
Introduction

Linear recurring sequences have a wide range of application from the �eld of
solving diophantine equations� through rational approximation and random number
generation to cryptology� The present work deals with the di�erent aspects of linear
recurring sequences and related topics� However the mainstream of our studies is
the examination of uniform distribution of sequences and application of the obtained
results in constructing e�cient pseudo�random number generators and sequences
with general distribution�
The properties of the linear recurring sequences have been investigated by several

authors from di�erent points of view�
The periodicity of recurring sequences reduced modulo m was studied in the

thirties by Ward� He in ��	
 could prove that if u is a third�order linear recurring
sequence and m��m� are relatively prime positive integers both greater than ��
then the period length of the sequence reduced modulo m�m� is the least common
multiple of the period lengths of the same sequence reduced modulo m� and m��
He also proved that u is purely periodic modulo m�m� if and only if it is purely
periodic both modulo m� and m�� Furthermore� he proved some properties of the
period length� too�
In ��
 he obtained results on the number of appearances of the residue classes

of a third�order linear recurring sequence�
Duparc in ���
 and ���
 investigated the period length of general linear recurring

sequences reduced to �nite residue classes over unique factorization domains�
Bundschuh and Shiue in ��
 generalized the result of Bundschuh ��
 and gave

a su�cient condition on the uniform distribution of general second�order linear
recurring sequences reduced modulo prime powers�
Niederreiter in ��	
 proved that the Fibonacci sequence is uniformly distributed

modulo m if and only if m � �s�
Nathanson ���
 gave a criterion for the uniform distribution of a second�order

linear recurring sequence modulo primes�
Webb and Long in ���
 characterized the general second�order linear recurring

sequences to be uniformly distributed reduced modulo prime powers and Bumby
��
 with respect to general moduli�
Niederreiter and Shiue in ���
 and ���
 gave necessary and su�cient condition for

a linear recurring sequence of order less than � to be uniformly distributed over �nite
�elds� Here they proved that a general linear recurring sequence could be uniformly
distributed over a �nite �eld only if its characteristic polynomial had a multiple root
over the same �eld� This leads to the observation� that over the integers� a linear
recurring sequence can be uniformly distributed modulo p �and thus modulo ps�
only if p divides the discriminant of its characteristic polynomial� They also gave
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here a su�cient condition for the characteristic polynomial of recurrence sequences
over prime �elds� such that if this simple condition holds� then the corresponding
sequence is uniformly distributed� This result lets us construct pseudo random
sequences with good distribution properties and a large period length�

Narkiewicz ���
 gave an overview of the uniform distribution of linear recurring
sequences and among others� he studied the uniform distribution of second�order
linear recurring sequences in general residue class systems�

Turnwald in ���
 and ���
 gave a complete characterization of second and third�
order linear recurring sequences de�ned over Dedekind domains to be uniformly
distributed in residue class systems with �nite norm�

Tichy and Turnwald ���
 applied the previous result and gave a criterion for
uniform distribution of third�order linear recurring sequences over the integers�

Drmota and Tichy in ��
 gave a survey of the topic and proved uniform dis�
tribution and weak uniform distribution properties of several sorts of recurring
sequences�

Carlip and Jacobson in ��
 studied a more general distribution property of linear
recurring sequences and gave a criterion for this stability property for second�order
linear recurring sequences modulo powers of ��

Uniform distribution of general sequences are studied in ���
 where the concept
of completely uniformly distributed sequences are also developed�

As a standard monograph on non uniform random number generation we refer to
Devroye ��
� One can �nd there various algorithms for generating random number
sequences with di�erent distributions� See also Winkler ���
�

Furthermore� we mention Knuth�s fundamental book ���
� where di�erent notions
of pseudo�randomness are considered�

It should be remarked� that pseudo�random sequences are used in various appli�
cations� especially in Monte Carlo methods for solving di�erent kinds of problems�
such as numerical integration� optimization� simulation of stochastic processes etc�
For a survey on random number generation and Quasi�Monte Carlo methods we
refer to Niederreiter ��
�

Another theory we will use in the present work is the �eld of linear transforma�
tions�

Linear transformations have a great importance in applied sciences� The most
well�known and most frequently used are the Fourier transform and the Laplace
transformation�

A particular linear transformation which is also often used for di�erent purposes
is the so�called Walsh transformation� For example� in digital picture processing
it can be used as �ltering transformation �see e�g� in the book of Yaroslavsky
���
�� In a more special application in character recognition it is used as symmetry
representation of digitalized images �cf� ���
 ��

As an application of linear recurring sequences we will prove some divisibility
properties of lacunary polynomials� namely trinomials� As general works in this
subject we refer to R�edei ���
� Nagell ���
 and Schinzel ��
� ���
 and ���
�

The structure of the present thesis is the following�

In Chapter � we give the most general de�nitions and results we use in the
later parts�
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In Chapter � we prove some general properties of Dedekind�domains paying
particular attention to residue systems generated by ideals with �nite norm� We
should mention� that the results here and in Chapter � are the generalization of
��	
� where the case of rational integers were investigated�
Chapter � is built around the problem of uniform distribution of linear recur�

ring sequences� Here we study among others the periodicity and the hereditary of
periodicity of sequences in residue class systems modulo powers of prime ideals�
The observations lead to the main result Theorem ���� of the chapter�
For every linear recurring sequence in a Dedekind�domain we can �nd an integer S
depending only on the degree of the recurrence relation� such that if the sequence is
uniformly distributed modulo PS� where P is a prime ideal with �nite norm� then
the sequence is uniformly distributed modulo every power of the ideal P �
In Chapter � we give a method for constructing linear recurring sequences of

integers� such that the sequence is uniformly distributed modulo every power of ��
With the use of these sequences we can develop pseudo�random number generators
with very good properties� In Appendix A we give an example of such a linear
recurring sequence of order 		���
In Chapter � we provide a method to create pseudo�random number sequences

with Gaussian distribution using linear transformations of uniformly distributed
sequences� The method we present is based on the Berry�Ess�een Theorem and
on the existence of very well uniformly distributed sequences� In Appendix A we
present some experimental results related to this chapter� where we analyze di�erent
pseudo�random number sequences after linear transformations� The results here are
mainly from the paper ��
�
Finally in Chapter � we use linear recurring sequences for proving a kind of

�niteness of trinomials having quadratic divisors� The chapter covers the results of
���
�



Chapter �

Basic de�nitions and results

Dedekind�domains are de�ned in several ways in the literature� We will give the
one which is the most suitable for our purposes�

De�nition ���� Let R be an integral domain� We call R a Dedekind	domain�
if for every ideal I of R we can �nd prime ideals P�� � � � � Pk unique up to ordering�
such that I � P� � � � � � Pk�
For general properties of Dedekind�domains see ��
� ���
� ���
� ���
� ���
 and ���
�

De�nition ���� Let R be a Dedekind�domain and let I � R be an ideal� We will
call the cardinality of the ring R�I the norm of I and we will denote it by N�I��

Remark ���� Let I and J be two relatively prime ideals of R� e�g� let I � J � R�
Suppose further that I and J have both �nite norm� Then

N�I � J� � N�I� �N�J� �
The proof of the above statement is based on the Chinese Remainder Theory�

�See e�g� in ���
��
The same can be proven for arbitrary I and J as a consequence of Corollary ����

De�nition ���� Let R be a Dedekind�domain and let a�� � � � � ad�� � R and

u � fung�n��
be a sequence in R satisfying the recurrence relation

un�d � ad��un�d�� � � � �� a�un for n � � �� � � � �

Then u is called a linear recurring sequence �for short l�r�s�� with de�ning
coe
cients a�� � � � � ad�� and initial values u�� � � � � ud���

The integer d is called the order of the recurrence and the polynomial

P �x� � xd � ad��xd�� � � � � � a�

is called a characteristic polynomial of u�

Remark ���� It is easy to see that a linear recurring sequence satis�es several
recurrence relations� In particular� one can say that if P �x� � R�x
 is a character�
istic polynomial of a recurring sequence� then P �x� � Q�x� is also a characteristic
polynomial of the sequence for all Q�x� � R�x
� �See e�g� ���
��
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Remark ���� By the previous remark� the order of a linear recurring sequence is
not de�nite� However� since the di�erent values of the orders of a sequence are
positive numbers� there exists a unique smallest�

De�nition ���� Let d�u� be the smallest integer for which there exists a recurrence
relation of order d�u� for the sequence u� This number is said to be the minimal
order of the recurring sequence and a corresponding characteristic polynomial is
said to be a minimal characteristic polynomial of u�

Remark ���� As we will see in Lemma 	�
� the minimal characteristic polynomial
of a linear recurring sequence is also unique�

De�nition ��� Let R be a Dedekind�domain� m � R and let P � R be a prime
ideal� We will denote by �P �m� � N the P 	adic valuation of m� which is de�ned
by the following�

�m� � P �P 	m
 but �m� n P �P 	m
�� �� � �

where �m� denotes the ideal generated by m�

De�nition ����� Let u be a sequence in the Dedekind�domain R and let I � R be
an ideal� We say that u is periodic modulo I with period length � � N� if there
exists �� � N� such that

un�� � un mod I for all n � �� �

The smallest �� � ���I�u� and � � �I�u� with the previous property will be called
the preperiod and minimal period length of u modulo I respectively�

If ���I�u� �  then u is said to be purely periodic modulo m�

Remark ����� Let R be a Dedekind�domain� let u be a linear recurring sequence
in R and let I � R be an ideal with �nite norm� A simple observation shows that
u is periodic modulo I�

De�nition ����� Let u be a sequence in the Dedekind�domain R and let I � R be
an ideal with �nite norm� We will say that u is uniformly distributed �for short
u�d�� modulo I if

lim
N��

�

N
� fn 	 N jun � a mod Ig � �

N�I�

for all a � R�

Remark ����� Let R be a Dedekind�domain� let u be a linear recurring sequence
in R and let I� J � R be two ideals with �nite norm� such that I � J � One can
prove that if u is u�d� modulo I� then it is u�d� modulo J � The proof is based on the
fact that if a�� � � � � aN	I
 is a complete residue system modulo I� then the cardinality
of the set

fa� j a� � fa�� � � � � aN	I
g and a� � a mod Jg
with some a � R� is independent of the value of a�
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De�nition ����� Let u be a l�r�s� in the Dedekind�domain R� de�ned by the coef�
�cients a�� � � � � ad�� with initial values u�� � � � � ud�� and let P � R be a prime ideal�
Let

�un�k� � �un�k��� un�k��� � � � � un�tr

denote the nth k	dimensional state vector and

M�u� �

�BBBB�
ad�� ad�� � � � a� a�
�  � � �  
 � � � �  
���

���
� � �

���
���

  � � � � 

�CCCCA
the companion matrix of u�

Remark ����� With the above notations we have

�un�d� �M�u�n�u��d� �

which will be used frequently in the paper�

Remark ����� We mention that if we reduce a linear recurring sequence modulo
some ideal in a Dedekind�domain� then we get a linear recurring sequence in the
residue class system� which may have di�erent properties than the original sequence
�e�g� the minimal order of the reduced sequence may became smaller��

By Remark ���� it has sense to introduce the following notations�

De�nition ����� Let s be a positive integer� With the notation of De�nition ���
dP �u� s� will denote the minimal order� �P �u� s� the minimal period length�
MP �u� s� the companion matrix and as��� � � � � as�dP 	u�s
�� the de�ning coe
	
cients corresponding to the minimal recurrence relation of u modulo P s�

Remark ����� As far as there is no confusion� we will simplify our notation by
omitting unnecessary parameters� for instance� by cancelling the sign of the ideal
P �

For further properties of linear recurring sequences we refer to ���
�
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Dedekind�domains and modules

For the discussions of the later chapters we will need some special properties of
Dedekind�domains� In this chapter we state all the results we will use� The material
of this and the �th chapter is a generalization of ��	
�
Throughout the chapter let R be a Dedekind�domain� and let P be a prime

ideal of R� Suppose that R�P has N�P � elements� and N�P � � 
� Since R is a
Dedekind�domain� P is maximal and R�P is a ��nite� �eld �see e�g� ���
�� Hence�
we know that N�P � � �l with some rational prime � and an integer l � � �see e�g�
���
�� First we turn to the determination of N�P k�� For this we need the following�

Theorem ���� Let k � N� Then the additive groups of the rings R�P and
P k���P k are isomorphic�

Proof� See e�g� ���
� �

Corollary ���� Let k � N� Then N�P k� � N�P �k�

Proof� By the isomorphism theorem of groups� we know that the additive groups
of �R�P k���P k���P k� and R�P k�� are isomorphic� thus

N�P k� � �fP k���P kgN�P k��� � N�P �N�P k��� �

Hence� by induction� we obtain the statement� �

In general Dedekind�domains we cannot ensure that if some elements are in the
same ideal of the ring� they have common non�unit divisor� Fortunately� since we
will work in residue class systems� some more general results will be enough for the
cancellation of �common factors��

Theorem ���� Let k� s � N� P � R be a prime ideal and let p � P k nP k��� Then
for every q � P k there exists r � R� such that p � r � q mod P s� In particular� if
q � P k n P k��� then r � R n P �
Proof� If s 	 k� then p � q �  mod P s� thus r � � is suitable�
Suppose now that s � k� Let r�� � � � � rn � R be a complete residue system

modulo P s�k� where by Corollary ��� we �nd n � N�P �s�k� If � 	 i� j 	 n� such
that i �� j� then

ri �� rj mod P s�k �

which is equivalent to

����� ri � rj �� P s�k �
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Since p �� P k��� relation ����� holds if and only if

p�ri � rj� �� P kP s�k � P s �

i�e�
pri �� prj mod P s �

This yields that pr�� � � � � prn represent n di�erent residue classes modulo P
s�

Let q�� � � � � qm � R be a complete residue system modulo P k� such that q� � �
Clearly m � N�P �k�
We claim that pri � qj with � 	 i 	 n and � 	 j 	 m is a complete residue

system modulo P s� To prove this� we have to show that all the residue classes
pri � qj are di�erent� since n � m � N�P �s� But pri � qj � pri� � qj� mod P

s

implies that pri � qj � pri� � qj� mod P
k� i�e� qj � qj� mod P

k� This means that
j � j�� whence pri � pri� mod P

s i�e� i � i��
By the above claim� there exist � 	 i� 	 n and � 	 j� 	 m� such that

q � pri� � qj� mod P s �

Hence
q � pri� � qj� mod P s �

and thus
 � q � pri� � qj� mod P k �

This yields that j� � � i�e� qj� � � whence

q � pri� mod P s �

Setting r � ri� we obtain the �rst part of the theorem� The second statement is
clear if we notice that q �� P k�� implies pr �� P k��� whence r �� P � �

Corollary ���� Let s � N� P � R be a prime ideal and let p � R n P � Then there
exists r � R n P � such that p � r � � mod P s�

Proof� If we �x k �  and q � � in Theorem ���� we obtain the result� �

Corollary ���� Let r� k� s � N and 	�� � � � � 	r � R� such that

P k�� � �	�� � � � �� �	r� � P k

�e�g� k will be the highest exponent of P � such that P k is a divisor of all the
ideals 	�� � � � � 	r� and let p � P k n P k��� Then there exist 	��� � � � � 	

�
r � R and

i � f�� � � � � rg� such that
	j � p	�j mod P s

for j � � � � � r and 	�i �� P �

Proof� The condition
P k�� � �	�� � � � �� �	r� � P k

yields that �	��� � � � � �	r� are divisible by P
k� but at least one of them � say �	i� � is

not divisible by P k��� Then 	�� � � � � 	r � P k� but 	i �� P k��� Hence� substituting
q by 	j and r by 	

�
j in Theorem ���� the property 	�i �� P is deduced from the last

sentence of the theorem� �
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Corollary ���� Let r� k� s � N and 	�� � � � � 	r � R� such that

�	�� � � � �� �	r� � P k

and let p � P k n P k��� Then there exist 	��� � � � � 	
�
r � R and i � f�� � � � � rg� such

that
	j � p	�j mod P s

for j � � � � � r�

Proof� Since P k�� � �p� � P k� we have

P k�� � �p� � �	�� � � � �� �	r� � P k �

By the previous corollary� there exist 	��� 	
�
�� � � � � 	

�
r � R� such that

	j � p	�j mod P s

for j � � � � � r� �

De�nition ����
Let R be a Dedekind�domain and let d be a positive integer� V �R� d� will denote

the free module of rank d over R� which can be regarded as the Cartesian product Rd

with the natural extension of addition and componentwise multiplication by elements
of R� If there are no confusion� we will omit R and d�

We will say� that two vectors a� b � V �R� d� are congruent mod I� if they are
congruent component�wise mod I�

Let s� r � N� The set of vectors fb�� � � � � brg � B � V �R� d� is called semi	
independent mod P s if

	�b� � � � �� 	rbr �  mod P s

implies that 	i �  mod P for i � �� � � � � r� Otherwise it is called strongly de	
pendent�

Let b�� � � � � br� b � V �R� d�� The vector b is called a linear semi	combination
of the elements b�� � � � � br mod P s if b �  mod P s or there exist k � N� p �
P k n P k�� and 	�� � � � � 	r � R� such that

 �� pb � 	�b� � � � �� 	rbr mod P s

and 	i ��  mod P for some i � f�� � � � � rg provided that k � �
If fb�� � � � � brg � B � V �R� d� is semi�independent and for all b � V �R� d�� b is a

semi�combination of b�� � � � � br mod P s� then B is called a semi	basis of V �R� d�
mod P s�

We keep the notion of independence� combination and basis for the usual sense
de�nition�
For arbitrary modules we usually cannot generalize all the results of linear alge�

bra� however in our special case we can prove some important ones�
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Theorem ���� For every d� s � N there exists a basis �in the usual sense� of
V �R� d� mod P s and it has exactly d elements�

Proof� See e�g� Th� ����� �p��� of ��
� �

Further in the chapter we �x R and d� and we will use the notation V instead
of V �R� d��

Theorem ��� Let b�� � � � � br � V be linearly dependent over R� then they are
strongly dependent mod P s� for any s�

Proof� Let s � N � 	�� � � � � 	r � R such that

	�b� � � � �� 	rbr �  �

and let k � N � such that

P k�� � �	�� � � � �� �	r� � P k

and p � P k n P k��� Then by Corollary ��� there exist 	��� � � � � 	
�
r � R and i �

f�� � � � � rg� such that 	�i �� P and 	j � p	�j mod P s�k� Thus

p	��b� � � � �� p	�rbr �  mod P s�k �

whence
	��b� � � � �� 	�rbr �  mod P s �

Hence by de�nition� b�� � � � � br are strongly dependent mod P s� �

Theorem ����� Let b�� � � � � bd � V be linearly independent over R� then for any

����� s � �P �det�b�� � � � � bd��

the vectors b�� � � � � bd are semi�independent mod P s�

Proof� Let 	�� � � � � 	d � R� such that

	�b� � � � �� 	dbd �  mod P s �

This yields that
b � 	�b� � � � �� 	dbd � P s �

If b � � then by the independence of b�� � � � � bd� we have

	� � � � � � 	d �  �

Suppose� that b �� � Since b�� � � � � bd are linearly independent over R� we �nd

det�b�� � � � � bd� ��  �

and Cramer�s rule can be applied� Hence

	i det�b�� � � � � bd� � det�b�� � � � � bdjbi � b� �



Dedekind�domains and modules ��

for i � �� � � � � d�
Let b � �
�� � � � � 
d�� Since

b �  mod P s �

thus

i �  mod P s

for i � �� � � � � d� Hence

det�b�� � � � � bdjbi � psb� � P s �

By ������ we get det�b�� � � � � bd� �� P s� whence 	i � P for all i � �� � � � � d� By
de�nition this yields that b�� � � � � bd are semi independent mod P s� �

Remark ����� If the number of independent vectors in Theorem ���� is less than
d� there still exists a lower bound on s with the same properties�

Corollary ����� Let b�� � � � � bd � V and t � �P �det�b�� � � � � bd��� If b�� � � � � bd is
not a semi�basis mod P t��� then it is not a semi�basis mod P s for any s � N�
either�

Proof� If b�� � � � � bd is not a semi�basis modulo P
t��� then it is strongly dependent�

By Theorem ���� this means that b�� � � � � bd is linearly dependent over R� Then by
Theorem ��	� we obtain the statement� �

Theorem ����� If b�� � � � � br � V are semi�independent mod P s� then r 	 d�

Proof� By Theorem ��	� b�� � � � � br are independent over R and thus independent
over QR � the quotient �eld of R �using the natural embedding�� �

Theorem ����� If b�� � � � � bd � V �R� d� are semi�independent mod P s� then the
set b�� � � � � bd is a semi�basis mod P s�

Proof� Similarly as in the proof of Theorem ����� the set b�� � � � � bd is a basis of
V �QR � d�� Thus for every b � V �R� d� there exist

	�� 	�� � � � � 	d � R

� such that
	�b � 	�b� � � � �� 	dbd �

Suppose that
�	�� � �	�� � � � �� �	d� � P k�� � P k

with some integer k and suppose that 	i � P k n P k�� for some i � f� � � � � dg� By
Corollary ��� there exist 	��� 	

�
�� � � � � 	

�
d � R� such that

	j � 	�j	i mod P s�k �

Then
	i	

�
�b � 	i	

�
�b� � � � �� 	i	

�
dbd mod P s�k �

whence

����� 	��b � 	��b� � � � �� 	�dbd mod P s

and 	�i � ��
Now let b ��  mod P s� If 	��b �  mod P s held� then i �� � and thus b�� � � � � bd

would be strongly dependent mod P s� contrary to the assumption� Hence� 	��b �� 
mod P s and by de�nition b is a semi�combination of b�� � � � � bd� �



�� T� Herendi� Linear recurring sequences

Remark ����� Let s � s� and suppose that b�� � � � � bd � V is a semi�basis
mod P s� This b�� � � � � bd is also a semi�basis mod P s�� otherwise it would be
strongly dependent mod P s� � which would yield

	�b� � � � �� 	dbd �  mod P s�

for some 	�� � � � � 	d not all in P � But then the same holds mod P s which would
contradict the semi�independence of b�� � � � � bd�

However� more can be proved�

Theorem ����� Let s 	 s� and suppose that b�� � � � � bd � V is a semi�basis
mod P s� If b � V � then there exist 	�� � � � � 	d � R and p � P s�� such that

pb � 	�b� � � � �� 	dbd mod P s� �

Proof� Extending the proof of Theorem ����� the congruence ����� implies

����� 	��b � 	��b� � � � �� 	�dbd mod P s� �

where by ������ we �nd that �P �	
�
�� 	 s� �� If we multiply both sides of ����� by

some q � P s����P 	���
� then � setting p � q � 	�� � we obtain the theorem� �



Chapter �

Results on recurring sequences

In this chapter we collected results on linear recurring sequences� We focused
on the uniform distribution of the sequences in residue class systems� For this we
examined the change of periodicity and other related properties when we change
the residue class system by extension�
The following lemmas about polynomials are useful for the later analysis of the

characteristic polynomials of linear recurring sequences�

Lemma ���� Let k� n � N� R be a Dedekind�domain� P � R be a prime ideal and
let Q�Q�� Q� � R�x
�

Suppose that
Q � Q� �Q� �

Q� � Pn�x
 n Pn���x


and

Q� � P k�x
 n P k���x
 �

Then
Q � Pn�k�x
 n Pn�k���x
 �

Proof� Let
Q� � alx

l � � � �� a� �

Q� � bmx
m � � � �� b�

and

Q � cm�lx
m�l � � � �� c� �

Then we have
ch � ahb� � ah��b� � � � �� a�bh �

where  	 h 	 m� l� Since

a�� � � � � ah � Pn and b�� � � � � bh � P k �

thus
ahb�� � � � � a�bh � Pn�k �

whence
ch � Pn�k for all  	 h 	 m� l �
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i�e� Q � Pn�k�x
� �The coe�cients which are not explicitly de�ned� are assumed
to be zero��
Furthermore� since Q� �� Pn���x
� there exists  	 i 	 l� such that

ai �� Pn�� �

but
ai� � Pn�� for all  	 i� � i �

Similarly� there exists  	 j 	 m� such that

bj �� P k�� �

but
bj� � P k�� for all  	 j� � j �

Then

ci�j � ai�jb� � � � �� ai��bj�� � aibj � ai��bj�� � � � �� a�bi�j �

Since
a�� � � � � ai�� � Pn�� and b�� � � � � bj�� � P k�� �

thus
ai�jb�� � � � � ai��bj��� ai��bj��� � � � � a�bi�j � Pn�k�� �

If ci�j � Pn�k��� then aibj � Pn�k��� but since P is a prime ideal� this contradicts
the de�nition of i and j� whereby ci�j �� Pn�k�� i�e� Q �� Pn�k���x
� �

Lemma ��� �Gauss	lemma�� Let R be a Dedekind�domain with quotient �eld
QR and let Q � R�x
� Q�� Q� � QR �x
 be monic polynomials�

With these assumptions Q � Q� �Q� implies Q�� Q� � R�x
�

Proof� Let p� q � R� such that pQ�� qQ� � R�x
 and suppose that the decomposition
of �p� and �q� into prime ideals are

�p� �

kY
i��

P�i
i and �q� �

kY
i��

P �i
i �

Now we can write pqQ � pQ� � qQ��
Fix an index � 	 i 	 k� arbitrarily� Since Q � R�x
 is monic� thus

����� pqQ � P�i��i
i �x
 n P�i��i��

i �x
 �

The leading coe�cients of pQ� and qQ� are p and q respectively� thus

pQ� �� P�i��
i �x
 and qQ� �� P �i��

i �x
 �

Suppose that

pQ� � P
��i
i �x
 n P��i��

i �x
 and qQ� � P
��i
i �x
 n P ��i��

i �x
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with some ��i� 

�
i � N � By Lemma ��� and ������

��i � 
�i � �i � 
i

and since
��i 	 �i and 
�i 	 
i �

thus
��i � �i and 
�i � 
i �

This yields that

pQ� � P�i
i �x
 and qQ� � P �i

i �x


for all � 	 i 	 k� whence� using that Pi are prime ideals� we get

pQ� �
�

kY
i��

P�i
i

�
�x
 � pR�x
 and qQ� �

�
kY
i��

P �i
i

�
�x
 � qR�x
 �

Hence Q�� Q� � R�x
� �

Corollary ���� Let R be a Dedekind�domain and let QR be its quotient �eld� The
monic polynomial Q � R�x
 is irreducible over R if and only if it is irreducible over
QR �

Proof� If Q is irreducible over QR then it is obviously irreducible over R� too�
If Q is reducible over QR � then there exist monic polynomials Q�� Q� � QR �x


with positive degree� such that Q � Q� � Q�� By Lemma ���� Q�� Q� � R�x
 and
the statement follows� �

Remark ���� If Q is not monic� then Lemma 	�� and Corollary 	�	 do not hold�
We give a counter�example�

Let R � Z�� �
p��
 and QR � Q�� �

p���� Then the polynomial �x� � �x� �
is reducible over Q �� �

p��� with irreducible factors

x�
� �

p��
�

and �x� ��p�� �

but since � is irreducible in Z�� �
p���� thus the polynomial �x� � �x � � is also

irreducible over Z�� �
p��
�

Lemma ���� Let R be a Dedekind�domain and Q�� Q� � R�x
 be monic polynomi�
als� Then there exist gcd�Q�� Q�� and lcm�Q�� Q���

Proof� Since Q�� Q� � QR �x
� there exists the monic polynomial gcd�Q�� Q�� over
QR � Further�

gcd�Q�� Q�� j Q�

thus by Lemma ���� gcd�Q�� Q�� � R�x
�
Let Q�� Q � R�x
� such that

Q� � gcd�Q�� Q�� �Q� and Q� � gcd�Q�� Q�� �Q �

Then gcd�Q�� Q�� �Q� �Q � lcm�Q�� Q�� � R�x
� �
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Lemma ���� Let F be a �eld and u be a l�r�s� over F � Then there exists a
unique minimal characteristic polynomial of u� Further� this minimal characteristic
polynomial is a divisor of all the characteristic polynomials of the sequence�

Proof� The existence and uniqueness of the minimal polynomial is proven on p���
of ���
 for number �elds� The statement of the lemma is proven in Theorem ���� of
���
 for �nite �elds� but the proof can be used for general �elds without change� �

Lemma ���� Let R be a Dedekind�domain and let u be a l�r�s� over R� Then there
exists a unique minimal characteristic polynomial of u�

Proof� Let Q be a characteristic polynomial of u over R� Since u is a l�r�s� over
QR � by Lemma ���there exists a unique minimal characteristic polynomial Q

� of u
over QR � Since Q and Q� are monic and Q� j Q� by Lemma ���Q� � R�x
� �

Lemma ���� Let a� b � R and let u and v be two linear recurring sequences over
R with characteristic polynomials Qu and Qv respectively� Then au � bv is also a
linear recurring sequence with characteristic polynomial lcm�Qu� Qv��

Proof� Since the polynomial lcm�Qu� Qv� is divisible by both Qu and Qv� by Re�
mark ��� lcm�Qu� Qv� is a characteristic polynomial for both sequences u and v�
If two sequences both satisfy a linear recurrence relation� then any linear com�
bination of them satis�es the same recurrence relation� whence lcm�Qu� Qv� is a
characteristic polynomial for all linear combinations u and v� �

Remark ��� If we de�ne the sequence v by vn � un�k for some k � � then
Qv � Qu and thus Qu is a characteristic polynomial of au� bv�

Remark ����� Throughout the chapter if we don�t state otherwise� we suppose�
that the linear recurring sequences are purely periodic in the considered residue
class systems� i�e�

un��	u�s
 � un mod P s for all n � � �� �� � � �

and the sequence has no preperiod�

Remark ����� If M�u� and M�v� are the companion matrices of Qu and Qv

respectively� then M�u�  M�v� denotes the companion matrix corresponding to
lcm�Qu� Qv��

In the following lemmas we prove some properties of the minimal order of the
mod P s reduced linear recurring sequences� We will also see that the minimal order
of the sequence is the best bound for the minimal order of the reduced sequences�

Lemma ����� Let F be a �nite �eld and let u be a l�r�s� in F with characteristic
polynomial Q � F�x
� Then Q is the minimal characteristic polynomial of u if and
only if the state vectors �u�� � � � � �ud�� � V �F� d� are linearly independent over F�
where d is the degree of Q�

Proof� See e�g� Th� ���� of ���
� �
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Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal with �nite
norm� s � N and let u be a l�r�s� over R� Using the notation d � d�u� s�� the d
dimensional state vectors �u��d�� � � � � �ud���d� � V �R� d� form a semi�basis modulo
P s�

Proof� If s � �� then R�P s is a �nite �eld and the independence � and the semi�
independence� which is the same in this case � follows from Lemma �����
We will use the notation �un � �un�d��
Let s � �� Suppose that �u�� � � � � �ud�� is not a semi�basis modulo P s� whence by

Theorem ����� they are strongly dependent� This yields that there exists a set of
coe�cients 	�� � � � � 	d�� � R and k � f� � � � � d� �g� such that 	k �� P and

����� 	��u� � � � �� 	d���ud�� �  mod P s �

We claim that we may choose 	�� � � � � 	d��� such that

	d�� � � mod P s �

Let k � d� �� By Corollary ���� there exists 	 � R with the property

	 � 	d�� � � mod P s �

Multiplying ����� by 	 we obtain the claim for this case�
Now� suppose that 	d�� � P for every system of 	�� � � � � 	d�� � R which satis�es

����� and �x a set of coe�cients 	�� � � � � 	d�� � R satisfying ������ such that the
corresponding k is maximal� For this k we have k � d� ��
Multiplying ����� by the companion matrix M�u� s�� we get

�����

 �M�u� s� �	��u� � � � �� 	d���ud���

� 	�M�u� s��u� � � � �� 	d��M�u� s��ud��
� 	��u� � � � �� 	d���ud mod P s �

By the de�nition of d there exist as��� � � � � as�d��� such that

as���u� � � � �� as�d���ud�� � �ud mod P s �

Substituting this into ������ we obtain

 �	��u� � � � �� 	d���ud��
� as��	d���u� � � � �� as�d��	d���ud�� mod P s �

Set
	�� � as��	d��

and
	�i � 	i�� � as�i	d�� for i � �� � � � � d� � �

Since 	d�� � P � we have 	�k�� �� P � By ������ 	��� � � � � 	
�
d�� is also a suitable choice

for the coe�cients to combine � which contradicts the selection of k� Hence� there
exists a set of coe�cients 	�� � � � � 	d�� � R satisfying ������ such that ud�� �� P �
whence the claim is proven�
Choose 	�� � � � � 	d�� � R satisfying ������ such that 	d�� � � mod P s� Hence

�	��u� � � � � � 	d���ud�� � �ud�� mod P s �

Multiplying both sides of the congruence by �M�u� s��n we obtain

�	��un � � � � � 	d���un�d�� � �un�d�� mod P s �

which contradicts the minimal property of d� �
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Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal with �nite
norm� let u be a l�r�s� over R and let r� q� s � N� such that  � r 	 q�

If
�u��q�� � � � � �ur���q� � V �R� q�

are semi�independent modulo P s� then

r 	 d�u� s� �

Proof� We will use the notation

d � d�u� s� �

Contrary to the lemma� suppose that d � r� By the de�nition of d there exist
	�� � � � � 	d�� � R� such that

�ud�q� � 	��u��q� � � � �� 	d���ud���q� mod P s �

which means that �u��q�� � � � � �ur���q� are strongly dependent� �

Remark ����� Since the minimal recurrence relation of the original sequence is
also a recurrence relation for the reduced sequence� we have

d�u� s� 	 d�u�

and since the minimal recurrence relation of the sequence reduced modulo P s�� is
also a recurrence relation for the same sequence reduced modulo P s� we have

d�u� s� 	 d�u� s� �� for all s � N �

Thus there exists an integer T � such that

d�u� T � � d�u� s� for all s � T �

The smallest such a T will be denoted by T �u��

Lemma ����� Let R be a Dedekind�domain� u be a l�r�s� over R and let q � d�u��
Then the vectors �u��q�� � � � � �ud	u
���q� are independent over R�

Proof� Let Q be the minimal characteristic polynomial of u over R�
By Lemma ���� the polynomial Q exists and it is also a minimal characteristic

polynomial of u over QR �
Let M be the q dimensional companion matrix of the sequence u corresponding

to Q� which yields
�un���q� �M �un�q� �

Suppose that �u��q�� � � � � �ud	u
���q� are dependent over R� This means that there
exist coe�cients 	�� � � � � 	d	u
�� � R� such that

	��u��q� � � � �� 	d	u
���ud	u
���q� �  �
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Let  	 k 	 d�u�� � be the largest index with the property 	k �� � For this k we
can write

�	�
	k
�u��q�� � � � � 	k��

	k
�uk���q� � �uk�q� �

Multiplying this equation by Mn� we obtain

�uk�n�q� �M
n�uk�q�

�Mn

�
�	�
	k
�u��q�� � � � � 	k��

	k
�uk���q�

�
�� 	�

	k
Mn�u��q�� � � � � 	k��

	k
Mn�uk���q�

�� 	�
	k
�un�q�� � � � � 	k��

	k
�un�k���q�

for all n � � But then

P � � xk �
	k��
	k

xk�� � � � �� 	�
	k

is also a characteristic polynomial of u over QR � with degree less than d�u�� This
is a contradiction� thus �u��q�� � � � � �ud	u
���q� are independent over R� �

Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal with �nite
norm and let u be a l�r�s� over R� Then

d�u� � d�u� T �u�� �

Proof� Clearly�
d�u� � d�u� T �u�� �

By Lemma ����� the d�u� dimensional state vectors �u��d�u��� � � � � �ud	u�T 	u

�d�u��
are strongly dependent modulo P s for all s � T �u�� By Theorem ���� this yields
that �u��d�u���� � � � � �ud	u�T 	u

�d�u�� are dependent over R� However� by Lemma
����� the vectors �u��d�u��� � � � � �ud	u
���d�u�� are independent� thus

d�u�� � � d�u� T �u�� � �

The following lemma shows that every linear recurring sequence can be split into
two parts� a dominating and a less important recurring sequence�

Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal with �nite
norm� let u be a l�r�s� over R and let t� s � N�

Then there exist linear recurring sequences u	�
 and u	�
� such that

u � u	�
 � u	�
 mod P s �

u	�
 �  mod P t �

T �u	�
� 	 t �

d�u	�
� � d�u� t�

and

d�u	�
� 	 �d�u� �
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Proof� Let

u	�
n � un for n � � � � � � d�u� t�� �

and de�ne u
	�

n for n � d�u� t� by the recurrence relation

�u	�
n �d�u� t�� �M�u� t�n�u
	�

� �d�u� t�� �

Then

un � u	�
n mod P t holds for all n �  �
Thus

�P �un � u	�
n � � t

and we can de�ne

u	�
n � �un � u	�
n � �

For this sequences

u � u	�
 � u	�
 and u	�
 �  mod P t

obviously holds� It is also clear that

T �u	�
� 	 t

and by Lemma �����

d�u	�
� � d�u	�
� t� � d�u� t� �

By Lemma ���� the sequence u	�
 is a l�r�s� with

d�u	�
� 	 d�u	�
� � d�u� 	 �d�u� � �

In the next lemmas we prove some properties of the period length and the lifting
of the di�erences of elements of the recurring sequences to the expanded residue
class systems�

Lemma ���� Let R be a Dedekind�domain� P � R be a prime ideal with �nite
norm� let u be a l�r�s� over R and suppose that

d�u� s� � d�u� s� k� � d for some k �  �

Furthermore� let as�k�d��� � � � � as�k�� be as in De�nition ���
� Let b�� � � � � bd�� �
R and let

bn�d � as�k�d��bn�d�� � � � �� as�k��bn for n �  �

Then

��b� k� �� j ��u� s� k� �
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Proof� In the proof we will use the notations�

�un � �un�d�u� s�� � � � ��u� s� k�

and

M �M�u� s� k� �

By Lemma ����� the d�u� s� � d dimensional state vectors �u�� � � � � �ud�� form a
semi�basis modulo P s and P s�k�
By Theorem ����� there exist for every �b � V �R� d� coe�cients 	�� � � � � 	d�� � R

and p � P s��� such that

����� p�b � 	��u� � � � �� 	d���ud�� mod P s�k �

By the de�nition of � we have

�un�� � �un mod P s�k �

i�e�
M��un � �un mod P s�k �

Hence� using ����� and the de�nition of the sequence b� we get

p�b��n � pM��n�b� � pM��n�b

� M��n	��u� � � � ��M��n	d���ud��
� Mn	��u� � � � ��Mn	d���ud��

� pMn�b � pMn�b� � p�bn mod P s�k �

But this means that � is a period length of the sequence b modulo P k�� and thus
��b� k� �� j �� �

Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal with �nite
norm� let u be a l�r�s� over R� s � T �u� and let l� n � N� Then

un�l�	u�s
 � un � l�un��	u�s
 � un� mod P s�� �

Proof� Let
�un � �un�d�u�� � M �M�u� � � � ��u� s�

and let

yn � un�� � un � �yn � �yn�d�u�� �

Clearly�
�yn �Mn�y� �

and since
un�� � un mod P s �

the relation yn � P s holds�
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Let p � P s n P s��� By Corollary ��� there exist b�� � � � � bd	u
�� � R� such that

yi � pbi mod P s�� for i � � � � � � d�u�� � �

Let us de�ne the sequence bn by �bn �Mn�b�� Then clearly�

pbn � yn mod P s�� �

By Lemma ����� we have d�u� s� � d�u�� Hence by setting k �  in Lemma ���	�
we �nd that ��b� �� j �� whence

M i��bn � �bn mod P

and thus
M i��yn � �yn mod P s��

for any i � N �
Let E denote the d�u� dimensional unit matrix� Then we have

�un�l� � �un � �M l� � E��un

�
�
l��X
i��

M i�

�
�M� �E� �un

�
�
l��X
i��

M i�

�
�yn

�
l��X
i��

�
M i��yn

	
� l�yn � l ��un�� � �un� mod P s�� � �

Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal� let � � N be
the prime� such that � j N�P �� let u be a l�r�s� over R and let s � N�

If s � T �u�� then either

��u� s� �� � ��u� s�

or

��u� s� �� � ���u� s� �

Proof� Let us de�ne the sequence y	l
 by

y	l
n � un�l�	u�s
 � un

and use the notation

�y	l
n � �y	l
n �d�u�� and M �M�u� �
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For this �y	l
 clearly�
�y	l
n �  mod P s

and
�y
	l

n�i �M i�y	l
n for all i � N �

Hence� if
�y	�
n �  mod P s�� for some n � N �

then
�y
	�

n�i �  mod P s�� for all i � N �

and
��u� s� �� � ��u� s� �

Thus� if we assume that
��u� s� �� � ��u� s� �

then
�y	�
n ��  mod P s�� �

By Lemma ���� we have

�y	l
n � l�y	�
n mod P s�� �

whence
�y	l
n �  mod P s�� if and only if � j l �

From this� we get that the smallest positive value for l� such that

un�l�	u�s
 � un mod P s��

is
l � � � �

Remark ����� Ward in his Theorem 
��� of ��
 claimed that for a third�order
l�r�s� the statment of Lemma 	��� remains true even if we omit the condition
s � T �u�� However� this is false� as shown e�g� by the sequence un � �Fn with
P � ��� � Z � R and s � �� where Fn is the Fibonacci sequence� The period length
of �Fn modulo � is � while modulo �� is ��

Lemma ����� Let R be a Dedekind�domain� P � R be a prime ideal� let t � N
and let u be a l�r�s� over R� such that

un �  mod P t for all n � N �

Furthermore� let s � � z � � be integers and

N�P � � �z with � � N prime�

Then
��u� s� t� � �zd	u
�s�� �
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Proof� Let v be the sequence satisfying the same recurrence relation as u with initial
values

v� � � � � � � vd	u
�� � � vd	u
�� � � �

Then �v��d�u��� � � � � �vd	u
���d�u�� are linearly independent modulo P � whence by
Lemma ����� we �nd that

d�v� � d�u� 	 d�v� �� �

Thus T �v� � � and by Lemma ����� we have

��v� s� j ��v� ���s�� �
Let p � P t nP t��� By Theorem ��� there exist a sequence u��� u

�
�� � � � � R� such that

un � pu�n mod P s�t for all n � N �

This sequence u� is not necessarily a l�r�s� but periodic modulo P s with

��u�� s� � ��u� s� t�

and
p�u�n�d�u�� �M�u�np�u���d�u�� mod P s�t �

whence
�u�n�d�u�� �M�u�n�u���d�u�� mod P s �

Since �u���d�u�� is a linear combination of the vectors �v��d�u��� � � � � �vd	u
���d�u��
�with coe�cients in R��

��u� s� t� � ��u�� s� j ��v� s� �
We know that

��v� �� � �zd	u


whence
��u� s� t� 	 ��v� s� 	 ��v� ���s�� � �zd	u
�s�� � �

As an application of the lemmas above� we can prove the following fundamental
theorem�

Theorem ����� Let R be a Dedekind�domain� u be a l�r�s�� P be a prime ideal
with �nite norm in R and � � N be the prime� such that � j N�P ��

If u is uniformly distributed modulo P s for all s � N� then N�P � � ��

Proof� Suppose that

N�P � � �z with z � f�� �� �� � � �g �
Fix s � �d�u�� For this s there are ��z�s � �zs di�erent residue classes modulo P s�
Since u is u�d� modulo P s� thus �sz 	 ��u� s�� Hence by Lemma ����

�sz 	 ��u� s� � �zd	u
�s�� �
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and substituting the value of s� the inequality has the form

��zd	u
 � �zd	u
��d	u
�� �

Taking the logarithm of both sides we obtain

�zd�u� � zd�u� � �d�u�� � � zd�u� � �d�u� �

whence canceling d�u� out� we �nd

�z � z � � � i�e� z � � � �

Now we can turn to the generalization of the results related to the period length
and lifting properties�

Lemma ����� Let t� k� � � N� where � is a prime� R be a Dedekind�domain� P � R
be a prime ideal with �nite norm� such that � j N�P � and let u and v be two linear
recurring sequences over R� such that

vn �  mod P t for all n � N �

Suppose that there exists T� � T �u�� such that

�����v� t� k � i� ��� � �����u� T� � i�� for all i � 

and set

�� � ��v� T �v��� gcd���u� T��� ��v� T �v�� and � � ������	�
�
 �

Let s � T� � k� such that

��u� s� �� � ���u� s�

and suppose that t � T��
Then the congruence

�����
�u� v�n�m�	u�s
�ql��	u�s��
 � �u� v�n�m�	u�s


� �l��un�q�	u�s
 � un� mod P
s�k��

holds for all n�m� l� q � �
Proof� The case l �  is trivial�
Suppose that l �  and let

M �M�u� M�v� � V �R� d� d� �

where  denotes the operation de�ned in Remark ���� and d is the dimension of
M � Furthermore� let

yn � �un�q�� � un� �
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let E be the d dimensional unit matrix and write

�un � �un�d� � �vn � �vn�d� � �yn � �yn�d� �

�� � ��u� s� � �� � ��u� s� �� �

By the de�nition of ��� we have

yn �  mod P s �

Hence by Corollary ��� there exist b�� � � � � bd�� � R� such that

yi � pbi mod P s�k�� for i � � � � � � d� � �
Let us de�ne the sequence bn by �bn �Mn�b��d�� Then clearly�

pbn � yn mod P s�k�� �

Since d�s� � d�s� k� by Lemma ���	

��b� k� �� j �� �
i�e�

M���bn � �bn mod P k��

and thus

����� M�� �yn � �yn mod P s�k�� �

whence

�����

�
�l���X
i��

M iq��

�
�yn � �l��yn mod P s�k�� �

Using similar arguments as in the proof of Lemma ���� by ����� and ����� we have

�����

��u��v�n�m���lq��� � ��u� �v�n�m��

�Mm���M lq��� � E���u� �v�n

�Mm���M lq���� � E��un �Mm���M lq��� � E��vn

�Mm��

�
l����X
i��

M iq��

�
�Mq�� �E� �un �Mm���M lq��� � E��vn

�
�
l����X
i��

M iq��

�
Mm�� �yn �Mm���M lq��� � E��vn

�
�
l����X
i��

M iq��

�
�yn �Mm���M lq��� � E��vn

� l���yn �Mm���M lq��� � E��vn

� l�� �un�q�� � un� �Mm���M lq��� �E��vn mod P s�k�� �
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Now� we show that Mm���M lq��� �E��vn vanishes in the congruence ������

Let us observe the following three cases�

i�� If t � s� k� then

�vn �  mod P s�k�� �

ii�� If s � t 	 s� k� then

��v� s� k � �� j ��v� t� k � �� j ���u� T�� j ���u� s� j ��� �

whence

���	� �M lq��� � E��vn �  mod P s�k�� �

iii�� Finally� if t 	 s� then

��v� s� k � �� � ��v� �s� t� � t� k � �� j ���u� T� � s� t� j ���u� s� j ��� �

whence again ���	� follows�

Applying the above observation to ����� we obtain ������ �

Corollary ����� With the assumptions of Lemma 	���� we have

�u� v�n�lq��	u�s��
 � �u� v�n � l
�
�u� v�n�q��	u�s��
 � �u� v�n

	
� l��un�q�	u�s��
 � un� mod P s�k�� �

Proof� By Lemma ����� we can write

�u� v�n�m�	u�s
�ql��	u�s��
 � �u� v�n�m�	u�s


� l
�
���un�q�	u�s
 � un�

	
� l

�
�u� v�n�q��	u�s��
 � �u� v�n

	
mod P s�k�� �

Set the sequence v�n � � Then

�u� v�n�m�	u�s
�ql��	u�s��
 � �u� v�n�m�	u�s


� l�
�
��un�q�	u�s
 � un�

	
� l�

�
�u� v��n�q�	u�s��
 � �u� v��n

	
� l��un�q�	u�s��
 � un� mod P s�k�� � �

As a consequence of the above results we can prove that a linear recurring se�
quence is either periodic or if s is greater than a given bound� the period length of
the sequence modulo P s is strictly increasing with s�
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Theorem ����� Let � � N be a prime� R be a Dedekind�domain� P � R be a
prime ideal with �nite norm� such that � j N�P �� let u be a l�r�s� over R and
s � T �u� be an integer�

If
��u� s� �� � ���u� s� �

then
��u� s� �� � ���u� s� �� �

Proof� Let �un � �un�d�u��� Setting k � �� vn � � m � � l � � and q � � in
Lemma ����� we obtain that

�un��	u�s��
 � �un � ���un��	u�s
 � �un� mod P s�� �

Since �s�� � �s� we have

�un��	u�s
 � �un ��  mod P s��

and thus
�un��	u�s��
 � �un ��  mod P s�� �

Hence by Lemma ����� we get

��u� s� �� � ���u� s� �� � �

In the following corollary we prove that the required existence of T� in Lemma
���� is not a real restriction�

Corollary ����� Let R be a Dedekin�domain� � � N be a prime� P � R be a prime
ideal� such that � j N�P �� let u and v be linear recurring sequences over R� such
that u is non�periodic and vn �  mod P t with some t � N for all n � N and let
k � N�

Then there exists T� � N� such that

�����v� t� k � i� ��� � �����u� T� � i�� for all i �  �

Proof� Satisfying

�����v� t� k � i� ��� � �����u� T� � i�� for all i �  �

it is enough to choose T�� such that

��u� T� � �� � ���u� T��

and

�����v� t� k � i� ��� � �����u� T� � i�� for  	 i 	 T �v�� t �

If i � T �v�� t� then the property follows from Lemma ���� and Corollary ����� �

In the following remark we give some estimation for T� in the most important
cases�
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Remark ���� Assume that N�P � � ��
a�� By Lemma 	��	� we have

�����v� t� k � i� ��� 	 d�v� � k � i� �

and if we suppose that u is uniformly distributed modulo PT��i� then

T� � i 	 �����u� T� � i�� �

If T� � d�v� � k� then

�����v� t� k � i� ��� 	 d�v� � � � k � i� �
� T� � i

	 �����u� T� � i�� �

b�� Further� again by Lemma 	��	� we have

�����u� T �u��� 	 d�u� � T �u�� � �

Thus
T� 	 �����u� T��� �

provided that u is uniformly distributed modulo PT� �
If

T� � d�u� � T �u�� � �
then

�����u� T �u��� 	 d�u� � T �u�� � � T� 	 �����u� T��� �

This yields that there exists an i � N with T �u� 	 i � T�� such that

�����u� i�� � �����u� i� ��� �

whence by Lemma 	���� we get

�����u� i�� � � 	 �����u� i� ��� �

Using Theorem 	��
� we obtain by induction that

�����u� T��� � j 	 �����u� T� � j�� for all j �  �

c�� Let T � � maxfd�v� � k� d�u� � T �u�� �g� If u is u�d� modulo PT ���� then
we can choose T� � T � in Lemma 	���

Remark ����� Using the notations of Lemma 	���� we �nd that ��u � v� s � ��
divides ����u� s�� which comes from Theorem 	��
 and the congruence ����� modulo
P s���

In the lemma below we give a lower bound on the distance of the elements
corresponding to the same residue class of a uniformly distributed linear recurring
sequence�
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Lemma ����� Let R be a Dedekin�domain� � � N be a prime� P � R be a prime
ideal� such that � j N�P �� u be a l�r�s� over R� let l� s � N� such that

s � T �u� � d�u� and � � l

and suppose that
��u� s� � ���u� s� �� �

If
un � un�l�	u�s
 mod P s�d	u
 for some  	 n �

then u cannot be u�d� modulo P s�d	u
�

Proof� Setting vn � � T� � T �u� and k � d�u�� by Lemma �����

un�l�	u�s
 � un � l�un��	u�s
 � un� mod P s�d	u
 �

Since � � l� there exists l�� � R� such that

ll�� � � mod P s�d	u
 �

This yields

un�m�	u�s
 � un � ml���un�l�	u�s
 � un� �  mod P s�d	u
 �

for every m � �
By Theorem ���� we know that

��u� s� d�u�� � �d	u
��u� s� �

This means that un� � � � � un��	u�s�d	u

�� contains at least �d	u
 elements in the
residue class of un modulo P

s�d	u
�
Suppose that the sequence is uniformly distributed modulo P s�d	u
� Then among

un� � � � � un��	u�s�d	u

��� every residue class modulo P s�d	u
 appear with the same

frequency� The number of di�erent residue classes modulo P s�d	u
 is

N�P �s�d	u
 � �z	s�d	u

 with some z � � �

thus
��u� s� d�u�� � �z	s�d	u

�d	u
 � �s�d	u
�d	u
 � �s��d	u
 �

On the other hand� by Lemma ���

��u� s� d�u�� � �s��d	u
�� �

which is a contradiction� �

The following fundamental theorem gives the very important lifting property of
the uniform distribution�
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Theorem ����� Let R be a Dedekind�domain� � � N be a prime� let u and v be
two linear recurring sequences over R� P � R a prime ideal with N�P � � �� let T��
t and � as in Lemma 	��� and let

s � T� � �d�u� �

If u and u� v are uniformly distributed modulo P s� then the sequence u� v is also
uniformly distributed modulo P s���

Proof� We will construct a partition H of the set f� � � � ����u� s�����g� such that
if A � H� then

un � um mod P s for all n�m � A

and if
a � b mod P s

then

�fn � A j �u� v�n � a mod P s��g � �fn � A j �u� v�n � b mod P s��g �

If we can �nd such a partition� then u and u � v are also uniformly distributed
modulo P s���
Construct �rst the following class of sets�

An�l � fi j i � n mod ���u� s� l� and  	 i � ���u� s� ��g �

where
 	 l � d�u� and  	 n � ���u� s� l� �

Since we know that the period lengths

��u� s� �� � �l����u� s� l� �

the cardinality of the sets
�An�l � �l��

and
An�l � Am�r if and only if n � m and l � r �

De�ne the partition H with the help of the above sets�

H � fAn�l j �i� j � An�l � ui � uj mod P s and

�i� j � An�l� such that ui �� uj mod P s��g �

The proof proceeds in two steps�
In step a�� we will prove that H is a partition of f� � � � ����u� s���� �g and
in step b�� we will prove that if

An�l � H and a � b mod P s �
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then
�fm � An�l j�u� v�m � a mod P s��g

� �fm � An�l j �u� v�m � b mod P s��g �
a�� We claim H is a partition of f� � � � ����u� s� ��� �g� Thereto we will prove

the followings�

i�� If
An�l �� Am�r and An�l �Am�r �� � �

then
l � r and An�l � Am�r or r � l and Am�r � An�l �

Assume �rst that l � r� Then

An�l � Am�r �� �

means that there exists an integer i� such that

i � n mod ���u� s� l� and i � m mod ���u� s� l�

and consequently
m � n mod ���u� s� l� �

But we know that
 	 n�m � ���u� s� l� �

whence
n � m and An�l � Am�r �

If l �� r� then we may assume that l � r without loss of generality� In this case

An�l � Am�r �� �

means that there exists an integer i� such that

i � n mod ���u� s� l� and i � m mod ���u� s� r�

and since ��u� s� r�j��u� s� l�� thus

m � n mod ���u� s� r� �

Let j � An�l� Then
j � n mod ���u� s� l�

and consequently
j � n � m mod ���u� s� r� �

thus
An�l � Am�r �

ii�� If Am�r � H� then no subsets of Am�r are contained in H�
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Suppose that
Am�r � H and An�l � Am�r �

By �i� we have l � r� Let m� be such that

m� � n mod ���u� s� r � �� and  	 m� � ���u� s� r � �� �

We will show that
An�l � Am��r�� � Am�r �

By the de�nition of m� and Am��r��� we know that n � Am��r��� which means that

Am��r�� �An�l �� �

and by �i� we have
An�l � Am��r�� �

This yields that
Am��r�� � Am�r �� �

and again by �i� we �nd
Am��r�� � Am�r �

Since
�Am��r�� �� �Am�r �

thus
Am��r�� � Am�r �

We claim that if i � An�l� then ui � um� mod P s���
Let i � An�l� Since

An�l � Am��r�� �

thus i � Am��r�� and there exists an integer a� such that

i � m� � a���u� s� r � �� �

If we set
vn �  � k � d�u� � l � a and q � � �

by Lemma ���� we obtain

ui � um� � �a
�
um����	u�s�r
 � um�

	
mod P s�r�d	u
�� �

whence
ui � um� � �a

�
um����	u�s�r
 � u�m

	
mod P s�� �

Since
Am��r�� � Am�r

and
 	 m� � ���u� s� r� 	 i � ���u� s� �� �
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thus
m��m� � ���u� s� r� � Am�r �

But Am�r � H� whence

um� � um����	u�s�r
 mod P s �

This yields
��um����	u�s�r
 � um�� �  mod P s�� �

i�e�
ui � um� mod P s�� �

Hence�
ui � um� � uj mod P s�� for every i� j � An�l �

and thus An�l �� H�
iii�� Finally we prove that


A�H
A � f� � � � ����u� s� ��� �g �

During step iii�� we will use the notation

d � d�u� and ��i� � ��u� s� d� � � i� �

We will construct a sequence of partitions H��H�� � � � � such that

A�Hi

A � f� � � � ����u� s� ��� �g �

Hi�� is a re�nement of Hi and H � Hd��� �Actually� it is not necessary that every
Hi is a partition of f� � � � ����u� s� ��� �g� but obviously they are��
Let

H� � fAn�d��j 	 n � ����g �

Assuming that we have already de�ned Hi� we de�ne Hi�� by the following�
Let

H�i � fAjA � Hi and �j�� j� � A � uj� �� uj� mod P sg
and let

Hi�� � �Hi n H�i� �
�� 

An�r�H�i

�
An�a��	u�s�r
�r��j 	 a � �

��A �

A simple observation shows that the elements of H�i have the form An�d���i�
First we prove that


A�Hi
A � f� � � � ����u� s� ��� �g for all i �  �
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Obviously� if i � � the property holds�
Suppose that 


A�Hi
A � f� � � � ����u� s� ��� �g

for a �xed i� Since

s� d� � � i � T� � d � T �u� � d for every  	 i 	 d� � �

by similar considerations as in Remark ���	�b� we have

����� ��i� �� � ���i� �

whence
���

a��

An�a��	i
�d���i � An�d���i �

�All the sets An�a��	i
�d���i are di�erent� all of them is a subset of An�d���i and
comparing the cardinalities� we get the equality�� Hence


A�Hi��

A � f� � � � ����u� s� ��� �g �

Now we prove that if i �  and A � Hi� then there exist j�� j� � A� such that

uj� �� uj� mod P s�� �

First let i � � Since u is u�d� modulo P s and ����� holds� by Lemma �����

un �� un���	�
 mod P 	s�d��
�d for every  	 n � ���� �

This means that for every An�d�� � H� there exist j�� j� � An�d��� such that

uj� �� uj� mod P s��

�e�g� j� � n and j� � n� ������
Suppose now that Hi has the required property� If A � Hi�Hi��� then obviously

there exist j�� j� � A� such that

uj� �� uj� mod P s�� �

Therefore� let us assume that A � Hi�� n Hi� This yields that

A � An�d���i for some  	 n � ���i� �� �

Let m be such that

n � m mod ���i� and  	 m � ���i� �



�� T� Herendi� Linear recurring sequences

For this m we have Am�d���i � Hi n Hi���
By the de�nition of Hi�� there exist j�� j� � Am�d���i� such that

uj� �� uj� mod P s �

Let us �x j�� j� � Am�d���i� such that

uj� �� uj� mod P s �

a�� a�� such that

j� � m� a����i� and j� � m� a����i�

and set
v �  and k � d �

Then by Corollary �����

uj� � uj� � �uj� � um�� �uj� � um�

� a��um���	i
 � um�� a��um���	i
 � um�

� �a� � a���um���	i
 � um� mod P 	s�d�i
�d�� �

whence

������ um���	i
 �� um mod P s

follows�
Setting v �  and k � d� by Lemma �����

un���	i��
 � un � ��um���	i
 � um� mod P 	s�d���i
�d��

and by ������ we obtain that

un���	i��
 �� un mod P s�� �

whence there exist j�� j� � An�d���i� such that

uj� �� uj� mod P s��

�e�g� j� � n and j� � n� ���i� ����
Finally� we only have to prove that Hd�� � H�

Let i � d� �� Then for every A � Hd�� there exist j�� j� � A� such that

uj� �� uj� mod P s�� �

Further� by the de�nition of ��u� s�� we know that

un��	u�s
 � un �  mod P s �
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i�e�
uj� � uj� mod P s for all j�� j� � An�� �

If An�d���i � Hd��� where  	 i � d � �� then An�d���i � Hd��� too� and by the
de�nition of Hd��� we have

uj� � uj� mod P s for all j�� j� � An�d���i �

Hence Hd�� � H and thus

A�H

A � f� � � � ����u� s� ��� �g �

b�� Now we turn to the assertion that if A � H and a � b mod P s� then

�fn � A j�u� v�n � a mod P s��g
� �fn � A j �u� v�n � b mod P s��g �

Let A � Am�r� n � Am�r and a be such that n � m� a���u� s� r��
Setting k � d�u�� by Corollary �����

�u� v�n � �u� v�m � a�um���	u�s�r
 � um� mod P 	s�r��
�d	u
�� �

Since Am�r � H�
um���	u�s�r
 � um �  mod P s �

but
um���	u�s�r
 � um ��  mod P s�� �

Let
ym � �um���	u�s�r
 � um� �

Since r � d�u��
�u� v�n � �u� v�m � a�ym mod P s�� �

i�e�
�u� v�n � a�ym � �u� v�m mod P s�� �

Since
ym ��  mod P s�� �

�u� v�n� � �u� v�n� mod P s��

if and only if the corresponding a�� a� are such that a� � a� mod ��
We know that Am�r has �

r�� elements� which yields that a takes values from
�� pr����
� Since every residue classes modulo � appears pir times in �� �r����
�
thus all the residue classes modulo P s�� which appear in f�u� v�njn � Am�rg have
�r representatives� and this means that the assertion is proved� �

Applying the above theorem� we can prove a similar result� which will be useful
when we split the linear recurring sequences into dominant and less dominant parts�
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Corollary ����� Let R be a Dedekind�domain� � � N be a prime� u and v be two
linear recurring sequences over R� P � R be a prime ideal with N�P � � �� T� and
� as in Lemma 	��� and s� t � N� such that

s � T� � �d�u� and t � T �u� � �d�u� �

If
v �  mod P t and u� v is u�d� mod P s �

then
u� v is u�d� mod P s�� �

Proof� Let v� � � Then the corresponding T �� can be chosen to be equal to T �u��
If s � t� then u� v � u mod P s��� Since T� � T �u� and u� v� are u�d� modulo

P s� by Theorem ����� u� v� is also u�d� modulo P s��� But

u� v� � u � u� v mod P s�� �

If s � t� then since u� v � u mod P t� u is u�d� modulo P t�
Since t � T �u� � �d�u�� applying Theorem ���� and supposing that u and u � v�

are u�d� modulo P t� then u� v� � u is u�d� modulo P t���
Hence by induction u is u�d� modulo P s� whence again by Theorem ����� the

statement follows� �

The following lemma proves the existence of splitting the sequences into domi�
nant and less dominant parts�

Lemma ����� Let R be a Dedekind�domain� � � N be a prime� let u be a linear
recurring sequence in R� such that d�u� � � and let P � R be a prime ideal with
N�P � � ��

Then there exist an integer t �  and two linear recurring sequences u	�
 and
u	�
 over R� such that

u � u	�
 � u	�
 � u	�
 �  mod P t � d�u	�
� 	 d�u�

T �u	�
� 	 �d�u	�
�� � d�u	�
�

�
� � � d�u�

and

max
n
T �u	�
� � �d�u	�
�� �� �d�u	�
� � d�u�

o
� t �

Proof� Let T�� � � � � Tm be a set of strictly increasing integers� such that

T� � � � Tm � T �u�

and

d�u� Tj��� � d�u� Tj�� � �� � d�u� Tj� for all � 	 j � m

and �x i � N �
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By Lemma ����� there exist v	��i
 and v	��i
� such that

u � v	��i
 � v	��i


with
v	��i
 �  mod PTi���� � T �v	��i
� 	 Ti�� � �

and

d�v	��i
� � d�u� Ti�� � �� � d�u� Ti� �

Since
v	��i
n � un mod P t for all n � 

and
 	 t 	 Ti�� � � �

thus
d�v	��i
� t� � d�u� t� for all  	 t 	 Ti�� � � �

whence
T �v	��i
� � Ti �

Now suppose that there exist an � 	 i� � m� such that

max
n
Ti� � �d�v

	��i�
�� �� �d�v	��i�
� � d�u�
o
� Ti���

and �x i � N to be the smallest such an i�� Let us also assume that there exists an
� � l� 	 i integer� such that

Tl��� � �d�v	��l
���
�� � � Tl� �

and let l be the maximal among them�
Then by the de�nition of l�

Tj � �d�v
	��j
�� � � Tj�� for all l 	 j � i �

whence

Ti 	 Tl �
i��X
j�l

��d�v	��j
�� �� �

Since
d�v	��j
� 	 d�v	��i��
� for all j � i

and
d�v	��l��
� � d�v	��l
� �

thus

i��X
j�l

��d�v	��j
�� �� 	
d	v���i���
X
j�d	v���l�


��j � ��

�
��d�v	��i��
�� � � �d�v	��l
�� ���d�v	��i��
�� d�v	��l
� � ��

�

�
�d�v	��i��
�� � d�v	��i��
�� �d�v	��l
�� � �d�v	��l
�� �

�
�
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By the de�nition of i and l� it follows that

Tl 	 �d�v	��l��
� � d�u� �

Since
d�v	��l��
� 	 d�v	��l
�� � �

thus

Ti 	 d�u� � ��d�v	��l
�� ��

�
�d�v	��i��
�� � d�v	��i��
�� �d�v	��l
�� � �d�v	��l
�� �

�

� d�u� �
�d�v	��i��
�� � d�v	��i��
�� �d�v	��l
�� � ��d�v	��l
�� �

�
�

The right hand side of the inequality is a quadratic expression of d�v	��l
�� having
an absolute maximum at d�v	��l
� � �� whence

������ Ti 	 d�u� � ��d�v	��i��
�� � d�v	��i��
� � ���� �

If l with the above de�nition does not exist� then we have

Ti 	 � � �d�v
	��i��
�� � d�v	��i��
�� �d�v	��l
�� � �d�v	��l
�� �

�
�

and ������ remains true�
For i we can de�ne

u	�
 � v	��i
 � u	�
 � v	��i
 and t � Ti�� � � �

If there are no i satisfying

max
n
Ti�� � �d�v	��i��
�� �� �d�v	��i��
� � d�u�

o
� Ti �

then either
T �u� 	 �d�u�

or if
Tj � �d�v

	��j
� � d�u�

then
Tj 	 Tj�� � �dv	��j��
�� � for all � � j 	 m �

In both cases we may choose

u	�
 � u � u	�
 �  and t � T �u� � �d�u� � �
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Remark ����� The following problem is contained in a list of related questions in
the paper of Tichy ���
�

Theorem ����� Let � � N be a prime� R be a Dedekind�domain� P � R be a
prime ideal� such that N�P � � �� let d � � be an integer� u be a dth�order linear

recurring sequence over R and let S � �d���d
�

� ��

If u is uniformly distributed modulo PS� then it is also uniformly distributed
modulo P s for any s � N�

Proof� Suppose �rst that u is not purely periodic modulo P s for some s �  and
let �s � � such that

u�s��	u�s
�n � u�s�n mod P s for every n �  �

Further� let v
	s

n � u�s�n� Clearly� v

	s
 is purely periodic modulo P s and v	s
 is
u�d� modulo P s if and only if u is u�d� modulo P s� Thus� to prove that u is u�d�
modulo P s� it is enough to show that v	s
 is u�d� modulo P s�
Therefore� we may suppose without loss of generality� that for a �xed� but arbi�

trary big s� � � the sequence u is purely periodic modulo P s� �
If s 	 S then u is obviously u�d� modulo P s� Suppose that s � S and u is u�d�

modulo P s� By Lemma ����� u can be split into the sum of two linear recurring
sequences�

u � u	�
 � u	�
 with u	�
 �  mod P t �

where

d�u	�
� 	 d�u� �

T �u	�
� 	 �d�u	�
�� � d�u	�
�

�
� � � d�u� 	 �d�u�

� � d�u�

�
� �

and
t � max

n
T �u	�
� � �d�u	�
�� �� �d�u	�
� � d�u�

o
�

Hence

s � S �
�d�u�� � 	d�u�

�
� �

� max

�
d�u�� � d�u�

�
� � � �d�u�� �� �d�u�

�
� max

n
T �u	�
� � �d�u	�
�� �� �d�u	�
� � d�u�

o
�

Let
T � � max

n
d�u	�
� � d�u	�
�� d�u	�
� � T �u	�
�� �

o
�

Since u	�
 is a linear combination of u and u	�
� by Lemma ����

T � � max
n
d�u	�
� � d�u	�
�� d�u	�
� � T �u	�
�� �

o
	 max

n
d�u� � �d�u	�
�� d�u	�
� � T �u	�
�� �

o
� s
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thus u is u�d� modulo PT ���� Since T � � t� we have

u	�
 � u mod PT ���

and u	�
 is u�d� modulo PT ����
Hence� setting k � d�u	�
�� by Remark ���	� we can choose T� � T �� Thus�

T� � �d�u
	�
� 	 max

n
T �u	�
� � �d�u	�
�� �� �d�u	�
� � d�u�

o
	 s �

Similarly� T� � �d�u
	�
� 	 t� whence by Corollary ����� u � u	�
 � ptu	�
 is u�d�

modulo ps���
Since s is arbitrary� we obtain the theorem by induction� �

Remark ����� As we will see in Chapter � by a detailed analysis of the results
in special cases we can obtain much better bounds than in the general case�

For instance� if T �u� � �� which is rather often the case for the uniform distri�
bution property stated in Theorem 	�	�� it is enough if

s � �d�u� � � �



Chapter �

Construction of uniformly
distributed linear recurring sequences

In this chapter� we will provide the theoretical background for construction of
uniformly distributed linear recurring sequences with arbitrary large period length
using the general results of the previous chapter� The fundamental application of
such sequences is the construction of pseudo�random number generators�
If we want to use a periodic sequence u for pseudo�random number generation�

we have to care to the followings�

The sequence u should
� be uniformly distributed
� have a long minimal period
� have a low correlation between the elements
� be easily computable�

We will provide a solution for the problem paying particular attention to the
above mentioned properties�

Remark ���� One can �nd criteria for the uniform distribution of linear recurring
sequences of order 	 � over �nite �elds in ���
 and ���
�

Among other general results� criteria for the uniform distribution of linear re�
curring sequences of order 	 � over Dedekind�domains can be �nd in ���
 and ���
�

As a starting point we have to construct uniformly distributed recurring se�
quences over simpler structures� Niederreiter and Shiue in ���
 give a necessary
condition on uniform distribution of linear recurring sequences over �nite �elds�

Proposition ���� Let F be a �nite �eld and let u be a l�r�s� over F � If u is
uniformly distributed� the characteristic polynomial of u contains a multiple factor�

Proof� See e�g� ���
� �

Example ���� Let us de�ne the sequence u by the following�

u� �  � u� � � and un � un�� for n � � �

Clearly� the sequence is uniformly distributed modulo �� The characteristic polyno�
mial of u is

P �x� � x� � � � �x� ��� mod � �
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Example ���� De�ne the sequence u by the following�

u� �  � u� � � and un � un�� � un�� for n � � �

The sequence u is the so�called Fibonacci�sequence� In ��	
 it is proven that u is
uniformly distributed modulo �� Even more proven there� u is uniformly distributed
modulo m if and only if m is a power of ��

The characteristic polynomial of u is

P �x� � x� � x� � � �x� ��� mod � �

Now we turn to the known and the new results which we will use for �nding
linear recurring sequences with uniform distribution modulo some � in particular
�k � integer� The idea behind the construction is that �rst we try to �nd a linear
recurring sequence with a characteristic polynomial having the property

P �x� � �x� ���Q�x� mod � �

where Q�x� is irreducible modulo � and has a particular degree� In this way we
can �nd a linear recurring sequence with a large period length� which has some
advantages for the later steps�

De�nition ���� Let F be a �nite �eld and P � F �x
� such that P �� �� � We will
call ord�P � � e the order of P � where e is the smallest positive integer� such that
P �x� j xe � � over F �x
�
Remark ���� The integer e in the above de�nition always exists� See e�g� in ���


Proposition ���� Let F be a �nite �eld with q elements and let Q�x� be an irre�
ducible polynomial of degree k over F � Then the order of Q divides qk � ��
Proof� See e�g� Corollary ��� of ���
� �

Proposition ���� Let F be a �nite �eld of characteristic p� let P � F �x
 be a

polynomial of positive degree with P �� ��  and let P � aP b�
� � � � P br

r � where a � F
and P�� � � � � Pr are distinct monic irreducible polynomials�

If e denotes the least common multiple of ord�P��� � � � � ord�Pr� and t denotes the
smallest integer� such that pt � maxfb�� � � � � brg� then ord�P � � ept�

Proof� See e�g� Theorem ���� of ���
� �

We can use the above result to determine the order of polynomials in the de�
manded form�

Corollary ��� Let P �x� � Z�x
 be such that

P �x� � �x� ���Q�x� mod � �

where Q�x� is irreducible modulo ��
Then for the orders of the polynomials over F� we have

ord�P � � �ord�Q� �
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De�nition ����� Let u be a l�r�s� of order d over a Dedekind�domain R� We say
that u is an impulse response sequence if

u� � � � � � ud�� �  and ud�� � � �

The following proposition shows the highlighted role of the impulse response
sequence corresponding to a given recurrence relation�

Proposition ����� Let F be a �nite �eld and let u be the impulse response sequence
over F with characteristic polynomial P �x�� Then the minimal period length of u
is equal to ord�P ��

Proof� See e�g� Theorem ����� of ���
� �

De�nition ����� Let m � � be an integer� let un be a sequence of integers and let
u�n � f� � � � �m� �g be such that

u�n � un mod m �

The sequence u� is called the reduced sequence of u mod m�

The following lemma provides the possibility to construct linear recurring se�
quences with large period lengths�

Lemma ����� Let Q�x� � Z�x
 be an irreducible polynomial modulo � of degree
k and let u be the impulse response sequence corresponding to the characteristic
polynomial P �x� � �x� � ��Q�x� mod �� Then u� � the reduced sequence of u
modulo � � has period length �� with some �� such that � j �k � ��
Proof� Let � � ord�Q�� By Proposition ���� � j �k � �� The factorization of P is
P � �x� ���Q�x� mod �� whence by Corollary ��	�

ord�P � � � ord�Q� � �� �

Hence by Proposition ����� the lemma follows� �

Lemma ����� Let Q�x� � Z�x
� such that � � Q��� and let u be a l�r�s� of integers
with characteristic polynomial

P �x� � �x� � ��Q�x� mod � �

let v be the sequence given by

vn � un � � for all n � 

and let v� denote the modulo � reduced sequence of v� Then v� modulo � satis�es
the recurrence relation corresponding to P �

Proof� The polynomial P is a characteristic polynomial of the sequence w modulo
�� where wn � � for all n � � whence by the additive property of linear recurring
sequences� the lemma follows� �
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Remark ����� The above lemma is proven in more general settings in Theorem
���� of ���
�

De�nition ����� Let F be a �nite �eld with q elements and let u and v be two
linear recurring sequences of order d with the same characteristic polynomial P �
Suppose that P �� �� � We will say that u and v are equivalent� if there exists
N � N� such that

un � vn�N for all n � N

or

un�N � vn for all n � N �

Remark ����� The following properties are easy to prove� Let F be a �nite �eld
with q elements and let P � F �x
 be a polynomial of degree d� Then

i� we have qd di�erent linear recurring sequences having characteristic polyno�
mial P � and they can be divided into equivalence classes� such that

ii� in every equivalence class� the sequences have the same minimal period length
iii� the cardinality of the equivalence classes are equal to its elements� common

minimal period length

iv� the sequences from the same equivalence classes have periods di�ering only in
cyclic permutations�

Lemma ����� Let Q�x� � Z�x
 be irreducible modulo � of degree k and let

P �x� � �x� ���Q�x� mod � �

Let u be a sequence having characteristic polynomial P and minimal period length
modulo � equal to ord�P �� Then u is uniformly distributed modulo ��

Proof� Let denote by L the di�erent linear recurring sequences having characteristic
polynomial P modulo �� �We will regard two linear recurring sequences the same
modulo � if their reduced sequences are the same�� By �i� of Remark ���� � ��L� �
�k��� We will use the fact that if Q is a characteristic polynomial of a l�r�s�� then
Q�Q� is also a characteristic polynomial of it� for all Q� non�zero monic polynomials�
We can partition L � L��L�� such that ��L�� � ��L�� � �

k�� by the following� a
l�r�s� is in L� if it satis�es the recurrence relation corresponding to the characteristic
polynomial �x���Q�x� mod � and it is in L� otherwise� There is a simple bijection
between L� and L�� given by the mapping � � L � L� where ��w� � v� such that
vi � wi for i � � � � � � k and vk�� � � � wk��� Clearly �

� � Id and ��L�� � L��
One can easily check the following interesting property of �� Namely� for any two
sequences v� w � L�

w � v � ��w� � ��v� mod � �

By the de�nition of L�� if w� v � L�� then w � v � L�� too� Further if w� v � L��
then ��w�� ��v� � L�� whence w � v � L��
Let v be a l�r�s�� we will use the notation �vn � �vn� � � � � vn�k��� for the k � �

dimensional state vector of v�
Let � � ord�Q�� Then ord��x� ��Q� � � and ord�P � � ���
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By the de�nition of u we know that u � L� and in other words�

�u� � �u�� mod �

and

�u� �� �u� mod � �

Let w � L be the sequence� for which

�w� � �u� � �u� mod � �

Clearly
�un�� � �un � �wn mod � for all n � N �

Let v be the sequence� for which

�v� � �u� mod � �

Since u� v � L� thus u� v � L� and

�u� � �v� � �u� � �v� mod � �

i�e�
�u� � �u��� � �u� � �u� mod � �

This means that
�u� � �w� � �u� � �w� � �u� � �u� mod � �

i�e�
�w� � �w� mod � �

Since w ��  mod � this yields that wn � � mod � for all n � N �
Consequently

����� un � un�� � � mod � for all n � N �

But this means that the number of s among the �rst � elements of the sequence
is equal to the number of �s among the second � elements of the sequence and vice
versa� Then the number of s and �s has to be the same in a period� which means
that u is uniformly distributed modulo �� �

Remark ���� The statement of the theorem is proven in more general settings in
���
�

Theorem ����� Let Q � Z�x
 be monic and irreducible modulo � with degree k
and let P � Z�x
 be monic and such that

P �x� � �x� � ��Q�x� mod � �

Let us de�ne
P��x� � P �x� �

P��x� � P �x�� � �
P��x� � P �x�� �x �

P�x� � P �x�� �x� �
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and let u	i
 be linear recurring sequences corresponding to Pi� such that the mini�
mal period length of u	i
 modulo � is �ord�Q�� where ord�Q� is the order in F� �x
�
Then at least one of the u	i
�s is uniformly distributed modulo �s with period length
�sord�Q� for any s � N�

Proof� Simplifying the proof� we suppose� that

�u
	�

� � �u

	�

� � �u

	�

� � �u

	

� �

where �un is the state vector of un� In the proof we will use the notation � � ord�Q�
and M	i
 for the companion matrix� Furthermore� in any case we will use upper or
lower index �i� with the di�erent symbols corresponding to the proper sequence for
i � �� �� �� �� For short� we will write u � u	�
� For the convenient reference and
better overview� we will enumerate the parts of the proof�
�i� Let us calculate

����� �u���n � �un �M���un � �un � �M�� �E��un � �M
� � E��M� � E��un �

where M is the companion matrix of u and E is the unit matrix of the same
dimension� As we have seen in Lemma ����� by ����� we know� that

�M� � E��un � �� � ��yn �

with some �yn� Here �� yields the k � � dimensional ��� �� � � � � �� vector� One should
remark� that the equation �yn�� �M �yn not necessarily holds�
�ii� For the further calculations� examine �rst the behaviour of M���� Since the

sequence �� �� � � � � satis�es the recurrence relation with characteristic polynomial
x � � and x � � divides P��x�� P��x�� P��x� and P�x� modulo �� thus �� �� � � � �
also satis�es the recurrence relations with characteristic polynomials P��x�� P��x��
P��x� and P�x� modulo �� Consequently

M�� � �� � ��v and M��� � �� � ��z �

with some �v and �z�
Clearly� either �v � � mod � or �v � �� � � � � � � �� mod �� We will use the

notation �e � �� � � � � � � �� � �u�� In the �rst case� �z � � mod � should hold� too�
In the second case

M����� �M���� � ��v� � �� � ��z � �M��v � �� � ��z � �M��u� �

�� � ��z � ���� � �e� ��y�� � �� � ���z � ����e� mod � �
Let �z � �z�� z�� � � � � zk���� Then

��z � �� � �e� � �z�� � � � � zk��� z�� mod �

with some z� � Z� But this yields that

z� � z� � � mod �

z� � z� � � mod �

� � �

zk�� � zk�� � � mod � �
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i�e� �z is congruent to one of the alternating vectors beginning with �� �� � �� � � ��
or ��� � �� � � � �� modulo ��
�iii� We may write M	i


�� � �� � ��v	i
 corresponding to the di�erent recurrence

relations for i � �� �� �� �� By the above� if �z	�
 � � mod �� then �v	�
 � � mod ��
Hence by the properties of P��x�� P��x�� P��x� and P�x� we have

�v	�
 � �v	�
 � �e mod � and �v	
 � � mod �

which yield that �z	�
 and �z	�
 are congruent to some of the vectors �� �� � �� � � ��
and ��� � �� � � � �� modulo � and �z	
 � � mod �� Similarly� if �z	�
 is congruent to
one of �� �� � �� � � �� and ��� � �� � � � �� modulo �� then �v	�
 � �u� mod �� whence

�v	�
 � �v	�
 � � mod � and �v	
 � �e mod � �

i�e�
�z	�
 � �z	�
 � � mod �

and �z	
 is congruent to one of �� �� � �� � � �� and ��� � �� � � � �� modulo ��
�iv� Now� examine the behaviour of M��yn� Since �u�� �u�� � � � � �uk�� are indepen�

dent modulo �� they form a basis in Zk��
� and there exist ��� ��� � � � � �k�� � Z such

that
�yn � ���u� � ���u� � � � �� �k���uk�� mod � �

Hence� by �����

M��yn �M�����u� � ���u� � � � �� �k���uk���

�M����u� �M����u� � � � ��M��k���uk��

� ��M
��u� � ��M

��u� � � � �� �k��M
��uk��

� ����� � �u�� � ����� � �u�� � � � �� �k����� � �uk���

� ��� � �� � � � �� �k��� � �� � �yn
� n � �� � �yn mod � �

with some n � f� �g�
�v� Now� by ����� we can write

�����

�u���n � �un � �M� � E��M� � E��un

� �M� � E���� � ��yn�

� �� � ��z � �� � �M��yn � ��yn

� ���� � �z� � ���� � �yn� � ��yn
� ���� � �z � n�� � ��yn�

� ���� � �z � n��� mod � �

Similarly�

����� �u���n�� � �un�� � ���� � �z � n����� mod � �
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Assume that

����� �u���n � �un � �wn� wn��� � � � � wn�k���

and

����� �u���n�� � �un�� � �wn��� wn��� � � � � wn�k��� �

Then by ����� and �����

wn � ��� � z� � n� mod �

wn�� � ��� � z� � n� mod �

� � �

wn�k�� � ��� � zk�� � n� mod �

and by ����� and �����

wn�� � ��� � z� � n��� mod �

wn�� � ��� � z� � n��� mod �

� � �

wn�k�� � ��� � zk�� � n��� mod � �

This yields that
if �z � �� � � � � � � mod � then n � n�� and
if �z is congruent to one of �� �� � � � � or ��� � � � � � then n � �� n���

�vi� In the following we will prove that �z	i
 � � mod � and 
	i

� �  for at

least one of the i � �� �� �� �� �If �z	i
 � � mod � and 
	i

� � � then 

	i

n �  for all

n � N ��

Suppose� that �z	�
 �� � mod � or 
	�

� �� �

�vi�a� Clearly� u
	i

n � u

	j

n mod � for any i� j � �� �� �� �� De�ne the sequences

r
	i

n by u

	i

n � u

	�

n � �r

	i

n for i � �� �� � and denote �un � �� � � � � � � un� � Zk���

By the de�nition of M	i
�

�u
	�

n�� �M	�
�u

	�

n �M	�
�u

	�

n � ��u	�
n �

�u
	�

n�� �M	�
�u

	�

n �M	�
�u

	�

n � ��u

	�

n��

and
�u
	

n�� �M	
�u

	

n �M	�
�u

	

n � ���u	
n � �u

	

n���

for all n � �
Hence

�u
	�

n�� � ��r

	�

n�� � �u

	�

n��

�M	�
��u
	�

n � ��r	�
n � � ���u	�
n � ��r	�
n �

� �u
	�

n�� � ��M	�
�r

	�

n � �u	�
n � ��r	�
n � �
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�u
	�

n�� � ��r

	�

n�� � �u

	�

n��

�M	�
��u
	�

n � ��r	�
n � � ���u

	�

n�� � ��r

	�

n���

� �u
	�

n�� � ��M	�
�r

	�

n � �u

	�

n�� � ��r

	�

n���

and

�u
	�

n�� � ��r

	

n�� � �u

	

n��

�M	�
��u
	�

n � ��r	
n � � ���u	�
n � �u

	�

n�� � ���r

	

n � �r

	

n����

� �u
	�

n�� � ��M	�
�r

	

n � �u	�
n � �u

	�

n�� � ���r

	

n � �r

	

n���� �

Subtracting �u
	�

n�� and cancelling out �� we obtain

�����

�r
	�

n�� �M	�
�r

	�

n � �u	�
n � ��r	�
n �

�r
	�

n�� �M	�
�r

	�

n � �u

	�

n�� � ��r

	�

n��

and

�r
	

n�� �M	�
�r

	

n � �u	�
n � �u

	�

n�� � ���r

	

n � �r

	

n���

for all n � � Further �r	i
� � � for i � �� �� ��
�vi�b� One can prove

����� �r
	�

n�� � �r	�
n �Mn

	�
�u
	�

� mod � for all n � 

by the following�
Since u� � � thus in the case n �  by �����

�r
	�

� �M	�
�r

	�

� � �u

	�

� � ��r

	�

� �M	�


� � �u
	�

� � � � �u

	�

� � �r

	�

� � �u

	�

� mod � �

Suppose that

�r
	�

n�� � �r	�
n �Mn

	�
�u
	�

� mod � for some n �  �

Then again by �����

�r
	�

n�� �M	�
�r

	�

n�� � �u

	�

n�� � ��r

	�

n��

�M	�
��r
	�

n �Mn

	�
�u
	�

� � � �u

	�

n��

� �r	�
n�� �Mn��
	�
 �u

	�

� mod � �

Hence by induction� the aim follows�
Similarly one can prove that

���	� �r	
n � �r	�
n � �r	�
n mod � for all n �  �
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�vi�c� By ����� we can write

�u
	�

�� � ��r

	i

�� � ��u	�
� � ��r

	i

� � � �u

	i

�� � �u	i
� � ���� � �z	i
 � 

	i

�
��� mod �

for all i � �� �� �� Again by ������ using that �r
	i

� � ��

���� � �z	�
 � 
	�

�
��� � ��r

	i

�� � ���� � �z	i
 � 

	i

�
��� mod � �

which is equivalent to

����� �z	�
 � 
	�

�
�� � �r

	i

�� � �z	i
 � 

	i

�
�� mod �

for all i � �� �� ��

�vi�d� At the beginning of part �vi� we assumed that �z	�
 �� � mod � or 
	�

� ��

� Suppose �rst that �z	�
 �� � mod �� By part �iii� of the proof� we have then

�z	i
 � � mod � for i � �� �� Assume further that 
	�

� �� � �i�e� 	�
� � ���

By �����

�r
	i

�� � �z	�
 � 

	�

�
�� � 

	i

�
�� mod �

for i � �� �� Since by part �ii� �z	�
 is congruent to one of �� �� � �� � � �� and

��� � �� � � � �� modulo �� thus �r
	�

�� and �r

	�

�� are also congruent to some of the vectors

�� �� � �� � � �� and ��� � �� � � � �� modulo �� But by �����

�r
	�

���� � �r	�
�� �M��

	�
�u� � �r	�
�� � �u� mod � �

whence if
�r
	�

�� � �� �� � �� � � �� mod � �

then
�r
	�

�� � ��� � �� � � � �� mod � �

and vice versa� Hence� by �����


	�

�
�� � �r	�
�� � �r

	�

�� � 

	�

�
�� � �� � �� � � mod � �

that is both condition �z	�
 � � mod � and 
	�

� �  are ful�lled�

Suppose now that �z	�
 � � mod �� Then� by part �iii� of the proof� we have
�z	
 � � mod �� Since we assumed at the beginning of this part that �z	�
 � �
mod � and 	�
 �  do not hold simultaneously� we have 	�
 � �� By ����� we can
write

�z	�
 � 
	�

�
�� � �r

	

�� � �z	
 � 

	

�
�� mod � �

By ���	�

�z	�
 � 
	�

�
�� � �r

	�

�� � �r

	�

�� � �z	
 � 

	

�
�� mod � �

Similarly as above we can prove that

�r
	�

�� � �r

	�

�� � �� mod � �
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whence substituting the proper values for �z	�
� �z	
 and 
	�

� we obtain

�� � �� � 
	

�
�� mod � �

But this yields that �z	
 � � mod � and 
	

� � �

With this we could prove the aim of part �vi�� We should remark here� that the
careful reading of the proof gives a stronger result� namely that �z	i
 � � mod �

and 
	i

� �  hold simultaneously for exactly one i � f�� �� �� �g�

�vii� In the followings there are of no account for which i the above proven
condition holds� so for simpli�cation of writing� we suppose� that i � ��
In this part of the proof we will prove that

������ u�s��n � un � �
s mod �s��

for all s � �� �� � � � and n � � �� � � � �
�vii�a� We know that

M���y � �y mod � for all �y � Zk�� �

Suppose that for a �xed s

M�s��y � �y mod �s for all �y � Zk��

holds� Then

M�s����y � �y � �M�s��� � E��y

� �M�s� � E��M�s� � E��y

� �M�s� � E��s�x

�M�s��s�x� �s�x

� �s���x
� � mod �s��

with some �x � Zk�� for any �y � Zk��� This yields that

������ M�s��y � �y mod �s

for any �y � Zk�� and s � �� �� � � � �
�vii�b� Recall that in our case �z � � mod �� whence

M���� � �� mod � �

Suppose that for a �xed s

M�s��� � �� mod �s�� �
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Then by ������

M�s����� �M�s�M�s���

�M�s���� � �s���yn�

�M�s��� �M�s��s���yn

� �� � �s���yn � �s���yn
� �� mod �s��

with some �yn � Zk��� This yields that

������ M�s��� � �� mod �s��

for all s � �� �� � � � �
�vii�c� By �����

�u���n � �un � ���� � �z � n��� � � � �� mod � �

This means that

u���n � un � � mod � for all n � N �

Suppose� that s is �xed and

u�s��n � un � �
s mod �s�� for all n � � �� � � � �

Then by ������ and ������

�u�s����n � �un �M�s����un � �un
� �M�s��� �E��un

� �M�s� �E��M�s� � E��un

� �M�s� �E���s � �� � �s���yn�
�M�s��s � �� � �s � �� �M�s��s���yn � �

s���yn

� � � �s � �� � � � �s���yn
� �s�� � �� mod �s�� �

with some �yn � Zk��� which proves �������
�viii� By Lemma ���	� un is uniformly distributed modulo � with period length

���
Suppose that un is uniformly distributed modulo �

s with period length �s�� This
yields� that

������ �fn j un � i mod �s �  	 n � �s�g � � for all  	 i � �s �
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Obviously

������

�fn j un � i mod �s �  	 n � �s�g �
�fn j un � i mod �s�� �  	 n � �s�g�

�fn j un � i� �s mod �s�� �  	 n � �s�g
for all  	 i � �s� Furthermore� by ������

�fn j un � i mod �s�� �  	 n � �s�g �
�fn j un � i� �s mod �s�� � �s� 	 n � �s���g

and symmetrically

�fn j un � i� �s mod �s�� �  	 n � �s�g �
�fn j un � i mod �s�� � �s� 	 n � �s���g

for all  	 i � ����
Hence� using ������

�fn j un � i mod �s�� �  	 n ��s���g �
�fn j un � i mod �s�� �  	 n � �s�g�
�fn j un � i mod �s�� � �s� 	 n � �s���g �

�fn j un � i� �s mod �s�� � �s� 	 n � �s���g�
�fn j un � i� �s mod �s�� �  	 n � �s�g �

�fn j un � i� �s mod �s�� �  	 n � �s���g
for all  	 i � �s��
But�

�fn j un � i mod �s�� �  	 n � �s���g�
�fn j un � i� �s mod �s�� �  	 n � �s���g �

�fn j un � i mod �s �  	 n � �s���g �
� ��fn j un � i mod �s�� �  	 n � �s�g � � � �

for all  	 i � �s�� whence

�fn j un � i mod �s�� �  	 n � �s���g � �

for all  	 i � �s����
Since

u�s� �� un mod �s�� �

thus �s� is not a period length of u modulo �s��� but then by Lemma ���� the
minimal period length of u modulo �s�� is � � �s� � �s���� Consequently u is
uniformly distributed modulo �s���
Finally this leads to the result� u is uniformly distributed modulo �s for all

s � �� �� � � � and the period length of u modulo ss is �s� � �sord�Q��
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Remark ����� Experience shows that the previous theorem may be changed by
replacing the words �at least� to �exactly��

Construction ����� Now we have everything for the construction of a modulo �s

uniformly distributed linear recurring sequence with large period length�

�� Choose a suitable integer k and �nd a polynomial Q�x� which is irreducible
modulo � and deg�Q�x�� � k� It is better if approximately half of the coe�cients
are not divisible by ��

�� Calculate the monic polynomials P �x� � pk��x
k�� � pk��x

k�� � � � � � p� and
P ��x� such that

P �x� � �x� � ��Q�x� mod �

and p�� � � � � pk�� � f���g and

P ��x� � �x� ��Q�x� mod �

with similar condition on its coe�cients� Determine P��x� � P �x�� P��x� � P��x��
�� P��x� � P��x�� �x and P�x� � P��x�� �x� ��
	� Calculate the companion matricesM	i
 corresponding to the characteristic poly�
nomials Pi�x�� Check M	i


�� � �� mod �� Keep the two matrices which satisfy the
congruence and denote them by M� and M��

� Compute � � ord�Q� modulo � and M��
� modulo �� If M��

� �� E mod � then
M �M� else M �M��

�� Choose initial values of the sequence� This can be done by the following� choose
random u�� u�� � � � � uk� Set these values as initial values of the linear recurring
sequence with characteristic polynomial P ��x�� Compute the next element of the
sequence u�k��� Find a random number uk�� satisfying uk�� �� u�k�� mod �� The
set u�� u�� � � � � uk� uk�� are suitable initial values for the sequence�

Remark ����� If k is such that �k � � is a � so called Mersenne � prime� then by
Proposition �
� ord�Q� � �k � �� i�e� maximal as a function of k�

If we choose P such that its coe�cient are  and ��� except the leading coe�cient
which is �� then the computation of the elements of the recurring sequence is very
fast� since there are no need for multiplication� only addition� Further� because of
the inner representation of the numbers in computers� also the reduction modulo �s

can be easily performed� �By a simple logical bit operation��
Since we can obtain not only � digit� but arbitrary length random numbers� thus

we have a very e�ective method for construct large pseudo�primes� �In the opposite
case if we would need large numbers� we have to compose from bits� but then it is
more di�cult to prove uniform distribution��

In Appendix B we give an example for a high order linear recurring sequence�

Example ����� In a small example we demonstrate the use of Construction ����
In particular� we will follow the consideration of Remark ��	�

�� Let k � � and choose a random polynomial of degree �� which is irreducible
modulo �� say Q�x� � x� � x� � ��
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�� We put

P �x� � x� � x � x� � � � �x� � x� � ���x� � �� mod �

and

P ��x� � x � x� � x� � � �x� � x� � ���x� �� mod � �

Thus we have
P��x� � x� � x � x� � �
P��x� � x� � x � x� � �
P��x� � x� � x � x� � �x� �
P�x� � x� � x � x� � �x� � �

	� Following the steps of the construction� we compute the companion matrices�
corresponding to the proper recurrence relations�

M	�
 �

�BBB�
� �   �
�    
 �   
  �  
   � 

�CCCA M	�
 �

�BBB�
� �   �
�    
 �   
  �  
   � 

�CCCA

M	�
 �

�BBB�
� �  � �
�    
 �   
  �  
   � 

�CCCA M	
 �

�BBB�
� �  � �
�    
 �   
  �  
   � 

�CCCA �

Computing M	�

��� we obtain

M	�

�� �

�BBB�
� �   �
�    
 �   
  �  
   � 

�CCCA
�BBB�
�
�
�
�
�

�CCCA �
�BBB�
�
�
�
�
�

�CCCA ��

�BBB�
�
�
�
�
�

�CCCA mod � �

By �iii� of the proof of Theorem ���� we can set M� �M	�
 and M� �M	�
�

� By Remark ����� � � �� � � � �� We can use fast exponentiation for the
calculation of M�

� and we get

M�
� �

�BBB�
�    
 �   
  �  
   � 
    �

�CCCA mod � �
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whence

M �M� �M	�
 �

�BBB�
� �  � �
�    
 �   
  �  
   � 

�CCCA �

�� Suppose� that we want to construct a sequence of bytes� Then s � �� We can
choose random values for the �rst � elements� say

u� � ��� � u� � � � u� � �	 and u� � �	� �

Satisfying the recurrence relation de�ned by P ��x�� the next value of the sequence
is u� � ��� � �� �	 � � mod �� Hence u can be any number divisible by �� say
���

Thus we have constructed a linear recurring sequence� with recurrence relation

un�� � un� � un�� � �un�� � un

and initial values

u� � ��� � u� � � � u� � �	 � u� � �	� and u � �� �

Reducing the sequence modulo ���� by Theorem ���� we obtain a pseudo random
byte sequence� which has period length � � ��� � ��	��
The �rst few values of the sequence�

��� � � � �	 � �	� � �� � ��� � �� � �� � � � �� � ��� � ��� � �� � ��	 � ��� � ��� �



Chapter �

Sequences with non�uniform distribution

In the previous chapters we gave the background to construct uniformly dis�
tributed linear recurring sequences� However in practice� it is very often required
to have a random sequence with a speci�c non uniform distribution� There are
several way to do this� Well known for instance� that if we know the inverse of the
distribution function F of the required distribution� then simply use a uniformly
distributed sequence u with the transformation F���u� to have the required prop�
erty� In this chapter we will provide another method to construct non�uniformly
distributed pseudo�random sequences from uniformly distributed sequences� In
particular� we will generate sequences with Gaussian distribution� To reach our
goal� we use the central limit distribution theorem� Furthermore� we determine the
�goodness� of the obtained Gaussian sequence� calculating its discrepancy� Finally�
our method is suitable also for testing randomness of sequences� We should mention
here� that the results of this chapter are contained in ��
�

De�nitions ���� Let �X�F� �� be a probability space� let U � F be a family of
measurable sets of X and let � be a sequence in X�

Then we say that � is � distributed with respect to U if

����� lim
N��

A�N�B� ��

N
� ��B� for all B � U �

where
A�N�B� �� � �f�njn � N� �n � Bg �

The discrepancy of � with respect to � and U is de�ned by

����� DN ��� ��U� � sup
B�U

����A�N�B� ��N
� ��B�

���� �
The family of measurable sets� U is called a discrepancy system �cf� ��
�� Im�

portant cases for U in the Euclidean space are for instance the axis�parallel intervals
or the family of all balls or of all convex sets etc�

De�ne the following vector sequence�

��	k
n � ��n� � � � � �n�k��� for all n � N �

A sequence � in X is called completely �	distributed � for short� ��c�d��� if
��	k
 is �	k
�distributed in Xk with respect to Uk for every k � N where �	k
 is the
k�fold product measure of � and Uk is � as usual � the cartesian product of U�
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If X � C then � is called pseudo	random number sequence�
Let X � R be a bounded interval� F � B be the Borel measurable sets of X�

� � 	 be the normalized Lebesgue measure �i�e� 	�X� � �� and let I be the family
of all intervals of B� If � is 	 distributed with respect to I� then we will call it
uniformly distributed �for short u�d��� We should remark� that this sense of
uniform distribution is the generalization of De�nition �����

If � is 	�c�d� we will call it completely uniformly distributed and abbreviate
it by c�u�d�

Note that completely uniform distribution is suitable for expressing �strong�
randomness�
In the followings� let � be a u�d� sequence in the interval

���
�
� �
�

�
and let

����� Fk �

�
��
�
�
�

�

�k
� R

be a measurable mapping with k � N �
Consider the induced measure � of the k�dimensional Lebesgue measure 		k
 on���
� �

�
�

�k
by

����� ��B� � 		k
�F��k �B�� �B � B��

Furthermore� we set

����� �n � Fk���
	k

n � �

Lemma ���� Let � be a sequence in Rk � I be the family of all axis�parallel intervals
and let C be the family of all convex sets in Rk and let N � N� Then

DN ��� 	� I� 	 DN ��� 	�C� 	 ��k��� � ��DN ��� 	� I�
��k

Proof� See e�g� Theorem ��� in ���
� �

Lemma ���� Let Fk be a measurable function satisfying ����� with the property
that

����� F��k �I� is convex for all interval I � R

and let � be c�u�d� Then � � given by ����� � is ��c�d�� where � is the derived measure
de�ned by ������ Furthermore� the discrepancy estimate ����� can be established�

Proof� De�ne

Fk�m �x�� � � � � xk�m���

� �Fk �x�� � � � � xk� � Fk �x�� � � � � xk��� � � � � � Fk �xm� � � � � xm�k����

and let I	m
 be the family of all axis�parallel intervals in Rm and C	k�m��
 be the
family of all convex sets in Rk�m�� for arbitrary m � N �
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Note that Fk�m �
���

�
� �
�

�k�m�� � Rm is measurable�

Because of ������ if B is an axis�parallel interval in Rm � then Fk�m
���B� is a

convex sets in
���

� �
�
�

�k�m��
� Thus� we get

Dn

�
��	m
� �	m
� I	m


�
� sup

B�I�m�

����A�n�B� ��	m
�

n
� �	m
�B�

����
	 sup

B�I�m�

�����A
�
n� Fk�m

���B�� ��	k�m��

	

n
� 		k�m��


�
Fk�m

���B�
	�����

	 sup
C�C�k�m���

�����A
�
n�C� ��	k�m��


	
n

� 		k�m��
�C�

�����
� Dn

�
��	k�m��
� 		k�m��
�C	k�m��


�
�

whence by Lemma ���� we get

�����

Dn

�
��	m
� �	m
� I	m


�
	
�
��k �m� ����� � �

��
Dn

�
��	k�m��
� 		k�m��
� I	k�m��


�� �
k�m��

�

Since � is c�u�d� we get Dn

�
��	m
� �	m
�U	m


	�  as n�
 � �

Remark ���� Using the general inequality of Niederreiter and Wills ���
� we obtain
a somewhat better result

�����

Dn

�
��	m
� �	m
� I	m


�
	 ���k �m� �� � ��

�
Dn

�
��	k�m��
� 		k�m��
� I	k�m��


�� �
k�m��

�

For various applications of transformations of random numbers we refer to ��
�

To construct pseudo�random number sequences with di�erent distributions we
just have to �nd a transformation which converts the Lebesgue measure into the
required probability measure by ��B� � 		k


�
F��k �B�

	
and if � is a c�u�d� sequence�

then the sequence � � Fk���
	k
� will have the desired distribution�

The main problem is that �nding such an Fk is usually not evident� As we will
see� for practical applications it is su�cient to �nd approximations of the required
distribution� For example� if we would like to have a pseudo�random number se�
quence close to Gaussian distribution� then using the Central Limit Theorem or
one of its quanti�ed versions� the Berry�Ess�een Theorem� we can prove that there
is a possibility to get the expected sequence�
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Theorem ��� �Berry	Ess�een Theorem�� Let k � � be an integer� ��� � � � � �k be
independent random variables in R� each with zero mean� let ��i be the variance and
�i be the absolute third moment of �i for � 	 i 	 k and let

�� �
�

k

kX
i��

��i and � �
�

k

kX
i��

�i

be the average variance and the average absolute third moment of ��� � � � � �k� respec�
tively� De�ne the random variable

� �
�p
k�

kX
i��

�i �

Let � be the probability measure corresponding to � and let � be the probability
measure corresponding to the standard Gaussian distribution�

If none of ��� � � � � �k� � is vanishing� then

sup
B�L

j��B�� ��B�j 	 ��

�
p
k

�

��
�

where L is the family of all intervals 
�
� x��

Proof� See e�g� Theorem ���� in ��
 �

Lemma ���� Let � be a c�u�d� sequence in
���

� �
�
�

�
� let k be a positive integer� let

 � � 	 � and let
Fk � R

k � R

be a linear transformation� such that

Fk��x� �
kX
i��

fixi �

where �x � �x�� � � � � xk� and f�� � � � � fk � R� such that

���	� jfij � �
�
p
�p
k

for all � 	 i 	 k �

If
kX
i��

f�i � �� �

then the sequence �� de�ned by

�m � Fk
�
��	k
m

�
for all m � N �

has discrepancy

Dn ��� �� I� 	
�
�k

�
� � �

�
Dn

�
��	k
� 		k
� I	k


� �
k

�
��
p
�

�

r
��� ��� �

��

k
�
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where I and I	k
 are the families of all the intervals and axis�parallel intervals
in R and in Rk � respectively� � is the probability measure corresponding to the
standardized Gaussian distribution and 		k
 is the Lebesgue measure in Rk �

Proof� By the de�nition of Dn ��� �� I� and using Lemma ���� we have

�����

Dn ��� �� I� � sup
B�I

����A�n�B� ��n
� ��B�

����
	 sup

B�I

�����A�n�B� ��n
� ��B�

����� j��B�� ��B�j
�

	 sup
B�I

����A�n�B� ��n
� ��B�

����� sup
B�I

j��B�� ��B�j

	
�
�k

�
� � �

�
Dn

�
��	k
� 		k
� I	k


� �
k

� sup
B�I

j��B�� ��B�j �

where � is the measure corresponding to the distribution of ��
Since the sequence � has variance �

�� � the average variance �
� of the random

variables

f��m� f��m��� � � � � fk�m�k��

is

�� �
�

k

kX
i��

�
f�i
�

��

�
�
�

k

�

��

kX
i��

f�i �
�

k

�
�

��

�
� �� � �

k
�

whence
p
k� � � and thus

������ �m � Fk
�
��	k
m

�
�

�p
k�

kX
i��

fi�m�i�� �

Furthermore� by ���	��

f�i � ��
��

k
for every � 	 i 	 k �

If � 	 j 	 k is such that

jfj j � max
��i�k

jfij �

then

�� �
kX
i��

f�i � f�j � �k � ����
��

k
�

whence

������ max
��i�k

jfij �
r
��� �k � ���� ��

k
� �

p
�

r
��� ��� �

��

k
�
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Let B � I� such that inf B � x and supB � y� Then

j��B�� ��B�j � j�� 
�
� y� �� �� 
�
� x� �� �� 
�
� y� � � �� 
�
� x� �j
	 j�� 
�
� y� �� �� 
�
� y� �j� j�� 
�
� x� �� �� 
�
� x� �j �

Hence� by ������� ������ and Theorem ���� noticing that the third absolute moment
of � is equal to �

��
� we obtain

sup
B�I

j��B�� ��B�j 	 � sup
B��L

j��B��� ��B��j

	 � ��
�
p
k

�
�p
k

����
�

k

kX
i��

�
jfij� �

��

��

�
��

��

kX
i��

jfij�

	 ��

��
max
��i�k

jfij
kX
i��

jfij�

	 ��

��
�
p
�

r
��� ��� �

��

k
� ��

�
��
p
�

�

r
��� ��� �

��

k
�

Here� as before� L is the family of all intervals 
�
� x��
Hence� by ����� the lemma follows� �

Corollary ���� With the conditions of Lemma ���� if Fk is such that the corre�
sponding

jf�j � � � � � jfkj � �
p
�p
k

�

then

Dn ��� �� I� 	
�
�k

�
� � �

�
Dn

�
��	k
� 		k
� I	k


� �
k

�
��
p
�

�
p
k

�

Proof� Substituting � by �� we obtain that

��
p
�

�

r
��� ��� �

��

k
�
��
p
�

�

r
�

k
�
��
p
�

�
p
k

�

whence by Lemma ���� we obtain the statement� �

Remark ���� We can choose � to be a very special c�u�d� sequence with a strong
property� namely� that there exists an increasing sequence of kn �n � � �� � � � �� such
that

Dn

�
��	kn
� 		kn
� I	kn


�
�  as n�
 �

where 		kn
 is the kn dimensional Lebesgue�measure and I	kn
 is the family of axis�
parallel intervals in Rkn �

These kinds of sequences �in more general settings� are studied in ���
 and ���
�
In ���
 the following result is proved�
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Theorem ��� Let  �  � �
� be �xed� kn be a sequence of positive integers with

kn 	 �logn��

if n � N is su�ciently large� let pn be a sequence of distinct positive integers and
let � be an arbitrary positive real number�

Then for almost all real s� s matrix M with dominating eigenvalue bigger than
� there exists a constant c depending on M � �� and the given integral sequences p
and k� such that

Dn���
	kn
� 		s

�kn
� I	s
�kn
� 	 cn�

�
��	 for all n � N �

where

�m �Mpm mod � �

furthermore� 		s
�kn
 and I	s

�kn
 are as given above�

Remark ����� The metric result of ���
 can be extended to general exponent se�
quences as it is done in ���
 for the case s � ��

Lemma ����� Let  �  � � be �xed� kn be an increasing sequence with limkn �

� such that

������ kn 	 �logn�� �

let � be a sequence of numbers in the interval
���

� �
�
�

�
� such that

������ Dn���
	kn
� 		kn
� I	kn
� 	 c � n� �

��	

with c �  and  � � � �
� and let

Fn � R
kn � R

be an arbitrary sequence of linear functionals� satisfying

Fn��x� �

knX
i��

fn�ixi with jfn�ij � �
p
�p
kn

�i � f�� � � � kng �

Then the sequence

�n �� Fn
�
��	kn
n

�
is a completely Gaussian distributed sequence�
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Proof� If n is big enough� then c � n�����	 � �� Hence� by ������� ������ and by
Corollary ���� we have

Dn��� �� I� �
�
� �kn�

�
� � �

�
Dn

�
��	kn
� 		kn
� I	kn


���kn
�
��
p
�

�
p
kn

	
�
�
�
log�n��

� �
�

� �

��
c � n� �

��	
���log	n
�

�
��
p
�

�
p
kn

	 �
�
log�n��

� �
�
�
c � n� �

��	
���log	n
�

�
��
p
�

�
p
kn

� �log�n�
�
��c��log	n


� � e		����
 log	n
�log	n
� � ��
p
�

�
p
kn

� �log�n�
�
��c��log	n


� � e		����
 log	n
���

�
��
p
�

�
p
kn

� �log�n�
�
��c��log	n


� � n		����
	���
 � ��
p
�

�
p
kn

�

Clearly�

��
�
� ��� ������� � �  �

whence
log�n�

�
��n		����
	���
 �  �

Furthermore�

c��log	n

� � � and

��
p
�

�
p
kn

�  �

consequently�
Dn��� �� I��  � �

Remark ����� One should be very careful with the conditions stated in the results�
In the followings we give an example of a u�d�� but not c�u�d� sequence� such that
its linear transformation is not Gaussian distributed�

Example� Let

kn � max

�
j j

jX
m��

m 	 n

�
�

let

��n� �

knX
m��

m for all n � N

and let �n be the sequence de�ned by

�n �
n� ��n�

kn
� �
�

�
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Further� we set

�n �
�
p
�p
kn

knX
j��

����j�n�j �

We claim that � is u�d� in
���

� �
�
�

�
� but � is not Gaussian distributed�

Clearly�

������ ��n� �
k�n � kn
�

and
��n� 	 n 	 ��n� � kn �

whence

������  	 n� ��n� 	 kn

and thus

�n �
�
��
�
�
�

�

�
for all n � N �

Let

��
�
	 a � b 	 �

�

and let bA�n�� n�� �a� b
� �� � � fj j n� 	 j � n� � �j � �a� b
g �

Then 	��a� b
� � b� a and

A�n� �a� b
� �� � bA�n� ��n�� �a� b
� ��� A���n�� �a� b
� ��

� bA�n� ��n�� �a� b
� ��� knX
m��

bA
�� mX

j��

j�
m��X
j��

j� �a� b
� �

�A� A��� �a� b
� �� �

Since
 	 bA�n� ��n�� �a� b
� ��	 kn �

m�b� a�� � 	 bA
�� mX

j��

j�
m��X
j��

j� �a� b
� �

�A 	 m�b� a� � �

and
 	 A��� �a� b
� ��	 � �

thus

knX
m��

�m�b� a�� �� 	 A�n� �a� b
� ��	 kn �
knX
m��

�m�b� a� � �� � � �
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i�e�

�b� a�
knX
m��

m� kn � � 	 A�n� �a� b
� ��	 kn � �b� a�
knX
m��

m� kn � � � � �

which is equivalent to

�b� a����n�� ��� kn � � 	 A�n� �a� b
� ��	 �kn � �b� a����n�� �� �

Hence by ������ and �������

�b� a�� �

kn � �
� �b� a�� kn � �

��n�

�
�b� a����n�� ��� kn � �

��n�

	 �b� a����n�� ��� kn � �

n

	 A�n� �a� b
� ��

n

	 �kn � �b� a����n�� ��
n

	 �kn � �b� a����n�� ��
��n�

� �b� a� �
�kn
��n�

� �b� a� �
�

kn � �
�

This yields that

lim
n��

A�n� �a� b
� ��

n
� b� a �

i�e� by de�nition� � is uniformly distributed�
Observe now the sequence �� Fix n � N and let  	 l 	 kn� such that

n� l � ��n� � kn �

Then

������

�n �
�
p
�p
kn

knX
j��

����j�n�j �

�
�
p
�p
kn

�� lX
j��

����j�n�j �
knX

j�l��

����j�n�j
�A �

We recall that

�n�l�� � �
	n
�kn�� � ��
�
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and

�n�l � �
	n
�kn �
�

�
�

If l is odd� then
lX

j��

����j�n�j � � �

kn

l � �

�
�

if l is even� then

lX
j��

����j�n�j � � �

kn

l

�
� �n�l � � �

kn

l

�
�
�

�
�

whence

������ � l

�kn
� �

�kn
	

lX
j��

����j�n�j 	 � l

�kn
�
�

�
�

Similarly� if both l and kn are odd� then

knX
j�l��

����j�n�j � �

kn � �

kn � l

�
�
�

�
� l � �

��kn � ��
�

if l is odd� but kn is even� then

knX
j�l��

����j�n�j � �

kn � �

kn � l � �
�

� �n�kn �
�

�
� l � �

��kn � ��
� �n�kn �

if l is even� but kn is odd� then

knX
j�l��

����j�n�j � ��n�l�� � �

kn � �

kn � l � �
�

� ��n�l�� � �
�
� l � �

��kn � ��

�
�

�
�
�

�
� l � �

��kn � ��

� �� l � �

��kn � ��

and if both l and kn are even� then

knX
j�l��

����j�n�j � ��n�l�� � �

kn � �

kn � l � �
�

� �n�kn

� �� l � �

��kn � ��
� �n�kn �
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Summarizing the four cases and using that

��
�
	 �n�kn 	

�

�
�

we obtain

� l � �

��kn � ��
	

knX
j�l��

����j�n�j 	 �

�
� l� �

��kn � ��
�

Hence by ������ and ������� using that  	 l 	 kn� we have

��
p
�p
kn

�
�
p
�p
kn

�
��
�
� �

�kn
� �
�
� �

��kn � ��

�
�
�
p
�p
kn

�
� kn
�kn

� �

�kn
� kn � �

��kn � ��

�
	 �

p
�p
kn

�
� l

�kn
� �

�kn
� l � �

��kn � ��

�
	 �n

	 �
p
�p
kn

�
� l

�kn
�
�

�
�
�

�
� l � �

��kn � ��

�
	 �

p
�p
kn

�
�� �

��kn � ��

�
�
�
p
�p
kn

�

But this yields that � is convergent to zero� i�e� it cannot have Gaussian distribu�
tion� �

Remark ����� If we want to use a pseudo�random number sequence in practice� it
is required to be a �good� random sequence� Only the �rst approximation of goodness
is that the sequence has the expected distribution� The �randomness� is higher� if the
sequence passes more statistical tests� �Of course� the di�erent tests have di�erent
weights in the classi�cation at a particular use of the pseudo�random sequence��
In Appendix C we make some experimental examinations of several sequences of
numbers� Remark ���� also gives an idea to test u�d� sequences by transforming
them into another distribution and testing the new sequence by the usual tests�



Chapter �

Application of linear
recurring sequences

Let us consider the trinomial xn � Bxk � A � Z�x
� Ribenboim ���
 has shown
that if k � �� then for a �xed n and B there exist only �nitely many A�s for which
the trinomial is divisible by a quadratic polynomial and similarly if n and A are
�xed� then there exist only �nitely many B�s for which the trinomial has a quadratic
factor� He used only elementary steps in the proof�

Schinzel in ��
 presented a much more general result� in which he proved among
others that for a �xed A there exist only �nitely many n�s�k�s and B�s for which
the trinomial is divisible by any polynomial� He could prove a similar result for a
�xed B� too� His proof is however not an elementary one�

We are also able to generalize Ribenboim�s result by extending his proof but
keeping its elementariness� Our result is less general than Schinzel�s one� The
results of this chapter are basically identical to the results of ���
�

During this chapter we will use the notation ��n� for the parity function of
n � N � i�e�

��n� �


 if n �  mod �

� if n � � mod � �

Let R be a commutative ring� and let un � R be a second�order linear recurring
sequence with recurrence relation

un � un�� � aun�� for n � � �

with a � R and initial values u� � u� � �� Let us de�ne as in Chapter � the state
vector

�un �

�
un��
un

�
and let M be the companion matrix of the sequence� i�e�

M �

�
� a
� 

�
�

With these de�nitions we have �un�� �M �un� We remark that the sequence can be
extended with the value u�� � �
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Lemma ���� Let  	 k 	 n� With the previous de�nitions

unuk�� � un��uk � ����kakun�k�� �

Proof� By de�nition we can write

unuk�� � un��uk � det
�

un uk
un�� uk��

�
� det

�
Mk

�
un�k u�
un�k�� u��

��
� �detM�

k
det

�
un�k �
un�k�� 

�
� ��a�k ��un�k��� �

which proves the lemma� �

Lemma ���� Let  � k 	 n and un as before� Then

un � un�kuk � aun�k��uk�� �

Proof�
Let

Ul�� �
�

ul aul��
ul�� aul��

�
for l � �� �� � � � �

Clearly�
U�� �M and Ul�� �MUl

whence
Uk�� �Mk��U�� �Mk �

Hence�
�un�� �Mk�un�k�� � Uk���un�k�� �

what we had to prove� �

Corollary ���� Let n � �� Then
un�� � u�un � a�un�� �

Proof� By Lemma ����
un�� � u�un � au�un�� �

Using the substitution
un�� � un � aun�� �

we obtain

un�� � �u� � au��un � a�u�un�� � u�un � a�un�� � �
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Lemma ���� Let R be a unique factorization domain� n � N and let u be as above�
Then

gcd�a� un� � � �

Proof� Let mi � gcd�a� ui�� By the recurrence relation� we have

ui�� � ui � aui�� for all i � � �

whence
mi j ui�� for all i � �

and thus
mi j mi�� for all i � � �

This yields that

gcd�a� un� � mn j m� � gcd�a� u�� j u� � � �

whence gcd�a� ui� � �� �

Lemma ���� Let R� n and u be as in Lemma ��� Then

gcd�un��� un� � � �

Proof� Let mi � gcd�ui� ui���� Similarly� as in the proof of Lemma ���� we have

aui�� � ui � ui�� for all i � � �

whence mi j aui���
By Lemma ���� gcd�a�mi� � �� thus mi j ui��� This yields that

mi j gcd�ui��� ui��� � mi�� for all i � � �

whence
gcd�un��� un� � mn�� j m� � gcd�u�� u�� � � �

thus mn�� � �� �

Lemma ���� Let R be a unique factorization domain� n� k � � and u is a linear
recurring sequence� de�ned as above� and suppose that m � gcd�n� k�� Then

gcd �un��� uk��� � um�� �

Proof� Without loss of generality� we may assume that k 	 n�
Let

n� � n � k� � k

and

ni�� � maxfni � ki� kig � ki�� � minfni � ki� kig for i �  �
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Clearly� ni�� � ni� thus there exists j � N � such that nj �  but nj�� �  and for
this j� nj � kj � Furthermore� if ni � � then gcd�ni� ki� � m� whence m � nj �
By Lemma ����

����� uni��uki�� � uni��uki�� � ����ki��aki��uni�ki�� �

whence
gcd�uni��� uki��� j aki��uni�ki��

and by Lemma ����
gcd�a� uki��� � � �

thus
gcd�uni��� uki��� j uni�ki�� �

Similarly� by ����� �

gcd�uki��� uni�ki��� j uni��uki��

and by Lemma ����
gcd �uki��� uki��� � � �

whence
gcd�uki��� uni�ki��� j uni�� �

These all together yield that

gcd�uni��� uki��� � gcd�uki��� uni�ki��� � gcd�uni����� uki����� �

Hence

gcd�un��� uk��� � gcd�un���� uk���� � gcd�unj��� ukj��� � unj�� � um�� � �

Lemma ���� Let R be an integral domain and let u be a second�order linear re�
curring sequence over R satisfying the recurrence relation

un�� � aun�� � bun for all n � N �

Suppose that the characteristic polynomial x��ax� b of u splits into linear factors
over R and has no multiple roots� Suppose further� that �������

�� � R� where ��
and �� are the two di�erent roots of x� � ax� b�

Then
un � d��

n
� � d��

n
� for all n � N �

where d�� d� � R depend only on u� and u��

Proof� With the conditions of the Lemma� the system of linear equations

u� � d�� d�

u� � ��d�� ��d�
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has a solution in R� namely

d� � ���u� � u�
�� � ��

d� �
��u� � u�
�� � ��

�

Let n � N � d�� d� � R and suppose that

uk � d��
k
� � d��

k
� for all  	 k � n �

Since �� and �� are roots of x
� � ax� b� thus

��� � a�� � b and ��� � a�� � b �

Hence�
un � aun�� � bun��

� ad��
n��
� � d��

n��
� � bd��

n��
� � d��

n��
�

� d��
n��
� �a�� � b� � d��

n��
� �a�� � b�

� d��
n��
� ��� � d��

n��
� ���

� d��
n
� � d��

n
� �

By induction we obtain the lemma� �

Remark ���� If R is an integral domain� but does not contain any of the required
elements in Lemma ��
� then we can work in a proper R� extension of R� instead�

Further on� let Fn�x� be the sequence of polynomials over Z satisfying the re�
currence relation

Fn�x� � Fn���x� � x � Fn���x� for n � �

with initial values F��x� � F��x� � ��

Remark ��� Some of the �rst few elements of the sequence are�
F��x� � � F��x� � �
F��x� � x� � F��x� � �x� �
F�x� � x� � �x� � F��x� � �x

� � �x� �
F��x� � x� � �x� � �x� � F��x� � �x

� � �x� � �x� �
F��x� � x � �x� � ��x� � �x� � F��x� � �x

 � �x� � ��x� � �x� �

Lemma ����� Let n � N� With the previous de�nition of Fn�x� we have

deg �Fn�x�� �
hn
�

i
�

Proof� By de�nition� F��x� � F��x� � �� thus

deg �F��x�� �

�


�

�
and deg �F��x�� �

�
�

�

�
�
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Let n � � and suppose that

deg �Fk�x�� �

�
k

�

�
if k � n �

In the recurrence relation of Fn�x� there are only addition and multiplication�
thus the leading coe�cient of Fk�x� is positive� whence

deg �Fn�x�� � deg �Fn���x� � x � Fn���x��
� maxfdeg �Fn���x�� � deg �Fn���x�� � �g

� max

�
n� �
�

�
�

�
n� �
�

�
� �

�
�
hn
�

i
� �

Lemma ����� The leading coe�cient of Fn�x� is

lc�Fn� �


� if n � �k

k � � if n � �k � �

with some k � N�

Proof� By Lemma ����

deg�Fn��� � � � deg�Fn� � � � deg�Fn���

and clearly
lc�F�� � lc�F�� � � �

Suppose that n � � is even and

lc�Fn��� � lc�Fn�� � � �

By Corollary ����

Fn�x� � ��x� ��Fn���x�� x�Fn��x� �

Since
deg���x� ��Fn���x�� � deg�x�Fn��x�� �

lc���x� ��Fn���x�� � �

and
lc�x�Fn��x�� � � �

thus
lc�Fn�x�� � � �
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Hence
lc�Fn� � � for all even n �

Obviously�
lc�F�� � � and lc�F�� � � �

Suppose now that n � � is odd�

lc�Fn��� �
�
n� �
�

�
� � and lc�Fn�� �

�
n� �
�

�
� � �

i�e�
lc�Fn��� � lc�Fn�� � � �

Similarly as above� we can write

lc���x� ��Fn���x�� � ��lc�Fn��x�� � ��

and
lc�x�Fn��x�� � lc�Fn��x�� �

whence
lc�Fn�x�� � ��lc�Fn��x�� � ��� lc�Fn��x���

� lc�Fn��x��� � �

�

�
n� �
�

�
� � �

hn
�

i
� � �

This proves that

lc�Fn� �
hn
�

i
� � for all odd n�s � �

Lemma ����� The roots of Fn�x� are

� �jn���
�jn�� � �

�� �

where � 	 j 	 �n� � and �n�� is an n� ��th primitive root of unity�

Proof� Let
r� s � Z n fg with r� � �s �� 

and um be a sequence of integers satisfying the recurrence relation

um � rum�� � sum�� �

such that ju�j� ju�j � � Then by Lemma ����

um � a � �m � b � 
m for all m � N �
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where �� 
 are the two di�erent roots of the polynomial z�� r � z� s �in the proper
extension of Q � and

a �
u� � 
 � u�

 � �

� b �
u� � u� � �

 � �

�

Suppose now that t is a root of Fn�x� and de�ne um by the following�

um � um�� � t � um�� for m � �

with initial values u� � u� � �� It is clear that

Fm�t� � um for m � N

and if t �� ��
 � then

um �

p
� � �t� �
�
p
� � �t

�
�
��p� � �t

�

�m

�

p
� � �t� �

�
p
� � �t

�
�
� �

p
� � �t

�

�m

�
�p
� � �t

�
��

� �
p
� � �t

�

�m��

�
�
��p� � �t

�

�m��
�

�

By the choice of t we have  � Fn�t� � un� which yields�
� �

p
� � �t

�

�n��

�
�
��p� � �t

�

�n��
�  �

i�e� �
� �

p
� � �t

�

�n��
�

�
��p� � �t

�

�n��

�

Hence �
� �

p
� � �t

	
� �jn�� �

�
��p� � �t	

for some j and �n��� where �n�� is an n���th primitive root of unity and � 	 j 	 n�
Solving the equation we obtain

t � � �jn���
�jn�� � �

�� �

Observing the possible values of t we �nd the followings�
�i� j �� n��

� �if n��
� is integer at all�� otherwise

� �
p
� � �t � �jn�� �

�
��p� � �t	 � p

� � �t� �

would hold� which is impossible�
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�ii� In the case j �  we have t � ��
 and the corresponding recurring sequence

um �
m��
�m � This would yield that

 � Fn

�
��
�

�
� un �

n� �

�n
��  �

which is a contradiction�
�iii� If  	 i� j � n� � and i �� j� then

� �in���
�in�� � �

	� � � �jn���
�jn�� � �

��
if and only if i� j � n� �� Indeed�

� �in���
�in�� � �

	� � � �jn���
�jn�� � �

��
if and only if

 �
�in���

�in�� � �
	� � �jn���

�jn�� � �
�� � �in��

�
�jn�� � �

��
� �jn��

�
�in�� � �

	�
�
�in�� � �

	� �
�jn�� � �

�� �

which is equivalent to

�in��

�
�jn�� � �

��
� �jn��

�
�in�� � �

	�
� �in���

�j
n�� � ��

i
n���

j
n�� � �in�� � �jn���

�i
n�� � ��

j
n���

i
n�� � �jn��

� �in���
j
n��

�
�jn�� � �in��

�
� �in�� � �jn��

�
�
�in���

j
n�� � �

��
�jn�� � �in��

�
�  �

Since i �� j� the above can hold if and only if

�in���
j
n�� � � �  �

which proves our claim�
This yields that the values

t� � � �n��

��n�� � ��
�

���

t�n� 

� � �

�n� 

n���

�
�n� 

n�� � �

��
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are all di�erent and by de�nition�

Fn�tj� �  for all � 	 j 	
hn
�

i
�

Since
deg �Fn�x�� �

hn
�

i
�

we have

Fn�x� �

�n� 
Y
j��

�B�x� �jn���
�jn�� � �

��
�CA � �

Remark ����� The complex conjugate of the numbers �jn�� are �
n���j
n�� � whence by

the proof of Lemma ��� we �nd that the complex conjugate of � �jn��

��jn�����
� is itself�

This yields that all the roots of Fn�x� are real�

Remark ����� It is clear from the proof of Lemma ����� that all the roots of Fn�x�
are di�erent�

Remark ����� Since  � j �
�
n��
�

�
� thus �jn�� �� R� in particular� �jn�� �� f��� �g�

Hence

�����
����jn�� � ���� � ����jn������ � � � �

the sum of the conjugates� �jn�� � ��jn�� are real and

�����
����jn�� � ��jn��

��� � ����jn������ �����jn��

��� � � �
Furthermore� the di�erence of the conjugates� ��jn�� � �jn�� ��  and is purely imag�
inary� whence

�����
�
��jn�� � �jn��

��
� R�� �

The inequality ����� implies that

�����

�������
�jn���

�jn�� � �
��
������� �

����jn�����������jn�� � ������� �
������jn�� � ������ �

�

�
�

By ����� and ����� we have

�jn���
�jn�� � �

�� � �jn���
�jn�� � �

�� �
�
��jn�� � �

��
�
��jn�� � �

�� � �jn�� � ��jn�� � ��
��jn�� � �jn��

�� �  �

This and ����� together yield that all the roots of Fn�x� are less than ��
 � Conse�

quently� since the leading coe�cients of Fn�x� are positive� thus

 � Fn

�
��
�

�
	 Fn �x�� 	 Fn �x�� for all � �

�
	 x� 	 x� �
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Remark ����� Let un be the sequence de�ned by the recurrence relation

un � un�� � �
�
un�� for n � � �

with starting values u� � u� � ��
Then

Fn

�
��
�

�
� un for all n � N

and

un � �c�n� c��

�
�

�

�n
for all n � N

with some c�� c� � Q � �See e�g� Chapter C in ���
��
Solving the system of equations

� � u� � c�

� � u� �
�

�
c� �

�

�
c� �

we obtain that

Fn

�
��
�

�
� un � �n� ��

�
�

�

�n
for all n � N �

Remark ����� Let un be the sequence de�ned by the recurrence

un � un�� �
�

�
un�� for n � � �

with starting values u� � u� � ��
Then

Fn

�
�

�

�
� un �

� �
p
�

�

�
� �

p
�

�

�n

�
��p�
�

�
��p�
�

�n

for all n � N �

Lemma ����� Let n � N� With the previous de�nitions� Fn�x� has a rational
root if and only if gcd�n� �� ��� � � and the rational roots of Fn�x� are in the set
f���� �

� ���
�g�

Proof� By Lemma ����� Fn�x� has a rational root if and only if

����� � �jn���
�jn�� � �

�� � p

q

for some j � ��� �� � � � � �n� �� and p� q � Z� where q �� �
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Equation ����� is equivalent to

 � p
�
�jn�� � �

��
� q�jn�� � p

�
�jn��

��
� �q � �p��jn�� � p �

Hence �jn�� has to be a root of the polynomial

px� � �q � �p�x� p �

which yields that �jn�� is rational or a quadratic algebraic number�

On the other hand� �jn�� is a root of unity and thus a primitive k�th root of
unity� with some k � N � It is known that a primitive k�th root of unity has degree
��k�� where ��k� is the Euler�function� By the basic properties of ��k�� we can
show that ��k� 	 � if and only if k � f�� �� �� �� �g�
If �jn�� is a primitive �rst root of unity� then �

j
n�� � �� but j �

�
�� �� � � � �

�
n
�

��
�

which is a contradiction�
Similarly� if �jn�� is a primitive second root of unity� then �jn�� � ��� but this

can take place if and only if �j � n� �� which is� again� not possible�
It follows that� �jn�� can be a primitive �� � or ��th root of unity only� and the

corresponding values of t are �����
� and ��

� � respectively�

The algebraic number �jn�� is a primitive k�th root of unity if and only if

n� � j jk � but n� � � jk� for any � 	 k� � k �

and this is true exactly when

n� � � k � gcd�n� �� j� �

Thus Fn�x� has a rational root if and only if

� j n� � � � j n� � or � j n� � �

i�e� gcd�n� �� ��� � �� �

We will de�ne the polynomial sequence fn�x� y� by the following relation�

fn�x� y� �

�
y�

n
�
 � Fn

�
x
y

	
if n � N

 if n �  �

Remark ���� By Lemma ����� we can see that fn�x� y� are really polynomials
and not rational fractions�

Remark ����� With the previous de�nition

����� �n � fn�x� y� � y�	n��
 � fn���x� y� � x � fn���x� y� for n � Z �

where

�n �


� if n � 

�� if n ��  �
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Proof� Let n � �� Then

�n � fn�x� y� � fn�x� y�

� y�
n
�
 � Fn

�
x

y

�
� y�

n
�

�
Fn��

�
x

y

�
�
x

y
Fn��

�
x

y

��
� y�

n
�
��n��

� 
 � fn���x� y� � x

y
y�

n
�
��n��

� 
 � fn���x� y� �

which is ������

If n � �� then ����� has the form

� � y� � � � x � 

and if n � � then ����� looks like

 � y �  � x �  �

which is also true� If n � � then ����� obviously holds� �

Remark ����� Replacing y by y� in the de�nition of fn�x� y� it is easy to prove
that

y�	n
fn�x� y
�� � ynFn

�
x

y�

�
�

Lemma ����� Let n� k � N� such that n � k� Then

y�	n��
fn��
�
x� y�

	
y�	k��
fk��

�
x� y�

	� y�	n��
fn��
�
x� y�

	
y�	k��
fk��

�
x� y�

	
� ����k xk��y�k��y�	n�k��
 � fn�k��

�
x� y�

	
�

Proof� By Remark ���� and Lemma ����

y�	n��
fn��
�
x� y�

	
y�	k��
fk��

�
x� y�

	� y�	n��
fn��
�
x� y�

	
y�	k��
fk��

�
x� y�

	
� yn��Fn��

�
x

y�

�
yk��Fk��

�
x

y�

�
� yn��Fn��

�
x

y�

�
yk��Fk��

�
x

y�

�
� yn�k������kxk��Fn�k��

�
x

y�

�
� ����k xk��y�k��y�	n�k��
 � fn�k��

�
x� y�

	
� �
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Lemma ����� Let n� k � N and suppose that gcd�n� k� � m� Then

y�	m��
 � fm��
�
x� y�

	 j y�	n��
 � fn�� �x� y�	 �

�By symmetry� obviously the same holds� if we replace n by k��

Proof� By Lemma ����

����� Fm�� j Fn�� and Fm�� j Fk�� �

Let R be an integral domain� l�x�� P �x�� Q�x�� S�x� � R�x
� such that

P �x� � Q�x�S�x�

with degrees

deg�P � � p � deg�Q� � q and deg�S� � s �

Then we have

ypP �
l�x�

y
�� yqQ�

l�x�

y
�� ysS�

l�x�

y
� � R�x� y


and since p � q � s� thus

ypP �
l�x�

y
� � yqQ�

l�x�

y
� � ysS� l�x�

y
� �

Hence� by Remark ���� and ����� the Lemma follows� �

Lemma ����� Let n � �� Then

fn���x� y� � ��x� y� � fn�x� y�� x� � fn���x� y� �

Proof� By Corollary ����

Fn���z� � F��z�Fn�z�� z�Fn���z� �

Substituting z by x
y
and multiplying both sides of the equation by y�

n��
� 
 we obtain

y�
n��
� 
Fn��

�
x

y

�
� yF�

�
x

y

�
y�

n
� 
Fn

�
x

y

�
� y�

�
x

y

��

y�
n��
� 
Fn��

�
x

y

�
�

which is exactly what we had to prove� �
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Lemma ����� Let

D � D�x� y� � y � ��x� y� � U� � U��x� y� �
�x� y �

p
D

�
and

U� � U��x� y� �
�x� y �pD

�
�

Then

fn�x� y� �

�
�

�

��	n��
�y �pD��	n��
 � U �n��
� 


� �
�
y �pD

��	n��

� U �

n��
� 


�p
D

�

Proof� De�ne the following subsequences of fn�x� y��

uk � f�k and vk � f�k�� �

By Lemma ���� we �nd

uk���x� y� � ��x� y�uk���x� y�� x�uk�x� y�

and
vk���x� y� � ��x� y�vk���x� y�� x�vk�x� y�

for all k � N � The characteristic polynomial of u and v is

z� � ��x� y�z � x� �

which has the roots U� and U�� Clearly�

p
D � U� � U� � u� � f� � � � u� � f� � x� y �

v� � f� � � and v� � f� � �x� y �

Applying Lemma ���� we obtain

uk � �U�u� � u�
U� � U�

Uk
� �

U�u� � u�
U� � U�

Uk
�

� �
�x�y�pD

� � �x� y�p
D

Uk
� �

�x�y�
p
D

� � �x� y�p
D

Uk
�

� ��
�

�x� y �pD � �x� �yp
D

Uk
� �

�

�

�x� y �
p
D � �x� �yp
D

Uk
�

�
�

�

y �
p
Dp

D
Uk
� �

�

�

y �pDp
D

Uk
� �
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Doing likewise� we have

vk � �U�v� � v�
U� � U�

Uk
� �

U�v� � v�
U� � U�

Uk
�

� �
�x�y�

p
D

� � ��x� y�p
D

Uk
� �

�x�y�
p
D

� � ��x� y�p
D

Uk
�

� �
�
� ��x� y �pD � �x� �y�p

D
Uk
� �

�
� ��x� y �

p
D � �x� �y�p
D

Uk
�

�
�
���x� y �

p
D�p

D
Uk
� �

�
� ��x� y �pD�p

D
Uk
�

�
�p
D
Uk��
� � �p

D
Uk��
� �

Since

fn �

�
un

�
if n is even

vn��
�

if n is odd �

thus substituting the formulas we obtained for u and v� we arrive to the statement
of the Lemma� �

Remark ����� The result of Lemma ���� can be formulated as follows�
if n is odd� then

fn�x� y� �
U

n��
�

� � U
n��
�

�p
D

�
U� � U�p

D

n��
�X

i��

U i
�U

n��
� �i

� �

n��
�X

i��

U i
�U

n��
� �i

� �

or else� if n is even� then

fn�x� y� �
�

�

�
y �

p
D
�
� U n

�
� �

�
y �pD

�
� U n

�
�p

D

�
�

�
U

n
�
� �

�

�
U

n
�
� �

y

�

U
n
�
� � U

n
�
�p

D

�
�

�
U

n
�
� �

�

�
U

n
�
� �

y

�

n
���X
i��

U i
�U

n
����i
� �

This form has a special role� when we substitute x by �x and y by �y� such that

�y � ���x� �y� �  �

In this case U� � U� and

fn��x� �y� �
n� �

�
U

n��
�

� if n is odd�
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and
fn��x� �y� � U

n
�
� � �y

n

�
U

n
���
� if n is even�

Combining the above formulas� we obtain

fn��x� �y� �

�
�U�

n
�
�y

�

��	n��
 �
n� �

�

�
U
�n�

� �

Lemma ����� Let A�B � Z� such that A� �� iB where i � �� �� �� � and let � and

 the roots of the polynomial x� �Ax� B� Then ��
 is not a root of unity�

Proof� See the Remarks on page � in ���
�

Lemma ����� Let un be a second�order linear recurring sequence� with two di�er�
ent roots of its characteristic polynomial� � and 
� Suppose that j�j � j
j� ��
 is
not a root of unity and un has no �rst�order recurrence relation� Then� there exists
an e�ectively computable constant c� depending on un� such that

junj � j�jn�c� log n �

Proof� The lemma is a simpli�ed form of Theorem ���� of ���
�

Lemma ���� Let �x� �y � Z� such that �x � ��� �y �  and ��x� �y �  and suppose
that n � c�� where c� is e�ectively computable and depends only on �x and �y�

With the notation of Lemma ����� we have

fn ��x� �y� � �
n
	 �

Proof� Substituting x by �x and y by �y in Lemma ����� we obtain that

D��x� �y� �  �

whence
jU���x� �y�j � jU���x� �y�j �

Since
U���x� �y� � U���x� �y� � �x

� �

thus
jU���x� �y�j � j�xj � � �

By Lemma ����� U���x� �y��U���x� �y� is not a root of unity� whence by Lemma ����
and Lemma ����� we obtain

fn ��x� �y� � jU���x� �y�j�
n��
� 
�c	�x��y
�log	�n��

� 

 �

where c��x� �y� is e�ective and depends only on �x and �y�
If

n � � � �c��x� �y��� � � �
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then �
n� �

�

�
� � � c��x� �y�

s�
n� �

�

�
�  �

Furthermore� if a � e�� then
p
a � log a� thus if

n � � � �c��x� �y��� � �e� �
then �

n� �

�

�
� � � c��x� �y�

s�
n� �

�

�
� � � c��x� �y� log�

�
n� �

�

�
� �

Hence� using that jU���x� �y�j � �� we obtain

fn ��x� �y� � jU���x� �y�j�
n��
� 
�c	�x��y
�log	�n��

� 



� jU���x� �y�j
�n��

� 

�

� jU���x� �y�j
n
	

� �
n
	 � �

The following lemma generalizes a result of Ribenboim ���
 and is basic for the
proofs of the theorems�

Lemma ����� Let n � � � � 	 k � n and a� b� A�B � Z� If x� � bx � a divides
xn � Bxk �A� then

B � b�	k��
 � fk��
�
a� b�

	
� b�	n��
 � fn��

�
a� b�

	
�

and
A � a �

�
b�	n��
 � fn��

�
a� b�

	�B � b�	k��
 � fk��
�
a� b�

	�
�

Proof� Assume that

xn �Bxk �A �
�
x� � bx� a

	 � p�x�
with

p�x� � xn�� � cn��xn�� � cn�xn� � � � �� c�x� c� �

Then we have the following equations�

���	�

A � a � c�
��k �B � a � c� � b � c�

���

i�k �B � a � ci � b � ci�� � ci��
���

n���k �B � a� b � cn�� � cn�
n���k �B � b� cn��
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where

i�j �


� if i � j

 otherwise �

First� we prove that if � 	 i 	 n� �� then

����� cn���i � b�	i
 � fi
�
a� b�

	� B � b�	k�n�i
 � fk�n�i
�
a� b�

	
�

If i � �� then fi�x� y� � � and since k � n� thus

fk�n�i�x� y� � n���k �

Hence ����� yields

cn���� � b � �� B � b�	k�n��
 � n���k �

i�e�

cn�� �

b if k � n� �
b� B if k � n� � �

which is true by ���	��
If i � �� then by Lemma ����

fi�x� y� � x� y

and ����� yields

cn���� � a� b� �Bb�	k�n�i
 � fk�n�i
�
a� b�

	
�

i�e�

cn� �

�����
a� b� if k � n� �
a� b� � B if k � n� �
a� b� � Bb if k � n� � �

Substituting the values cn�� and cn� into ���	�� we �nd ����� correct again�
Now� let � � i 	 n� � and suppose that ����� holds for every j with � 	 j � i�

By ���	� we can write

������

cn���i � a � cn���	i��
 � b � cn���	i��
 � n�i�k �B
� a � C� � b � C� � n�i�k �B
� b�	i��
 � C� �B � b�	k�n�i��
 �C � B � n�i�k �

where

C� � b�	i��
 � fi��
�
a� b�

	�B � b�	k�n�i��
 � fk�n�i��
�
a� b�

	
C� � b�	i��
 � fi��

�
a� b�

	�B � b�	k�n�i��
 � fk�n�i��
�
a� b�

	
C� � b�	�	i��

 � fi��

�
a� b�

	
� a � fi��

�
a� b�

	
C � b�	�	k�n�i��

 � fk�n�i��

�
a� b�

	
� a � fk�n�i��

�
a� b�

	
�
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By Lemma ����

C� � fi�a� b
�� and C � fn�k�a� b�� �

Substituting C� and C into ������� we obtain ������

By ���	� and ����� we have

 � a � c� � b � c� � ��k �B
� a �

�
b�	n��
 � fn��

�
a� b�

	� B � b�	k��
 � fk��
�
a� b�

	�
� b � a �

�
b�	n��
 � fn��

�
a� b�

	�B � b�	k��
 � fk��
�
a� b�

	�� ��k �B

� b�	n��
 �
�
b��	n��
 � fn��

�
a� b�

	
� a � fn��

�
a� b�

	�
�B �

�
b�	k��
 �

�
b��	k��
 � fk��

�
a� b�

	
� a � fk��

�
a� b�

	�
� ��k

�
�

whence by Lemma ���� we come to

 � b�	n��
 � fn��
�
a� b�

	� B � b�	k��
 � fk��
�
a� b�

	
�

what we had to prove�

By simple substitution of ����� into ���	�� we get

A � a �
�
b�	n��
 � fn��

�
a� b�

	�B � b�	k��
 � fk��
�
a� b�

	�
�

which completes the proof� �

Lemma ����� Let n� k� a� b� A�B as in Lemma ��	��

If

b�	k��
 � fk��
�
a� b�

	 ��  �
then

B �
b�	n��
 � fn��

�
a� b�

	
b�	k��
 � fk�� �a� b��

and

A � ak����k�� b
�	n�k��
 � fn�k��

�
a� b�

	
b�	k��
 � fk�� �a� b�� �

Proof� Since

b�	k��
 � fk��
�
a� b�

	 ��  �
thus by Lemma ���� we can formulate

B �
b�	n��
 � fn��

�
a� b�

	
b�	k��
 � fk�� �a� b�� �
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whence again by Lemma ��� we obtain

������

A � a �
�
b�	k��
 � fk��

�
a� b�

	
b�	k��
 � fk�� �a� b�� b

�	n��
 � fn��
�
a� b�

	
� b�	n��
 � fn��

�
a� b�

	
b�	k��
 � fk�� �a� b�� � b

�	k��
 � fk��
�
a� b�

	�
� a

�
b�	k��fk��

�
a� b�

	
b�	n��
fn��

�
a� b�

	
b�	k��
 � fk�� �a� b��

� b�	n��
fn��
�
a� b�

	 � b�	k��
fk�� �a� b�	
b�	k��
 � fk�� �a� b��

�
�

By the de�nition of fn� we have

b�	n
fn
�
a� b�

	
� b�	n
�b���

n
� 
Fn

� a
b�

�
� b�	n
���

n
� 
Fn

� a
b�

�
� bnFn

� a
b�

�
�

Hence

������

b�	k��
fk��
�
a� b�

	
b�	n��
fn��

�
a� b�

	
� b�	n��
fn��

�
a� b�

	 � b�	k��
fk�� �a� b�	
� bk��Fk��

� a
b�

�
bn��Fn��

� a
b�

�
� bn��Fn��

� a
b�

�
� bk��Fk��

� a
b�

�
� bn�k��

�
Fk��

� a
b�

�
Fn��

� a
b�

�
� Fn��

� a
b�

�
� Fk��

� a
b�

��
�

By Lemma ����

Fk��
� a
b�

�
Fn��

� a
b�

�
�Fn��

� a
b�

�
�Fk��

� a
b�

�
� ����k��

� a
b�

�k��
Fn�k��

� a
b�

�
�

whence by ������� we have

b�	k��
fk��
�
a� b�

	
b�	n��
fn��

�
a� b�

	
� b�	n��
fn��

�
a� b�

	 � b�	k��
fk�� �a� b�	
� ����k��ak��b�	n�k��
fn�k��

�
a� b�

	
�

Substituting this into ������� we obtain

A � ak����k�� b
�	n�k��
 � fn�k��

�
a� b�

	
b�	k��
 � fk�� �a� b�� � �
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Lemma ����� Let k� n � N and A � Znfg be �xed� Then there exist only �nitely
many� e�ectively computable a� b� B � Z� such that

x� � bx� a j xn � Bxk �A �

Proof� First� let us determine a� b � Z� such that

������

b�	k��
 � fk��
�
a� b�

	 �� 
and

x� � bx� a j xn �Bxk � A �

With these conditions� by Lemma ���� a j A� whence a may assume only �nitely
many di�erent values and thus we may suppose that a is �xed�
Further� by Lemma ����

������  � A � b�	k��
 � fk��
�
a� b�

	� ak����k��b�	n�k��
 � fn�k��
�
a� b�

	
�

which is an algebraic equation with indeterminate b and with �nitely many solu�
tions� The integer solutions of ������ are e�ectively computable� thus there exist
only �nitely many �e�ectively computable� pairs of a� b satisfying �������
Since

fk��
�
a� b�

	 ��  �
by Lemma ���� B is explicitly determinable from a and b� thus the set of the
suitable B�s is also �nite and the values of B are e�ectively computable�
Now� assume that a� b are such that

������ b�	k��
fk��
�
a� b�

	
�  �

Remark that k � �� otherwise ������ would be equal to �� We exclude the case
a � � because by Lemma ��� we may write

������ A � a �
�
b�	n��
 � fn��

�
a� b�

	�B � b�	k��
 � fk��
�
a� b�

	�
�

and thus A �  would hold�
Claim that

b�	k��
 � fk��
�
a� b�

	 ��  �
To prove� suppose the opposite�
First� let k be even� Then ������ looks like

bfk��
�
a� b�

	
�  �

whence either
b � 

or
fk��

�
a� b�

	
� 
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and
b�	k��
 � fk��

�
a� b�

	
� fk��

�
a� b�

	
�

If k � �� then
fk��

�
a� b�

	
� �

or else if k � �� then by de�nition� fk���x� y� is homogeneous� whence� if

b �  and fk��
�
a� b�

	
�  �

then a � � which was excluded�
Now� let k be odd� Then ������ has the form

fk��
�
a� b�

	
�  �

and
b�	k��
 � fk��

�
a� b�

	
� bfk��

�
a� b�

	
�

Since fk�� �x� y� is homogeneous� thus

b �  and fk��
�
a� b�

	
� 

yields that a � � which is� again� excluded�
If

fk��
�
a� b�

	
� fk��

�
a� b�

	
�  �

then by Lemma ����

fl
�
a� b�

	
�  for every l � k � � �

in particular� for l � n��� whence by ������� A � � which is a contradiction� Thus
our claim is proven�
By ������� a j A� thus a may have only �nitely many di�erent values� Further�

more� by ������� either
b � 

or
b�	k��
fk��

�
a� b�

	
� bk��Fk��

� a
b�

�
�  �

whence by Lemma �����
a

b�
�

�����

�
���
�

�
�

Hence� there exist only �nitely many e�ectively computable a� b pairs satisfying
equation �������
Fix now a and b� Since

b�	k��
 � fk��
�
a� b�

	 ��  �
thus ������ is a linear equation in B which has only one solution and this solution
is explicitly given� Thus� we have found that a� b and B can have only �nitely many
values satisfying the conditions of the lemma in both cases and they are e�ectively
computable� �
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Lemma ����� Let k� n � N� such that

gcd�n� k� ��� � �

and a� b� A�B � Z� such that A �B �� �
If

x� � bx� a j xn � Bxk �A �

then
b�	k��
fk���a� b�� ��  �

Proof� To the contrary� suppose that

������ b�	k��
fk���a� b�� �  �

Then by Lemma ����
b�	n��
fn���a� b�� �  �

whence either
b�	n��
 � 

or
fn���a� b�� �  �

If
b�	n��
 �  �

then b �  and n is even�
Since

gcd�n� k� ��� � � �

thus k should be odd� whence
b�	k��
 �� 

and by ������� we have
fk���a� b�� �  �

However� by the de�nition of fk��� the vanishing of fk���a� � implies that a � 
and accordingly A � � which is a contradiction�
If

b�	n��
 ��  �
then

fn���a� b�� �  �

whence by similar considerations as above� b �� �
Therefore� a

b� is a root of Fn���x� and by ������
a
b� is a root of Fk���x�� too�

Hence� by Lemma ���� a
b�
is a root of Fm���x�� where m � gcd�n� k��

Thus by Lemma �����
gcd�m� ��� � �

and consequently�
gcd�n� k� ��� � �

which is a contradiction again� �
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Theorem ����� Let k � N� A � Z n fg� Then there exist only �nitely many
e�ectively computable polynomials in the form xn � Bxk � A� where n � N� such
that gcd�n� k� ��� � �� B � Z n fg and

x� � bx� a j xn � Bxk � A

for some a� b � Z� supposing that either a �� �� or jbj �� ��

Proof� Suppose that n � N � such that gcd�n� k� ��� � �� B � Z n fg and a� b � Z�
such that a � jbj �� �� and

x� � bx� a j xn � Bxk �A �

First� we prove that n is bounded�

By Lemma ���� and Lemma ���� we have

����	� ak����k b
�	n�k��
 � fn�k��

�
a� b�

	
b�	k��
 � fk�� �a� b�� � A �

Since A �� � thus a �� � too� By the values of a and b we will distinguish di�erent
cases�

�i� Assume that b� � �jaj� Then jbj � � and

��� a
b�

��� 	 �

�
�

Hence� by Remark ���� and Remark �����

���b�	k��
 � fk�� �a� b�	��� � ���bk��Fk�� � a
b�

����
�
��bk���� � ���Fk�� � a

b�

����
	 jbjk�� � Fk��

�
�

�

�

and ���b�	n�k��
 � fn�k�� �a� b�	��� � ���bn�k��Fn�k�� � a
b�

����
�
��bn�k���� � ���Fn�k�� � a

b�

����
� jbjn�k�� � Fn�k��

�
��
�

�
�
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Hence� by ����	� and Remark ����� we obtain

jAj �
�����b�	n�k��
 � fn�k��

�
a� b�

	
b�	k��
 � fk�� �a� b��

�����
� jbjn�k��Fn�k��

���


	
jbjk��Fk��

�
�


	
� jbjn��kFn�k��

���


	
Fk��

�
�


	
� jbjn��k �n� k � �� ���	n�k��

Fk��
�
�


	
� �n� k � ��

� jbj
�

�n��k
�

�k��Fk��
�
�


	 �

i�e�

�k��Fk��

�
�

�

�
jAj � �n� k � ��

� jbj
�

�n��k
�

Since jbj � �� the above yields that n is bounded� A rough upper bound�

n 	 max

�k� �k��Fk��

�
�

�

�
jAj� k � �

�
�

�ii� Consider now the case  �� b� � �a 	 �jAj�
Then� by Remark ���� and Remark �����

jAj �
�����b�	n�k��
 � fn�k��

�
a� b�

	
b�	k��
 � fk�� �a� b��

�����
� jbjn�k��Fn�k��

�
�


	
jbjk��Fk��

�
a
b�

	
� jbjn��k

��
p
�



�
��
p
�

�

�n�k��
� ��p�



�
��p�
�

�n�k��
Fk��

�
a
b�

	
� jbjn��k

�
�

�
��
p
�

�

�n�k��
� �

Fk��
�
a
b�

	
� jbjn��k

�
�

�
��
p
�

�

�n�k��
� �

Fk�� �jAj� �

whence

�jAj � Fk�� �jAj� � jbjn��k
���� �p�

�

�n�k��

� �
�A
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and thus n is bounded� An upper bound is

n 	 max
����k� log

�
�jAj � Fk�� �jAj�

�
log
�
��
p
�

�

� � k � �

��� �

�iii� Further� we proceed with the case  �� b� � ��a 	 �jAj�
Clearly� a �� ��� otherwise  �� b� � ��a � � would imply that jbj � �� which
would contradict a � jbj �� ��� By Lemma ���	� if

n � bc� � max
ajA� b���a

�
c��a� b

��
�
�

where c� de�ned in the lemma� we get

fn
�
a� b�

	
� �

n
	 �

Let bf � max
ajA� b���a

n
jb�	k��
 � fk���a� b��j

o
�

We know that bf � � If n � bc� � k � �� then

jAj �
�����b�	n�k��
 � fn�k��

�
a� b�

	
b�	k��
 � fk�� �a� b��

����� � �
n�k��

	bf �

Thus n is bounded� A rough estimate

n 	 max
n
�bc� � k � �� � log�

�
jAj bf�� k � �

o
�

�iv� Finally� if b � � then by Lemma ���� k and n should be even� otherwise
A � � Nevertheless� gcd�n� k� ��� � � which is a contradiction� thus the case b � 
cannot occur�
Finally� we have found that in all the cases n is bounded and the upper bound

depends only on k and A� whence by Lemma ���� the statement of the theorem
follows� �

Theorem ����� Let n� k � N� such that gcd�n� k� ��� � � and n � k � � and let
B � Z n fg are �xed� Then there exist only �nitely many A � Z n fg� such that

x� � bx� a j xn � Bxk � A

for some a� b � Z�

Proof� Let a� b� A � Z� such that A ��  and

x� � bx� a j xn � Bxk �A �

Then� by Lemma ����

b�	k��
 � fk��
�
a� b�

	 ��  �
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whence by Lemma ���

����� B � b�	k��
 � fk��
�
a� b�

	
� b�	n��
 � fn��

�
a� b�

	
and

������ A � a �
�
b�	n��
 � fn��

�
a� b�

	�B � b�	k��
 � fk��
�
a� b�

	�
�

Hence by Lemma �����

b�	k��
 � fk��
�
a� b�

	 �A � a �
�
b�	k��
 � fk��

�
a� b�

	 � b�	n��
 � fn�� �a� b�	
�B � b�	k��
 � fk��

�
a� b�

	 � b�	k��
 � fk�� �a� b�	 �
� a �

�
b�	k��
 � fk��

�
a� b�

	 � b�	n��
 � fn�� �a� b�	
� b�	n��
 � fn��

�
a� b�

	 � b�	k��
 � fk�� �a� b�	 �
� ����k�� akb�k��b�	n�k��
 � fn�k��

�
a� b�

	
�

whence
b�	k��
 � fk��

�
a� b�

	 �A �� 
implies that a ��  and b �� �
By ����� and Remark ����� we have

������ B � Fk��
� a
b�

�
� bn�k � Fn��

� a
b�

�
�

Since deg�Fk��� �
�
k��
�

�
and deg�Fn��� �

�
n��
�

�
� thus there exist real numbers

M��M�� x�� x� � � such that if jxj � x�� then

jFk���x�j � M� � jxj�
k��
� 


and if jxj � x�� then

jFn���x�j � M� � jxj�
n��
� 


with M��M� � �
Let x� � max ��� x�� x�� and suppose that

�� a
b�

�� � x�� Then

B �M� �
��� a
b�

����k��
� 


� B � Fk��
� a
b�

�
�
��bn�k�� � Fn�� � a

b�

�
�
��bn�k�� �M� �

���� ab�
�����
n��
� 


�

Hence�

B �M�

M�
�
��bn�k�� � ���� ab�

�����
n��
� 
��k��

� 

�
��bn�k�� � �x���n��

� 
��k��
� 
 �

This yields that b is bounded� whence by ����� and ������ the integers a and A are
also bounded�
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Now suppose that
�� a
b�

�� 	 x� and let

l �
�

�
min


jxi � xj j j  � i� j 	

�
n� �
�

��
�

where x� � � � x�n��
� 

are the roots of the polynomial Fn���x��

Then ����Fk��� ab�
����� 	M

with some M and clearly� l � �
If

min

���xi � a

b�

��� j  � i 	
�
n� �
�

��
� l �

then ����Fn��� ab�
����� � �

n��
� 
Y

i��

���xi � a

b�

��� � l�
n��
� 
 �

whence by �������
B �M
l�
n��
� 


� ��bn�k��
and thus b is bounded� Since jaj 	 x� � b�� thus a is bounded� whence by ������ A
is also bounded�
If

min

���xi � a

b�

��� j  � i 	
�
n� �
�

��
� l �

then by the de�nition of l� there exists a unique i� � f�� � � � � �n��� �g� such that��xi� � a
b�

�� � l� With this i� we have����Fn��� a

b�

����� � l�
n��
� 
 �

���xi� � a

b�

��� �
whence by ������ we get

������
B �M

l�
n��
� 
 � jbn�kj

�
���xi� � a

b�

��� �
Since

b � fn��
�
a� b�

	 ��  �
thus

Fn��
� a
b�

�
��  �

whence xi� �� a
b� �

We assumed n�k � �� whence the theorem of Roth on approximation of algebraic
numbers ��	
 implies that there exist only �nitely many suitable pairs of a� b � Z
satisfying ������ for every xi� root of Fn���x�� The number of the roots of Fn���x�
is �nite� thus a and b are bounded� whence A can be chosen from a �nite set� �
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Theorem ����� Let n� k � N� such that gcd�n� k� ��� � � and n � k � � and let
B � Z n fg are �xed� Then there exists an explicitly given sequence of integers Ai

�i � �� � � � �� such that

������ x� � bx� a j xn � Bxk �Ai

for some a� b � Z and there are no other A�s satisfying �������

Proof� Let gcd�n� k� ��� � m � �� Then by Lemma ����� there exist

g��x� y�� g��x� y� � Z�x� y


� such that

y�	n��
 � fn��
�
x� y�

	
� g��x� y� � y�	m��
 � fm��

�
x� y�

	
�

y�	k��
 � fk��
�
x� y�

	
� g��x� y� � y�	m��
 � fm��

�
x� y�

	
�

Furthermore� by Lemma ���� we have

������ B � g��x� y� � y�	m��
 � fm��
�
x� y�

	
� g��x� y� � y�	m��
 � fm��

�
x� y�

	
�

The a� b solutions of ������ are such that either

������ b�	m��
 � fm��
�
a� b�

	
� 

or

������ b�	m��
 � fm��
�
a� b�

	 ��  �
If ������ holds� then either b �  or Fm��

�
a
b�

	
� � If b � � then a � Z is arbitrary

and by Lemma ����

A � a �
�
b�	n��
 � fn��

�
a� b�

	�B � b�	k��
 � fk��
�
a� b�

	�
�

If Fm��
�
a
b�

	
� � then by Lemma �����

a

b�
�

�����

�
���
�

�
�

whence� again by Lemma ���� A can be explicitly determined�
If ������ holds� then we can cancel out b�	m��
 � fm��

�
a� b�

	
from ������ and the

simpli�ed equation can be solved in similar way as ����� in the proof of Theorem
����� �

Remark ����� Schinzel showed that there exist a constant c such that every tri�
nomial with integer coe�cients having the property n� gcd�n� k� � c is reducible if
and only if it has a linear or quadratic divisor� �See Consequence �� of ��
�� He
also proved some results similar to our Theorems ��	� ��	� and ��	� in Theorem
� of ��
�



Appendix A

A linear recurring sequence
having uniform distribution

In this appendix we give an example of a ����st order linear recurring sequence
which is uniformly distributed modulo �n for any n� The sequence is created by
the method given in Construction �����

The coe�cients of the recurrence relation are the following�
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The corresponding recurrence relation�

un � un�� � un�� � � � �� un����� � un����� � �un����� �

A possible set of initial values u� � u� � � � � � u���� � � u���� � �� Another�
�more random� initial values�
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Appendix B

Experiments with transformation
of uniformly distributed sequences

Some computational experiments have been made concerning the construction
of Gaussian distributed random number generation of Chapter �� We have created
some random number generators and tested them by linear transformations� For
computations we used the Maple package� The programs are available by the
authors�

Figure �� This is the graph of the density �relative frequency� function of the
transformed Fibonacci sequence modulo �� The used linear transformation� xn �
� �Fn�� � �Fn � ����� where
a�� �Fn is the nth Fibonacci number reduced modulo ��

b�� �Fn is the nth Fibonacci number reduced modulo ����

c�� �Fn is the nth Fibonacci number reduced modulo �����

c�� �Fn is the nth Fibonacci number reduced modulo ������

Figure �� This is the graph of the density �relative frequency� function of the trans�
formed sequence of un� where

un�� � un�� � un�� � �un�� � un

is the impulse response sequence� The used linear transformation at �gures
a�� b�� c�� and d�� are the summation of the four consecutive elements of the

sequence with proper constant weight multiplier
e�� f�� g�� and h�� are the summation of the six consecutive elements of the

sequence with proper constant weight multiplier
i�� j�� k�� and l�� are the summation of the eight consecutive elements of the

sequence with proper constant weight multiplier�
The sequences are reduced at �gures
a�� e�� and i�� modulo �
b�� f�� and j�� modulo ��
c�� g�� and k�� modulo ���
d�� h�� and l�� modulo ������

Figure 	� This is the graph of the density �relative frequency� function of the trans�
formed sequence of un� where

un��� � un��� � un��� � un��� � un��� � un��� � un��� � un���

� un��� � un��� � un��� � un��� � un�� � un��� � un���

� un��� � un�� � un� � un�� � un
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is the impulse response sequence� The used linear transformation at �gures
a�� b�� c�� and d�� are the summation of the � consecutive elements of the

sequence with proper constant weight multiplier
e�� f�� g�� and h�� are the summation of the � consecutive elements of the

sequence with proper constant weight multiplier
i�� j�� k�� and l�� are the summation of the �� consecutive elements of the

sequence with proper constant weight multiplier�
The sequences are reduced at �gures
a�� e�� and i�� modulo �
b�� f�� and j�� modulo ��
c�� g�� and k�� modulo ���
d�� h�� and l�� modulo ������



Experiments with nonuniform distribution �	�
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