and mother plants were compared, in both 

scion cultivars (Fig. 5B, 5E, 5H). These trends were similar to those observed in separate MA plots for 

each cultivar (Fig. 2, 3). Our study fortifies the notion that in vitro propagation constitutes a stress for 

plants, which have to adapt from the cut mother plant to the in vitro environment, as was also shown 

for potato (Teixeira da Silva et al., 2019), and then again to the acclimatized ex vitro state. Very 

importantly, the genotype of the donor plant influences the level of DNA methylation and pattern of 

regenerants and the ability to adapt to the in vitro environment (Machczyńska et al., 2014). Other 

studies have shown that DNA methylation levels during in vitro propagation are related to the donor 

tissue in Clivia miniata (Lindl.) Bosse (Natal lily) plantlets with MSAP (Wang et al., 2012), to the 

length of culture in Corylus avellana L. (common hazel) with methyl-sensitive restriction 

endonuclease (Diaz-Sala et al., 1995), in Theobroma cacao L. (cocoa tree) with MSAP (Rodríguez 

López et al., 2010a, 2010b) and the media components in Daucus carota L. (wild carrot) with HPLC 

and methyl-sensitive restriction endonuclease (LoSchiavo et al., 1989; Arnholdt-Schmitt, 1993). 

 

Methylation in plant in vitro culture studies 

Using bisulfite sequencing (BS-seq), Stroud et al. (2013) investigated differences in DNA methylation 

levels of in vitro regenerated and wild-type rice plants, observing that DNA hypermethylation in CHH 

was eliminated during in vitro regeneration because it occurs exclusively in dedifferentiated cells, i.e. 

in callus only. Furthermore, in CpG, CHG, and CHH, there was a decrease in DNA methylation of 

plants regenerated from in vitro culture compared to wild type, non-tissue cultured plants, which 

affected the expression of certain genes. The longer the period of in vitro tissue culture, the greater the 

number of epigenetic footprints that are left in a plant’s epigenome, which may explain somaclonal 

variation. Stelpflug et al. (2014) analysed in vitro maize immature embryo tissue (10-12 days after 

pollination) using meDIP-ChIP epigenome profiling, methylation-sensitive qPCR and RNA-seq, and 

found that the combined level of DNA methylation was not affected by tissue culture but rather by 

variation in the levels of methylation in some DNA components. Rathore et al. (2015) found that DNA 

methylation ranged between 9% and 14% among in vitro and in vivo plants of several plant species 
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(Salvadora persica, Commiphora wightii, Simmondsia chinensis, Jatropha curcas, and Withania 

coagulans) using MSAP. Using MSAP, Scherer et al. (2015) observed small differences between in 

vitro (33.66%) and in vivo (30.82%) pineapple (Ananas comosus var. comosus) when grown under 

different environments. Using HPLC, Quinga et al. (2017) detected global changes in DNA 

methylation during cocoa (Theobroma cacao L.) somatic embryogenesis, detecting 17.49% and 

27.06% DNA methylation in somatic embryos that were 12 and 36 months old, respectively. Their 

findings confirmed those by Stroud et al. (2013), namely that a longer period of in vitro tissue culture 

results in a stable epigenetic footprint in a plant’s epigenome over multiple generations and may 

partially explain somaclonal variation. 

Our experiments show that the levels of global genomic DNA methylation in apple were steady, 

independent of the cultivar or growth environment. However, analyses of the methylation pattern in 

the entire genome confirmed that individual genes display constantly changing levels of methylation. 

The dynamic changes in their methylation levels might regulate responses and adaptation to a 

changing environment (in vitro environment or recovery to the in vivo environment). After 

acclimatization, the pattern of DNA methylation in the two apple cultivars were similar to the 

methylation pattern of the mother plant. 

Additional detailed studies are necessary to clarify how these changes in DNA methylation levels 

of identified DMRs are connected to changes in gene expression and if they play any role in the 

adaptation of apple to in vitro versus ex vitro environments. Such knowledge will allow for the 

development of a technology for apple that would allow for the production of high-quality material in 

desired quantities, or at specific stages of development. 
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Legends to figures 

 

Fig. 1. Global DNA methylation levels in CpG, CHG and CHH contexts (A) and sequence distribution 

of significant differences in DNA methylation in genes based on the CpG, CHG and CHH contexts 

(B), based on biological processes (C), molecular functions (D) and cellular components (E). 
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Fig. 2. Differences in the levels of DNA methylation of CpG (A, B, C), CHG (D, E, F) and CHH (G, 

H, I) contexts between acclimatized and in vitro plants (A, D, G), acclimatized and mother plants (B, 

E, H), and in vitro and mother plants (C, F, I) of scion cultivar 'McIntosh'. 
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Fig. 3. Differences in the levels of DNA methylation of CpG (A, B, C), CHG (D, E, F) and CHH (G, 

H, I) contexts between acclimatized and in vitro plants (A, D, G), acclimatized and mother plants (B, 

E, H), and in vitro and mother plants (C, F, I) of scion cultivar 'Húsvéti rozmaring'. 
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Fig. 4. Differences in the levels of DNA methylation of CpG (A, B, C), CHG (D, E, F) and CHH (G, 

H, I) contexts between apple scion cultivars 'McIntosh' and 'Húsvéti rozmaring' in acclimatized (A, D, 

G), in vitro (B, E, H), and mother plants (C, F, I). 
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Fig. 5. Differences in the levels of DNA methylation of CpG (A, B, C), CHG (D, E, F) and CHH (G, 

H, I) contexts between acclimatized and in vitro plants (A, D, G), acclimatized and mother plants (B, 

E, H), and in vitro and mother plants (C, F, I) based on the average of both scion cultivars. 
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