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a b s t r a c t 

In this study, we attempted to develop a method for accelerating parameter optimization of an object 

detector ensemble over large image datasets by using simulated annealing. We propose a novel sampling- 

based evaluation method that considers the minimum portion of the dataset required in each iteration to 

maintain solution quality. This approach can be considered a noisy evaluation of the energy. The sample 

sizes required during the search process are theoretically determined by adapting the convergence results 

for noisy evaluation. To determine applicability, we prepared and optimized two ensembles for diabetic 

retinopathy pre-screening based on microaneurysm detection with convolutional neural network-based 

and traditional object detectors. Our experimental results indicate that the proposed sampling-based eval- 

uation method substantially reduced the computational time required for optimizing the parameters of 

the ensembles while preserving solution quality. 
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This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

w  

m  

t  

m  

m  

m  

t  

l  

o  

a  

a  

s  

b  

m  

f  

a  

c  

t

t

 

t  

i  

c  

t  

g  

p  

p

 

r  

m  

d  

t  

a  

p  

t  

f  

d  

s  

r  

i  

h

0

. Introduction 

Parameter optimization problems often arise in object detection

hen the aim is to tune adjustable parameters to maximize perfor-

ance. From a theoretical point of view, the objective of optimiza-

ion can be considered a function of the parameters, and the opti-

al settings can be found by calculating the parameter values that

ake the partial derivatives equal to 0. Unfortunately, this mathe-

atical calculus technique is suitable only when the partial deriva-

ives can be given in closed forms; thus, it is rarely useful for real-

ife problems. Stochastic search algorithms are commonly used to

vercome this difficulty and to handle discrete problems. For ex-

mple, simulated annealing (SA) [1] has very attractive properties,

nd this technique has been widely applied. However, performing

tochastic searches may still be time-intensive because the num-

er of parameters and their range may lead to a large, high di-

ensional search space, and the evaluation of complex objective

unctions may be very time consuming. One possible approach for

ddressing the latter problem involves incomplete evaluation, i.e.,

alculating the objective function value with some error to reduce

he computational complexity. 
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Ensembles are often used for object detection tasks because

hey usually outperform their constituent members if their behav-

or is sufficiently diverse [2] . In these approaches, an ensemble

omprises member detector algorithms with adjustable parame-

ers, and the objective function is derived based on some aggre-

ation rule (e.g., majority voting). Thus, the aim is optimizing the

arameters of the individual members in order to maximize the

erformance at the ensemble level. 

In a preliminary study [3] , we implemented this approach for

etinal image analysis by tuning the parameters of an ensemble of

icroaneurysm (MA) detector algorithms (a more comprehensive

escription of this field is provided in Section 3 ). We aggregated

he outputs of the individual MA detectors using majority voting

nd measured the difference compared with the ground truth data

rovided with the dataset employed. The optimal parameter set-

ing, i.e., the setting that maximized the detection accuracy, was

ound by SA. A bottleneck in this approach is the computational

emand during the evaluation of the objective function at each

earch step because it requires the application of the aggregation

ule to the output of the members for a parameter setting for all

mages in the dataset. To overcome this difficulty in our previ-

us study [3] , we successfully tested the evaluation of the objec-

ive function over only a certain subset of the dataset prepared

n every search step by randomly sampling the images; however,

ur approach was completely heuristic regarding the level of sam-

ling applied during the search process. Similar heuristic principles
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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are applied in stochastic/mini-batch gradient descent algorithms in

machine learning tasks. Namely, the objective function is evaluated

based on a single sample or on a subset of the training dataset

with a fixed size while learning the model parameters [4] . 

In this study, we theoretically established a sampling-based

evaluation method for SA that preserves the convergence prop-

erties of this stochastic search technique. The main contribution

of our approach is recognizing that sampling can be considered

a specific type of noisy evaluation [5] of the objective function.

Thus, after well-designed transformations, the convergence results

for noisy evaluation are suitable for sampling-based evaluation. 

Our experimental results demonstrated that the proposed

method significantly reduced the time required for search while

also preserving the solution quality. 

The remainder of this paper is organized as follows. In

Section 2 , we introduce our basic concepts and notations and de-

scribe our sampling strategy and the SA-based search algorithm

incorporating it. Our main result regarding the determination of

the minimum sample size required during the search is also for-

mulated in this section as Theorem 1 . In Section 3 , we present

an application to retinal image analysis for pre-screening diabetic

retinopathy (DR) based on the presence of MAs. Our experimen-

tal findings regarding the classification of retinal images accord-

ing to DR are presented in Section 4 . Detailed results are provided

in terms of the computational time reductions obtained using the

proposed method while also maintaining the solution quality. We

also showed that an efficient ensemble of MA detectors can be

prepared for pre-screening DR. Besides, we demonstrated that the

proposed method can also be used to optimize the detector en-

semble for the accurate localization of MAs. Finally, we present our

conclusions in Section 5 . 

2. SA with sampling-based evaluation 

Dealing with large optimization problems typically involves

making a tradeoff between accuracy and computational time. In

this study, we propose an evaluation method for SA that can main-

tain the solution quality while reducing the runtime for objective

(referred to as energy hereafter) functions that are commonly used

to evaluate the average performance of object detectors and clas-

sifiers over datasets. In particular, we propose a sampling strategy

that considers only a suitable portion of the dataset in each search

step to maintain the convergence of SA, which approach can be

considered a noisy evaluation of the energy function. The appro-

priate sample sizes required during the search process are theo-

retically determined by adapting the convergence results for noisy

evaluation in SA. 

2.1. Convergence of SA in the case of noisy evaluation 

SA is a local search algorithm inspired by the annealing process

in metallurgy, and it was introduced by Kirkpatrick et al. [6] and

independently by Černý [7] to address difficult combinatorial op-

timization problems. The main feature of SA is the capacity to es-

cape from local optima by accepting non-improving moves with a

probability that depends on the difference in the energy function

values between the current and candidate states, and a decreas-

ing control parameter (called temperature). The method applied

to generate the sequence of temperature levels is called a cooling

schedule, and its choice strongly influences the performance of SA.

The simplicity and general applicability of SA have resulted in this

procedure being used widely to address both discrete and continu-

ous optimization problems (for a comprehensive discussion of the

theory and application of SA, see [1] ). 

Originally, SA was designed based on the assumption that the

energy of a state can be calculated exactly, but the evaluation of
 state is often subject to noise in practical problems. As a con-

equence, several studies have investigated the convergence prop-

rties of SA in noisy environments. The first study of this topic

y Kushner [8] involved asymptotic analysis of SA under suitable

onditions based on the theory of large deviations while assuming

aussian noise. By considering discrete search spaces and assum-

ng that the noise is normally distributed with mean 0 and vari-

nce ( σ ( k ) ) 2 > 0 in the k th ( k ∈ N ) iteration, Gelfand and Mitter

roved [5] that SA using noisy evaluation also converges to the

lobally optimal solution in probability in the same manner as that

hen using exact energy values if the standard deviation σ ( k ) of

he noise is dominated by the temperature T ( k ) in the k th iteration

or each k , i.e., when 

(k ) = o(T (k ) ) , (1)

here o is a Bachmann–Landau symbol that expresses a stronger

equirement on the asymptotic behavior of a function than O (for

urther details, see [9] ). Assuming the same noise properties for

 specific annealing schedule, Gutjahr and Pflug [10] proved that

A converges in probability to the globally optimal solution if the

tandard deviation of the noise is at least inversely proportional to

he number of iterations, i.e., when 

(k ) = O (k −γ ) with some γ > 1 . (2)

They generalized the proof of convergence to an arbitrary noise

istribution that is symmetric and more peaked around 0 than the

aussian distribution. 

.2. Basic concepts and notations 

As the classic formulation, let D = { D 1 , D 2 , . . . , D L } be a set

ensemble) of L ∈ N classifiers (voters) with D i : � ⊆ R 

m → R 

M 

≥0 
(i = 1 , . . . , L ) , and � = { ω 1 , ω 2 , . . . , ω M 

} is a set of finite class

abels. The classifier D i assigns the support values D i (λ) =
(d i, 1 (λ) , . . . , d i,M 

(λ)) to a feature vector λ ∈ �, which describes

he opinion of the classifier in terms of the degree to which λ
hould be labeled by ω 1 , . . . , ω M 

, respectively. Then, in a fusion-

ased scenario, the final class label for λ is determined by apply-

ng some aggregation rule to the individual labels supported by the

lassifiers D 1 , . . . , D L . The simple majority voting-based classic en-

emble classifier can be derived by restricting the support of the

ndividual classifiers with d i,r (λ) = δ jr , where r = 1 , . . . , M if the

lassifier D i labels λ in the class ω j . The final labeling of the en-

emble is based on determining the class that receives the largest

upport in terms of the number of votes. In our application, the

opulation � = �N requiring classification is a dataset of N im-

ges, while the members of the ensembles are object detector al-

orithms and their outputs are aggregated using majority voting.

ifferent parameter settings can be considered for these member

lgorithms, so we let 	i denote the parameter domain of the clas-

ifier D i (i = 1 , . . . , L ) and π ∈ 	 = 	1 × 	2 × . . . × 	L is a given

arameter vector of the ensemble. Then, the ensemble with a spe-

ific parameter setting π will be denoted by D 

(π ) . 

To consider the noisy evaluation of the energy, the ensemble

 

(π ) with classification accuracy p D (π ) ∈ [0 , 1] is a discrete random

ariable X D (π ) with mean E (X D (π ) ) and variance Var (X D (π ) ) , where

 (X D (π ) ) = p D (π ) . Let x i D (π ) 
denote the i th realization of X D (π ) ( i =

 , . . . , N). Furthermore, let the energy function E π used to evaluate

he performance of the ensemble D 

(π ) for a given parameter set-

ing π be the empirical mean value of X D (π ) , i.e., the mean μN 
D (π ) 

f N realizations: 

 π = μN 
D (π ) = 

1 

N 

N ∑ 

i =1 

x i D (π ) . (3)

Calculating the energy function value can be computationally

xpensive when considering large populations, so we estimate it
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sing sampling. Thus, we select a random sample | �n | = n from

he finite population �N , i.e., �n ⊆�N ( n ≤ N ), and for a parameter

etting π estimate the corresponding energy function value with
 

 �n ,π as the sample mean x̄ �n 

D (π ) 
by using the following: 

 

 �n ,π = x̄ �n 

D (π ) = 

1 

n 

∑ 

j: λ j ∈ �n 

x j D (π ) . (4) 

If a parameter setting π is fixed, then we use the brief nota-

ions E and 

̂ E �n 
instead of E π and 

̂ E �n ,π , respectively. 

As a special case, in a binary classification problem, the ensem-

le D 

(π ) with classification accuracy p D (π ) is a random variable

 D (π ) from a Bernoulli distribution with 

 (X D (π ) = 1) = p D (π ) , and P (X D (π ) = 0) = 1 − p D (π ) , (5)

here X D (π ) = 1 and X D (π ) = 0 denote correct and incorrect classi-

cation by D 

(π ) , respectively. In this case, for the theoretical mean

nd variance of the variable X D (π ) from a Bernoulli distribution, we

ave 

 (X D (π ) ) = p D (π ) , and Var (X D (π ) ) = p D (π ) (1 − p D (π ) ) . (6)

.3. Sampling strategy and its algorithmic realization 

Assuming that calculating each value x i D (π ) 
( i = 1 , . . . , N) has the

ame computational cost, then calculating ̂ E �n 
is n / N times less

omputationally expensive than calculating E , but using ̂ E �n 
intro-

uces noise in the evaluation. For a sample �n , the noise d n origi-

ating from the sampling, i.e., the sampling error of the mean, can

e determined as follows: 

 �n 
= ̂

 E �n 
− E = x̄ �n 

D (π ) − μN 
D (π ) . (7)

Noise may cause SA to consider an inferior state as superior

ecause of the imprecise evaluation of the energy function. Thus,

hen the noise is stronger, the search is more random and the so-

ution quality that can be reached after a given number of steps is

orse, so the convergence is slower. 

According to (1) , to ensure the convergence of SA in the pres-

nce of noise, a sampling strategy must be applied that is suitable

or controlling the standard deviation of the noise σd �n 
regard-

ng the temperature T during the search by selecting an appropri-

te sample size in each search step. Thus, we must determine the

aximum allowed value σ (k ) 
d n 

of each σd �n 
for the current temper-

ture T ( k ) in order to find the minimum sample size required. We

tate Lemma 1 for this purpose. Naturally, the standard deviation

f the noise will be smaller when the sample size n is closer to the

opulation size N . 

emma 1. A sufficiently simple general form of σ (k ) 
d n 

that maximizes

ts value at the temperature T ( k ) can be given as follows: 

(k ) 
d n 

≈ T (k ) (1 − ε) k with 0 < ε < 1 . (8)

roof. Using (1) , we find that 

lim 

 →∞ 

σ (k ) 
d n 

T (k ) 
= 0 (9) 

ust hold. To maintain the limit in (9) , the sequence { σ (k ) 
d n 

} has

o be decreasing such that lim 

k →∞ 

σ (k ) 
d n 

= 0 and σ (k ) 
d n 

< T (k ) for each

 ∈ N . Based on these conditions, a sufficiently simple general form

f σ (k ) 
d n 

that maximizes its value can be given as (8) . �

xample 1. As an application of Lemma 1 , by considering the ex-

onential cooling schedule with 

 

(k ) = T (0) αk with 0 ≤ α ≤ 1 , (10)
he maximum value of σ (k ) 
d n 

can be approximated as 

(k ) 
d n 

≈ T (0) αk (1 − ε) k with 0 ≤ α ≤ 1 , and 0 < ε < 1 . (11)

A similar derivation can be applied for other cooling schedules

s well. 

Now we can formulate our main theoretical contribution re-

arding how to determine the sample size during the search. 

heorem 1. For an arbitrary cooling schedule, the minimum sample

ize n ( k ) required at the kth iteration to maintain the convergence of

he method in probability can be estimated as 

 

(k ) ≈ Nσ 2 
max 

(N − 1) σ (k ) 
d n 

2 + σ 2 
max 

, (12) 

here σmax is the worst-case maximum value of the population stan-

ard deviation σD(π ) 
N 

, and σ (k ) 
d n 

can be derived using Lemma 1 . 

roof. The noise defined in (7) is actually the difference between

he sample mean and its expected value (the population mean),

o its standard deviation is equal to the standard deviation of the

ampling distribution of the mean, i.e., the standard error of the

ean σ
x̄ 
D(π ) 
n 

. Therefore, the standard deviation of the noise can be

alculated as follows: 

d n = σ
x̄ D(π ) 

n 
= 

σD(π ) 
N √ 

n 

√ 

N − n 

N − 1 

, (13) 

here σD(π ) 
N 

is the population standard deviation and
 

(N − n ) / (N − 1) is the finite population correction factor. 

In (13) , the population standard deviation σD(π ) 
N 

is unknown,

ut it can be estimated using its worst-case (maximum) value

max . It should be noted that in this case, it is not possible to esti-

ate the population standard deviation with the sample standard

eviation because the required sample size is not yet known. 

Using the maximal value of the population standard deviation,

he minimum required sample size n ( k ) at the k th iteration can be

etermined as (12) . �

xample 2. For example, considering the exponential cooling

chedule given in (10) and σmax = 0 . 5 , the minimum sample size

n the k th iteration can be given as 

 

(k ) = 

N 

4 (N − 1) (T (0) αk (1 − ε) k ) 
2 + 1 

. (14) 

As a numeric demonstration for the example given above, let

s consider T (0) = 5 , k = 10 0 0 , α = 0 . 99 , and N = 20 0 0 . For this

etup, during the SA search, the maximum values allowed for the

tandard deviation of the noise σ (k ) 
d n 

and the corresponding re-

uired sample sizes n ( k ) are shown in Fig. 1 (a) and (b), respectively.

One technical issue should be noted: for every temperature

alue T ( k ) , a minimum required sample size n ( k ) must be used;

herefore, the energy function estimate of the current state should

e recomputed over a sufficiently large sample in every iteration,

.e., when the temperature decreases, in order to compare the qual-

ty of the current and candidate states. However, recomputing this

alue would be time consuming and the evaluation would become

ess effective than the complete evaluation after at least half of the

opulation is included in the sample. Therefore, in each iteration,

e normalize the energy function estimate of the current state us-

ng the ratio of the minimum required sample sizes at the previous

nd current temperatures as 

 

 norm 

= ̂

 E 
�(k −1) 

n 
· (n 

(k −1) /n 

(k ) ) , (15)

here n (k −1) is the sample size at which the energy function esti-

ate ̂ E 
�(k −1) 

n 
of the current state is calculated and n ( k ) is the sam-

le size at which the energy function value of the neighbor state
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Fig. 1. Example of the sampling strategy in SA search with an exponential cooling schedule: (a) maximum standard deviation of the noise and (b) minimum required sample 

size. 
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will be calculated. It should be noted that the factor used for cor-

rection becomes gradually less significant as the search proceeds.

As a secondary technical issue, we consider that minimum sample

size should be n ≥ 50 in order to make a reasonable assumption

regarding the Gaussian distribution of the noise d n by following

the general recommendations (see [11] .) 

Our approach for finding the optimal parameter setting for

an ensemble using the proposed sampling strategy is formally

described in Algorithm 1 . We refer to this algorithm as SA

Algorithm 1 Simulated annealing with sampling-based evaluation

(SA-SBE). 

Input: An ensemble classifier D = { D 1 , . . . , D L } with free 

parameters 	 = 	1 × · · · × 	L . 

A population for classification �N . 

Maximum standard deviation σmax of the energy 

function. 

SA cooling schedule with initial temperature T (0) . 

Output: Optimal parameter setting π ∈ 	 for D. 

1: k ← 0 

2: π ← rand ( 	) 

3: n ← sample_size ( T (0) , k , σmax ) 

4: �n ← take_sample ( �N , n ) 

5: ̂ E �n ,π ← calculate_energy ( π , �n , D) 

6: while outer-loop criterion satisfied do 

7: n pre v ← n 

8: n ← sample_size ( T (0) , k , σmax ) 

9: ̂ E �n ,π ← energy_normalization ( ̂  E �n ,π , n pre v , n ) 

10: while inner-loop criterion satisfied do 

11: πcand ← generate_neighbor (π ) 

12: �′ 
n ← take_sample ( �N , n ) 

13: ̂ E �′ 
n ,πcand 

← calculate_energy ( πcand , �
′ 
n , D) 

14: r ← rand ([0,1]) 

15: if accept ( ̂  E �n ,π , ̂ E �′ 
n ,πcand 

, T (k ) , r) then 

16: π ← πcand 

17: ̂ E �n ,π ← ̂

 E �′ 
n ,πcand 

18: end if 

19: end while 

20: T (k +1) ← update_temperature ( T (k ) ) 

21: k ← k + 1 

22: end while 

23: return π

with Sampling-based Evaluation (SA-SBE) in the following. The

algorithm contains several tunable parameters and functions,
hich must be selected according to the desired application. The

etup corresponding to our object detection task is described in

ection 3.3 . 

. Application: DR pre-screening 

DR is a complication of diabetes mellitus caused by progres-

ive damage to the blood vessels in the retina, which is the light-

ensitive lining in the back of the eye. DR is one of the lead-

ng causes of vision loss worldwide, but the risk of blindness can

e significantly reduced through early diagnosis and timely treat-

ent [12] . Therefore, patients with diabetes mellitus should un-

ergo regular DR screening, but the manual grading of cases is

esource-demanding and prone to human error. Consequently, over

he last two decades, considerable effort s have been made to es-

ablish reliable automated methods to facilitate the mass screening

f DR using color retinal photographs and various working princi-

les, such as red and bright lesion detection [13,14] , feature extrac-

ion and classification [15,16] , and deep learning [17,18] . 

.1. DR screening based on MA detection 

Several of the methods mentioned above aim to assign grades

o input retinal images according to the severity of DR. However,

ven the seemingly simpler problem of classifying retinal images

nto healthy and diseased categories is not yet considered to have

een solved. Automatically selecting and prioritizing cases with a

igher likelihood of disease could significantly facilitate the de-

ection of DR in a mass screening scenario because only approx-

mately 35% of patients with diabetes mellitus have DR [12] . 

MAs are tiny swellings in the blood vessels (see Fig. 2 ) and the

arliest clinical signs of DR, where the number of MAs is strongly

orrelated with its severity [19] . Consequently, the accurate detec-

ion of MAs is crucially important for recognizing DR, especially in

ts early stage. 

Several methods have been developed to directly screen for DR

ased on the presence of MAs. The method proposed by Hipwell

t al. [20] is based on the results reported by Cree [21] and it can

etect MAs using red-free retinal images. After removing variation

n the background intensity, small round objects are extracted as

andidates. Each MA candidate is then classified using intensity

nd size features. Fleming et al. [22] proposed a method that uses

ontrast normalization and vessel removal to improve MA detec-

ion, and they also evaluated their method for image classification.

he method developed by Bhalerao et al. [23] is based on filtering

sing complex-valued circular-symmetric filters and morphological
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Fig. 2. MAs in a retinal image. 
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nalysis of the candidate regions to reduce the false positive rate.

n particular, they aimed to detect severe, sight-threatening DR.

iancardo et al. [24] proposed a method that discards the back-

round areas, before calculating the Radon transform and extract-

ng a feature vector, which is subsequently classified using princi-

al component analysis and a nonlinear support vector machine.

he results obtained by the methods mentioned above confirm

hat MA detection is a reasonable approach for DR pre-screening.

or further details of the performance of MA-based DR classifica-

ion methods, see Section 4.4 . 

A possible approach for further increasing the accuracy of MA

etection involves creating an ensemble of detectors based on dif-

erent working principles and models. To demonstrate the effi-

iency of the proposed method, in our case study application, we

onsidered two ensembles for the binary classification of retinal

mages into healthy or diseased categories based solely on the pres-

nce of MAs. Next, we describe the members of our ensembles, the

teps in the ensemble creation process, and the design choices re-

uired to implement the stochastic search method. 

.2. Ensemble creation method 

We considered two MA detector ensembles with nine and ten

embers, respectively. The nine members of Ensemble 1 were

ased on traditional object detector methods [3] . This ensemble

as extended to Ensemble 2 by adding one more detector based

n the fusion of two deep convolutional neural networks (DCNNs).

The traditional MA detectors in our ensembles were formed as

 preprocessing method, candidate extractor 〉 pairs ( 〈 PP, CE 〉 ) as rec-

mmended in a previous study [25] . A 〈 PP, CE 〉 pair applied the PP

o the input retinal image and the CE to its output; thus, a 〈 PP,

E 〉 pair extracted a set of MA candidates by acting as a single de-

ector algorithm. The individual 〈 PP, CE 〉 detectors comprised the

ollowing components: 

• PPs: Contrast limited adaptive histogram equalization (CLAHE)

[26] ; Illumination equalization (IE) [26] ; Vessel removal with

inpainting (VR) [27,28] ; Walter-Klein (WK) [29] ; No preprocess-

ing (NP). 
• CEs: Lázár et al. [30] ; Walter et al. [31] ; Zhang et al. [32] . 

To extend our former 〈 PP, CE 〉 ensemble [3] with a member

ased on deep neural networks, we employed the method pro-

osed by Harangi et al. [33] , which organizes two DCNNs into a

ingle architecture by connecting them in a shared fully connected

ayer in order to recognize MAs in retinal images. The advantage

f this approach is that the combined architecture can be trained
s a single neural network, where the training of both DCNNs is

ffected by the predictions of each, thereby improving the detec-

ion accuracy. The input retinal image was divided into subimages

o provide the required input for the combined DCNN. An input

mage was labeled as diseased if the presence of an MA was pre-

icted in any of the subimages at a confidence level threshold of

.5 to 0.95, depending on its parameter. 

It should be noted that MAs are dot-like lesions (especially in

ower resolution retinal images), so the MA detector components

f our ensembles were implemented to extract the MA centers

i.e., the coordinates of a pixel) as candidates instead of image sub-

egions. 

Table 1 summarizes the members of the two ensembles used

n our study. Ensemble 1 comprised nine MA detectors D 1 , . . . , D 9 

ith the indicated 〈 PP, CE 〉 pairs (see also [3] ), and Ensemble 2

ncluded an additional DCNN member D 10 . 

The detectors listed in Table 1 have various numbers of ad-

ustable parameters. However, to make the optimization problem

ore tractable, we considered only that parameter for each detec-

or that had the most significant effect on the output. In particu-

ar, the parameters π1 , . . . , π4 control thresholds for the scores as-

igned to the MA candidates, π5 and π6 control size thresholds for

he diameter closing results, π7 , . . . , π9 control thresholds for the

orrelation map of the image used to extract candidates, and π10 

ontrols the confidence threshold for MA candidates. The possible

ettings for each π i ∈ 	i ( i = 1 , . . . , 10 ) are shown in Table 1 . Over-

ll, there are 20 4 × 30 2 × 10 3 and 20 4 × 30 2 × 10 3 × 6 possible

ifferent parameter settings for Ensembles 1 and 2, respectively. 

To fuse the MA candidates obtained by the individual detectors

 

(π1 ) 
1 

, . . . , D 

(π10 ) 
10 

for a given image λ via D 

(π ) (λ) = ∪ 

10 
i =1 

D 

(πi ) 

i 
(λ) ,

e define a confidence measure to describe the rate of agreement

y the members regarding the specific candidates. Thus, a prox-

mity relation 

∼= 

is introduced to decide whether or not two can-

idates indicate the same MA object. For the MA candidates c 1 ,

 2 , we say that c 1 ∼= 

c 2 if their Euclidean distance is smaller than a

iven threshold. Now, the confidence of the ensemble con f D (π ) (c)

egarding any of its candidates c ∈ D 

(π ) (λ) is defined as 

on f D (π ) (c) = |{ D 

(π ) 
i 

∈ D 

(π ) : ∃ c ′ ∈ D 

(π ) 
i 

(λ) : c ∼= 

c ′ }| / | D 

(π ) | . (16)

The ensemble candidates D 

(π ) (λ) are classified based on the

egree of confidence for the subsequent labeling of the image. Ac-

ordingly, the α–level candidates of D 

(π ) are defined as 

D 

(π ) (λ) 
)
α

= { c ∈ D 

(π ) (λ) : con f D (π ) (c) ≥ α} , (17)

here 1 / |D 

(π ) | ≤ α ≤ 1 . 
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Table 1 

Members of the ensembles. 
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3.3. SA design choices 

A number of design choices must be made to implement SA. In

particular, we have to specify the method for generating the ini-

tial state, the neighborhood function, the acceptance criterion, the

cooling schedule, and the termination criterion. We adjusted and

implemented the corresponding components of Algorithm 1 as fol-

lows, using the line numbers for reference. 

• Input – Initial value of the control parameter T (0) : The initial tem-

perature T (0) should be determined to allow virtually all state

transitions to be accepted. Kirkpatrick et al. [6] suggested that

a suitable value should result in an initial acceptance probabil-

ity χ0 of about 0.8. Thus, by using (19) , we calculate T (0) as 

T (0) = − �E max 

ln (χ0 ) 
= − 1 

ln (0 . 8) 
≈ 4 . 5 , 

where we note the maximal possible energy difference between

any two states �E max = 1 because the energy lies in the inter-

val [0,1] in our case (see Section 4 ). 
• Line 2 – Initial state : For each member of the ensemble, a valid

parameter value is randomly selected to form an initial state. 
• Line 6 – Termination criterion outer-loop criterion : When the

temperature falls below the final value T (k max ) , the search is

stopped. At the final temperature T (k max ) , the acceptance prob-

ability χk max 
should be almost 0. In a similar manner to the

initial temperature, the final temperature is calculated as: 

T (k max ) = − �E min 

ln (χk max 
) 

with �E min = 

N − 1 

N 

. (18)

For example, if we set χk max 
= 10 −10 0 0 and consider a large

population with 

N−1 
N ≈ 1 , we obtain: 

T (k max ) = − 1 

ln (10 

−10 0 0 ) 
≈ 0 . 0 0 043 . 

• Line 10 – Thermal equilibrium criterion inner-loop criterion :

This criterion is omitted in our implementation. The statements

in the inner loop are executed once. 
• Line 11 – Neighborhood function generate_neighbor : We define

a neighborhood with a size that decreases linearly in inverse

proportion to the number of search iterations. For each param-

eter of the ensemble, a maximal distance is determined within

which a new valid parameter value is randomly selected in each

iteration. This distance is the length of the range of the param-

eter multiplied by (1 – the ratio of the index of the current

search step and the maximum number of search steps). 
• Line 15 – Acceptance rule accept : We employ the Metropolis ac-

ceptance criterion because of its widespread use and attractive
properties [1] . The acceptance probability is calculated as: 

χπ,πcand 
= 

⎧ ⎨ 

⎩ 

exp 

(̂ E �n ,π −̂ E �′ 
n ,πcand 

T 

)
, if ̂ E �′ 

n ,πcand 
> ̂

 E �n ,π , 

1 , otherwise , 

(19)

where T is the current temperature, �n and �′ 
n are two sam-

ples of size n , and 

̂ E �n ,π and 

̂ E �′ 
n ,πcand 

are the energy function

values in the current and candidate states, respectively. 
• Line 20 – Annealing function update_temperature : We employ

the exponential cooling schedule proposed in a previous study

(10) . α is determined to have exactly k max = 10 0 0 iterations: 

α = 

(
T (k max ) 

T (0) 

) 1 
k max 

≈ 0 . 997 . 

. Experimental results 

In this section, we present the methods and results of our ex-

eriments. First, we describe the datasets employed, then discuss

he assessment of the proposed method by performing parameter

ptimization of our ensembles for DR pre-screening and MA detec-

ion and provide the corresponding experimental results. Finally,

e give some implementation details. 

.1. Datasets 

Parameter optimization was performed for the ensembles using

he publicly available dataset e-ophtha-MA [34] and the test part

f the dataset provided by EyePACS for a DR grading competition

eld by Kaggle [35] . We will refer to the latter dataset as Kaggle

yePACS in the following. The contents of the two datasets are de-

cribed as follows. 

• e-ophtha-MA : The e-ophtha-MA dataset comprises 381 color

retinal images with four different resolutions ranging from 1440

× 960 to 2544 × 1696 pixels, where 233 images depict

healthy retinas (R0 class) and 148 images show various severity

levels of DR (R1–R4 classes) containing a total of 1306 MAs. We

used this dataset mainly because it contains precise MA ground

truth data for the images. 
• Kaggle EyePACS : The Kaggle EyePACS dataset comprises 35 126

color retinal images with various resolutions ranging from 400

× 315 to 5184 × 3456 pixels, where 25 810 images are la-

beled as healthy (R0), 2443 as mild DR (R1), 5292 as moder-

ate DR (R2), 873 as severe DR (R3), and 708 as proliferative

DR (R4). The images in this dataset were acquired under var-

ious imaging conditions using different models and types of

cameras. Furthermore, as stated in the dataset description [35] ,
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Fig. 3. Sample images from the Kaggle EyePACS dataset showing typical artifacts and imaging errors: (a) camera artifacts, (b) lens condensation, (c) dust, (d) blur, (e) 

reflection, (f) underexposure, (g) overexposure, and (h) no artifacts. 

Table 2 

Contents of the datasets. 

Subset Healthy Diseased Total 

R0 R1 R2 R3 R4 R1-R4 

148 - - - - 233 381 

e-ophtha-MA training 100 - - - - 100 200 

test 48 - - - - 48 96 

not used - - - - - 85 85 

25,810 2443 5292 873 708 9316 35,126 

Kaggle EyePACS training 6211 1629 3528 582 472 6211 12,422 

test 3105 814 1764 291 236 3105 6210 

not used 16,494 - - - - - 16,494 

 

 

 

 

 

 

 

i  

r  

t  

p  

q  

p  

a  

o

 

i

4

 

t  

t  

m

 

v  

f  

c  

t  

t  

s  

a  

t  

t  

i  

c  

t

 

b  

r  

c  

s

A

w  

n  

t  

m

S  

 

c  

d  

a  
some images are labeled incorrectly, affected by artifacts, out of

focus, underexposed, or overexposed (see Fig. 3 ). According to

previous studies using this dataset (e.g., see [36] ) approximately

20–30% of the images are of poor quality or have incorrectly as-

signed labels. We used this dataset mainly because to the best

of our knowledge, this is the largest freely available dataset that

contains DR severity label ground truth data for the images. 

Despite the known issues with Kaggle EyePACS, we used the

mages from this dataset as provided and did not perform any

esource-demanding data cleaning steps (e.g., manually filtering

he gradable images) because our main aim was to show that the

roposed evaluation method can preserve the achievable solution

uality while reducing the runtime. Clearly, due to the high pro-

ortion of poor quality or incorrectly labeled images, a lower di-

gnostic efficiency can be expected for Kaggle EyePACS than e-

phtha-MA using either the standard SA or the proposed method. 

The contents of the datasets used in the experiments described

n Sections 4.2 and 4.3 are summarized in Table 2 and Fig. 4 . 

.2. DR pre-screening 

For DR pre-screening, the aim of the optimization process was

o find the parameter setting π that maximized the performance of

he ensemble D 

(π ) in terms of the diagnostic efficiency, i.e., maxi-

izing the proportion of correctly classified images. 

The output of the ensemble was a Bernoulli distributed random

ariable, where X D (π ) = 1 for correct classification and X D (π ) = 0

or incorrect classification. We considered that an image λ was

lassified correctly if it was annotated as positive in the ground
ruth and | (D 

(π ) (λ) 
)
α
| ≥ 1 (true positive), or annotated as nega-

ive and | (D 

(π ) (λ) 
)
α
| = 0 (true negative). By contrast, λ was clas-

ified incorrectly if it was annotated as positive in the ground truth

nd | (D 

(π ) (λ) 
)
α
| = 0 (false negative case), or annotated as nega-

ive and | (D 

(π ) (λ) 
)
α
| ≥ 1 (false positive case). The candidates for

he ensembles were extracted at the confidence level of α = 0 . 5 ,

.e., we used simple majority voting for this aim. The ensembles

onsidered that an image was diseased if at least one MA was de-

ected. 

To optimize the DR pre-screening performance of the ensem-

les, we used the energy function estimate ̂ E �n 
given in (4) cor-

esponding to this implementation. It should be noted that in this

ase, the energy function is equivalent to the accuracy ( ACC ) mea-

ure given as 

CC = 

number of true hits 

number of all images 
= 

T P + T N 

T P + T N + F P + F N 

, (20) 

here TP, TN, FP , and FN are the numbers of true positive, true

egative, false positive, and false negative hits, respectively. Fur-

hermore, we calculated the sensitivity ( SE ) and specificity ( SP )

easures as: 

E = 

T P 

T P + F N 

, SP = 

T N 

T N + F P 
. (21)

For further details of ACC, SE , and SP , please refer to [37] . 

To evaluate the proposed method, we conducted 10-times

ross-validation with repeated random subsampling of the

atasets. For each round of the cross-validation process, we cre-

ted new training and test subsets from the datasets described in
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Fig. 4. Visual overview of the datasets and the main evaluation approaches used in our experiments. 

Table 3 

DR pre-screening – Results of the 10-times cross-validation using the e-ophtha-MA dataset. 

Subset ACC SE SP t 

Ensemble 1 SA training 0.862 ( ± 0.014) 0.831 ( ± 0.027) 0.893 ( ± 0.021) 773.6 ( ± 100.5) 

test 0.8125 ( ± 0.0339) 0.7625 ( ± 0.0486) 0.8625 ( ± 0.0529) - 

SA-SBE training 0.858 ( ± 0.0127) 0.847 ( ± 0.019) 0.869 ( ± 0.0342) 187.3 ( ± 53.1) 

test 0.8115 ( ± 0.0347) 0.7833 ( ± 0.0458) 0.8396 ( ± 0.0618) - 

Ensemble 2 SA training 0.8925 ( ± 0.014) 0.883 ( ± 0.029) 0.902 ( ± 0.0426) 1586.5 ( ± 189.7) 

test 0.8448 ( ± 0.0359) 0.825 ( ± 0.0792) 0.8647 ( ± 0.0545) - 

SA-SBE training 0.896 ( ± 0.0089) 0.889 ( ± 0.0262) 0.903 ( ± 0.0329) 591.4 ( ± 151.8) 

test 0.8813 ( ± 0.0256) 0.8833 ( ± 0.0468) 0.8791 ( ± 0.0445) - 
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Section 4.1 , with a training to test ratio of approximately 2:1 (see

Fig. 4 ). In the case of e-ophtha-MA, 85 randomly selected images

from the R1–R4 classes in the dataset were excluded from each

round in order to ensure that we had the same amount of images

in the R0 and R1–R4 classes. Next, 100 images were randomly se-

lected from each of the R0 and R1–R4 classes for the training sub-

set and the remaining 48 in each were used for testing. In the case

of Kaggle EyePACS, 16,494 randomly selected images from the R0

class in the dataset were excluded in each round for the same rea-

son explained above for e-ophtha-MA. Next, 6211, 1629, 3528, 582,

and 472 images were randomly selected from the R0, R1, R2, R3,

and R4 classes, respectively, for the training subset and the remain-

ing 3105, 814, 1764, 291, and 236 images were used for testing. 

The optimal parameter settings obtained in each round of the

cross-validation process using a training subset were evaluated us-

ing the corresponding test subset. 

The main results obtained in these experiments are summa-

rized in Tables 3 and 4 . In these tables, we present the average

ACC , average SE , and average SP values, as well as the average run-

times t (in seconds) and the corresponding standard deviations cal-

culated based on the results of the 10-times cross-validation using

the e-ophtha-MA and the Kaggle EyePACS datasets, respectively.

The runtimes for the test subsets are omitted because only single

evaluations were needed. 

Tables 3 and 4 clearly suggest that the proposed method pre-

served the quality of the solution obtained using the standard SA

but with significantly lower time requirements. In addition, SA-SBE
exhibited stable behavior in terms of the standard deviations of 
r  
CC, SE , and SP , and also when compared to the standard SA. It

hould be noted that the average ACC was lower using Kaggle Eye-

ACS than e-ophtha-MA because of the artifact issues discussed in

ection 4.1 . However, there were no significant differences between

he average ACC values obtained with the two optimization meth-

ds. The differences in the performance of SA and SA-SBE are also

ighlighted in Table 5 . 

We also checked the contribution of the DCNN member to the

nsemble. Table 6 shows the individual performance of the DCNN

pproach together with those of the ensembles using the results

btained from the 10-times cross-validation with SA-SBE. With e-

phtha-MA, the individual performance of the DCNN was higher

han that of the traditional image processing-based Ensemble 1.

owever, their combined performance (Ensemble 2) was better, es-

ecially considering the more balanced SE and SP values. With Kag-

le EyePACS, the DCNN component still performed better than En-

emble 1, and Ensemble 2 obtained the highest performance with

n improvement in SP , although the performance gain was less re-

arkable with this dataset. 

.3. MA detection 

In Section 4.2 , we presented evaluations of our sampling-based

earch strategy via the optimization of our ensembles for DR pre-

creening. Next, we demonstrate that the same ensembles can also

e optimized using our approach for the accurate detection of MAs.

e used the whole e-ophtha-MA dataset in these experiments. 

The α–level candidates of an ensemble extracted using the pa-

ameter setting π for an image λ
(
D 

(π ) (λ) 
)
α

were compared with
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Table 4 

DR pre-screening – Results of the 10-times cross-validation using the Kaggle EyePACS dataset. 

Subset ACC SE SP t 

Ensemble 1 SA training 0.6516 ( ± 0.0047) 0.5697 ( ± 0.022) 0.7336 ( ± 0.0243) 11,936.2 ( ± 932.9) 

test 0.6441 ( ± 0.0125) 0.5622 ( ± 0.0319) 0.726 ( ± 0.0249) - 

SA-SBE training 0.6488 ( ± 0.0064) 0.5643 ( ± 0.0249) 0.7334 ( ± 0.0299) 1685.4 ( ± 710) 

test 0.6396 ( ± 0.0041) 0.5556 ( ± 0.0282) 0.7236 ( ± 0.0314) - 

Ensemble 2 SA training 0.6701 ( ± 0.0068) 0.5556 ( ± 0.0307) 0.7846 ( ± 0.0251) 87,198.2 ( ± 9111.4) 

test 0.6649 ( ± 0.0079) 0.5511 ( ± 0.0250) 0.7787 ( ± 0.0215) - 

SA-SBE training 0.6672 ( ± 0.0074) 0.5476 ( ± 0.0212) 0.7869 ( ± 0.0216) 9611.4 ( ± 3567.2) 

test 0.6580 ( ± 0.006) 0.5415 ( ± 0.0282) 0.7745 ( ± 0.0231) - 

Table 5 

Comparison of SA and SA-SBE in terms of the average solution quality and runtime based on 10-times cross-validation. 

e-ophtha-MA (training) Kaggle EyePACS (training) 

ACC t ACC t 

Ensemble 1 SA 0.862 773.6 0.6516 11,936.2 

SA-SBE 0.858 187.3 0.6488 1685.4 

Difference −0.004 ( −0.46%) −586.3 ( −75.79%) −0.0028 ( −0.43%) −10,250.8 ( −85.88%) 

Ensemble 2 SA 0.8925 1586.5 0.6701 87,198.2 

SA-SBE 0.896 591.4 0.6672 9611.4 

Difference 0.0035 (0.39%) −995.1 ( −62.72%) −0.0029 ( −0.43%) −77,586.8 ( −88.98%) 

Table 6 

Comparison of the DR pre-screening performance of the ensembles and the 

DCNN member. 

e-ophtha-MA (test) Kaggle EyePACS (test) 

ACC SE SP ACC SE SP 

Ensemble 1 0.8115 0.7833 0.8396 0.6396 0.5556 0.7236 

DCNN ( D 10 ) 0.8427 0.7458 0.9396 0.6536 0.6577 0.6496 

Ensemble 2 0.8813 0.8833 0.8791 0.6580 0.5415 0.7745 

Table 7 

MA detection performance of the ensembles using the e- 

ophtha-MA dataset. 

Ensemble 1 Ensemble 2 

P P V t P P V t 

SA 0.9921 1451 0.9974 6743 

SA-SBE 0.9895 172 0.9974 238 
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p  

e  
 set of MA centers (which were extracted from the ground truth

asks provided for the image) using a method similar to that de-

cribed for the fusion of MA candidates in Section 3.2 . If the Eu-

lidean distance of the centers of a candidate and a manually an-

otated MA center was smaller than a given threshold, it was con-

idered a true positive, otherwise it was treated as a false positive.

urthermore, each missed annotated MA was considered a false

egative. The threshold was set to 5 pixels for our experiments,

here this value was selected according to the average MA size in

he images. 

First, we optimized the parameter settings for our ensembles to

aximize the mean positive predictive value ( P P V ) (see [37] ) over

 set of n images, i.e., the average percentage of true MAs in the

utput of the detector ensemble: 

 P V = 

1 

n 

n ∑ 

i =1 

T P λi 

T P λi 
+ F P λi 

, (22) 

here λi is the i th image, and T P λi 
and F P λi 

are the numbers of

rue positive and false positive MA candidates, respectively, in the

utput of the ensemble for the image λi . 

We repeated the parameter optimization process four times

ith both ensembles. Table 7 shows the best lesion-level perfor-
ance obtained with Ensemble 1 and Ensemble 2 for P P V at α–

evel = 0.5. Our conclusion based on these results is similar to

hat for the image-level results where significant reductions in the

omputational time were achieved with SA-SBE while the quality

f solution obtained with the standard SA was preserved. 

P P V is useful for optimizing our ensembles for a DR pre-

creening approach based solely on the presence of MAs because

 low number of false positives is a desirable characteristic of

his type of system. However, P P V only considers the ratio of the

umber of true positives relative to the number of all positives,

hereas the number of false negatives is ignored. Thus, if the en-

emble finds some true positives in each image and no false posi-

ives, then P P V is 1, even if the ensemble misses numerous MAs in

he images. Therefore, it would be misleading to use P P V only t o

ssess the MA detection performance of the ensembles. 

Thus, we also performed optimization for the mean F 1 –score

 F 1 ) over a set of n images. F 1 was considered an appropriate mea-

ure for our study because it is the average harmonic mean of PPV

nd SE calculated as 

 1 = 

1 

n 

n ∑ 

i =1 

2 T P λi 

2 T P λi 
+ F P λi 

+ F N λi 

, (23) 

here the previously defined notations apply and F N λi 
denotes the

umber of false negative MA candidates on λi . Fig. 5 shows exam-

les of true positive, false positive, and false negative MA candi-

ates. 

Based on the optimization results obtained for F 1 , Fig. 6

hows the respective free-response receiver operating characteris-

ic (FROC) curves [38] for Ensemble 1 and Ensemble 2, where SE

s plotted against the average number of false positives per image

 FPI ). To measure the SE at different average FPI levels, we looped

he α–level confidence value of the ensembles from 0.1 to 1 with a

tep size of 0.1 and repeated the optimization process accordingly.

he higher performance of Ensemble 2 compared with Ensemble 1

s clearly visible in Fig. 6 . 

.4. DR classification at different confidence levels 

In an additional experiment, we evaluated the DR classification

erformance of our ensembles at different confidence levels. In this

xperiment, we repeated the parameter optimization process four
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Fig. 5. Examples of true positive, false positive, and false negative MA candidates found in an image from the e-ophtha-MA dataset by Ensemble 2. 

Table 8 

DR classification performance of the ensembles at different α–levels using the e-ophtha-MA dataset. 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Ensemble 1 SE 1 1 1 0.9527 0.7838 0.4122 0.0203 0.0203 0 0 

SP 0 0 0.0558 0.4206 0.9013 0.9828 1 1 1 1 

ACC 0.3885 0.3885 0.4226 0.6273 0.8556 0.7612 0.6194 0.6194 0.6115 0.6115 

Ensemble 2 SE 1 1 1 0.9662 0.8986 0.4932 0.0743 0.0068 0 0 

SP 0 0.0178 0.2103 0.5751 0.9270 1 1 1 1 1 

ACC 0.3885 0.3990 0.5170 0.7270 0.9160 0.8031 0.6404 0.6141 0.6115 0.6115 

Fig. 6. MA detection performance – FROC curves obtained for Ensemble 1 (blue) 

and Ensemble 2 (red). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. DR classification performance – ROC curves obtained for Ensemble 1 (blue) 

and Ensemble 2 (red) using the e-ophtha-MA dataset. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

i  

f  

t  

t  

T  

c  

c  
times with both ensembles for ACC using the whole e-ophtha-MA

dataset and α–level = 0.5. Using the parameter setting with the

highest ACC value in the four tests, we measured ACC, SE , and SP

at α–levels ranging from 0.1 to 1 with a step size of 0.1. The cor-

responding results are provided in Table 8 . Furthermore, the fitted

receiver operating characteristic (ROC) curves obtained for the en-

sembles are presented in Fig. 7 , which again showed that Ensemble

2 performed better than Ensemble 1. 

Finally, Table 9 gives the DR classification performance of En-

semble 2 at α–level = 0.5 and those of the methods described in

Section 3.1 . The reported performance levels are not directly com-

parable because of the different datasets and evaluation methods

employed, but it can be observed that the performance of Ensem-

ble 2 is competitive in this field. 

4.5. Implementation and hardware details 

SA-SBE was implemented in Java SE 8 and also used for the SA

tests with sampling disabled. All the detector outputs were stored
n memory during the search and the evaluation of the energy

unction was parallelized at the image level in order to reduce the

ime required to find a solution. The reported runtimes exclude

he time required for loading the input files and other overheads.

he results with the e-ophtha-MA dataset were acquired using a

omputer equipped with two 6-core AMD Opteron 2423 HE pro-

essors and 32 GB DDR2 RAM. The results with the Kaggle Eye-
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Table 9 

Performance of MA-based DR classification methods. 

Method Performance Dataset used 

Hipwell et al. [20] SE : 0.78, SP : 0.91 non-public (3783 images, 956 with DR) 

Fleming et al. [22] SE : 0.854, SP : 0.831 non-public (1441 images, 356 with DR) 

Bhalerao et al. [23] SE : 0.826, SP : 0.802 DIARETDB1 (89 images, 80 with DR) 

Giancardo et al. [24] AUC : 0.854 Messidor (1200 images, 654 with DR) 

Ensemble 2 SE : 0.899, SP : 0.927 ( AUC : 

0.965) 

e-ophtha-MA (381 images, 233 with DR) 
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ACS dataset were acquired using two computers, where each was

quipped with a 4-core Intel Xeon W-2123 processor and 64 GB

DR4 RAM. 

. Conclusions 

In object detection applications, it is common to optimize sys-

ems using objective functions that are calculated as an aver-

ge over a dataset. Our motivation for constructing the proposed

ethod was to provide a theoretically established way for reduc-

ng the time required for optimization but without any significant

oss of the solution quality if the dataset considered is large. In

ection 2 , we proposed a sampling strategy to ensure that SA ex-

ibits the same convergence in probability using sampling-based

valuation as that using complete evaluation. Our experimental re-

ults in Section 4 demonstrated that SA-SBE can provide the same

olution quality as SA for our parameter optimization problems.

he proposed evaluation method is domain independent and easy

o adapt to problems where evaluation over large datasets is re-

uired. Our method does not incorporate complex techniques for

he determination of the required sample size (e.g., monitoring

hanges in energy) or sample selection (e.g., finding the critical

amples in classes) to accelerate the search process. 

For practical problems, it is typically possible to empirically de-

ermine a fixed sampling rate for the evaluation in SA in order

o obtain solutions with adequate quality and reduce the runtime.

owever, using the same sample size in each iteration would not

ecessarily provide the same solution quality as a complete eval-

ation. In the case of SA, according to (1) , the standard deviation

f the energy noise must approach 0 faster than the temperature

o maintain the convergence in probability, i.e., the sampling rate

ust approach 1 faster in our case. Clearly, for any fixed sample

ize n const < N , there is a temperature level T ( l ) (0 ≤ l < k max ) up

o n const would be larger than the minimum sample size required

o maintain the convergence in probability, and thus the search

ould be slower than possible, and after reaching T ( l ) , samples of

ize n const will be insufficient and the search convergence will de-

eriorate, thereby potentially decreasing the performance. 

In future research, we plan to investigate embedding sampling-

ased evaluation with a dynamic sample size in other stochastic

earch methods. In addition, we plan to generalize the proposed

ataset-level sampling strategy to systematic image-level sampling,

.e., to image downsampling, where estimation of the noise origi-

ating from the sampling is required. 
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