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ABSTRACT 11 

Ten analogues of a teicoplanin pseudoaglycon derivative have been synthesized with the 12 

aim of optimizing the in vitro activity of the compound against VanA type vancomycin resistant 13 

enterococci (VRE) isolated from hospitalized patients. Teicoplanin, vancomycin and oritavancin 14 

were used as reference antibiotics for the antibacterial evaluations. One of the new derivatives 15 

exhibited far superior activity than the original compound. The in vitro MICs measured were 16 

comparable to that of oritavancin against the investigated VRE strains. 17 

 18 

INTRODUCTION 19 

When resistance to the first beta lactam – penicillin - started to emerge, vancomycin was 20 

the first glycopeptide antibiotic used for the treatment of Gram-positive bacterial infections with 21 

clinical success. A few decades later the usage of vancomycin heavily increased, which definitely 22 

contributed to the development of vancomycin resistance by enterococci, followed by the vanA 23 

gene mediated teicoplanin resistance in the 1990s [1]. By the 21st century, antibiotic resistance has 24 

become one of the most challenging problems in public healthcare. The demand for new 25 

antibacterial drugs including glycopeptide antibiotics stimulated the development of semisynthetic 26 

derivatives which have better pharmacokinetic profiles or higher activity against resistant 27 

pathogens than those on the market. This resulted in the successful launch of oritavancin, a 28 

chloroeremomycin derivative which is known to have exceptionally high activity along with 29 

concentration dependent bactericidal effect against a wide range of glycopeptide resistant 30 

enterococci, including VanA strains [2]. 31 
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For many years our group has been working on the synthesis of new glycopeptides using 32 

different parent antibiotics as starting compounds, focusing on N-terminal modifications by a wide 33 

range of chemical reactions [3, 4]. So far, the most potent derivatives appear to be those of 34 

teicoplanin [5, 6]. Teicoplanin (Fig. 1) is a mixture of six major (A2-1-5 and A3-1, which lacks the 35 

N-acyl-glucosamine moiety) and minor components, and is used in such form, however the exact 36 

composition suitable for clinical use is more or less strictly stated in pharmacopoeias e. g. Ph. Eur. 37 

9.0. For the sake of synthetic simplicity, we have mainly synthesized lipophilic derivatives of the 38 

teicoplanin pseudoaglycon [5-7], that proved to be highly active even against multiresistant Gram-39 

positive strains. 40 

Recently we have reported on the in vitro antibacterial activity of teicoplanin 41 

pseudoaglycon derivatives bearing various N-terminal side chain moieties against a collection of 42 

vancomycin resistant enterococci [7]. One of the compounds (1, Fig. 2), a triazole derivative, 43 

showed significantly lower MIC values compared to the others, although many of the strains were 44 

not susceptible to either of the compounds.  45 

In the SAR studies of teicoplanin derivatives, highly vancomycin or teicoplanin resistant 46 

enterococci seem to have not been widely investigated. Practically, hardly any of the publications 47 

describing the classical modifications of teicoplanin (e.g. deglycosylation [8], N-alkylation [9], 48 

ester and amide formation [10, 11], a combination of these [12], N-acylation [13], synthesis of 49 

thioureas [14], etc.) mention activities against teicoplanin resistant strains, which might be due to 50 

the less common occurrence of VanA type enterococci at that time. Importantly however, after the 51 

synthesis and in vivo evaluation of several of those compounds, a general finding of the Lepetit 52 

Group was, that derivatives on which the N-acyl-D-glucosamine moiety is present are likely to have 53 

superior pharmacokinetics. 54 

In a later publication by Malabarba et al., the role of the N-acetyl-D-glucosamine moiety in 55 

the antibacterial activity was carefully investigated [15]. Using reductive reaction conditions, they 56 

have managed to selectively remove the N-acetyl-glucosamine, which is not possible by the 57 

traditional acid hydrolysis methods. In that paper, several teicoplanin resistant E. faecalis and E. 58 

faecium strains were used for the antibacterial evaluations. The main finding was, that the selective 59 

removal of the N-acetyl-glucosamine resulted in more active compounds against VRE, thus, the 60 

presence of this sugar is unfavorable for anti-VRE activity. This might still not clearly answer, 61 

whether the classical, gradual acidic deglycosylation (i.e. the removal of N-acyl--D-glucosamine, 62 
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-D-mannose, and the N-acetyl--D-glucosamine, in that order) of a certain derivative yields 63 

compounds with better or weaker in vitro activity against VRE. 64 

The transformation of the terminal carboxyl function of teicoplanin-like antibiotics into 65 

different amides with basic character is known to frequently enhance the antibacterial activity and 66 

in vivo efficacy [11]. The improvement is usually more observable against staphylococci, but the 67 

susceptibility of resistant enterococci to such amide derivatives is also likely to increase, as it was 68 

demonstrated in the case of the structurally related antibiotic A-40926 [16]. 69 

Considering the above facts, by synthesizing several analogues of compound 1, we 70 

investigated the influence of different degrees of deglycosylation, the modification of the C-71 

terminus or both on the antibacterial activity, including the potency against clinical isolates of VRE. 72 

Here, we present the synthesis and the in vitro antibacterial properties of the new derivatives. 73 

 74 

RESULTS AND DISCUSSION 75 

Synthesis 76 

For the modification of the C-terminus 3-(dimethylamino)-1-propylamine was chosen for 77 

amide formation, since this moiety seems to enhance the activity rather consistently for teicoplanin 78 

and related glycopeptides e. g. dalbavancin, the semisynthetic A-40926 derivative [11, 16]. To 79 

slightly increase the lipophilicity, 3-(diethylamino)-1-propylamine was also used for the C-80 

terminal modification (except for teicoplanin A2). 81 

The synthesis began with the preparation of compound 1 by following the procedure we 82 

have already published [6]. From this compound, the two amide analogues 2 and 3 were prepared 83 

by using 3-(dimethylamino)-1-propylamine and 3-(diethylamino)-1-propylamine, respectively and 84 

PyBOP as the peptide coupling reagent (Scheme 1). 85 

Triazole derivatives of the other type of pseudoaglycon (teicoplanin A3-1) and the aglycon 86 

(Scheme 2 and Scheme 3) were prepared as follows: deglycosylation reactions were carried out as 87 

they are described in the literature [9]. The hydrolysis products were then transformed into the 88 

corresponding azido derivatives by the method described earlier [6], and finally the Cu(I)-catalyzed 89 

azide-alkyne cycloaddition (CuAAC) gave triazole derivatives 4 and 7 of teicoplanin A3-1 and 90 

teicoplanin aglycon, respectively. 91 
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Amides 5 and 6 were prepared from derivative 4 by the same method as described for 2 and 92 

3 above. The peptide coupling reaction of the aglycon derivative 7 with the selected amines 93 

successfully yielded amides 8 and 9 (Scheme 4). 94 

Finally, the azido derivative from the teicoplanin mixture was prepared by diazotransfer, 95 

followed by CuAAC to give the triazole derivative 10 (Scheme 5a). After normal phase flash 96 

chromatography and Sephadex LH-20 gel chromatography we analyzed the composition of our 97 

newly obtained teicoplanin mixture by RP-HPLC-ESI-MS (see chromatogram and analysis in 98 

supporting information, page S29).  The main components (~80%) were found to be the expected 99 

triazole derivatives of the A2-2 and A2-3 factors in cca. 2:1 ratio. Smaller amounts of the A2-1, A2-100 

4 and A2-5 factors (cca. 8-10%) and the A3-1 analogue (~5%) (same as compound 4) were also 101 

detected along with small amounts of unidentifiable products. 102 

The amide analogue 11 was prepared from compound 10 as described above for the other 103 

amide derivatives (Scheme 5b).  HPLC-ESI-MS (chromatogram and analysis in supplementary 104 

information, page S32) and HSQC NMR (supplementary information S18, S20) indicated that 105 

compound 11 is mainly (~80%) a mixture of the A2-2 and A2-3 components in a cca. 5:1 ratio, and 106 

contains a small amount of the more apolar components, A2-4 and A2-5 (about 8%). The A3-1 107 

analogue (same as compound 5, was also detected in the mixture in ~6% quantity) Table 1 108 

summarizes the structures of the new derivatives. 109 

It is expected that minor differences between the lipophilicity of A2 components may cause 110 

slight changes in pharmacokinetic parameters. Factor A2-3 is also reported to be somewhat more 111 

active in vitro than the most abundant A2-2, on the other hand, the in vivo efficacy in mice seems 112 

to be the same, reflecting the essentially similar pharmacokinetics[17]. In our study, not much 113 

importance should be ascribed to this, since we have not done in vivo experiments so far. Besides 114 

that, most of the derivatives of teicoplanin A2 reported were isolated as a mixture of A2 factors 1-115 

5. (see e. g. references 9, 11, 13) Probably, neither the small amounts of the A3-1 component 116 

derivatives in our mixtures (10, 11) influence the observed in vitro activities. In relation to this, it 117 

should be noted, that according to Ph. Eur. 9.0, the teicoplanin mixtures used in clinical settings 118 

are allowed to contain as much as 12% of the more polar A3-1 component. 119 

 120 

Table 1 Structures of the prepared teicoplanin analogues 121 
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Compound no. R1 R2 R3 R4 

1 H H 

 
(-D-GlcNAc) 

OH 

2 H H -D-GlcNAc 
 

3 H H -D-GlcNAc 
 

4 H 

 
(-D-Man) 

-D-GlcNAc OH 

5 H -D-Man -D-GlcNAc 
 

6 H -D-Man -D-GlcNAc 
 

7 H H H OH 

8 H H H 
 

9 H H H 
 

10 
 

(N-acyl--D-GlcN) 

R’ =  

8-methylnonanoyl,  

n-decanoyl1 

-D-Man -D-GlcNAc OH 

11 N-acyl--D-GlcN -D-Man -D-GlcNAc 
 

1only the acyl substituents of the most abundant factors (A2-2 and A2-3) are indicated 122 

 123 
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Antibacterial evaluation 124 

A standard panel of eight Gram-positive bacteria was used as a preliminary test including 125 

a vanA positive E. faecalis strain. (Table 2) All tested compounds were active both against the 126 

teicoplanin susceptible and resistant bacteria. However, the most prominent activity against the 127 

VanA E. faecalis was that of compound 3, which was eight times more active than compound 1. 128 

This derivative showed good activity against both teicoplanin resistant S. epidermidis strains as 129 

well, although compound 2 was superior against these bacteria.  130 

Table 2 In vitro antibacterial activity of new teicoplanin derivatives (MIC values in µg/mL) 131 

 Teico

planin 
1 2 3 4 5 6 7 8 9 10 11 

Bacillus subtilis 

ATCC 6633 
0.5 0.6 0.6 0.15 2.5 2.5 1.25 1.25 2.5 2.5 2.5 5 

Staphylococcus 

aureus MSSA 

ATCC 29213 
0.5 0.6 0.3 0.15 2.5 0.6 0.6 1.25 1.25 2.5 2.5 1.25 

Staphylococcus 

aureus MRSA 

ATCC 33591 
0.5 0.3 0.3 0.3 2.5 2.5 1.25 1.25 1.25 2.5 0.6 2.5 

Staphylococcus 

epidermidis 

biofilm forming 

ATCC 35984 

4 0.3 0.07 0.15 1.25 2.5 1.25 0.6 1.25 0.3 2.5 2.5 

Staphylococcus 

epidermidis 

mecA 
16 0.15 0.035 0.07 1.25 2.5 1.25 0.6 1.25 0.3 2.5 5 

Enterococcus 

faecalis ATCC 

29212 (VSE) 
1 0.6 0.15 0.3 1.25 0.3 0.3 0.6 2.5 1.25 0.3 1.25 

Enterococcus 

faecalis ATCC 

51299 vanB 
0.5 1.25 0.6 0.15 2.5 0.6 0.6 0.6 2.5 2.5 2.5 2.5 

Enterococcus 

faecalis 153761 

vanA 
256 1.25 0.6 0.15 2.5 0.6 1.25 2.5 2.5 2.5 2.5 2.5 

MIC: Minimum Inhibitory Concentration ATCC: American Type Culture Collection, MSSA: Methicillin Sensitive 132 
Staphylococcus aureus, MRSA: Methicillin Resistant Staphylococcus aureus, VSE: Vancomycin Sensitive 133 
Enterococcus, mecA: mecA gene expression in Staphylococcus, vanA +: vanA gene positive, vanB +: vanB gene 134 
positive. 1clinical isolate 135 

 136 

Compound 5 with two carbohydrates (-D-mannose and N-acetyl--D-glucosamine) and a 137 

3-(dimethylamino)-1-propyl side chain also displayed high activity against enterococci, but was  138 

less active in the case of MRSA and the coagulase negative staphylococci. The change of the 139 

dimethyl substituent to diethyl (compound 6) seemed to increase the activity only against 140 
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staphylococci. Although the literature indicates, that the derivatives of teicoplanin aglycon usually 141 

display similar or better activity than the analogous pseudoaglycon derivatives, compounds 7-9 142 

were generally less active than the corresponding pseudoaglycons (1-3). The same was true for 143 

derivatives 10 and 11 with all three formerly present carbohydrates. 144 

Six of the compounds (3, 5, 7, 9, 10, 11) were selected for evaluation against clinical isolates 145 

of VanA type VRE listed in Table 3 (19 E. faecium and 1 E. faecalis). All 20 strains tested were 146 

susceptible to the new derivatives. In most cases, the teicoplanin derivatives showed equal, 147 

sometimes better in vitro activity, than oritavancin. The notable superiority of oritavancin was 148 

observed in five cases (entries 14, 15, 17, 18, 19), however with the exception of one strain (entry 149 

17) the MIC values for compound 3 remained under the current MIC breakpoint for teicoplanin. 150 

Compounds 5, 7, 9, 10 and 11 had less consistent activity. By comparing the number of MIC values 151 

obtained above the breakpoint of teicoplanin and vancomycin, the most promising candidate 152 

besides compound 3 seems to be 11, which is a little unexpected considering the lower activity of 153 

this compound seen in the preliminary tests (Table 2.). The other derivatives are essentially similar 154 

in activity against VRE with compound 5 being slightly more active than the rest. 155 

 156 

Table 3 In vitro antibacterial activity of new teicoplanin derivatives against VanA enterococci.  157 

(MIC values in µg/mL) 158 

# Strain Source TEI VAN ORI 3 5 7 9 10 11 

1 E. faecium 8663 bronchus 256 256 2 0.6 2.5 2.5 2.5 2.5 0.6 

2 E. faecium 22285  urine 256 256 2 0.3 1.25 2.5 2.5 1.25 1.25 

3 E. faecium 656 wound 256 256 2 0.6 1.25 1.25 1.25 1.25 1.25 

4 E. faecium 3452 drain 256 256 1 1.25 2.5 2.5 2.5 2.5 1.25 

5 E. faecium 4753 decubitus 256 256 1 0.6 2.5 2.5 2.5 2.5 2.5 

6 E. faecium 11408 drain 256 256 <0,25 0.3 0.3 0.3 0.3 0.3 0.3 

7 E. faecalis 17980 urine 256 256 2 0.15 0.3 0.15 0.6 0.15 0.15 

8 E. faecium 24581 wound 256 256 0.5 0.6 1.25 2.5 2.5 2.5 0.6 

9 E. faecium 25192 haemoculture 256 256 0.5 0.6 2.5 2.5 2.5 2.5 2.5 

10 E. faecium 29007 urine 256 256 0.25 0.3 5 5 2.5 2.5 0.6 

11 E. faecium 30458 cannula 256 256 0.25 0.3 0.3 0.3 5 5 0.3 

12 E. faecium 31482 urine 256 256 0.25 0.3 0.3 0.6 2.5 5 0.3 

13 E. faecium 32445 cannula 256 256 0.5 0.6 0.6 5 0.6 0.3 0.3 

14 E. faecium 35936 urine 256 256 0.25 0.6 0.6 2.5 0.6 0.3 0.3 

15 E. faecium 38276 urine 256 256 0.25 1.5 2.5 5 5 2.5 2.5 

16 E. faecium 38415 wound 256 256 2 1.25 2.5 5 5 2.5 5 

17 E. faecium 38522 decubitus 256 256 1 2.5 5 5 5 5 5 

18 E. faecium 39063 wound 256 256 0.5 1.25 2.5 2.5 2.5 2.5 2.5 

19 E. faecium 39759 drain 256 256 0.25 1.25 5 5 5 5 5 

20 E. faecium 42491 urine 256 256 0.25 0.3 0.3 0.3 0.3 1.25 0.6 

no. of MIC values above the breakpoint for TEI (2 g/mL) 1 10 14 14 13 7 
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no. of MIC values above the breakpoint for VAN (4 g/mL) 0 3 6 5 4 3 

  TEI: teicoplanin, VAN: vancomycin, ORI: oritavancin 159 
 160 

CONCLUSIONS 161 

 Using systematic structural modifications, we could obtain new derivatives of 1 that proved 162 

to have enhanced in vitro activity against VanA enterococci. The MIC values of the new 163 

derivatives, especially compound 3, are comparable to, or in some cases even lower than that of 164 

oritavancin against the tested VRE strains. 165 

Although, in the aforementioned study of the Lepetit group [15] it was concluded, that the 166 

presence of the N-acetyl--D-glucosamine is detrimental to anti-VRE activity, in all of our highly 167 

active compounds, N-acetyl-glucosamine is present. Moreover, on the most active compound 3, 168 

the only carbohydrate moiety is the N-acetyl-D-glucosamine. 169 

Previous findings have clearly demonstrated the influence of the carbohydrate residues of 170 

teicoplanin derivatives on pharmacokinetics. Especially the presence of the N-acyl-glucosamine on 171 

amino acid four is reported to be beneficial [9, 11-13]. Thus, the in vivo potency is likely to be 172 

altered by the presence vs. absence of sugars on the aglycon, regardless of the in vitro activities 173 

observed. Therefore, the reasonable in vitro activity of the fully glycosylated compound 11 besides 174 

pseudoaglycon 3 against VRE presents a good opportunity to compare the pharmacokinetic 175 

differences in the future and decide which would be the better candidate for further modifications. 176 

 177 
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 183 

EXPERIMENTAL 184 

General information 185 

3-(dimethylamino)-1-propylamine and 3-(diethylamino)-1-propylamine were purchased 186 

from Tokyo Chemical Industry Co., Ltd. Triflyl azide was prepared as described elsewhere [5]. 187 
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The vancomycin hydrochloride standard used for the antibacterial evaluations was a gift from 188 

TEVA Pharmaceutical Industries Ltd. (Debrecen, Hungary) and teicoplanin was purchased from 189 

Shaanxi Sciphar Biotechnology Co., Ltd (Xi’an, Shaanxi, China).Oritavancin was purchased from 190 

Xi'an Kerui Biotechnology Co., Ltd. (Xi’an, Shaanxi, China) and checked by MALDI-TOF MS, 191 

1D and 2D NMR experiments. Teicoplanin for synthetic purposes was purchased from Xi'an 192 

Sgonek Biological Technology Co., Ltd. (Weiyang Qu, Xian Shi, Shaanxi Sheng, China). The 193 

antibacterial evaluations were carried out as it was described in our previous publication [7].  194 

TLC was performed on Kieselgel 60 F254 (Merck) with detection either by immersing into 195 

ammonium molybdate-sulfuric acid solution followed by heating or by using Pauly’s reagent for 196 

detection. Flash column chromatography was performed using Silica gel 60 (Merck 0.040-0.063 197 

mm). The 1H NMR (400 MHz) 13C NMR (100 MHz) and 2D NMR spectra were recorded with a 198 

Bruker DRX-400 spectrometer at 298K. Chemical shifts are referenced to Me4Si (0.00 ppm for 1H) 199 

and to the solvent signals (DMSO-d6: 2.50 ppm for 1H, 39.51 ppm for 13C). MALDI-TOF MS 200 

analysis of the compounds was carried out in the positive reflectron mode using a BIFLEX III mass 201 

spectrometer (Bruker, Bremen, Germany) equipped with delayed-ion extraction. 2,5-202 

Dihydroxybenzoic acid (DHB) was used as matrix and CF3COONa as cationizing agent in DMF. 203 

For analytical RP-HPLC a Waters 2695 Separations Module (Waters Corp., Milford, USA) 204 

was used. The separations were carried out on a VDSpher PUR 100 C18-M-SE, 5 m, 150 x 4.6 205 

mm column (Batch# VD173001) at an injection volume of 10 l, using a flow rate of 1.0 mL/min 206 

with a Waters 2996 DAD set at 254 nm and a Bruker MicroTOF-Q type Qq-TOF MS instrument 207 

(Bruker Daltonik, Bremen, Germany) as detectors.  The following system was used for the elutions: 208 

Solvent A: Water : MeCN 9 : 1 + 0.0025%v/v TFA , Solvent B: MeCN. Gradient: 20% B from 0 209 

to 20 min, from 20% B to 80% B from 20-40 min, 80% B from 40 to 50 min, from 80% B to 20% 210 

B from 50 to 51 min. Solvent A: Water : MeCN 9 : 1 + 0.0025%v/v TFA, Solvent B: MeCN. The 211 

MicroTOF-Q mass spectrometer was equipped with an electrospray ion source. The mass 212 

spectrometer was operated in positive ion mode with a capillary voltage of 3.5 kV, an endplate 213 

offset of −500 V, nebulizer pressure of 1.8 bar, and N2 as drying gas with a flow rate of 9.0 l/min 214 

at 200 °C. The mass spectra were recorded by means of a digitizer at a sampling rate of 2 GHz. 215 

The mass spectra were calibrated externally using the exact masses of clusters [(NaTFA)n+TFA]- 216 

from the solution of sodium trifluoroacetate (NaTFA). The spectra were evaluated with the 217 

DataAnalysis 3.4 software from Bruker. Elemental analysis (C, H, N) was performed on an 218 

Elementar Vario MicroCube instrument. 219 
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 220 

Synthesis 221 

Compound 2 222 

Teicoplanin A3-2 derivative 1 [7] (120 mg, 0.075 mmol) was dissolved in dry DMF (1 ml). Then, 223 

19 l (0.15 mmol, 2.0 equiv.) of 3-(dimethylamino)-1-propylamine was added followed by 21 l 224 

(0.15 mmol, 2.0 equiv.) of triethylamine and 47 mg (0.09 mmol, 1.2 equiv.) of PyBOP®. After 225 

stirring the mixture at room temperature for 3 hours, additional 19 l of 3-(dimethylamino)-1-226 

propylamine and 39 mg PyBOP® (1.0 equiv.) were added. The addition of the reagents was 227 

repeated another two times over the course of 6 hours. After TLC indicated sufficient conversion, 228 

75 ml of ethyl acetate was added, and the precipitate was filtered off, then washed with diethyl 229 

ether (75 ml). The residue was dissolved in a mixture of acetonitrile:water =  7:3, silica gel was 230 

added and the mixture was evaporated in vacuo. The product was purified by flash chromatography 231 

using a step gradient starting from acetonitrile to acetonitrile:water = 85:15 (+ 0.1 v/v % AcOH). 232 

The obtained powder was dissolved in MeCN:H2O mixture and the pH was set to ~8 by adding 233 

dilute ammonium hydroxide. The mixture was evaporated to dryness then the product was 234 

dissolved in an acetonitrile:water = 7:3 mixture and purified on a Sephadex LH-20 column in the 235 

same solvent mixture to obtain compound 2 as a white powder. The yield was 45 mg (35%). NMR 236 

data and spectra can be found in the supporting information (Table S1). MALDI-TOF m/z 1715.65 237 

[M + Na]+ (calcd. for C84H78Cl2N12NaO23
+, 1715.46). Analysis Calculated for C84H78Cl2N12O23 C 238 

59.54, H 4.64, N 9.92 Found: C 59.36, H 4.81, N 9.80 239 

 240 

Compound 3 241 

Teicoplanin A3-2 derivative 1 (120 mg, 0.075 mmol) was dissolved in dry DMF (1 ml). Then, 24 242 

l (0.15 mmol, 2.0 equiv.) of 3-(diethylamino)-1-propylamine was added followed by 21 l (0.15 243 

mmol, 2.0 equiv.) of triethylamine and 47 mg (0.09 mmol, 1.2 equiv.) of PyBOP®. After stirring 244 

the mixture at room temperature for 3 hours, additional 24 l of 3-(diethylamino)-1-propylamine 245 

and 39 mg PyBOP® (1.0 equiv.) were added. After 3 hours, 75 ml of ethyl acetate was added, and 246 

the precipitate was filtered off, then washed with diethyl ether (75 ml). The residue was dissolved 247 

in a mixture of acetonitrile:water =  7:3, silica gel was added and the mixture was evaporated in 248 

vacuo. The product was purified by flash chromatography using a step gradient starting from 249 

acetonitrile to acetonitrile:water = 85:15 (+ 0.1 v/v % AcOH). The obtained powder was dissolved 250 



11 
 

in MeCN:H2O mixture and the pH was set to ~8 by adding dilute ammonium hydroxide. The 251 

mixture was evaporated to dryness then the product was dissolved in an acetonitrile:water = 7:3 252 

mixture and purified on a Sephadex LH-20 column in the same solvent mixture to obtain compound 253 

3 as a white powder. Yield: 45 mg (35%). NMR data and spectra can be found in the supporting 254 

information (Table S1). MALDI-TOF m/z 1743.75 [M + Na]+ (calcd. for C86H82Cl2N12NaO23
+

,
 255 

1743.49). Analysis Calculated for C86H82Cl2N12O23 C 59.96, H 4.80, N 9.76 Found: C 59.77, H 256 

5.01, N 9.58. 257 

 258 

Compound 4 259 

Teicoplanin complex (1.5 g, 0.798 mmol) was dissolved in 90% aqueous TFA (15 ml) and the 260 

reaction mixture was stirred at room temperature. After 2 hours, diethyl ether was added (150 ml) 261 

and the precipitate was filtered. The solid residue was washed with an additional 100 ml of diethyl 262 

ether and dried. The compound was purified by flash chromatography using a step gradient starting 263 

from acetonitrile:water = 9:1 to acetonitrile:water 75:25 (+ 0,1 v/v% AcOH). The yield of 264 

teicoplanin A3-1 [8] was 990 mg (78%). This material was dissolved in pyridine (40 ml), and Et3N 265 

was added (1.24 mmol, 2 equiv., 174 l) followed by freshly prepared triflyl azide (1.46 mmol, 266 

2.35 equiv.) in dry pyridine (4 ml). Then an aqueous solution of 15 mg of copper(II)-sulfate 267 

pentahydrate (2 ml) was added and the reaction mixture was stirred for 16 h at room temperature. 268 

After the addition of 300 ml ethyl acetate, a solid precipitated, which was filtered off and washed 269 

with 200 ml of ether, yielding 1.0 g of crude azido teicoplanin A3-1. This material was dissolved 270 

in a mixture of acetonitrile:water = 7:3, silica gel was added, then the mixture was evaporated. The 271 

compound was purified by flash chromatography using a step gradient starting from 100% 272 

acetonitrile to acetonitrile:water 88:12 (+ 0,1 v/v% AcOH). The yield was 540 mg. 150 mg (0.094 273 

mmol) of this compound was dissolved in a tert-butanol:water = 1:1 mixture (2 ml). Then, 21 l 274 

(0.118 mmol, 1.25 equiv.) of 1-(prop-2-yn-1-yloxy)naphthalene was added followed by ca. 3 mg 275 

(~15 mol%) of CuSO4 x 5H2O in 200 l of water and 17 mg (0.096 mmol, 1 equiv.) of L-ascorbic 276 

acid. The mixture was stirred overnight at room temperature. After the addition of silica gel, 277 

solvents were evaporated, and the product was purified by flash chromatography using a step 278 

gradient starting from acetonitrile to acetonitrile:water = 87:13 yielding 55 mg (14% for three steps) 279 

of the desired compound. NMR data and spectra can be found in the supporting information (Table 280 
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S1). MALDI-TOF  m/z 1793.60 [M + Na]+ (calcd. for C85H76Cl2N10NaO29
+, 1793.40). Analysis 281 

Calculated for C85H76Cl2N10O29 C 57.60, H 4.32, N 7.90 Found: C 57.35, H 4.58, N 7.72. 282 

 283 

Compound 5 284 

Compound 4 (130 mg, 0.073 mmol) was dissolved in dry DMF (1 ml). Then, 19 l (0.15 mmol, 285 

2.0 equiv.) of 3-(dimethylamino)-1-propylamine was added followed by 21 l (0.15 mmol, 2.0 286 

equiv.) of triethylamine and 47 mg (0.09 mmol, 1.2 equiv.) of PyBOP®. After stirring the mixture 287 

at room temperature for 3 hours, additional 19 l of 3-(dimethylamino)-1-propylamine and 39 mg 288 

PyBOP® (1.0 equiv.) were added. After 3 hours, 75 ml of ethyl acetate was added, and the 289 

precipitate was filtered off, then washed with diethyl ether (75 ml). The residue was dissolved in a 290 

mixture of acetonitrile:water =  7:3, silica gel was added and the mixture was evaporated in vacuo. 291 

The product was purified by flash chromatography using a step gradient starting from acetonitrile 292 

to acetonitrile:water = 78:22 (+ 0,1 v/v % AcOH) yielding 41 mg (30%) of the desired compound. 293 

NMR data and spectra can be found in the supporting information (Table S1). MALDI-TOF m/z 294 

1877.82 [M + Na]+ (calcd. for C90H88Cl2N12NaO28
+, 1877.51). Analysis Calculated for 295 

C90H88Cl2N12O28 C 58.22, H 4.78, N 9.05 Found: C 58.04, H 5.03, N 8.87. 296 

 297 

Compound 6 298 

Compound 4 (88 mg, 0.05 mmol) was dissolved in dry DMF (1 ml). Then, 14 l (0.1 mmol, 2.0 299 

equiv.) of triethylamine was added followed by 78 l (0.5 mmol, 10 equiv.) of 3-(diethylamino)-300 

1-propylamine and 31 mg (0.06 mmol, 1.2 equiv.) of PyBOP®. After stirring the mixture at room 301 

temperature for 1 hour, additional 10 mg (0.4 equiv.) of PyBOP® was added. After another hour, 5 302 

mg (0.2 equiv.) of PyBOP® was added and in 60 minutes the starting material was consumed 303 

(checked by TLC). Ethyl acetate (75 ml) was added, and the precipitate was filtered off and washed 304 

with ether (75 ml). The residue was dissolved in a mixture of acetonitrile:water =  7:3, silica gel 305 

was added and the mixture was evaporated in vacuo. The product was purified by flash 306 

chromatography using a step gradient starting from acetonitrile to acetonitrile:water = 78:22 (+ 0,1 307 

v/v % AcOH) yielding 43 mg (46%) of the desired compound. NMR data and spectra can be found 308 

in the supporting information (Table S1). MALDI-TOF m/z 1883.45 [M + H]+ (calcd. for 309 

C92H93Cl2N12O28
+, 1883.56). Analysis Calculated for C92H92Cl2N12O28 C 58.63, H 4.92, N 8.92 310 

Found: C 58.48, H 5.20, N 8.76 311 
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 312 

Compound 7 313 

4.00 g (2.13 mmol) of teicoplanin complex was heated in 90% aqueous TFA for 6 hours then 314 

worked up as it is published in the literature [8], followed by treatment with TfN3 as described 315 

earlier[5]. After chromatographic purification, 450 mg (0.367 mmol) of azido teicoplanin aglycon 316 

was obtained. This material was dissolved in a tert-butanol:water = 1:1 mixture (6 ml). Then, 83 317 

l (0.46 mmol, 1.25 equiv.) of 1-(prop-2-yn-1-yloxy)naphthalene was added followed by ca. 14 318 

mg (~15 mol%) of CuSO4 x 5H2O in 200 l of water and 65 mg (0.096 mmol, 1.0 equiv.) of L-319 

ascorbic acid in 500 l of water. A few drops of acetonitrile was added to effect homogenity. The 320 

mixture was stirred overnight at room temperature. The reaction mixture was concentrated to a 321 

small volume and ethyl acetate was added. The precipitate was filtered off and washed with ether. 322 

The solid was dissolved in a minimum amount of acetonitrile:water = 7:3 and was loaded on a 323 

column containing Sephadex LH-20 in the same solvent mixture. Fractions were checked by TLC 324 

(cellulose, eluent = nPrOH:cc.NH4OH:H2O = 7:3:2). Fractions containing the desired compound 325 

were pooled and concentrated to a small volume. To this, silica gel was added and the mixture was 326 

evaporated to dryness. Flash chromatography was used for further purification using a step gradient 327 

starting from acetonitrile to acetonitrile:water 93:7, yielding 255 mg (49% from azido teicoplanin 328 

aglycon) of the title compound. NMR data and spectra can be found in the supporting information 329 

(Table S1). MALDI-TOF m/z 1428.09 [M + Na]+ (calcd. for C71H53Cl2N9NaO19
+, 1428.27). 330 

Analysis Calculated for C71H53Cl2N9O19 C 60.60, H 3.80, N 8.96 Found: C 60.32, H 4.04, N 8.79 331 

 332 

Compound 8 333 

Compound 7 (125 mg, 0.09 mmol) was dissolved in DMF (1.5 mL). 2 equiv. of Et3N (0.178 mmol, 334 

24.8 L) was added, then N,N-dimethyl-1,3-propanediamine (3.0 equiv., 0.27 mmol, 34 L) 335 

followed by PyBOP (1.2 equiv., 55 mg). After 2 hours, EtOAc was added, the precipitate filtered 336 

and washed with diethyl ether. The crude product was dissolved in MeCN:H2O 1:1 mixture and 337 

evaporated to dryness after the addition of a small amount of silica gel. The product was purified 338 

by flash column chromatography using step gradient elution (MeCN:H2O = 95:5, 92:8, 9:1, 87:13 339 

+ 0.1% V/V AcOH) yielding the title compound (58 mg, 44%) as a white powder. NMR data and 340 

spectra can be found in the supporting information (Table S1). MALDI-TOF m/z 1512.18 [M + 341 
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Na]+ (calcd. for C76H65Cl2N11NaO18
+, 1512.38). Analysis Calculated for C76H65Cl2N11O18 C 61.21, 342 

H 4.39, N 10.33 Found: C 60.96, H 4.58, N 10.10 343 

 344 

Compound 9 345 

Compound 7 (100 mg, 0.071 mmol) was dissolved in DMF (1.3 mL). 2 equiv. of Et3N (0.142 346 

mmol, 20 L) was added, then N,N-diethyl-1,3-propanediamine (3.0 equiv., 0.213 mmol, 34 L) 347 

followed by PyBOP (1.2 equiv., 44 mg). After 2 hours, EtOAc was added, the precipitate filtered 348 

and washed with diethyl ether. The crude product was dissolved in MeCN:H2O 1:1 mixture and 349 

evaporated to dryness after the addition of a small amount of silica gel. The product was purified 350 

by flash column chromatography using step gradient elution (MeCN:H2O = 95:5, 92:8, 9:1, 88:12 351 

+ 0.1% V/V AcOH) yielding the title compound (39 mg, 36%) as a white powder. NMR data and 352 

spectra can be found in the supporting information (Table S1). MALDI-TOF m/z 1540.18 [M + 353 

Na]+ (calcd. for C78H69Cl2N11NaO18
+, 1540.41). Analysis Calculated for C78H69Cl2N11O18 C 61.66, 354 

H 4.58, N 10.14 Found: C 61.40, H 4.86, N 9.82 355 

 356 

Compound 10 357 

A solution of fresh TfN3 was prepared using the following amounts: 2 mL pyridine (solvent), 134 358 

L Tf2O (0.8 mmol, 2.35 equiv.) and 65 mg NaN3 (1.0 mmol). Teicoplanin complex (640 mg, cca. 359 

0.34 mmol) was suspended in 15 mL pyridine. 2.0 equiv. of Et3N (95 L) was added followed by 360 

the TfN3 reagent, and CuSO4 x 5H2O (10 mg) dissolved in 1.0 mL water. The reaction mixture 361 

became green and homogenous. After stirring overnight at room temperature, EtOAc was added, 362 

the precipitate was filtered and washed with diethyl ether, acetonitrile, then ether again. The crude 363 

product was dissolved in MeOH, some silica gel was added and the mixture was evaporated to 364 

dryness. The product was purified by flash chromatography, using a step gradient elution starting 365 

from 100% MeCN, followed by MeCN : H2O = 9:1, 85:15, 8:2, then 75:25 yielding azido 366 

teicoplanin A2 (400 mg, 0.21 mmol) which was dissolved in a mixture of t-BuOH:H2O =1:1 (3 367 

mL). -naphthyl propargyl ether (48 mg, 1.25 equiv.) was added. Then, a 100 l aqueous solution 368 

of CuSO4 x 5 H2O (7 mg, ca. 15 mol%) was added followed by 1.0 equiv. of L-ascorbic acid (37 369 

mg) in 100 l of water. The solution was stirred at room temp. for about 16 hours, after which 370 

silica gel was added, and the mixture was evaporated to dryness. The product was purified by flash 371 

column chromatography using a step gradient starting with 100% MeCN to MeCN:H2O 88:12 372 
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(+0.1 v/v % AcOH). After evaporating the solvents, the product was dissolved in DMSO (1.5 mL) 373 

and was filtered through a small piece of cotton. To the obtained clear solution EtOAc was added. 374 

The precipitated product was filtered off and washed with diethyl ether several times. The yield 375 

was 210 mg (48%). NMR data, spectra and HPLC chromatogram can be found in the supporting 376 

information. MS (HPLC-ESI-MS) m/z 2088.616 [M + H]+ (component A2-2) (2088.629 calcd. for 377 

C101H106Cl2N11
+). See supplementary information for further analysis. 378 

 379 

Compound 11 380 

Compound 10 (80 mg, 0.038 mmol) was dissolved in a mixture of DMF:DMSO =1:1 (1 ml) and 2 381 

equiv. of Et3N was added (0.076 mmol, 10.6  l) followed by 2.5 equiv. of N,N-dimethyl-1,3-382 

propanediamine0.095 mmol, l). then 1.0 equiv. of PyBOP was added (0.038 mmol, 20 mg) 383 

and the solution was stirred for 3 hours, after which the starting material was consumed (as 384 

indicated by TLC). Diethyl ether was added, and the resulting precipitate was filtered off and 385 

washed several times with ether. The crude product was dissolved in a small of amount of 386 

MeCN:H2O 1:1 mixture, n-butanol was added followed by silica gel. The mixture was evaporated 387 

to dryness. Flash chromatography was used for purification (step gradient from MeCN:H2O 95:5 388 

(+0.1 v/v% AcOH) to MeCN:H2O 8:2 (+0.1 v/v% AcOH). The obtained powder was dissolved in 389 

MeCN:H2O mixture and the pH was set to ~8 by adding dilute ammonium hydroxide. The mixture 390 

was evaporated to dryness then the product was dissolved in an acetonitrile:water = 7:3 mixture 391 

and purified on a Sephadex LH-20 column in the same solvent mixture, yielding compound 11 (26 392 

mg, 32 %) as a white powder. NMR data, spectra and HPLC-ESI-MS analysis can be found in the 393 

supporting information. MS (HPLC-ESI-MS) m/z 2172.738 [M + Na]+ (component A2-2) 394 

(2172.735 calcd. for C106H118Cl2N13O33
+). See supplementary information for further analysis. 395 

 396 
eSupplementary information is available at The Journal of Antibiotics website. 397 
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