
1 

 

COMPENSATION EFFECT OF BACTERIUM CONTAINING BIOFERTILIZER ON THE 

GROWTH OF CUCUMIS SATIVUS L. UNDER AL-STRESS CONDITIONS  

 

BRIGITTA TÓTH
1
, LÁSZLÓ LÉVAI

1
, BÉLA KOVÁCS

2
, MÁRIA BORBÉLYNÉ VARGA 

3
 and SZILVIA VERES

1
 

1
Department of Botany and Crop Physiology, Institute of Plant Sciences, Centre for 

Agricultural and Applied Economic Sciences, University of Debrecen, Debrecen, 4032 

Böszörményi str.138. Hungary 

2
Institute of Food Science, Quality Assurance and Microbiology, Centre for Agricultural and 

Applied Economic Sciences, University of Debrecen, 4032 Debrecen, Böszörményi str. 138 

Hungary  

3
Agricultural Laboratory Centre, Centre for Agricultural and Applied Economic Sciences, 

University of Debrecen, 4032 Debrecen, Böszörményi str. 138. Hungary, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.agr.unideb.hu/etk/xsearch.php?optLang=en&lstDep=22321


2 

 

Bacterium containing fertilizer and Al-stress 

 

Abstracts 

Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. 

However, their applicability depends on several environmental parameters. The aim of our 

study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of 

cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different 

responses to Al stress of cucumber growth parameters were examined in terms of root 

elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass 

accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of 

leaves and root. The applied bacteria containing biofertilizer contains Azotobacter 

chroococcum and Bacillus megaterium.  

The dry weights of cucumber shoots and roots decreased in line with the increasing Al 

concentration. Due to different Al treatments (10
-3

M, 10
-4

M) higher Al concentration was 

observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This 

high Al content of the leaves decreased below the control value when biofertilizer was 

applied. In the case of the roots the additional biofertilizer treatments compensated the effect 

of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the 

biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments 

in comparison to the control. The living bacteria containing fertilizer also had a modifying 

effect. The root/shoot ratio increased at the 10
-4

 M Al2(SO4)2 + biofertilizer and 10
-4

 M 

Al(NO3)3+ biofertilizer treatments compared to the control and Al-treatments. 

According to our results the biofertilizer is an alternative nutrient supply for replacing 

chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also
 

offered under Al polluted environmental conditions. Although, the nutrient solution is a clean 

system where we can examine the main processes without other effects of natural soils. The 

soil can modify the results, e.g. the soil born microorganisms affect on nutrient availability, 

and also can modify the harmful effects of different heavy metals. The understanding of basic 

processes will help us to know more about the soil behaviour. 
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 INTRODUCTION 

 

Our environment is more or less polluted with different heavy metals which have an effect on 

agricultural productivity. The intensity of pollution depends on locality and the use of land. It 

is well-known that the contamination is higher in the surroundings of mining territories than 

other areas. Therefore, these are the primary sources of the wider spread of different polluting 

agents.  

Although numerous metals are essential for the normal functioning of all organisms, no 

biochemical role has been assigned to aluminium thus far. However, this trivalent element, 

which is the most widespread metal in the crust of the earth, has attracted significant attention 

due to its toxic influence on most living systems [9]. 

Some heavy metal-like ions are constituents of the upper soil layer in large amounts, as is the 

Al. The lowering soil pH makes these compounds more soluble [26]. In crop production, 

aluminium toxicity is one of the major growth limiting factors in acidic soils.  

The toxic effects of aluminium are primarily root-related [34, 35]. The root system becomes 

stubby as a result of inhibition of elongation of the main axis and lateral roots [23]. The 

severity of inhibition of root growth is an acceptable indicator of genotypic differences in 

aluminium toxicity [12, 13]. The aluminium toxicity often expressed simultaneously in two 

ways, namely induced deficiency of mineral nutrients, and inhibition in root elongation. 

Inhibition of root growth by aluminium should further increase the risk of phosphorus 

deficiency; aluminium toxicity may inhibit the shoot growth by limiting supply of nutrients 

and water by poorer subsoil penetration or lower root hydraulic conductivity [24]. 

Aluminium interferes with cell division in root tips and lateral roots, increases cell wall 

rigidity by cross linking pectins, reduces DNA replication by increasing the rigidity of the 

DNA double helix, fixes phosphorous in less available forms in soils and on root surfaces, 

decreases root respiration, interferes with enzyme activity governing sugar phosphorylation 
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and the deposition of cell wall polysaccharides and the uptake, transport and also use of 

several essential nutrients (Ca, Mg, K, P and Fe) [15]. Excess Al even induces iron deficiency 

symptoms in rice (Oryza sativa L.), sorghum and wheat [4, 16]. Pereira et al. [31] and 

Corrales et al. [6] examined the effect of Al on the growth of Cucumis sativus, such as one of 

the Al-sensitive plants.   

Many studies have examined the effect of different bacteria on the compensation of Al-stress 

[20, 29, 18]. The use of plant growth promoting rhizobacteria (PGPR) including phosphate 

and potassium solubilising bacteria as a biofertilizer was suggested as a sustainable solution to 

improve plant nutrition and production [36]. These bacteria vary in their mechanisms of plant 

growth promotion but generally influence growth via P solubilisation, nutrient uptake 

enhancement, or plant growth hormone production [32]. Bacteria are common inhabitants of 

metal-contaminated sites, where they accumulate and immobilize heavy metals. The cell walls 

of gram-positive bacteria have strong metal-binding properties [2]. Some bacteria also 

produce extracellular polysaccharide sheaths that bind metals [27]. Binding of the siderophore 

to a heavy metal dramatically changes the free metal concentration. The effect on metal 

uptake and toxicity are dependent on this siderophore-metal complex being recognized by an 

uptake receptor [5]. Siderophore production is used in situ as a protective mechanism against 

heavy metal toxicity [11]. 

The aim of this study was to examine the compensation effect of living bacteria containing 

fertilizer which contains two bacteria Azotobacter croccoccum and Bacillus megaterium 

under Al stress conditions. Our hypothesis was that living bacteria containing fertilizer 

depending on the applied Al concentration could compensate the effect of different Al-

treatments. Special interest was given the changes in dry matter accumulation of root and 

shoot and Al uptake, as well as to the risk associated with the increase in the content of Al.  
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 MATERIALS AND METHODS 

 

The experimental plant was cucumber (Cucumis sativus L. cv. Delicates). The seeds were 

soaked in 10 mM CaSO4 for 4 hours after sterilization and then germinated on moistened 

filter paper at 25 
o
C.  The seedlings were transferred to continuously aerated nutrient solution 

of the following composition: 2.0 mM Ca(NO3)2, 0.7 mM K2SO4, 0.5 mM MgSO4, 0.1 mM 

KH2PO4, 0.1 mM KCl, 1µM H3BO3, 1µM MnSO4, 10 µM ZnSO4, 0.25 µM CuSO4, 0.01 µM 

(NH4)6Mo7O24. Iron was added to the nutrient solution as Fe(III)-EDTA at a concentration of 

10 μM. The pH of nutrient solution was 6.2. 

The seedlings were grown under controlled environmental conditions (light/dark regime 

10/14 h at 24/20
o
C, relative humidity of 65–70% and a photosynthetic photon flux of 300 

μmol m
-2 

s
-1

) in growth chamber. The volume of experiment pots were 1.0 L, with one pot 

containing 1 plant.  

The dry matter content was measured by thermogravimetric method. The samples were dried 

for two days at 85
 o

C. The dry matter of the shoots and roots of three plants was measured. 

The root/shoot ratio was calculated from the dry weight. Root length was measured by 

placing the root on covered millimetre paper. The number of repetition was three. The root 

length was measured in the 20
th

, 30
th

, 40
th

, 50
th

, 60
th

 and 70
th

 hours of the experiment. 

The element (Al, Fe, Mn, Zn) contents of plants were determined using an OPTIMA 

3300DV ICP-OA spectrophotometer. Ten ml HNO3 (65v/v%) were added to each gram of 

the samples for overnight incubation. Then, the samples were pre-digested for 30 min at 

60°C. Finally, 3 ml H2O2 (30m/m%) were added for a 90 min. boiling at 120°C. The solution 

were filled up to 50 ml, homogenized and filtered through MN 640 W filter paper. The 

number of laboratory readings for ICP was the mean of three samples.                                                                                                                                   

The relative chlorophyll contents (Spad index) of the 2
nd

 leaves of the cucumber were 

measured (n=14) using a Chlorophyll Meter, SPAD - 502 (Minolta). 



6 

 

The applied biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. Both 

bacteria play an important role in nature.  The Azotobacter chroococcum bounds atmospheric 

and extracting nitrogen in the form of ammonium ions in the soil. Bacillus megaterium is a 

phosphate solubilising bacteria having capability of solubilising insoluble phosphate in the 

soil and make them available to the plants. The dose of biofertilizer was 1ml dm
-3

. The 

nutrient solution was completed with Al2(SO4)3, Al(NO3)3, AlCl3 (10
-4

M and 10
-3

 M) when 

Al-stress was examined. The Al-compounds and biofertilizer were added to the nutrient 

solution at the beginning of the experiments and at every nutrient solution change.  The 

experiment was finished on the 23
rd

 day of experiment.   

Microsoft Office Excel 2003 and Sigma Plot 8.0 version were used to the statistical analysis.  

 

RESULTS 

 

 

Usually, plant growth is the most sensitive to heavy metals because of the complexity of the 

physiological processes involved. First, the toxic effect of Al was observed at the Al2(SO4)3 

treatments (Table 1). The dry weights of cucumber shoots and roots decreased under Al 

treatments. The effect of Al2(SO4)3  on the dry weight depends on the applied concentration.  

The lower Al concentration caused moderate dry weight reduction both in the shoot and root. 

The reduction effect was higher in the case of root (14 %) than in the shoot (6 %). The 10
-3

M 

Al treatments resulted in less (40-50 %) dry matter production, than 10
-4

M Al treatment 

compared to the control values. The root was more sensitive to the higher Al concentration, as 

the same affect was experienced in the case of lower Al concentration. The 10
-3

M Al 

treatments caused a more than 50 % decline in the dry weight of the root. As we can see in 

Table 1, the microorganism containing nutrient solution moderated the toxic effect of Al. The 

additional applied living bacteria containing fertilizer significantly increased the dry matter of 

cucumber roots compared to the simple Al treatment. The dry matter of shoots and roots 
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increased with 40-50% at the 10
-4

 Al2(SO4)3 treatment due to additional biofertilizer 

treatments. In the case of 10
-3

M Al2(SO4)3 the biofertilizer treatment did not induce any 

changes.  

Examining the favourable impact of biofertilizer on the uptake of Al and other elements, the 

contents of elements both in the shoot and root were measured during Al-stress (Table 2 and 

Table 3). The amounts of Fe, Mn and Zn were analyzed, because they have very important 

role in the redox, detoxification and energy transformation processes. Due to two Al 

treatments, higher Al concentration was observed both in the shoot and root, while the 

amounts of other elements (Fe, Mn, Zn) decreased. The Al-content of shoot and root 

decreased when living bacteria containing fertilizer was added to the Al-treatments and in the 

case of the shoots, it declined below the control value. The contents of Fe, Mn and Zn 

increased during the living bacteria containing fertilizer treatment compared to the single Al-

treatment. The highest amounts of Al and Fe remained in the roots, as a consequence of the 

retarded root-to-shoot transport.   

The element composition of leaves may influence chlorophyll contents. The toxicity and 

growth inhibition effect of Al is related to decreased photosynthesis and decreased organic 

matter production. The relative chlorophyll contents of cucumber leaves can be seen in Table 

4. The relative chlorophyll content decreased by 9-14 % under Al-stress on the17
th

 day of 

treatment. This decrease of relative chlorophyll contents was also experienced compared to 

the control value when biofertilizer was applied on the 17
th

 day of the experiments. In older 

plants (23
rd

 day), the relative chlorophyll content was significantly higher when biofertilizer 

was added to the Al treated plant.  

The effect of the three Al compounds (Al2(SO4)3, Al(NO3)3, AlCl3) in 10
-3

M and 10
-4

M 

concentration was examined on the root growth (Figure 1). In all the cases the impact of 

living bacteria-containing fertilizer was investigated.  
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The root growth decreased for all Al treatments depending on concentration. The inhibition of 

root growth was higher at higher Al concentrations.  There were small differences between 

the different Al-form treatments at the 10
-3

 M concentration but at the 10
-4

 M concentration 

the order is: Al2(SO4)3 > Al(NO3)3 > AlCl3. The root length was longer with 25 % in the 20
th 

hour of the experiment compared to the control roots when living bacteria-containing 

fertilizer was applied. Moreover, the biofertilizer could compensate the effect of Al2(SO4)3, 

Al(NO3)3 and AlCl3 when 10
-4

M concentration were applied, while this effect was not 

pronounced at higher concentrations. The living bacteria based fertilizer had only a slight 

compensation effect when 10
-3

M Al(NO3)3 and Al2(SO4)3 treatments were applied. The 

biofertilizer could not compensate the effect of 10
-3

M AlCl3. Moreover, the root growth 

decreased when living bacteria-containing fertilizer was applied, in comparison to the AlCl3 

treatment.  

The root/shoot ratio was measured when the first foliage-leaf appeared (4
th

 day) and on the 

14
th

 days of the experiment, when the second foliage-leaf was full developed. The root/shoot 

ratio was decreased due to the Al-treatments in comparison to the control (Figure 2). The 

living bacteria-containing fertilizer modified the root/shoot ratio when 10
-4

M Al2(SO4)3 and 

10
-4

M Al(NO3)3 treatments were applied. In these cases, the root/shoot ratio was higher than 

the control, even when only living bacteria-containing fertilizer was used. The biofertilizer 

could compensate the effect of 10
-3

 M Al2(SO4)3 because the root/shoot ratio was higher than 

without biofertilizer. On the other hand, the biofertilizer could not compensate the effect of 

10
-3

M Al(NO3)3 and AlCl3. 

 

DISCUSSION 

 

 

Several previous studies have been published about Al toxicity, its physiological and 

biochemical mechanisms. It is known, that complex forming ability of organic acids (released 
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by roots, or microorganisms) reduces Al-toxicity [3, 19]. Useful soil microorganisms can 

exudates organic acids, which may have a role in the counteraction of toxic Al.  

Our work presents, results about the Al and living bacteria-containing fertilizer single and 

combined effect on cucumber dry matter production.  The dry weights of cucumber shoots 

and roots decreased in line with the increasing Al concentration. Pereira et al. [31] also 

observed in vivo that aluminium strongly interferes with Cucumis sativus growth. The effect 

on plant growth is a very complex process and the Al-induced inhibition of growth can have 

multiple causes. The exclusion mechanism is primarily mediated by Al-activated exudation of 

organic acids, such as malate, citrate or oxalate from the root apex and the site of Al toxicity 

[25]. In the case of higher Al concentration, the root damage was very pronounced. According 

to previous studies [34, 35], the toxic effects of aluminium are primarily root-related. 

Additional biofertilizer treatment can compensate the Al toxicity effect, thus producing higher 

dry matter results. Organic acids excreted by microorganisms of biofertilizer, chelate Al in the 

rhizosphere reducing the concentration and toxicity of Al at growing root tip [25]. One of the 

applied microorganisms is a Bacillus megaterium, which has a phosphate solubilising 

capability. According to Pellet et al. [30], phosphate has also been identified as a form of root 

exudates which has significant role in cation chelation, and therefore it can also be considered 

a potential source in Al exclusion from the root tip.  

Due to two Al treatments, higher Al concentration was observed both in the shoot and root, 

while the amounts of other elements (Fe, Mn and Zn) decreased. The content of Al decreased 

when living bacteria containing fertilizer was applied in all the cases, and it remained below 

the control value. In Al sensitive plants – such as cucumber – Al was considerably deposited 

in the root-tips; the root elongation was retarded and the top growth was inhibited. Nalewajko 

and Paul [28] demonstrated that the Al (250 mg l
-1

) significantly decreased the microbial 

phosphate uptake in water samples from two Canadian lakes. DeGraaf et al. [7] stated that the 
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more Al concentration was given to the nutrient solution, the highest the Al concentration was 

in the plants.   

There is no convincing evidence that Al is an essential mineral element even for accumulator 

species. However, there are many reports on the beneficial effects of low Al concentrations in 

the soil or nutrient solution on plant growth [14]. Because of the similarity in size and change 

between Al
3+

 and Fe
3+

, aluminium readily forms complexes with siderophores [17], and these 

aluminium-sideophore complexes can be transported into the cell [8]. Bacillus megaterium 

provides an excellent system to study the effects of such siderophore formation and transport 

on heavy metal toxicity [20]. 

The relative chlorophyll content decreased during Al-stress and the biofertilizer application 

could not compensate this effect over a short time period. According to Fagerai et al. [10], the 

plant under Al-stress, Cucumis sativus, showed a significant decrease in the amount of 

organic matter, indicating a decrease in photosynthesis, which could be the consequence of 

the reduction in chlorophyll content. Moreover, Barker [1] showed that aluminium directly 

affects the photosynthesis rate and indirectly affects the synthesis of enzymes, pigments and 

essential cofactors for the process. In case of high amounts of organic acids release by 

microorganisms the nutrients will be more available in the rhizosphere therefore the roots 

should not release much organic compounds therefore the dry matter loss will be reduced.  

The root/shoot ratio was decreased due to the Al-treatments in comparison to the control. 

Over the inhibition of root growth under aluminium toxication, other obvious symptoms were 

detected: lateral roots are getting brown and thinner (21, 33 also based on our experiences). 

The living bacteria-containing fertilizer modified the root/shoot ratio when 10
-4

 M Al2(SO4)3 

and 10
-4

 M Al(NO3)3 treatments were applied. 

The shoot and root growth ratio varies widely between plant species during their ontogenesis 

and is strongly modified by external factors. When parts of the shoots are removed, plants 
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tend to compensate this by lower root growth and returning to a ratio characteristic for the 

species. However, there is some controversy as to whether this reflects functional equilibrium 

between roots and shoots [22]. The root/shoot ratio helps to assess the overall health of plants. 

The normal root/shoot ratio for each is the control. Any changes from this level would be an 

indication of a change in the overall health of plants.  
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Tables 

Table 1. Effects of different concentrations on the dry weight of cucumber shoots and roots 

(n=3± s.e.) (g plant
-1

) Significant differences compared to the control: *p<0.05, and Al 

treatment to biofertilizer application: 
a
p<0.05 

 

Treatments    Dry weight of shoot         Dry weight of root 

Control           0.17± 0.07   0.15± 0.01 

Biofertilizer           0.31± 0.07*   0.21± 0.07* 

10
-4

 M Al2(SO4)3             0.16± 0.06   0.13± 0.06 

10
-4

 M Al2(SO4)3+biofertilizer        0.23± 0.06*
a
   0.19± 0.04*

a
  

10
-3

 M Al2(SO4)3             0.10± 0.09   0.07± 0.01* 

10
-3

 M Al2(SO4)3+biofertilizer        0.11± 0.04   0.05± 0.01* 
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Table 2. Concentration of examined elements in the second leaves of cucumber under Al-

stress and treated using bio-fertilizer (mg kg
-1

) n=3± s.e Significant differences compared to 

the control: *p<0.05;  

      Treatments 

Elements   Control         10
-4

 Al2(SO4)3               Al+Biofertilizer 

Al   24.20± 1.7  68.40± 3.8*  23.90± 3.0 

Fe            194.29± 8.5           139.10± 9.3*           143.50± 10.1 

Mn   61.30± 4.7  17.60± 1.8*  51.90± 6.1 

Zn   75.60± 5.8  52.10± 4.7*  67.80± 4.9 
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Table 3. Concentration of examined elements in the roots of cucumber under Al-stress and 

treated using biofertilizer (mg kg
-1

) n=3± s.e Significant differences compared to the control: 

*p<0.05; **p<0.01;***p<0.001.   

       Treatments 

Elements    Control            10
-4

 Al2(SO4)3           Al+Biofertilizer 

Al   131.7± 7.5  8057.1± 564*** 4577.0± 325*** 

Fe           1046.8± 95.7    974.3± 87.0  1140.8± 65.1 

Mn    30.9± 1.1        8.7± 0.01**     23.7± 1.2 

Zn    40.1± 1.7      34.7± 1.8*      66.1± 5.1*  



18 

 

Table 4. Effect of different treatments on the relative chlorophyll content (Spad index) in the 

second leaves of cucumber. n=15± s.e. Significant differences compared to the control: 

*p<0.05; and Al treatment to biofertilizer application: 
a
p<0.05 

 

Treatments    17
th

 day  20
th

 day   23
rd

 day 

Control             48.9± 0.70           44.2± 0.92  38.8± 1.10 

10
-4

 Al2(SO4)3             44.8± 1.55           44.3± 1.60  36.6± 1.05 

10
-4

 Al2(SO4)3 + Biofertilizer          42.3± 0.81           40.8± 1.19*  40.0± 1.01*
a
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Figure 1. Effect of different Al compound (Al2(SO4)3, Al(NO3)3, AlCl3) and biofertilizer on 

the growth of cucumber roots (mm). All data are significantly different from the control at the 

p<0.05 level. Values represented mean ±s.e.  

Marks: A: Control, Biofertilizer,  Al2(SO4)
3
 10

-4
 M+biofertilizer,  

Al2(SO4)
3
 10

-4
 M,  Al2(SO4)

3
 10

-3
 M+biofertilizer,  Al2(SO4)

3
 10

-3
 M. 

B: A: Control, Bio-fertilizer,  Al(NO3)3 10
-4

 M+biofertilizer,  . 

Al(NO3)3 10
-4

 M,  Al(NO3)3 10
-3

 M+biofertilizer,   Al(NO3)3 10
-3

 M. 

C: Control, Biofertilizer,  AlCl3 10
-4

 M +biofertilizer  AlCl3 10
-4

 M, 

  AlCl3 10
-3

 M +biofertilizer,   AlCl3 10
-3

 M. 
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Figure 2. Effect of different Al compound (Al2(SO4)3, Al(NO3)3, AlCl3) and biofertilizer on 

the root/shoot ratio of cucumber. Significant differences compared to the control: *p<0.05; 

**p<0.01;***p<0.001, and Al treatment to biofertilizer application: 
b
p<0.01. Marks: A : 1. 

Control, 2. Biofertilizer, 3. Al2(SO4)
3
 10

-4
 M, 4. Al2(SO4)

3
 10

-4
 M+biofertilizer, 5. Al2(SO4)

3
 

10
-3

 M, 6. Al2(SO4)
3
 10

-3
 M+biofertilizer. B: 1. Control, 2. Biofertilizer, 3. Al(NO3)3 10

-4
 M, 

4. Al(NO3)3 10
-4

 M+biofertilizer, 5. Al(NO3)3 10
-3

 M, 6. Al(NO3)3 10
-3

 M+biofertilizer. C: 1. 

Control, 2. Biofertilizer, 3. AlCl3 10
-4

 M, 4. AlCl3 10
-4

 M+biofertilizer, 5. AlCl3 10
-3

 M, 6. 

AlCl3 10
-3

 M+biofertilizer. ,  

 

 

 

 

 

 

 

 


