Introduction

Linear recurring sequences have a wide range of application from the field of
solving diophantine equations, through rational approximation and random number
generation to cryptology. The present work deals with the different aspects of linear
recurring sequences and related topics. However the mainstream of our studies is
the examination of uniform distribution of sequences and application of the obtained
results in constructing efficient pseudo-random number generators and sequences
with general distribution.

The properties of the linear recurring sequences have been investigated by several
authors from different points of view.

The periodicity of recurring sequences reduced modulo m was studied in the
thirties by Ward. He in [49] could prove that if u is a third-order linear recurring
sequence and mq,mo are relatively prime positive integers both greater than 1,
then the period length of the sequence reduced modulo myms is the least common
multiple of the period lengths of the same sequence reduced modulo m; and ms.
He also proved that u is purely periodic modulo mims if and only if it is purely
periodic both modulo m; and msy. Furthermore, he proved some properties of the
period length, too.

In [50] he obtained results on the number of appearances of the residue classes
of a third-order linear recurring sequence.

Duparc in [13] and [14] investigated the period length of general linear recurring
sequences reduced to finite residue classes over unique factorization domains.

Bundschuh and Shiue in [5] generalized the result of Bundschuh [4] and gave
a sufficient condition on the uniform distribution of general second-order linear
recurring sequences reduced modulo prime powers.

Niederreiter in [29] proved that the Fibonacci sequence is uniformly distributed
modulo m if and only if m = 5%.

Nathanson [28] gave a criterion for the uniform distribution of a second-order
linear recurring sequence modulo primes.

Webb and Long in [51] characterized the general second-order linear recurring
sequences to be uniformly distributed reduced modulo prime powers and Bumby
[3] with respect to general moduli.

Niederreiter and Shiue in [31] and [32] gave necessary and sufficient condition for
a linear recurring sequence of order less than 5 to be uniformly distributed over finite
fields. Here they proved that a general linear recurring sequence could be uniformly
distributed over a finite field only if its characteristic polynomial had a multiple root
over the same field. This leads to the observation, that over the integers, a linear
recurring sequence can be uniformly distributed modulo p (and thus modulo p®)
only if p divides the discriminant of its characteristic polynomial. They also gave
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2 T. Herendi: Linear recurring sequences

here a sufficient condition for the characteristic polynomial of recurrence sequences
over prime fields, such that if this simple condition holds, then the corresponding
sequence is uniformly distributed. This result lets us construct pseudo random
sequences with good distribution properties and a large period length.

Narkiewicz [27] gave an overview of the uniform distribution of linear recurring
sequences and among others, he studied the uniform distribution of second-order
linear recurring sequences in general residue class systems.

Turnwald in [46] and [47] gave a complete characterization of second and third-
order linear recurring sequences defined over Dedekind domains to be uniformly
distributed in residue class systems with finite norm.

Tichy and Turnwald [45] applied the previous result and gave a criterion for
uniform distribution of third-order linear recurring sequences over the integers.

Drmota and Tichy in [10] gave a survey of the topic and proved uniform dis-
tribution and weak uniform distribution properties of several sorts of recurring
sequences.

Carlip and Jacobson in [6] studied a more general distribution property of linear
recurring sequences and gave a criterion for this stability property for second-order
linear recurring sequences modulo powers of 2.

Uniform distribution of general sequences are studied in [23] where the concept
of completely uniformly distributed sequences are also developed.

As a standard monograph on non uniform random number generation we refer to
Devroye [8]. One can find there various algorithms for generating random number
sequences with different distributions. See also Winkler [52].

Furthermore, we mention Knuth’s fundamental book [22], where different notions
of pseudo-randomness are considered.

It should be remarked, that pseudo-random sequences are used in various appli-
cations, especially in Monte Carlo methods for solving different kinds of problems,
such as numerical integration, optimization, simulation of stochastic processes etc.
For a survey on random number generation and Quasi-Monte Carlo methods we
refer to Niederreiter [30].

Another theory we will use in the present work is the field of linear transforma-
tions.

Linear transformations have a great importance in applied sciences. The most
well-known and most frequently used are the Fourier transform and the Laplace
transformation.

A particular linear transformation which is also often used for different purposes
is the so-called Walsh transformation. For example, in digital picture processing
it can be used as filtering transformation (see e.g. in the book of Yaroslavsky
[53]). In a more special application in character recognition it is used as symmetry
representation of digitalized images (cf. [18] ).

As an application of linear recurring sequences we will prove some divisibility
properties of lacunary polynomials, namely trinomials. As general works in this
subject we refer to Rédei [37], Nagell [25] and Schinzel [40], [41] and [42].

The structure of the present thesis is the following:

In Chapter 1 we give the most general definitions and results we use in the
later parts.
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In Chapter 2 we prove some general properties of Dedekind-domains paying
particular attention to residue systems generated by ideals with finite norm. We
should mention, that the results here and in Chapter 3 are the generalization of
[19], where the case of rational integers were investigated.

Chapter 3 is built around the problem of uniform distribution of linear recur-

ring sequences. Here we study among others the periodicity and the hereditary of
periodicity of sequences in residue class systems modulo powers of prime ideals.
The observations lead to the main result Theorem 3.36 of the chapter:
For every linear recurring sequence in a Dedekind-domain we can find an integer S
depending only on the degree of the recurrence relation, such that if the sequence is
uniformly distributed modulo P®, where P is a prime ideal with finite norm, then
the sequence is uniformly distributed modulo every power of the ideal P.

In Chapter 4 we give a method for constructing linear recurring sequences of
integers, such that the sequence is uniformly distributed modulo every power of 2.
With the use of these sequences we can develop pseudo-random number generators
with very good properties. In Appendix A we give an example of such a linear
recurring sequence of order 9943.

In Chapter 5 we provide a method to create pseudo-random number sequences
with Gaussian distribution using linear transformations of uniformly distributed
sequences. The method we present is based on the Berry-Esséen Theorem and
on the existence of very well uniformly distributed sequences. In Appendix A we
present some experimental results related to this chapter, where we analyze different
pseudo-random number sequences after linear transformations. The results here are
mainly from the paper [20].

Finally in Chapter 6 we use linear recurring sequences for proving a kind of
finiteness of trinomials having quadratic divisors. The chapter covers the results of
[21].



Chapter 1

Basic definitions and results

Dedekind-domains are defined in several ways in the literature. We will give the
one which is the most suitable for our purposes.

Definition 1.1. Let R be an integral domain. We call R a Dedekind-domain,
if for every ideal I of R we can find prime ideals Py, ..., P, unique up to ordering,
such that I = Py -...- Py.

For general properties of Dedekind-domains see [7], [15], [16], [26], [35] and [48].

Definition 1.2. Let R be a Dedekind-domain and let I C R be an ideal. We will
call the cardinality of the ring R/I the norm of I and we will denote it by N(I).

Remark 1.3. Let I and .J be two relatively prime ideals of R, e.q. let I +.J = R.
Suppose further that I and J have both finite norm. Then
N(I-J)=N(I)-N(J) .

The proof of the above statement is based on the Chinese Remainder Theory.
(See e.g. in [26].)
The same can be proven for arbitrary I and .J as a consequence of Corollary 2.2.

Definition 1.4. Let R be a Dedekind-domain and let ag,...,aq_1 € R and

u={un}

be a sequence in R satisfying the recurrence relation
Uptd = Qg—1Untd—1 + -+ apuy, for n=0,1,...

Then wu is called a linear recurring sequence (for short l.r.s.) with defining
coefficients ag,...,a4_1 and initial values ug,...,ug_1.
The integer d is called the order of the recurrence and the polynomial

P(x) = z? —ag 1z — - —ay

is called a characteristic polynomial of u.

Remark 1.5. It is easy to see that a linear recurring sequence satisfies several
recurrence relations. In particular, one can say that if P(x) € R[z] is a character-
istic polynomial of a recurring sequence, then P(x) - Q(x) is also a characteristic
polynomial of the sequence for all Q(z) € R[x]. (See e.g. [46].)
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Remark 1.6. By the previous remark, the order of a linear recurring sequence is
not definite. However, since the different values of the orders of a sequence are
positive numbers, there exists a unique smallest.

Definition 1.7. Let d(u) be the smallest integer for which there exists a recurrence
relation of order d(u) for the sequence w. This number is said to be the minimal
order of the recurring sequence and a corresponding characteristic polynomial is
said to be a minimal characteristic polynomial of u.

Remark 1.8. As we will see in Lemma 3.7, the minimal characteristic polynomial
of a linear recurring sequence is also unique.

Definition 1.9. Let R be a Dedekind-domain, m € R and let P C R be a prime
ideal. We will denote by vp(m) € N the P-adic valuation of m, which is defined
by the following:

(m) S PP but (m) \ PO L)

where (m) denotes the ideal generated by m.

Definition 1.10. Let u be a sequence in the Dedekind-domain R and let I C R be
an ideal. We say that u is periodic modulo I with period length o € N, if there
exists pg € N, such that

Untp = Uy, mod I forall n> g .

The smallest po = o,1(u) and p = pr(u) with the previous property will be called
the preperiod and minimal period length of u modulo I respectively.
If po,1(u) = 0 then u is said to be purely periodic modulo m.

Remark 1.11. Let R be a Dedekind-domain, let u be a linear recurring sequence
in R and let I C R be an ideal with finite norm. A simple observation shows that
u 1s periodic modulo I.

Definition 1.12. Let u be a sequence in the Dedekind-domain R and let I C R be
an ideal with finite norm. We will say that u is uniformly distributed (for short
u.d.) modulo I if

1 1
J}EHWN#{HSNW"EG mOdI}:W

for all a € R.

Remark 1.13. Let R be a Dedekind-domain, let u be a linear recurring sequence
i R and let I,J C R be two ideals with finite norm, such that I C J. One can
prove that if u is u.d. modulo I, then it is u.d. modulo .J. The proof is based on the
fact that if a1, ..., an(r) s a complete residue system modulo I, then the cardinality
of the set

{a'|a" € {a1,...,anmn} and o =a mod J}

with some a € R, is independent of the value of a.



6 T. Herendi: Linear recurring sequences

Definition 1.14. Let u be a l.r.s. in the Dedekind-domain R, defined by the coef-
ficients aq, . ..,aq_1 with initial values ug, ..., uqg_1 and let P C R be a prime ideal.
Let

an(k) - (Un—{—k—lv Un4k—25-- -, un)tr

denote the nth k-dimensional state vector and

ag—1 Qdq—2 ai ao

1 0 0 O

M(u) = 0 1 0 0
0 0 1 0

the companion matrix of u.

Remark 1.15. With the above notations we have
Uy (d) = M (u)"uo(d) ,

which will be used frequently in the paper.

Remark 1.16. We mention that if we reduce a linear recurring sequence modulo
some tdeal in a Dedekind-domain, then we get a linear recurring sequence in the
resitdue class system, which may have different properties than the original sequence
(e.g. the minimal order of the reduced sequence may became smaller).

By Remark 1.16 it has sense to introduce the following notations:

Definition 1.17. Let s be a positive integer. With the notation of Definition 1.1}
dp(u,s) will denote the minimal order, op(u,s) the minimal period length,
Mp(u,s) the companion matrix and as,...,0s4,(u,s)—1 the defining coeffi-
cients corresponding to the minimal recurrence relation of u modulo P?*.

Remark 1.18. As far as there is no confusion, we will simplify our notation by

omitting unnecessary parameters, for instance, by cancelling the sign of the ideal
P.

For further properties of linear recurring sequences we refer to [24].



Chapter 2

Dedekind-domains and modules

For the discussions of the later chapters we will need some special properties of
Dedekind-domains. In this chapter we state all the results we will use. The material
of this and the 4th chapter is a generalization of [19].

Throughout the chapter let R be a Dedekind-domain, and let P be a prime
ideal of R. Suppose that R/P has N(P) elements, and N(P) < co. Since R is a
Dedekind-domain, P is maximal and R/P is a (finite) field (see e.g. [16]). Hence,
we know that N(P) = «! with some rational prime 7 and an integer [ > 1 (see e.g.
[24]). First we turn to the determination of N (P¥). For this we need the following:

Theorem 2.1. Let k € N. Then the additive groups of the rings R/P and
PE=1/P% are isomorphic.

Proof. See e.g. [26]. O
Corollary 2.2. Let k € N. Then N(P*) = N(P)*.

Proof. By the isomorphism theorem of groups, we know that the additive groups
of (R/P*)/(P*=1/P¥) and R/P*~1 are isomorphic, thus

N(P*) = #{P¥=}/PFYN(P¥) = N(P)N(P*~) .

Hence, by induction, we obtain the statement. [

In general Dedekind-domains we cannot ensure that if some elements are in the
same ideal of the ring, they have common non-unit divisor. Fortunately, since we
will work in residue class systems, some more general results will be enough for the
cancellation of ’common factors’.

Theorem 2.3. Let k,s €N, P C R be a prime ideal and let p € P*\ P**t1. Then
for every q € P* there exists r € R, such that p-r = q mod P*. In particular, if
q € P\ P**! thenr € R\ P.

Proof. If s <k, then p=¢q =0 mod P?, thus r = 1 is suitable.

Suppose now that s > k. Let ry,...,r, € R be a complete residue system
modulo P*~*, where by Corollary 2.2 we find n = N(P)*~%, If 1 <4,j < n, such
that ¢ # 7, then

r; Zr; mod psTk

which is equivalent to

(21) T, — ’f’j ¢ Ps_k .
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Since p ¢ P**1, relation (2.1) holds if and only if
p(ri —r;) ¢ PPP*~F = p* |

ie.
pr; Zpr; mod P° .
This yields that prq,...,pr, represent n different residue classes modulo P?*.

Let q1,...,¢m € R be a complete residue system modulo P*, such that ¢; = 0.
Clearly m = N(P)*.

We claim that pr; +¢; with 1 <7 < n and 1 < 57 < m is a complete residue
system modulo P?. To prove this, we have to show that all the residue classes
pr; + q; are different, since n-m = N(P)*. But pr; + ¢; = pri + ¢;; mod P?
implies that pr; + ¢q; = pry + ¢ mod PF ie. qj = qj» mod P¥. This means that
j =j', whence pr; = pr;; mod P®i.e. i =1.

By the above claim, there exist 1 < iy < n and 1 < j5 < m, such that

q = pri, +qj, mod P*.
Hence
q—pri, = qj, mod P?,

and thus
0=q—pri, = qj, mod P* .

This yields that jo = 1 i.e. ¢;, = 0, whence

q =pr;, mod P?®.
Setting r = r;, we obtain the first part of the theorem. The second statement is
clear if we notice that ¢ ¢ P*¥*! implies pr ¢ P*¥*!, whence r ¢ P. O

Corollary 2.4. Let s € N, P C R be a prime ideal and let p € R\ P. Then there
exists r € R\ P, such that p-r =1 mod P*.

Proof. If we fix k = 0 and ¢ = 1 in Theorem 2.3, we obtain the result. [
Corollary 2.5. Letr,k,s € N and A\q,..., A\ € R, such that

Pk+1+()\1)+"'+()\q~)zpk

(e.g. k will be the highest exponent of P, such that P* is a divisor of all the
ideals A1,...,\.) and let p € P*\ P**1. Then there exist \|,...,\. € R and
ie{l,...,r}, such that

Aj = pA; mod P°

forj=1...r and X, ¢ P.
Proof. The condition
Pk+1+()\1)+"'+()\r) — pk

yields that (A\1),..., (\.) are divisible by P*, but at least one of them — say ();) —is
not divisible by P*¥*1. Then Aq,..., A, € P¥, but A\; € P**1. Hence, substituting
q by A; and r by )\;- in Theorem 2.3, the property A, ¢ P is deduced from the last
sentence of the theorem. [
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Corollary 2.6. Letr,k,s € N and A\q,..., A\ € R, such that
(A1) + -+ (\.) C PF

and let p € P*\ P**1. Then there exist \,...,\. € R and i € {1,...,r}, such
that
Aj =pA; mod P*

forg=1...r.
Proof. Since P**! + (p) = P*, we have

PE o (p) + (M) + -+ (A) = PF
By the previous corollary, there exist Aj), A],..., Al. € R, such that
Aj =pA; mod P*

fory=1...r. O

Definition 2.7.

Let R be a Dedekind-domain and let d be a positive integer. V (R, d) will denote
the free module of rank d over R, which can be regarded as the Cartesian product R
with the natural extension of addition and componentwise multiplication by elements
of R. If there are no confusion, we will omit R and d.

We will say, that two vectors a,b € V(R,d) are congruent wmod I, if they are
congruent component-wise mod I.

Let s,r € N. The set of vectors {b1,...,b,} = B C V(R,d) is called semi-
independent mod P? if

>\1b1+"'+)\rbTEO modPS

implies that \; = 0 mod P forit = 1,...,r. Otherwise it is called strongly de-
pendent.

Let by,...,b.,b € V(R,d). The vector b is called a linear semi-combination
of the elements by,...,b, mod P*® if b = 0 mod P?® or there exist k € N, p €
PF\ P**1 and M\y,...,\. € R, such that

0#pb=Aby+ - -+ Avb, mod P?

and A; Z0 mod P for somei € {1,...,r} provided that k > 0.

If {b1,...,b.} = B C V(R,d) is semi-independent and for allb € V(R,d), b is a
semi-combination of by,...,b., mod P?%, then B is called a semi-basis of V(R,d)
mod P?.

We keep the notion of independence, combination and basis for the usual sense
definition.

For arbitrary modules we usually cannot generalize all the results of linear alge-
bra, however in our special case we can prove some important ones:
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Theorem 2.8. For every d,s € N there exists a basis (in the usual sense) of
V(R,d) mod P? and it has exactly d elements.

Proof. See e.g. Th. 7.12. (pl04) of [2]. O

Further in the chapter we fix R and d, and we will use the notation V instead
of V(R,d).

Theorem 2.9. Let by,...,b. € V be linearly dependent over R, then they are
strongly dependent mod P?, for any s.

Proof. Let s € N, A\1,..., A € R such that
Aby+ -+ X0 =0,
and let £ € N, such that
P () 4+ (N) = PP

and p € P*\ P**!. Then by Corollary 2.5 there exist A\},...,\. € R and i €
{1,...,7}, such that A} ¢ P and A; = p)\; mod Pstk_ Thus

pAiby 4 -+ pAb, =0 mod P*TF

whence
Aiby+ -+ Xb. =0 mod P* .

Hence by definition, by, ..., b, are strongly dependent mod P?. [
Theorem 2.10. Let by,...,bg € V be linearly independent over R, then for any

(2.2) s > vp(det(by,...,bq))

the vectors by, ...,bg are semi-independent mod P?.

Proof. Let Aq,...,Aq € R, such that
Aby+ -+ Agbg =0 mod P? .

This yields that
b= Aby+---+ Agbg € P° .

If b = 0, then by the independence of by, ..., by, we have
Ai==X=0.
Suppose, that b # 0. Since by, ..., by are linearly independent over R, we find
det(by,...,bq) #0,
and Cramer’s rule can be applied. Hence

Ai det(bl, . .,bd) = det(bl, RN bd|bz — b) R
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fore=1,...,d.
Let b= (fB1,...,0q). Since
b=0 mod P?,
thus
G; =0 mod P°
forte=1,...,d. Hence
det(bl, cey bd|bl = psb) € P’ .
By (2.2), we get det(by,...,bq) ¢ P*®, whence \; € P for alli =1,...,d. By
definition this yields that bq,...,bs are semi independent mod P*. [

Remark 2.11. If the number of independent vectors in Theorem 2.10 is less than
d, there still exists a lower bound on s with the same properties.

Corollary 2.12. Let by,...,bg € V and t = vp(det(by,...,bq)). If by,..., by is
not a semi-basis mod P!, then it is not a semi-basis mod P?® for any s € N,
either.

Proof. If by, ..., by is not a semi-basis modulo P**1, then it is strongly dependent.
By Theorem 2.10, this means that by, ..., by is linearly dependent over R. Then by
Theorem 2.9, we obtain the statement. []

Theorem 2.13. Ifby,...,b. € V are semi-independent mod P?, then r < d.

Proof. By Theorem 2.9, by,...,b, are independent over R and thus independent
over Qg, the quotient field of R (using the natural embedding). O

Theorem 2.14. If by,...,bg € V(R,d) are semi-independent mod P*, then the
set by,...,bq is a semi-basts mod P?.

Proof. Similarly as in the proof of Theorem 2.13, the set by,...,bg is a basis of
V(Qgr,d). Thus for every b € V(R,d) there exist

Ao, Ais.. . Ay € R
, such that
Aob = A1by + - -+ Agbg -
Suppose that
(M) + (A1) + -+ (Aa) + PEFE = P
with some integer k& and suppose that \; € P*\ P¥*! for some i € {0,...,d}. By
Corollary 2.5 there exist Ay, Aj,..., A, € R, such that

Aj = NjA; mod PEHF

Then
MNiAh = MALby 4 -+ N Abg  mod P5tF
whence
(2.3) Apb = Ajby + -+ 4+ N;bg  mod P?
and A, = 1.

Now let b# 0 mod P?. If A{jb =0 mod P? held, then i # 0, and thus by, ...,bq
would be strongly dependent mod P#, contrary to the assumption. Hence, A{b Z 0
mod P? and by definition b is a semi-combination of by,...,bg. O
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Remark 2.15. Let s < s’ and suppose that by,...,by € V is a semi-basis
mod P?®. This by,...,bg is also a semi-basis mod Ps’, otherwise it would be
strongly dependent mod P? , which would yield

AMby 4+ Agbg =0 mod P*

for some \1,..., A\q not all in P. But then the same holds mod P* which would
contradict the semi-independence of by, ..., by.

However, more can be proved:

Theorem 2.16. Let s < s’ and suppose that bi,...,by € V is a semi-basis
mod P*. Ifb €V, then there exist A\,...,A\q € R and p € P*~! such that

pb = A1by + -+ Agbg mod P .

Proof. Extending the proof of Theorem 2.14, the congruence (2.3) implies
(2.4) Ab= Ny + -+ Nybg mod P* |

where by (2.3), we find that vp(Aj) < s — 1. If we multiply both sides of (2.4) by
some q € PS_I_”P()‘{)), then — setting p = ¢ - A\, — we obtain the theorem. [



Chapter 8

Results on recurring sequences

In this chapter we collected results on linear recurring sequences. We focused
on the uniform distribution of the sequences in residue class systems. For this we
examined the change of periodicity and other related properties when we change
the residue class system by extension.

The following lemmas about polynomials are useful for the later analysis of the
characteristic polynomials of linear recurring sequences.

Lemma 3.1. Let k,n € N, R be a Dedekind-domain, P C R be a prime ideal and

let Q, Ql, QQ € R[QZ]
Suppose that

Q=0Q1-Q2,
Q1 € P*[z]\ P**'[z]
and

Q2 € P*[z]\ P"[x] .
Then
Q € P"*Fa]\ PR g]

Proof. Let
Q1 =wz' +---+ag,
Q2 = by ™ + -+ + bo
and

Q= cmuz™ T+ e .

Then we have
Cp = ahbo + ah_lbl + -+ aobh R

where 0 < h < m + [. Since
ag,...,an € P* and by,...,b, € P¥,

thus
apbo, ..., aoby € pntk ,

whence
cp € PR forall 0<h<m+1,
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i.e. Q € P"**[x]. (The coefficients which are not explicitly defined, are assumed
to be zero.)
Furthermore, since Q1 ¢ P"1[x], there exists 0 <4 <[, such that

ai¢Pn+17

but
ap € PPt forall 0<i <i.

Similarly, there exists 0 < 7 < m, such that

bj ¢ Pk+1 :
but
by € P forall 0<j' < 5.
Then
Citj = a¢+jb0 R ai+1bj_1 + aibj + ai_lbj+1 + -+ aobiﬂ- .
Since
ao,...,ai_1€Pn+1 and bo,...,bj_1€Pk+1 ,
thus
ai+jb0, ceey ai—i—lbj—l, ai_lb]qu, cey CL()bH_j S prtk+l

If ¢;j € PPPRHL then a;b; € P"TRT1 but since P is a prime ideal, this contradicts
the definition of i and j, whereby ¢;1; ¢ P"tktlje. Q ¢ PrHr+l[z]. O

Lemma 3.2 (Gauss-lemma). Let R be a Dedekind-domain with quotient field
Qr and let Q € R[z], Q1,Q2 € Qr|x] be monic polynomials.
With these assumptions @Q = Q1-Q2 implies Q1,Q2 € R[z].

Proof. Let p,q € R, such that pQ1,¢Q2 € R[z] and suppose that the decomposition
of (p) and (¢q) into prime ideals are

k k
() =[[r" and (@ =]]F".

=1 =1

Now we can write pgQ = pQ1 - ¢Q>.
Fix an index 1 < ¢ < k, arbitrarily. Since ) € R[x] is monic, thus

(3.1) pgQ € PP i) \ PO ]
The leading coefficients of pQQ1 and ¢Q2 are p and ¢ respectively, thus
pQu ¢ PP ] and qQx ¢ P[]
Suppose that

pQ1 € Piai [] \ Piai+1|:;[,'] and ¢gQs € Pfi [2] \ Pfﬁ_l[ﬂ
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with some o, 8, € N. By Lemma 3.1 and (3.1),
ap + B = i + i
and since
oy <a; and G <pf;,
thus
—a; ad G

(04
This yields that
pQy € P[] and Qs € P’ [z]

for all 1 <14 < k, whence, using that P; are prime ideals, we get

k k
pQq € (H Pf”) ] =pRlz] and ¢Q2 € (H Pfi) [x] = qR|z] .

i=1 i=1
Hence Q1,Q> € R[z]. O

Corollary 3.3. Let R be a Dedekind-domain and let Qr be its quotient field. The
monic polynomial QQ € R[x] is irreducible over R if and only if it is irreducible over

Qr.

Proof. If Q) is irreducible over Qg then it is obviously irreducible over R, too.

If @ is reducible over Qg, then there exist monic polynomials Q1, Q2 € Qgr[z]
with positive degree, such that @ = Q1 - Q2. By Lemma 3.2, Q1,Q2 € R[x] and
the statement follows. [

Remark 3.4. If Q) is not monic, then Lemma 3.2 and Corollary 3.3 do not hold.
We give a counter-ezample.

Let R =Z[1+ /=5] and Qg = Q(1 ++/=5). Then the polynomial 2z* + 2x + 3
is reducible over Q(1 + +/=5) with irreducible factors

1++v-5
a:—}-% and 2xr+1—+v—5,

but since 2 is irreducible in Z(1 + /—5), thus the polynomial 22% + 2x + 3 is also
irreducible over Z[1 + /—5].

Lemma 3.5. Let R be a Dedekind-domain and Q1,Q2 € R[x] be monic polynomi-
als. Then there exist ged(Q1,Q2) and lem(Q1, Q2).

Proof. Since Q1,Q2 € Qgr[z], there exists the monic polynomial ged(Q1,Q2) over
Qgr. Further,

ged(Q1,Q2) | Q1

thus by Lemma 3.2, gcd(Q1,Q2) € R[z].
Let Q3,Q4 € R[z], such that

Q1 =gcd(Q1,Q2)- Q3 and Q2 =ged(Q1,Q2) - Q4
Then ged(Q1,Q2) - Q3 - Q4 = lem(Q1,Q2) € R[z]. O
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Lemma 3.6. Let F' be a field and u be a l.r.s. over F. Then there exists a
unique minimal characteristic polynomial of w. Further, this minimal characteristic
polynomial is a divisor of all the characteristic polynomials of the sequence.

Proof. The existence and uniqueness of the minimal polynomial is proven on p.33
of [43] for number fields. The statement of the lemma is proven in Theorem 6.42 of
[24] for finite fields, but the proof can be used for general fields without change. [

Lemma 3.7. Let R be a Dedekind-domain and let u be a l.r.s. over R. Then there
exists a unique minimal characteristic polynomial of u.

Proof. Let @ be a characteristic polynomial of v over R. Since u is a lL.r.s. over
Qr, by Lemma 3.6there exists a unique minimal characteristic polynomial Q" of u
over Qg. Since @ and @’ are monic and @' | @, by Lemma 3.2Q" € R[z]. O

Lemma 3.8. Let a,b € R and let u and v be two linear recurring sequences over
R with characteristic polynomials @), and Q, respectively. Then au + bv is also a
linear recurring sequence with characteristic polynomial lem(Qy, Qy).

Proof. Since the polynomial lem(Q,,, Q,) is divisible by both @, and Q,, by Re-
mark 1.5 lem(Qy, @) is a characteristic polynomial for both sequences u and v.
If two sequences both satisfy a linear recurrence relation, then any linear com-
bination of them satisfies the same recurrence relation, whence lem(Q,,@,) is a
characteristic polynomial for all linear combinations v and v. [

Remark 3.9. If we define the sequence v by v, = Unpyi for some k > 0, then
Q, = Q. and thus @), is a characteristic polynomial of au + bv.

Remark 3.10. Throughout the chapter if we don’t state otherwise, we suppose,
that the linear recurring sequences are purely periodic in the considered residue
class systems, 1i.e.

Upto(u,s) = Un mod P°  forall n=0,1,2,...

and the sequence has no preperiod.

Remark 3.11. If M(u) and M(v) are the companion matrices of Q, and @,
respectively, then M (u) * M(v) denotes the companion matriz corresponding to

lem(Qu, Qu)-

In the following lemmas we prove some properties of the minimal order of the
mod P? reduced linear recurring sequences. We will also see that the minimal order
of the sequence is the best bound for the minimal order of the reduced sequences.

Lemma 3.12. Let F be a finite field and let u be a l.r.s. in F with characteristic
polynomial Q) € Flz]. Then Q is the minimal characteristic polynomial of u if and
only if the state vectors iyg,...,ug_1 € V(F,d) are linearly independent over F,
where d is the degree of Q.

Proof. See e.g. Th. 6.51 of [24]. O
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Lemma 3.13. Let R be a Dedekind-domain, P C R be a prime ideal with finite
norm, s € N and let u be a lL.r.s. over R. Using the notation d = d(u,s), the d

dimensional state vectors uo(d),...,ug—1(d) € V(R,d) form a semi-basis modulo
Ps.
Proof. If s = 1, then R/P? is a finite field and the independence — and the semi-
independence, which is the same in this case — follows from Lemma 3.12.

We will use the notation @, = @y, (d).

Let s > 1. Suppose that @g, ..., 4g_1 is not a semi-basis modulo P*, whence by

Theorem 2.14, they are strongly dependent. This yields that there exists a set of
coefficients Ag,...,Agq—1 € Rand k € {0,...,d — 1}, such that A\ ¢ P and

(3.2) Aollg + -+ + Ag—1tg—1 =0 mod P?° .
We claim that we may choose Ay, ..., Ag_1, such that
A—1 =1 mod P?.
Let kK =d — 1. By Corollary 2.4, there exists A € R with the property
Adg—1 =1 mod P?.
Multiplying (3.2) by A we obtain the claim for this case.

Now, suppose that Ayj_1 € P for every system of A\g, ..., A\g_1 € R which satisfies
(3.2) and fix a set of coefficients A,...,Aq—1 € R satisfying (3.2), such that the
corresponding £ is maximal. For this & we have k < d — 1.

Multiplying (3.2) by the companion matrix M (u, s), we get

0= M(u,s)(Xotip + -+ + Ag—1Ug—1)
(3.3) = AoM (u, 8)ug+ -+ Ag_1 M (u, $)tig_1

= XUy + -+ Ag—1ugq mod P’ .

By the definition of d there exist as o, ..., as,q4—1, such that

as,0lp + -+ as.g—1Ug—1 = g mod P° .
Substituting this into (3.3), we obtain

0 =Xty + -+ + Ag—2Ug—1
+ a5 0Xa—1%0 + -+ a5 g—1Ag—1U4—1 mod P .

Set
AE) = as,(])‘d—l
and
)\; = X1 +as,¢)\d_1 for ¢=1,...,d—1.

Since Ay_1 € P, wehave A}, & P. By (3.3), A, ..., A\;_; is also a suitable choice
for the coefficients to combine 0, which contradicts the selection of k. Hence, there
exists a set of coefficients Ao, ..., Aq—1 € R satisfying (3.2), such that ug_1 ¢ P,
whence the claim is proven.

Choose Ag, ..., A\g_1 € R satisfying (3.2), such that A\;_1 =1 mod P*. Hence

—)\oﬂo — s = )\d_zﬂd_z =U4_1 mod P? .
Multiplying both sides of the congruence by (M (u, s))" we obtain
—AolUp — -+ — Ag—2Un+d—2 = Untd—1 mod P* |

which contradicts the minimal property of d. [
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Lemma 3.14. Let R be a Dedekind-domain, P C R be a prime ideal with finite
norm, let u be a l.r.s. over R and let r,q,s € N, such that 0 < r <gq.

If
uo(q), - -, ur—1(q) € V(R,q)

are semi-independent modulo P?, then

r <d(u,s) .

Proof. We will use the notation
d=d(u,s) .

Contrary to the lemma, suppose that d < r. By the definition of d there exist
Aoy -+, Ad—1 € R, such that

u4(q) = Xotio(q) + -+ + Aa—1%a—1(g) mod P*

which means that ug(q), ..., 4,._1(q) are strongly dependent. [

Remark 3.15. Since the minimal recurrence relation of the original sequence is
also a recurrence relation for the reduced sequence, we have

d(u,s) < d(u)

and since the minimal recurrence relation of the sequence reduced modulo P**! is
also a recurrence relation for the same sequence reduced modulo P*, we have

d(u,s) < d(u,s+1) forall seN.
Thus there exists an integer T', such that
d(u,T) =d(u,s) forall s>T.

The smallest such a T will be denoted by T (u).

Lemma 3.16. Let R be a Dedekind-domain, u be a l.r.s. over R and let ¢ > d(u).
Then the vectors tio(q), ..., Uq)—1(q) are independent over R.

Proof. Let () be the minimal characteristic polynomial of u over R.
By Lemma 3.7, the polynomial () exists and it is also a minimal characteristic
polynomial of u over Qg.
Let M be the ¢ dimensional companion matrix of the sequence u corresponding
to ), which yields
tUn+1(q) = Mun(q) -

Suppose that uo(q), ..., Ugw)—1(¢q) are dependent over R. This means that there
exist coefficients Ao, ..., Aju)—1 € R, such that

Aotio(q) + -+ + Adqu)—18aq)—1(q) = 0 .
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Let 0 < k < d(u) — 1 be the largest index with the property Ay # 0. For this k we
can write

Ao _

_A_kuo(Q) — T )\;1“’“—1(61) = ux(q) -

Multiplying this equation by M™, we obtain
Uktn(q) =M"uk(q)

)\0 _ )\k—l _
=M" | —— — = _
(-3~ = 20
A Ak
:__OMn'U,(](q)_"'_ k 1M"’L_Lk_1(q)
)\k )\k
Ao _ Ak—1 _
=- )\_kun(Q) Y Uy k—1(q)
for all n > 0. But then
Ak—1 g Ao
P =k k=1, ., 20
T+ " T+ +—Ak
is also a characteristic polynomial of u over Qg, with degree less than d(u). This
is a contradiction, thus #g(q), ..., Ug4w)—1(g) are independent over R. [

Lemma 3.17. Let R be a Dedekind-domain, P C R be a prime ideal with finite
norm and let u be a l.r.s. over R. Then

d(u) = d(u, T(u)) .
Proof. Clearly,
d(u) > d(u,T(u)) .

By Lemma 3.14, the d(u) dimensional state vectors uo(d(u)), . . ., Ugeu,7(u)) (d(w))
are strongly dependent modulo P* for all s > T'(u). By Theorem 2.10, this yields
that o(d(u))), ..., Gg,r@))(d(w)) are dependent over R. However, by Lemma
3.16, the vectors @g(d(u)), ..., Ug)—1(d(u)) are independent, thus

diu) —1<d(u,T(u)). O

The following lemma shows that every linear recurring sequence can be split into
two parts: a dominating and a less important recurring sequence.

Lemma 3.18. Let R be a Dedekind-domain, P C R be a prime ideal with finite
norm, let u be a l.r.s. over R and lett,s € N.
Then there exist linear recurring sequences vV and u?, such that

w=u® +u® mod P*,
u? =0 mod P ,
TV <t,
d(uM) = d(u, t)
and

d(u®) < 2d(u) .
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Proof. Let
ug) =u, for n=0,...,d(u,t)—1

and define u$" for n > d(u,t) by the recurrence relation
af!) (d(u, 1)) = M (u, )" a5 (d(u, 1))

Then
up = ut)  mod P* holds for all n >0 .

Thus
vp(un —ulM) >t

and we can define
u® = (u, —ulV) .

For this sequences
u=u®+u?® and v® =0 mod P!
obviously holds. It is also clear that
Tuw®) <t

and by Lemma 3.17,
d(u®) = d(u®,t) = d(u,t) .

By Lemma 3.8, the sequence u(? is a l.r.s. with

dw®) < d(u™) +d(u) < 2d(u) . O

In the next lemmas we prove some properties of the period length and the lifting
of the differences of elements of the recurring sequences to the expanded residue

class systems.

Lemma 3.19. Let R be a Dedekind-domain, P C R be a prime ideal with finite

norm, let u be a l.r.s. over R and suppose that

d(u,s) =d(u,s+k)=d forsome k=>0.

Furthermore, let g4k d—1,-..,0s+k,0 be as in Definition 1.17. Let by, . .

R and let

bn+d - CLs—}-k,d—lbn—{—d—l +---+ a's—{—k,Obn fOT’

Then
o(b,k+1)| o(u,s+ k) .
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Proof. In the proof we will use the notations:

Uy = Up(d(u,s)), o= o(u,s+k)
and
M=M(u,s+k) .

By Lemma 3.13, the d(u,s) = d dimensional state vectors g, ..., g1 form a

semi-basis modulo P* and P***, )
By Theorem 2.16, there exist for every b € V(R, d) coefficients Ay, ..., Ag—1 € R
and p € P*~1, such that

(3.4) pb = Xolip + -+ + Ag_1lg—1 mod P*TF .
By the definition of ¢ we have
Uptp = Uy, mod pstk

1.e.
M¢%a, =@, mod P*tF .

Hence, using (3.4) and the definition of the sequence b, we get

Pboin = pMO" by = pMT™D
= MO \ogtig + - - - + MO N\ g_1tg_1
= M"Xotlo + -+ - + M" XNg_11g-1
= pM"™b = pM"™by = pb,, mod P*T* .

But this means that  is a period length of the sequence b modulo P¥*! and thus
ob,k+1)| o O

Lemma 3.20. Let R be a Dedekind-domain, P C R be a prime ideal with finite
norm, let u be a l.r.s. over R, s > T(u) and let [,n € N. Then

Un+1o(u,5) — Un = {(Untp(us) — Un) mod PP

Proof. Let
Up = Up(d(uw)), M=M(u), o=o(u,s)
and let
Yn = Up4p — Up , Yn = Yn (d(u))
Clearly,
gn = Mng(] 9
and since

the relation y,, € P® holds.
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Let p € P\ P**1. By Corollary 2.6 there exist by, ..., bgu)—1 € R, such that
y; = pb; mod Pt for i=0,...,d(u)—1.
Let us define the sequence b,, by b, = M"™by. Then clearly,
pb, =y, mod P*T1 .

By Lemma 3.17, we have d(u, s) = d(u). Hence by setting & = 0 in Lemma 3.19,
we find that o(b, 1) | o, whence

M®h, =b, mod P

and thus '
M*©j, =7, mod P!

for any 2 € N.
Let E denote the d(u) dimensional unit matrix. Then we have

_ _ !
Untip — Up = (M® — E)a,

Il
S/\ /\
g
\/

(M23,)

lgn =1 (Upyo — Un) mod P . O

Lemma 3.21. Let R be a Dedekind-domain, P C R be a prime ideal, let 7 € N be
the prime, such that 7| N(P), let u be a l.r.s. over R and let s € N,
If s > T(u), then either

o(u, 5 +1) = o(u, )
or

o(u,s+1) = mo(u,s) .

Proof. Let us define the sequence y® by

yg) = Un+lo(u,s) — U

and use the notation

(l) — y(l)(d(u)) and M = M(u) .
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For this g clearly,
g =0 mod P*

and '
gjg_)ﬂ = M’gj,(f) forall i € N .
Hence, if
7N =0 mod P**' for some n €N,
then
g0, =0 mod P**! forall i €N,
and

o(u, s+ 1) = ou, 5) .

Thus, if we assume that
o(u,5s+1) > o(u,s) ,

then
gD 20 mod Pt .

By Lemma 3.20, we have
g,(j) = lgj,gl) mod P*T! |

whence
g =0 mod P**! ifand only if = |1 .

From this, we get that the smallest positive value for [, such that
Un+lo(u,s) = Un mod psti

is
l=7n. O

Remark 3.22. Ward in his Theorem 7.1. of [20] claimed that for a third-order
[.r.s. the statment of Lemma 3.21 remains true even if we omit the condition
s > T(u). However, this is false, as shown e.g. by the sequence u, = 5F, with
P=(5) CZ=R and s = 1, where F,, is the Fibonacci sequence. The period length
of 5F,, modulo 5 is 1 while modulo 25 is 20.

Lemma 3.23. Let R be a Dedekind-domain, P C R be a prime tideal, let t € N
and let u be a l.r.s. over R, such that

up, =0 mod P* forall neN.
Furthermore, let s > 0, z > 1 be integers and
N(P)=n* with we&N prime.

Then
Q(U,8+ t) < ﬂ_zd(u)—i—s—l )
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Proof. Let v be the sequence satisfying the same recurrence relation as v with initial
values

vo=0,...,9@wu)—2 = 0,v4)-1=1.

Then ©o(d(u)),...,Vg)—1(d(u)) are linearly independent modulo P, whence by
Lemma 3.14, we find that

d(v) =d(u) < d(v,1) .
Thus T'(v) = 1 and by Lemma 3.21, we have
o(v,5) | (v, 1)m*
Let p € P*\ Pt*1. By Theorem 2.3 there exist a sequence uf, u},- - - € R, such that
up, = pu,, mod P*** forall neN.
This sequence v’ is not necessarily a Lr.s, but periodic modulo P* with

o(u',s) = o(u, s +t)

and
pii! (d(u)) = M(u)"pih(d(u)) mod P*Ht
whence
ar, (d(u)) = M(u)"agy(d(u)) mod P? .
Since ig(d(u)) is a linear combination of the vectors g(d(u)), ..., Vg)—1(d(u))

(with coefficients in R),

o(u,s+t) = o(u',s) | o(v,s) .

We know that
o(v,1) < 774w

whence
o(u, s +t) < o(v,s) < o(v, )a* "t < g#dWgs=1
As an application of the lemmas above, we can prove the following fundamental

theorem:

Theorem 3.24. Let R be a Dedekind-domain, u be a l.r.s., P be a prime ideal
with finite norm in R and m € N be the prime, such that © | N(P).
If u is uniformly distributed modulo P*® for all s € N, then N(P) = .

Proof. Suppose that
N(P)=n* with z€{1,2,3,...}.

Fix s = 2d(u). For this s there are (7%)® = 7*° different residue classes modulo P*.
Since u is u.d. modulo P?, thus 7%% < p(u, s). Hence by Lemma 3.23

%% < Q(U, 8) < ,n_zd(u)—i—s—l ’
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and substituting the value of s, the inequality has the form
7r2zd(u) < ,/Tzd(u)+2d(u)—1 )
Taking the logarithm of both sides we obtain
2zd(u) < zd(u) + 2d(u) — 1 < zd(u) + 2d(u) ,
whence canceling d(u) out, we find

22 <z+2, ie. z<2. [

Now we can turn to the generalization of the results related to the period length
and lifting properties.

Lemma 3.25. Lett, k,m € N, where 7 is a prime, R be a Dedekind-domain, P C R
be a prime ideal with finite norm, such that = | N(P) and let u and v be two linear
recurring sequences over R, such that

vp, =0 mod P forall neN.
Suppose that there exists Ty > T(u), such that
Ur(o(v,t +k+i1+1)) <vg(o(u,To+ 1)) forall i>0
and set
A = o(v, T(v))/ ged(o(u, Ty), o(v, T(v)) and A= A/a"=1)
Let s > Ty + k, such that
o(u,s +1) =mo(u,s)

and suppose that t > Ty.
Then the congruence

(u 4 V) ntmo(u,s)+atde(u,s+1) ~ (U + V)ntmo(u,s)

3.5
(3:5) = TIA(Uptqp(u,s) — Un) mod psthtl

holds for all n,m,l,q > 0.
Proof. The case | = 0 is trivial.
Suppose that [ > 0 and let
M =M(u)*M(v) € V(R,dx d) ,

where x denotes the operation defined in Remark 3.11 and d is the dimension of
M. Furthermore, let

Yn = (“n+qe1 - “n) )
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let E be the d dimensional unit matrix and write
Un =Un(d) , Vn=0n(d), Un=7ynld),
o1 =o0(u,s), o02=op(u,s+1).
By the definition of ¢, we have
yn =0 mod P? .
Hence by Corollary 2.6 there exist bg,...,bgq_1 € R, such that
yi = pb; mod P*T*+1 for i=0,...,d—1.
Let us define the sequence b,, by b, = M™by(d). Then clearly,
pby, =y, mod PTEHL

Since d(s) = d(s — k) by Lemma 3.19

Q(b7k+1) | 01 ,
1.e. - -
M@bp, =b, mod PFt!
and thus
(3.6) M9y, =4, mod PstF+L
whence
mlA—1 .
(3.7) ( > M%) Jn = wlAG, mod PSR
1=0

Using similar arguments as in the proof of Lemma 3.20, by (3.6) and (3.7) we have

(ﬂ+5)n+m91+lq/\ez - (ﬂ + 5)n+me1
= M™er(Mlre: _ B (a4 1),

= Mme1 (Mlqurel _ E)ﬂn + Mme (Mlquz _ E)’Un

IATr—1
= me < Z Miqen) (M9 — E) @, + M™ (Mlquz — E)u,
i=0

(3.8) IAT—1
G e r——
i=0

IAm—1
= ( Z Miqm) G + M™ (Mlq/\ez _ E)@n

1=0

= A7y, + M™er (M'he: _ By,

=[An (un+qgl — Un) + MM (Mlquz _ E)@n mod Ps+k+1 -
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Now, we show that M™et(M'Ae: — E)p,, vanishes in the congruence (3.8).
Let us observe the following three cases:

i.) If t > s+ k, then

Up =0 mod P*HF+L

ii.) If s <t < s+k, then
e(v;s+k+1) [ o(v,t+k+1) | Ao(u,To) | Ae(u, ) [ Aga
whence
(3.9) (M'arez _ EYg, =0 mod PSTRHL
iii.) Finally, if ¢ < s, then
o(v,s+k+1)=p(v,(s—t)+t+k+1)| Ao(u,To+s—1t)| Ao(u,s) | Aoz,

whence again (3.9) follows.
Applying the above observation to (3.8) we obtain (3.5). O

Corollary 3.26. With the assumptions of Lemma 3.25, we have

(4 + V) ntigho(u,s+1) = (U + V) =1 ((U + V) ntqho(u,s+1) — (4 + U)n)
= IA(Untqo(u,s+1) — Un) mod P*tk+L

Proof. By Lemma 3.25, we can write

(U + U)n+mg(u,s)+qlAg(u,s+1) - (’LL + U)n+mg(u,s)
=1 (TA(Un+qo(u,s) — Un))
=1 ((u+ V) ntqroust1) — (W+v),) mod P

Set the sequence v/, = 0. Then

(U + V)ntmo(u,s)+aiho(u,s+1) — (U + V)nimo(u,s)
=IA (W(Un+qe(u,8) — up))
= IA (v + V) ntgo(us+1) — (u+0")n)
= IAN(Un4qo(u,s+1) — Un) mod P*HEHL O

As a consequence of the above results we can prove that a linear recurring se-
quence is either periodic or if s is greater than a given bound, the period length of
the sequence modulo P? is strictly increasing with s.
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Theorem 3.27. Let m € N be a prime, R be a Dedekind-domain, P C R be a
prime ideal with finite norm, such that w | N(P), let u be a l.r.s. over R and
s > T(u) be an integer.

If
olu, s+ 1) = mo(u, s) |

then
ofu, s +2) = mo(u, s+ 1) .

Proof. Let u, = t,(d(u)). Setting k =1, v, =0, m=0,l =1and ¢ =1 in
Lemma 3.25, we obtain that
Unto(u,s+1) — Un = T(Unyo(u,s) — Un) mod PF? .
Since 541 > 05, we have
Upto(u,s) — Un Z0 mod psti

and thus

Unto(u,s+1) — Un Z0 mod P2

Hence by Lemma 3.21, we get

o(u,s+2)=mo(u,s+1). O

In the following corollary we prove that the required existence of Ty in Lemma
3.25 is not a real restriction.

Corollary 3.28. Let R be a Dedekin-domain, 1 € N be a prime, P C R be a prime
ideal, such that | N(P), let u and v be linear recurring sequences over R, such
that w is non-periodic and v, = 0 mod P! with some t € N for all n € N and let
ke N

Then there exists Ty € N, such that

Ur(o(v,t+k+i+1)) <wve(o(u,To+1i)) forall i>0.

Proof. Satisfying
Ur(o(v,t+k+i+1)) <vg(o(u,Ty+1)) forall i>0,
it is enough to choose T}, such that

o(u, Ty + 1) = mo(u, Tp)
and
Ur(o(v,t+k+i+4+1)) <ve(o(u,To+1i)) for 0<i<T(v)—t.

If i > T'(v) —t, then the property follows from Lemma 3.21 and Corollary 3.27. O

In the following remark we give some estimation for Ty in the most important
cases.
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Remark 3.29. Assume that N(P) = .
a.) By Lemma 3.23, we have

Ur(o(v,t+k+i+1)) <dw)+k+i—-1
and if we suppose that u is uniformly distributed modulo P70, then
To +i < vg(o(u,To+1)) .
If Ty > d(v) + k, then

ve(o(v,t+k+i+1) <dw)+1+k+i—2
<Ty+1
< vr(o(u, To + 7)) -

b.) Further, again by Lemma 3.23, we have
ve(o(u, T(u))) < d(u) +T(u) -2 .

Thus
To < vr(o(u, To)) ,

provided that u is uniformly distributed modulo PT0.

If
To > d(u) + T(u) — 1,

then
Vr(0(u, T'(u))) < d(u) +T(u) —2 < Ty < v(o(u,Tp)) .

This yields that there exists an i € N with T'(u) < i < Ty, such that
vr(e(u, i) < vx(o(u,i+1)),
whence by Lemma 3.21, we get
Ur(0(u,2)) + 1 < vp(o(u,i+ 1)) .
Using Theorem 3.27, we obtain by induction that

Vr(0(u, To)) + j < vp(o(u,To + 7)) forall j>0.

¢.) Let T' = max {d(v) + k,d(u) + T'(u) — 1}. If w is u.d. modulo PT' ', then

we can choose Ty =T in Lemma 3.24.

Remark 3.30. Using the notations of Lemma 3.25, we find that o(u + v,s + 1)
divides mAo(u, s), which comes from Theorem 3.27 and the congruence (3.5) modulo

ps+1

29

In the lemma below we give a lower bound on the distance of the elements
corresponding to the same residue class of a uniformly distributed linear recurring

sequence.
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Lemma 3.31. Let R be a Dedekin-domain, m € N be a prime, P C R be a prime
ideal, such that w | N(P), u be a l.r.s. over R, letl,s € N, such that

s>T(u)+d(u) and =1l

and suppose that
o(u,s) =mo(u,s —1) .

If

Up = Upyig(u,s) MOd pstdw) for some 0<mn,
then u cannot be u.d. modulo Ps+a(w)

Proof. Setting v, =0, Tp = T'(u) and k = d(u), by Lemma 3.26,
Unt1o(u,s) — Un = (Unto(u,s) — Un) mod pstdu)
Since 7 1 [, there exists [~1 € R, such that
I~'=1 mod ps+i
This yields
Untmo(u,s) — Un = ml_l(uan(u,s) —u,) =0 mod pstd(u) ,

for every m > 0.
By Theorem 3.27 we know that

o(u,s+d(u)) = Wd(“)g(u, s) .

This means that wn, ..., Upqpu,s+du))—1 contains at least 7% %) elements in the

residue class of u,, modulo Ps+d(w)

Suppose that the sequence is uniformly distributed modulo P*+%%), Then among
Uny -+ Ungo(u,s+d(u))—1, €very residue class modulo Pt appear with the same
frequency. The number of different residue classes modulo P54 ig

N(P)st+dw) = z2(s+d(w)  with some 2> 1,

thus
Q(U, s+ d(u)) > 7Tz(5+d(u))7rd(u) > 7_‘_s+d(u)ﬂ_d(u) — 7Ts+2d(u) )

On the other hand, by Lemma 14,
o(u, s + d(u)) < rs+2dw-1

which is a contradiction. [

The following fundamental theorem gives the very important lifting property of
the uniform distribution.
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Theorem 3.32. Let R be a Dedekind-domain, m € N be a prime, let u and v be
two linear recurring sequences over R, P C R a prime ideal with N(P) = 7, let Ty,
t and A as in Lemma 3.25 and let

If u and u+ v are uniformly distributed modulo P?, then the sequence u+ v is also

uniformly distributed modulo P5+1.

Proof. We will construct a partition $ of the set {0, ..., Ap(u, s+ 1) —1}, such that
if A€ $, then
Uy = Uy, mod P° forall n,me A

and if
a=b mod P?

then
#ncA|l(u+v)p=a mod P} =#{necA|(u+v),=b mod Pt} .

If we can find such a partition, then u and v + v are also uniformly distributed
modulo P5+1,
Construct first the following class of sets:

Api={i|i=n mod Ap(u,s—1) and 0 <1i < Ap(u,s+ 1)} ,

where
0<l<d(u) and 0<n<Apg(u,s—1).

Since we know that the period lengths
Q(U, 5+ 1) = 7Tl+19(u7 S = l) )

the cardinality of the sets
#An,l - 7Tl+1

and
Api=An, ifandonlyif n=m and [=r.

Define the partition $ with the help of the above sets:

H={A,;|Vi,j€A,;, u; =u; mod P* and
Ji, j € Apy, such that u; # u; mod P**'} |
The proof proceeds in two steps.
In step a.) we will prove that § is a partition of {0,...,Ag(u,s+1) —1} and
in step b.) we will prove that if

A, €9 and a=b mod P?,
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then
#{me A, |[(u+v)y, =a mod Ps“}

=#{me A, | (u+v)y, =b mod P} .

a.) We claim $) is a partition of {0,..., Ao(u,s+ 1) — 1}. Thereto we will prove
the followings:

i) If
An,l 7A Am,T and An,l N Am,r 7A @ 3

then
Il<r and A,;CA,, or r<l and A,,CA,;.

Assume first that [ = r. Then
ApiN Ay #0
means that there exists an integer ¢, such that
i=n mod Ap(u,s —1) and i=m mod Ap(u,s—1)

and consequently
m=n mod Ap(u,s —1) .

But we know that
0<n,m<Ao(u,s—1),

whence
n=m and A,;=A,, .

If I # r, then we may assume that [ < r without loss of generality. In this case
ApiN Ay #0
means that there exists an integer ¢, such that
i=n mod Ap(u,s—1) and i=m mod Ap(u,s—r)
and since o(u, s — r)|o(u, s — 1), thus
m=n mod Ao(u,s—7) .

Let j € Ay ;. Then
j=n mod Ao(u,s —1)

and consequently
n=m mod Ao(u,s—1) ,

.
Il

thus
An,l g Am,T .

ii.) If Ay, € 9, then no subsets of A, , are contained in $).
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Suppose that
Apr €9 and A, CAp,.

By (i) we have [ < r. Let m' be such that
m'=n mod Ag(u,s —r+1) and 0<m' <Ap(u,s—7r+1).
We will show that
An,l - Am’,r—l Q Am,r .

By the definition of m' and A, ,_1, we know that n € A, ,_1, which means that
Am’,r—l N An,l 7A @

and by (i) we have
An,l - Am’,T—l .

This yields that
Am’,r—l N Am,r 7é (b

and again by (i) we find
Am’,r—l - Am,r .

Since

#Am’,r—l 7é #Am,r )

thus
Am’,r—l _,C,_ Am,r .

We claim that if ¢ € A,, ;, then u; =ty mod P*T1,
Let 1 € A, ;. Since
An,l g Am’,T—l )

thus ¢ € A, ,_1 and there exists an integer a, such that
i=m'+alo(u,s—r+1).

If we set
v,=0, k=du), l=a and ¢=A,
by Lemma 3.25 we obtain

Ui — Uy = TG (Um'+Ag(u,s—r) — um,) mod P+t

whence
_ / 1
Ui — Uy = TQ (um/+AQ(u,S_,ﬂ) — um) mod P51 .
Since
Am’,T—l g Am,T
and

0<m' + Ao(u,s —r) <i<Ap(u,s+1),
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thus
m',m' + Ao(u,s — 1) € A -

)

But A, , € $, whence
Um! = U/ 4 Ag(u,s—r) Mod P¥ .
This yields
’/T(U’m’—}-Ag(u,s—r) - Um’) =0 mod P*t! ,

i.e.
Ui = Uy mod P

Hence,
Ui = Upyy =u; mod PsTL for every i,j € Any

and thus A, ; ¢ 9.
iii.) Finally we prove that

U A=A{0,... . Ao(u,s+1) -1} .
AEH

During step iii.) we will use the notation
d=d(u) and (i) =o(u,s—d+1+1).

We will construct a sequence of partitions $g, $1,..., such that

U A={0,..., A, 5+ 1) — 1},
AEH;

$iy1 is a refinement of $H; and H = Hy_1. (Actually, it is not necessary that every
$; is a partition of {0,...,Ao(u,s+ 1) — 1}, but obviously they are.)
Let
90 ={Ana-1/0 <n < Ap(0)} .
Assuming that we have already defined $;, we define $;.1 by the following:
Let
9; ={AJA € 9; and Fj1,j2 € A:uj, £ uj, mod P°}

and let
57)1'—1—1 — (57)1 \ ﬁ;) U U {An+aAg(u,s—r),r—1|0 S a < '/T}
An,ref_');

A simple observation shows that the elements of §); have the form A, 4_1_;.
First we prove that

U A=H{0,...,Ao(u,s+1)—1} forall ¢>0.
AEH;
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Obviously, if ¢ = 0, the property holds.
Suppose that

U A={0,... Ao(u,s +1) - 1}
AEH;

for a fixed 7. Since
s—d+1+i>To+d>T(u)+d forevery 0<i<d-1,

by similar considerations as in Remark 3.29.b, we have

(3.10) o(i+1) = mo(i)
whence
w—1
U An+aAg(i),d—2—i = An,d—l—i .
a=0

(All the sets A, 44A0(i),d—2—: are different, all of them is a subset of A, 4 1; and
comparing the cardinalities, we get the equality.) Hence

U A={0,...,Ap(u,s+1) -1} .
AEH+1

Now we prove that if 1 > 0 and A € §;, then there exist j1,j2 € A, such that
uj, #uj, mod P5t.
First let ¢ = 0. Since w is u.d. modulo P® and (3.10) holds, by Lemma 3.31,
Up Z Upyre0) Mod pl=dth+d  for every 0<n < Ao(0) .
This means that for every A, 4—1 € Ho there exist ji, j2 € Ay g—1, such that
uj, #uj, mod P!
(e.g. j1 =n and jo» = n + Ap(0)).
Suppose now that §; has the required property. If A € ;N H; 1, then obviously
there exist 71, j2 € A, such that
uj, #uj, mod P5t.
Therefore, let us assume that A € ;11 \ 9;. This yields that
A=A, 4-2-; forsome 0<n<Ap(i+1).

Let m be such that

n=m mod Ap(i) and 0<m < Ap(i) .
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For this m we have Ay, g—1-; € 9; \ HDit1.
By the definition of $);11 there exist j1,j2 € Ay, d—1-i, such that

uj, # uj, mod P°.
Let us fix j1, j2 € Ap a—1-i, such that
uj, #uj, mod P?,
a1, as, such that
j1=m+aiAo(i) and j» =m+ a2Mo(i)

and set
v=0 and k=d.

Then by Corollary 3.26,

Ujy — Ujy = (U’j1 — Um) — (U’j2 — Um)
= al(um+Ag(,~) - Um) — a2 (Um+Ag(i) B Um)

= (a1 — a2)(Um4Ag(i) — Um)  mod pls—d+i)+d+1

whence
(3.11) Um4Ag(i) & Um mod P°

follows.
Setting v = 0 and k = d, by Lemma 3.25,

= —d+1+i)+d+1
Un4Ap(i+1) — Un = T(Umyap@s) — Um) mod pt 2

and by (3.11) we obtain that
Un+Ap(i+1) §—é up mod PS+1 s
whence there exist j1,j2 € Ay 4—2-i, such that
uj, #uj, mod P!
(e.g. j1 =mn and jo =n+ Ap(i + 1)).
Finally, we only have to prove that $5_1 = 9.
Let : = d — 1. Then for every A € $4_1 there exist j1,j2 € A, such that
uj, #uj, mod Pt
Further, by the definition of g(u, s), we know that

Un+o(u,s) — Un =0 mod P* s
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i.e.
uj, =uj, mod P° forall ji,jo€ App.
If Apg—1—i € Ha—1, where 0 < i < d—1, then A, 4_1_; € H4—2, too, and by the
definition of $4_1, we have

Ujy = Uj, mod P? for all 91,72 € An,d—l—i .

Hence $H4_1 = $ and thus

U A=H0,...,Ao(u,s+1)—1}.
AEH

b.) Now we turn to the assertion that if A € $ and a =b mod P*, then

#{nc A|(u+v), =a mod P!}
=#{ncA|(u+v),=b mod Pt} .

Let A= A, r, n € Ap,» and a be such that n = m + alo(u,s —r).
Setting k = d(u), by Corollary 3.26,

(u + U)n - (u + v)m = a(um+AQ(u,s_r) — Um) mod P(S—r—l)-l—d(u)—i—l .

Since A, , € 9,
Um+Ao(u,s—1) — Um =0 mod P? s

but
UmtAo(u,s—r) — Um Z 0 mod pstl,

Let
Ym = (um+Ag(u,s—r) - Um) .
Since r < d(u),
(u+v)p — (u+v)m = aly,, mod Pt
i.e.
(u + v)y = aAyy, + (w +v),, mod P,

Since
Ym Z0 mod P51

(u+0)p, = (u+72),, modP*T!

if and only if the corresponding a1, as are such that a; = as mod .

We know that A,,, has 7"t1 elements, which yields that a takes values from
[0, p"t! —1]. Since every residue classes modulo 7 appears pi” times in [0, 771 —1],
thus all the residue classes modulo P**! which appear in {(u + v),|n € Ap, -} have
m" representatives, and this means that the assertion is proved. [

Applying the above theorem, we can prove a similar result, which will be useful
when we split the linear recurring sequences into dominant and less dominant parts:
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Corollary 3.33. Let R be a Dedekind-domain, m € N be a prime, u and v be two
linear recurring sequences over R, P C R be a prime ideal with N(P) =7, Ty and
A as in Lemma 3.25 and s,t € N, such that

s>To+2d(u) and t>T(u)+ 2d(u) .

If
v=0 mod P* and w+wv isu.d mod P?%,

then
w+v s u.d. mod P51 .

Proof. Let v' = 0. Then the corresponding Tj can be chosen to be equal to T'(u).
If s < t, then u+v =wu mod P*T!. Since Ty > T'(u) and u+ v’ are u.d. modulo
P$, by Theorem 3.32, u + v’ is also u.d. modulo P*+!. But

u+v =u=u+v mod P! .

If s > t, then since u +v = v mod P, u is u.d. modulo P*.
Since t > T'(u) + 2d(u), applying Theorem 3.32 and supposing that v and u + v’
are u.d. modulo P?, then u + v’ = v is u.d. modulo P**!,

Hence by induction u is u.d. modulo P?, whence again by Theorem 3.32, the
statement follows. [

The following lemma proves the existence of splitting the sequences into domi-
nant and less dominant parts:

Lemma 3.34. Let R be a Dedekind-domain, 1 € N be a prime, let u be a linear
recurring sequence in R, such that d(u) > 2 and let P C R be a prime ideal with
N(P)=m.

Then there exist an integer t > 0 and two linear recurring sequences uY) and
u® over R, such that

u=u+u®  w® =0 mod P, duM)<d(u)

3d(uM)? + d(u)
2

T(uM) < + 2+ d(u)

and
max {T(u(l)) +3d(u®) — 1, 4d(u®) + d(u)} <t.
Proof. Let Ty,...,T,, be a set of strictly increasing integers, such that

Ti=1, T, =T(u)
and
d(u,Tj+1) > d(u,Tjy1 — 1) =d(u,T;) forall 1<j<m

and fix 7 € N.
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By Lemma 3.18, there exist v(% and v(2*, such that

with . '
v =0 mod PT+ =t | Tty <T, —1
and
d(w™)) = d(u, Tipy — 1) = d(u, Ty) .
Since .
o) =, mod P* forall n>0
and
0<t<Tip1—1,
thus .
d(v™D ) = d(u,t) forall 0<t<Tiq—1,
whence

Ty =1T; .
Now suppose that there exist an 1 <4’ < m, such that

max { Ty + () — 1,4d(0") + d(w) } < Ty

and fix ¢ € N to be the smallest such an ¢'. Let us also assume that there exists an
1 < I’ < integer, such that

Ty_1 +3d™ D)y -1 < Ty |

and let [ be the maximal among them.
Then by the definition of [,

Tj +3d(v1)) —1> T, forall 1<j<i,

whence -
T <Ti+ Yy (3d™) —1).
j=l
Since _ ‘
d(v(l’J)) < d(v(l”_l)) for all 7 <1
and
d(v(l,l—l)) < d(v(l,l)) :
thus
i d(v(1,i71))
SEdetN) -~ < Y (3j-1)
j=l j=d(v™D)
B (3d(vH=D) — 1 + 3d(vD) — 1)(d(vLi=D) — d(v D) + 1)
- 2

3(u(4-)2 4 d(p(1D) — 3d(u0)2 4+ 5d(p(D) - 2
- .
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By the definition of 7 and [, it follows that
Ty < 4d(v™=1) 4+ d(u) .

Since

dM=D) < d(h) -1,

thus

Ty < d(u) + 4(d(v®D) — 1)
N 3d(vM =12 4 d(vMi=1)) — 3d(v11)2 4 5d(v(D) — 2
2
3d(v(1,i—1))2 + d(v(l,i—l)) _ 3d(v(1’l))2 + 13d(v(1’l)) —10
5 .

=d(u) +

The right hand side of the inequality is a quadratic expression of d(v(l’l)), having
an absolute maximum at d(v(1") = 2, whence

(3.12) T; < d(u) 4+ (3d(v D)2 4 d(pti=1y 4 4)/2 .
If [ with the above definition does not exist, then we have

3d(vM =12 4+ d(vMi=1)) — 3d(v(1D)2 4 5d(vtD) — 2
2 Y

T, <1+

and (3.12) remains true.
For ¢ we can define

u =Dy =D and t=Tp, —1.
If there are no ¢ satisfying
max {TH + 3d(vM D) — 1, 4d(vP D) + d(u)} <T;

then either
T(u) < 5d(u)

or if _
T; > 4d(v™M9)) + d(u)

then _
Ty <Tj_q +3dv™= D) —1 forall 1<j<m.

In both cases we may choose

uV =u, u® =0 and t=T(u)+5d(u). O
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Remark 3.35. The following problem is contained in a list of related questions in
the paper of Tichy [44].

Theorem 3.36. Let 1 € N be a prime, R be a Dedekind-domain, P € R be a
prime ideal, such that N(P) = =, let d > 2 be an integer, u be a dth-order linear

y 2
recurring sequence over R and let S = 3494 2+9d +1.

If w is uniformly distributed modulo PS, then it is also uniformly distributed
modulo P?* for any s € N.

Proof. Suppose first that u is not purely periodic modulo P* for some s > 0 and
let 05 > 0, such that

Ug, +o(u,s)+n = Ug,+n mod P* for every n>0.

Further, let v,(f) = Up,4n- Clearly, v(®) is purely periodic modulo P* and v(®) is
u.d. modulo P? if and only if % is u.d. modulo P%. Thus, to prove that u is u.d.
modulo P?*, it is enough to show that v(*) is u.d. modulo P*.

Therefore, we may suppose without loss of generality, that for a fixed, but arbi-
trary big s’ > 0, the sequence u is purely periodic modulo ps.

If s < S then u is obviously u.d. modulo P*. Suppose that s > S and w is u.d.
modulo P?. By Lemma 3.34, v can be split into the sum of two linear recurring
sequences,

uw=u +u? with «® =0 mod P! ,

where
d(uM) < d(u)
(1))2 (1) 2
) < 240 - W) ot agu) < 320 W) . 1) 4y
and
t > max {T(u<1>) +3d(u®) — 1, 4d(u®V) + d(u)} .
Hence )
6> §— 3d(u) ;—9d(u) +1
2
> max {3M 424 3d(u) — 1, 5d(u)}
> max {T(u(l)) +3d(u®) — 1, 4d(u®M) + d(u)} .
Let

T' = max {d(u<2>) +du®), d(u®) + T(u®) - 1} .
Since u(? is a linear combination of u and u(?, by Lemma 3.8,
T' = max {d(u<2>) +du®Y, dw®) + Tu®) - 1}

< max {d(u) + 2d(uD), d(u®) + T(u®) - 1}

< 8
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thus » is u.d. modulo PT' !, Since T" < t, we have
u® =y mod PT !

and v is u.d. modulo PT'+1,
Hence, setting k& = d(u(!)), by Remark 3.29, we can choose Ty = T". Thus,

Ty + 2d(u®) < max {T(u(l)) +3d(u™) — 1, 4d(u®M) + d(u)} <s.

Similarly, Ty 4+ 2d(u(V) < t, whence by Corollary 3.33, u = v + ptu® is u.d.
modulo pt1t.
Since s is arbitrary, we obtain the theorem by induction. [J

Remark 3.37. As we will see in Chapter 4, by a detailed analysis of the results
in spectal cases we can obtain much better bounds than in the general case.

For instance, if T(u) = 1, which is rather often the case for the uniform distri-
bution property stated in Theorem 3.36, it is enough if

s> 3d(u)+1.



Chapter 4

Construction of uniformly
distributed linear recurring sequences

In this chapter, we will provide the theoretical background for construction of
uniformly distributed linear recurring sequences with arbitrary large period length
using the general results of the previous chapter. The fundamental application of
such sequences is the construction of pseudo-random number generators.

If we want to use a periodic sequence u for pseudo-random number generation,
we have to care to the followings:

The sequence u should
- be uniformly distributed
- have a long minimal period
- have a low correlation between the elements
- be easily computable.

We will provide a solution for the problem paying particular attention to the
above mentioned properties.

Remark 4.1. One can find criteria for the uniform distribution of linear recurring
sequences of order < 4 over finite fields in [31] and [32].

Among other general results, criteria for the uniform distribution of linear re-
curring sequences of order < 3 over Dedekind-domains can be find in [46] and [47].

As a starting point we have to construct uniformly distributed recurring se-
quences over simpler structures. Niederreiter and Shiue in [31] give a necessary
condition on uniform distribution of linear recurring sequences over finite fields:

Proposition 4.2. Let F be a finite field and let uw be a lLr.s. over F. If u is
uniformly distributed, the characteristic polynomial of u contains a multiple factor.

Proof. See e.g. [31]. O

Example 4.3. Let us define the sequence u by the following:
up=0, wur =1 and up,=1uUn_o for n>2.
Clearly, the sequence is uniformly distributed modulo 2. The characteristic polyno-

mial of u is
Plz)=2>~-1=(z+1)> mod?2.
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Example 4.4. Define the sequence u by the following:
up =0, wr =1 and U, =Upn_1+ Un_o for n>2.

The sequence u is the so-called Fibonacci-sequence. In [29] it is proven that u is
uniformly distributed modulo 5. Even more proven there: u is uniformly distributed
modulo m if and only if m is a power of 5.

The characteristic polynomial of u is

Plz)=2>-z—1=(z+2)> mod5.

Now we turn to the known and the new results which we will use for finding
linear recurring sequences with uniform distribution modulo some - in particular
2F _ integer. The idea behind the construction is that first we try to find a linear
recurring sequence with a characteristic polynomial having the property

P(z) = (z +1)’Q(x) mod 2,

where Q(x) is irreducible modulo 2 and has a particular degree. In this way we
can find a linear recurring sequence with a large period length, which has some
advantages for the later steps.

Definition 4.5. Let F' be a finite field and P € F|x|, such that P(0) # 0. We will
call ord(P) = e the order of P, where e is the smallest positive integer, such that
P(x) | ¢ — 1 over F[z].

Remark 4.6. The integer e in the above definition always ezists. See e.g. in [24]

Proposition 4.7. Let F be a finite field with q elements and let Q(x) be an irre-
ducible polynomial of degree k over F. Then the order of Q divides ¢* — 1.

Proof. See e.g. Corollary 3.4 of [24]. O

Proposition 4.8. Let F be a finite field of characteristic p, let P € Flz] be a
polynomial of positive degree with P(0) # 0 and let P = aPlb1 ...P* wherea € F
and Py, ..., P, are distinct monic irreducible polynomials.

If e denotes the least common multiple of ord(Py), ..., ord(P,) and t denotes the
smallest integer, such that p* > max{by,...,b.}, then ord(P) = ep*.

Proof. See e.g. Theorem 3.11 of [24]. O

We can use the above result to determine the order of polynomials in the de-
manded form.

Corollary 4.9. Let P(z) € Z[x] be such that
P(z) = (z +1)’Q(z) mod 2,

where Q(x) is irreducible modulo 2.
Then for the orders of the polynomials over Fy we have

ord(P) = 20rd(Q) .
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Definition 4.10. Let u be a l.r.s. of order d over a Dedekind-domain R. We say
that u is an impulse response sequence if

Ug=++=uUg—o=0 and wug_1=1.
The following proposition shows the highlighted role of the impulse response

sequence corresponding to a given recurrence relation.

Proposition 4.11. Let F' be a finite field and let u be the impulse response sequence
over F with characteristic polynomial P(x). Then the minimal period length of u
is equal to ord(P).

Proof. See e.g. Theorem 6.27. of [24]. O
Definition 4.12. Let m > 1 be an integer, let u,, be a sequence of integers and let

u, € {0,...,m — 1} be such that

u, =u, modm .
The sequence u’ is called the reduced sequence of u mod m.

The following lemma provides the possibility to construct linear recurring se-
quences with large period lengths.

Lemma 4.13. Let Q(x) € Z[x] be an irreducible polynomial modulo 2 of degree
k and let u be the impulse response sequence corresponding to the characteristic
polynomial P(x) = (2% — 1)Q(x) mod 2. Then u' — the reduced sequence of u
modulo 2 — has period length 20 with some o, such that o | 2% — 1.

Proof. Let ¢ = ord(Q). By Proposition 4.7, o | 2¥ — 1. The factorization of P is
P = (z+1)2Q(z) mod 2, whence by Corollary 4.9,
ord(P) =2ord(Q) = 20 .

Hence by Proposition 4.11, the lemma follows. [
Lemma 4.14. Let Q(x) € Z[z], such that 21 Q(1) and let u be a l.r.s. of integers
with characteristic polynomaial
P(z) = (22 - 1)Q(z) mod 2,
let v be the sequence given by
Up =Un+1 forall n>0
and let v' denote the modulo 2 reduced sequence of v. Then v’ modulo 2 satisfies

the recurrence relation corresponding to P.

Proof. The polynomial P is a characteristic polynomial of the sequence w modulo
2, where w,, = 1 for all n > 0, whence by the additive property of linear recurring
sequences, the lemma follows. [J
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Remark 4.15. The above lemma is proven in more general settings in Theorem
6.62 of [24].

Definition 4.16. Let F' be a finite field with q elements and let u and v be two
linear recurring sequences of order d with the same characteristic polynomial P.
Suppose that P(0) # 0. We will say that u and v are equivalent, if there erists
N € N, such that

Up = VnyN Jorall neN

or

UpeN =Up forall neN.

Remark 4.17. The following properties are easy to prove. Let F' be a finite field
with q elements and let P € F[x] be a polynomial of degree d. Then
i) we have q@ different linear recurring sequences having characteristic polyno-
mial P, and they can be divided into equivalence classes, such that
i) in every equivalence class, the sequences have the same minimal period length
iii) the cardinality of the equivalence classes are equal to its elements’ common
minimal period length
iv) the sequences from the same equivalence classes have periods differing only in
cyclic permutations.

Lemma 4.18. Let Q(x) € Z[z] be irreducible modulo 2 of degree k and let
P(z) = (z +1)’Q(z) mod 2.

Let u be a sequence having characteristic polynomial P and minimal period length
modulo 2 equal to ord(P). Then u is uniformly distributed modulo 2.

Proof. Let denote by L the different linear recurring sequences having characteristic
polynomial P modulo 2. (We will regard two linear recurring sequences the same
modulo 2 if their reduced sequences are the same.) By (i) of Remark 4.17 , #(L) =
2k+2 We will use the fact that if Q is a characteristic polynomial of a Lr.s., then
Q-@Q' is also a characteristic polynomial of it, for all )’ non-zero monic polynomials.
We can partition L = L1 ULy, such that #(L;) = #(Ls) = 2+ by the following: a
l.r.s. isin L, if it satisfies the recurrence relation corresponding to the characteristic
polynomial (z+1)Q(xz) mod 2 and it is in Ly otherwise. There is a simple bijection
between L; and Lo, given by the mapping ¢ : L — L, where ¢(w) = v, such that
v; = w; for i = 0,...,k and vgy1 = 1 + wiy1. Clearly p? = Id and ¢(L1) = Lo.
One can easily check the following interesting property of ¢. Namely, for any two
sequences v, w € L,

w+v=p(w)+ev) mod?2.

By the definition of Ly, if w,v € Ly, then w4+ v € Ly, too. Further if w,v € Ly,
then p(w), ¢(v) € Ly, whence w +v € Ly.

Let v be a lr.s., we will use the notation v, = (v, ..., Uptx+1) for the k + 2
dimensional state vector of v.

Let o = ord(Q). Then ord((z 4+ 1)Q) = ¢ and ord(P) = 2p.
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By the definition of u we know that u € Ly and in other words,

U = Uz, mod 2
and

’L_I,0§_'£’L_I,Q mod 2 .

Let w € L be the sequence, for which

Wo = Up — Uy mod 2 .
Clearly
Uptp = Uy + Wy, mod2 forall neN.
Let v be the sequence, for which
Up =41 mod 2.
Since u,v € Lo thus u + v € Ly and
Uy + Vg = Up +vg mod 2,
i.e.
Uy + Upp1 = Up +U; mod 2.

This means that
Ug + W + U1 + w1y =ug +u; mod 2,

i.e.
wog = w; mod 2 .
Since w Z 0 mod 2 this yields that w, =1 mod 2 for all n € N.
Consequently
(4.1) Up = Upto+ 1 mod 2 forallm e N .

But this means that the number of 0s among the first o elements of the sequence
is equal to the number of 1s among the second o elements of the sequence and vice
versa. Then the number of 0s and 1s has to be the same in a period, which means
that v is uniformly distributed modulo 2. [

Remark 4.19. The statement of the theorem is proven in more general settings in

[31].

Theorem 4.20. Let Q € Z[x] be monic and irreducible modulo 2 with degree k
and let P € Z[x] be monic and such that

P(z) = (2> —1)Q(r) mod 2 .

Let us define

Py(z) = P(z)

Py(z) = P(z) =2,
P3(z) = P(z) — 2z,
Py(x) = P(x) — 22 — 2
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and let M be linear recurring sequences corresponding to P;, such that the mini-
mal period length of u® modulo 2 is 20rd(Q), where ord(Q) is the order in Fo[z].
Then at least one of the u® ’s is uniformly distributed modulo 2° with period length
2%0rd(Q) for any s € N.

Proof. Simplifying the proof, we suppose, that

ﬂ(()1) _ ﬂ(()z) _ a(()?’) _ ﬂ(()4) ,

where u,, is the state vector of u,,. In the proof we will use the notation ¢ = ord(Q)
and M; for the companion matrix. Furthermore, in any case we will use upper or
lower index (i) with the different symbols corresponding to the proper sequence for
i =1,2,3,4. For short, we will write u = u("). For the convenient reference and
better overview, we will enumerate the parts of the proof.

(i) Let us calculate

(4.2)  Ugpin — Un = MU, — 1y, = (M?? — E)i, = (M2 + E)(M? — E)u,, ,

where M is the companion matrix of v and FE is the unit matrix of the same
dimension. As we have seen in Lemma 4.18, by (4.1) we know, that

(M® — E)u, =1+ 2y, ,

with some 7,. Here 1 yields the k + 2 dimensional (1,1,...,1) vector. One should
remark, that the equation 4,11 = My, not necessarily holds.

(ii) For the further calculations, examine first the behaviour of M¢1. Since the
sequence 1,1,1... satisfies the recurrence relation with characteristic polynomial
x — 1 and 2 — 1 divides P;(z), Py(x), P3(z) and P4(z) modulo 2, thus 1,1,1...
also satisfies the recurrence relations with characteristic polynomials P;(z), Pa(x),
P;(x) and Py(z) modulo 2. Consequently

M1=1+4+2v and M®°1=1+2z2,

with some ¥ and Zz.

Clearly, either ¥ = 0 mod 2 or v = (0,0,...,0,1) mod 2. We will use the
notation € = (0,0,...,0,1) = ug. In the first case, z =0 mod 2 should hold, too.
In the second case

MeHT = M1+ 20) =1+ 22+ 2M% =1+ 2z + 2M %y =
1+2z+2(1+e+2y)=1+2(z+1+€) mod 4 .
Let z = (21, 22, .., 2k+2). Then
(z+1+e)=(22,...,2K42,72) mod 2
with some 2’ € Z. But this yields that
21 =2z22+1 mod 2

29 =23+1 mod 2

Zk4+1 = Zk42 +1 mod 2,
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i.e. Z is congruent to one of the alternating vectors beginning with (0,1,0,1,...)
or (1,0,1,0,...) modulo 2.

(iii) We may write M;1 = 1+ 26 corresponding to the different recurrence
relations for i = 1,2,3,4. By the above, if z() =0 mod 2, then ") =0 mod 2.
Hence by the properties of Py (z), Py(z), P3(z) and Ps(x) we have

7@ =3 =¢ mod2 and ¥ =0 mod 2

<

which yield that z(?) and z(®) are congruent to some of the vectors (0,1,0,1,...)
and (1,0,1,0,...) modulo 2 and z4) =0 mod 2. Similarly, if z(1) is congruent to
one of (0,1,0,1,...) and (1,0,1,0,...) modulo 2, then ) = @, mod 2, whence

P =43 =0 mod2 and ™ =ée mod?2,

i.e.
7@ =203 =0 mod 2

and z(4) is congruent to one of (0,1,0,1,...) and (1,0,1,0,...) modulo 2.

(iv) Now, examine the behaviour of M?y,. Since g, U1, ..., Ur+1 are indepen-
dent modulo 2, they form a basis in Z’;H and there exist ag, a1, ..., a1 € Z such
that

Un = aollp + @1ty + * - + Qpq1Ug41  mod 2 .

Hence. by (4.1)

M®§, = M®(agto + a1y + -+ + Qpp1Uk41)

MPCagtip + MCaqtiy + -+ - + Moy 1tUg11
agMPCug + oy MUy + -+ + a1 Mgy

ao(1 + o) + ay (T +uy) + - - + g1 (1 + Ugy)
=(aot+or+-+g1) T4+

=0, -1+9y, mod?2,

with some §,, € {0,1}.
(v) Now, by (4.2) we can write

I~
[\™)
S
+
S

|
I~
S

Il
S

Similarly,

(44) ’L_IIQQ_i_n_i_l — ?,_Ln+1 = 2(1 + 2z + 5n+li) mod 4 .
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Assume that

(45) ﬂ29+n — ’[Ln = (wn, wn+1, ceey wn+k+1)
and
(46) 1_//2g+n+1 — 'L_//n—i—l — (wn—i—l, W42y ¢ 0+ wn+k+2) .

Then by (4.3) and (4.5)

wp, =2(14 21 + 6,) mod 4
Wpt1 = 2(1 + 22 + 0,) mod 4

Wntk+1 = 2(1 + 242 + 9,) mod 4
and by (4.4) and (4.6)

Wnt1 = 2(1 + 21 + 0py1) mod 4
Wnyo = 2(1 + 29 + 0py1) mod 4

Wnpik+2 = 2(1 + 242 + dpy1) mod 4 .
This yields that
if z=(0,0,...,0) mod 2 then §, = d,41 and
if z is congruent to one of (0,1,...) or (1,0,...) then §, =1 — p41.

(vi) In the following we will prove that 2) = 0 mod 2 and 5((;) = 0 for at
least one of the ¢ = 1,2,3,4. (If z® =0 mod 2 and 5((]1) = 0, then 57(5) = 0 for all
n € N.)

Suppose, that z(Y) 20 mod 2 or 5(()1) £ 0.

(vi.a) Clearly, u = 4 mod 2 for any 4,7 = 1,2,3,4. Define the sequences
i) by ul = w4 20 for i = 2,3,4 and denote i, = (0,0,...,0,u,) € Z+F*2

By the definition of M,

@2211 = M(Q)’U/%Z) = M(l)ﬂg) + 2’&7(12) ,

ag’ll = M(3)’U/£LB) = M(l)ﬂ,(f) + 2@23_21

and
%(14421 = Myalt = Myyald +2(ald) + @(31)
for all n > 0.
Hence (1) @ _ (2
an—{—l + an—{—l = an—}-l

= My (@l + 272 + 2(al? + 27

=l +2(Myy 7 + a4 272
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_(1 3 (3
2114‘2 r(L—f)—l = 7(1121

= My (@D + 273 + 22}, + 278 )
= U7(1~|)—1 +2(M ¢ )r(?’) -+ u(l)l -+ QTSJL)

and

_(1 4 4
o )1 + 27'7(1421 = “7(111

= M(1)(_(1) + 27 4+ 2(alD) _|_u( ) L 2(PW g A(4) Y1)
_7(1~|)—1 + 2(M(1)T( ) + U(l) + U A(l) L+ 2(r (4) 1 AS:)_l)) -

Subtracting u,(h)Ll and cancelling out 2, we obtain

—(2) M( )7:(2) + ﬁ(l) + 2%(2)

n+1
o P = Moy + i3, + 20,
. and

77(4721 = M(l)f#) +al) + 7«17(121 + 27 + 727(:21)

n

for all n > 0. Further f(()i) =0 for i = 2,3, 4.
(vi.b) One can prove

(4.8) 777(1211 =73 4 M("l)ﬁ(()l) mod 2 foralln >0

by the following:
Since ug = 0, thus in the case n = 0 by (4.7)

O Z My a1 262 = Mo+ il =0+ 4 = 79 + 4 mod 2.

Suppose that
A =7® Lm0V mod 2 for some n >0
n+l1 = 'n (1L%o = 7
Then again by (4.7)

rile = M2 + i)y + 277,
n ~(1 ~(1
= M(r$?) + My &)+l
=7y + Mg mod 2 .

Hence by induction, the aim follows.
Similarly one can prove that

(4.9) P =72 173 mod 2 foralln>0.

51
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(vi.c) By (4.3) we can write
uglg) + 2r(l) (@ (()1) + 2F0i)) = ﬂgle) _E)i) =2(1+4 2% + 55”1) mod 4
for all i = 2,3,4. Again by (4.3), using that r( ) = =0,
2(1+ 20 +6591) + 278 = 2(1 + 29 +671) mod 4,
which is equivalent to
(4.10) 70 46T+ 7 = 20 1 5T mod 2

for all 1 = 2,3, 4.
(vi.d) At the beginning of part (vi) we assumed that 2(!) Z0 mod 2 or 5((]1) #+
0. Suppose first that z(!) # 0 mod 2. By part (iii) of the proof, we have then
7() =0 mod 2 for i = 2,3. Assume further that 5.2 # 0. (i.e. 6 = 1).
By (4.10)
) =20 4 69T+ 68T mod 2

) 21 is congruent to one of (0,1,0,1,...) and

for ¢ = 2,3. Since by part (ii
=(2 =(3 )

i
)

(1,0,1,0,...) modulo 2, thus 75, and 75, are also congruent to some of the vectors
(0,1,0,1,...) and (1,0,1,0,.. ) modulo 2. But by (4.8)
r£29)+1 = ré?;) + M(Zlg)ﬁ = Tée) + 19 mod 2,
whence if
) =(0,1,0,1,...) mod 2,
then

) =(1,0,1,0,...) mod 2,

and vice versa. Hence, by (4.10)
0T =D 47 +671=1+1=0 mod2,

that is both condition 28 =0 mod 2 and 65 = 0 are fulfilled.

Suppose now that z(!) = 0 mod 2. Then, by part (iii) of the proof, we have
z®) = 0 mod 2. Since we assumed at the beginning of this part that z(!) = 0
mod 2 and 6(Y) = 0 do not hold simultaneously, we have §() = 1. By (4.10) we can
write

z 4 5(()1)1 + féz) =z 4 5(()4)1 mod 2 .
By (4.9)
o012 40 =50 40T mod 2.

Similarly as above we can prove that

réze) + Fg;) =1 mod 2,
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whence substituting the proper values for z(V), (%) and 5(()1) we obtain
1+1=6"1 mod2.

But this yields that z2* =0 mod 2 and 5((]4) =0.

With this we could prove the aim of part (vi). We should remark here, that the
careful reading of the proof gives a stronger result, namely that z®) = 0 mod 2
and 5&“ = 0 hold simultaneously for exactly one i € {1,2,3,4}.

(vii) In the followings there are of no account for which i the above proven
condition holds, so for simplification of writing, we suppose, that ¢ = 1.

In this part of the proof we will prove that

(4.11) Ugs p4n = Up +2° mod PAR

forall s=1,2,... and n =0,1,....
(vii.a) We know that

M?%5 =% mod 2 for all § € Z**2 .
Suppose that for a fixed s
M%¥ ey =y mod 2° for all §j € Z*+2
holds. Then
M?¢ + E)(M*° - E)j
= (M*'?+ E)2°z

= M?25; 4 2%%
=9ostlg

=0 mod 2°F1
with some z € ZF*2 for any y € Z¥+2. This yields that

(4.12) M? ;=g mod 2°

|

for any i € Z¥*2 and s = 1,2,....
(vii.b) Recall that in our case Z =0 mod 2, whence

Suppose that for a fixed s
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Then by (4.12)

2ol — M em? el
= MQSQ(i + 2S+1gn)
= M?°°1 4+ M e25t1y,
=14 2Hg, +25T1g,

1 mod 2512

M

with some 7,, € Z**+2. This yields that
(4.13) M?°1 =1 mod 2°*!

forall s=1,2,....
(vii.c) By (4.3)

Uggin —Un =2(1+24+6,1)=2-1 mod 4.
This means that
Up4n = Up +2 mod 4 foralln € N .
Suppose, that s is fixed and
U2s ot = Up +2° mod 25+l foralln=0,1,... .

Then by (4.12) and (4.13)

Ugett gy — iy = M*" 2ty — w,
= (M*"'e— B,
= (M*° 4+ E)(M*° - E)a,
=M%+ E)(2° -1+ 2°"g,)
= M?025 . 14251+ MZo25t g, 4 25t
=2.2°.142.2°%g,

=2°t1.1 mod 2°12 |

with some 7, € Z¥+2, which proves (4.11).

(viii) By Lemma 4.19, u,, is uniformly distributed modulo 2 with period length
20.

Suppose that u,, is uniformly distributed modulo 2° with period length 2%9. This
yields, that

(4.14) #{n|lu,=1 mod2®, 0<n<2%}=p forall0<i<?2°.
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Obviously
#{n|u, =7 mod2°, 0<n< 2%} =
(4.15) #{n | u, =i mod 25T 0 <n < 250}+
#{n | u, =i+ 2° mod 2°T, 0 < n < 2%}
for all 0 < i < 2°. Furthermore, by (4.11)
#{n|u, =i mod 257, 0<n < 2%} =
#{n |u, =i+ 2° mod 2°T, 259 < n < 2Ty}
and symmetrically
#{n |u, =i+2° mod 2°TH, 0<n < 2%} =
#{n |u, =i mod 2°T, 259 <n <251y}
for all 0 < i < 22p.
Hence, using (4.15)
#{n|u, =i mod 25T, 0 <n <25} =
#{n | u, =i mod 2571 0 < n < 2%}+
#{n |u, =i mod 2°T, 259 <n < 25Tyl =
#{n |u, =i+2° mod 2°T, 259 < n < 25T p}+
#{n|u, =i+2° mod2°TH, 0<n < 2%} =
#{n | u, =i+2° mod 2°TH, 0<n < 2Tt}

for all 0 <7 < 2%p.
But,

#{n|u, =i mod 2°TH, 0 <n < 25T o)+
#{n|u, =i+2° mod 2°TH, 0<n <25t} =
#{n|u, =7 mod2°, 0 <n<25Tlyl =
2-#{n|u, =i mod 2°T1, 0<n< 2%} =29
for all 0 <7 < 2%p, whence
#{n|u, =i mod2°TH, 0<n <2t =9

for all 0 < i < 25F1p.
Since
Ugs o # Up mod PARE

thus 2%p is not a period length of v modulo 2°t!, but then by Lemma 3.21 the
minimal period length of u modulo 25! is 2 - 259 = 25t1p. Consequently u is
uniformly distributed modulo 251,

Finally this leads to the result, u is uniformly distributed modulo 2* for all
s =1,2,... and the period length of u modulo s° is 2590 = 2%0rd(Q).



56 T. Herendi: Linear recurring sequences

Remark 4.21. FExperience shows that the previous theorem may be changed by
replacing the words “at least” to “exactly”.

Construction 4.22. Now we have everything for the construction of a modulo 2°
uniformly distributed linear recurring sequence with large period length.

1. Choose a suitable integer k& and find a polynomial Q(z) which is irreducible
modulo 2 and deg(Q(x)) = k. It is better if approximately half of the coefficients
are not divisible by 2.

2. Calculate the monic polynomials P(x) = pgyo2¥t2 + pryr2¥tt + -+ + po and
P'(z) such that
P(z) = (£ - 1)Q(z) mod 2

and po,...,pg+1 € {0,—1} and
P'(z) = (r —1)Q(z) mod 2

with similar condition on its coefficients. Determine Py (z) = P(x), Py(z) = Py (z)—
2, P3(z) = Pi(x) — 22 and Py(x) = Pi(z) — 22 — 2.

3. Calculate the companion matrices M(;) corresponding to the characteristic poly-
nomials P;(z). Check M(;y1 =1 mod 4. Keep the two matrices which satisfy the
congruence and denote them by M; and Ms.

4. Compute ¢ = ord(Q) modulo 2 and M2 modulo 4. If M¢ # E mod 4 then
M = M, else M = M.

5. Choose initial values of the sequence. This can be done by the following: choose
random wug,u1,...,ur. Set these values as initial values of the linear recurring
sequence with characteristic polynomial P’(z). Compute the next element of the
sequence uy,_ ;. Find a random number uy 1 satisfying ugq1 # vy, mod 2. The
set up, uq,- .., U, Ugs+1 are suitable initial values for the sequence.

Remark 4.23. If k is such that 2° —1 is a — so called Mersenne — prime, then by
Proposition 4.7, ord(Q) = 2¥ — 1, i.e. mazimal as a function of k.

If we choose P such that its coefficient are 0 and —1, except the leading coefficient
which is 1, then the computation of the elements of the recurring sequence is very
fast, since there are no need for multiplication, only addition. Further, because of
the inner representation of the numbers in computers, also the reduction modulo 2°
can be easily performed. (By a simple logical bit operation.)

Since we can obtain not only 1 digit, but arbitrary length random numbers, thus
we have a very effective method for construct large pseudo-primes. (In the opposite
case if we would need large numbers, we have to compose from bits, but then it is
more difficult to prove uniform distribution.)

In Appendiz B we give an example for a high order linear recurring sequence.

Example 4.24. In a small ezample we demonstrate the use of Construction 4.22.
In particular, we will follow the consideration of Remark 4.23.

1. Let £ = 3 and choose a random polynomial of degree 3, which is irreducible
modulo 2, say Q(z) = x% + 22 + 1.
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2. We put
Plx)=2—2* -2 —1=(@3+22+1)(#>—1) mod 2

and
P)y=z*-2>-2-1=(@*+22+1)(x—1) mod?2.

Thus we have

P(z)=a° —z* —23 -1
Py(z) =a° —a* —2® -3
Py(z)=2° -zt — 23— 20 -1
Py(x)=a° —a2* -2 —22 -3

3. Following the steps of the construction, we compute the companion matrices,
corresponding to the proper recurrence relations:

1 1 0 0 1 1 1 0 0 3
1 0 0 0 O 1 0 0 0 O
Mayy=[0 100 0 Mg =]0 100 0
0 01 0O 0 01 0 O
0 0 01 O 0 0 01 O
1 1 0 2 1 1 1 0 2 3
1 0 0 0 O 1 0 0 0 O
Ma=[0 100 0 Muy=1]0 100 0
0O 01 0 0 0 01 0 O
0 0 01 O 0 0 01 O
Computing M1, we obtain
1 1 0 0 1 1 3 1
1 0 0 0 O 1 1 1
MpI=[0 100 of|t|=[1]2[1] moda.
0 01 0O 1 1 1
0 0 01 O 1 1 1

By (iii) of the proof of Theorem 4.20, we can set My = M,y and My = M.

4. By Remark 4.23, o = 23 — 1 = 7. We can use fast exponentiation for the
calculation of M{* and we get

1 00 0 0
01 000

M*=10 01 0 0 mod 4 ,
00010
0 00 0 1
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whence

M = M = Mg =

S OO ==
SO = O
o= O O O
_—o O O N
SO o O

5. Suppose, that we want to construct a sequence of bytes. Then s = 8. We can
choose random values for the first 4 elements, say

up =113, w1 =5, wuy =209 and wuz=198.
Satisfying the recurrence relation defined by P’(z), the next value of the sequence

isuy =113+ 54209 =1 mod 2. Hence uy can be any number divisible by 2, say
66.

Thus we have constructed a linear recurring sequence, with recurrence relation
Up+5 = Uptd + Upt3 + 2Upg1 + Up
and initial values
ug =113, w1 =5, uy=209 ,u3=198 and wug4 =066 .
Reducing the sequence modulo 256, by Theorem 4.20, we obtain a pseudo random
byte sequence, which has period length 7 - 256 = 1792.

The first few values of the sequence:

113, 5, 209, 198, 66, 131, 108, 76, 2, 150, 243, 141, 208, 139, 215, 111 .



Chapter 5

Sequences with non-uniform distribution

In the previous chapters we gave the background to construct uniformly dis-
tributed linear recurring sequences. However in practice, it is very often required
to have a random sequence with a specific non uniform distribution. There are
several way to do this. Well known for instance, that if we know the inverse of the
distribution function F' of the required distribution, then simply use a uniformly
distributed sequence u with the transformation F'~1(u) to have the required prop-
erty. In this chapter we will provide another method to construct non-uniformly
distributed pseudo-random sequences from uniformly distributed sequences. In
particular, we will generate sequences with Gaussian distribution. To reach our
goal, we use the central limit distribution theorem. Furthermore, we determine the
"goodness” of the obtained Gaussian sequence, calculating its discrepancy. Finally,
our method is suitable also for testing randomness of sequences. We should mention
here, that the results of this chapter are contained in [20].

Definitions 5.1. Let (X,§, 1) be a probability space, let 4 C § be a family of
measurable sets of X and let & be a sequence in X.
Then we say that € is v distributed with respect to U if

(5.1) i AN B:6)

i N =u(B) forall Bey,

where
A(N,B,§) = #{&uln < N,&, € B} .

The discrepancy of & with respect to p and L is defined by

(5.2) Dy (&, p, U) = sup AW, B,¢)

Bel N B

The family of measurable sets, 3 is called a discrepancy system (cf. [10]). Im-
portant cases for 4 in the Euclidean space are for instance the axis-parallel intervals
or the family of all balls or of all convex sets etc.

Define the following vector sequence:

é_"'(lk) = (é-ny--',é-n-i-k—l) fO?" all neN.

A sequence § in X is called completely p-distributed ( for short: p-c.d.), if
B s ) _distributed in X* with respect to UF for every k € N where u%) is the
k-fold product measure of i and U¥ is — as usual — the cartesian product of i1.



60 T. Herendi: Linear recurring sequences

If X C C then & is called pseudo-random number sequence.

Let X C R be a bounded interval, § = B be the Borel measurable sets of X,
= X be the normalized Lebesque measure (i.e. A(X) = 1) and let J be the family
of all intervals of B. If & is X distributed with respect to J, then we will call it
uniformly distributed (for short u.d.). We should remark, that this sense of
uniform distribution is the generalization of Definition 1.12.

If € is A-c.d. we will call it completely uniformly distributed and abbreviate
it by c.u.d.

Note that completely uniform distribution is suitable for expressing ”strong”
randomness.
In the followings, let & be a u.d. sequence in the interval [—%, %] and let

k
11

be a measurable mapping with k£ € N.
Consider the induced measure y of the k-dimensional Lebesgue measure A(¥) on

2 by

(5.4) u(B) =AM (F 1(B))  (Be D).
Furthermore, we set

(5.5) = Fr(EF) .

Lemma 5.2. Let ¢ be a sequence in RF, J be the family of all azis-parallel intervals
and let € be the family of all convex sets in R¥ and let N € N. Then

DN(§7 )‘7 3) S DN(é_a )‘7 Q:) S (4k3/2 + 1)DN(§7 )‘7 3)1/k

Proof. See e.g. Theorem 1.6 in [23]. O

Lemma 5.3. Let F}, be a measurable function satisfying (5.3) with the property
that

(5.6) E M(I) s convex for all interval I C R

and let £ be c.u.d. Thenn — given by (5.5) — is p-c.d., where u is the derived measure
defined by (5.4). Furthermore, the discrepancy estimate (5.7) can be established.

Proof. Define

Fem (T1,- - Thm—1)

= (Fk ($1,...,l'k),Fk (xz,...,$k+1),...,Fk (l’m,...,xm+k_1))

and let 3(™) be the family of all axis-parallel intervals in R™ and ¢(*+™=1) he the
family of all convex sets in R¥*™~1 for arbitrary m € N.
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k+m— .
Note that Fy ,, : [—%, %] tm=l — R™ is measurable.

Because of (5.6), if B is an axis-parallel interval in R™, then Fy, '(B) is a

convex sets in [—1, %]k+m_1. Thus, we get
D, <ﬁ(m), ™), j(m)>
A(n, B, ™) m
BeJ(m) n
A (n, Fm~1(B), E(ktm=1)
< sup (. Pl (5), € ) — AFFm=1 (B 7 H(B))
Bed(m) n

A (TL, C, g(k—{—m—l))
n

<  sup — AEHm=1) ()

 Ceettmon

—-D, (g(k—km—l)’)\(k—{—m—l)’ Q:(k—f—m—l)) 7

whence by Lemma 5.2, we get

D, (ﬁ(m), (M) j(m)>

(5.7) < (4(k +m—1)32+ 1) (Dn (g(k—{—m—l), )\(k—{—m—l)’fj(k—km—l))) T .

Since ¢ is c.u.d. we get D, (ﬁ(m), ,u(m),il(m)) —0asn—o0. U

Remark 5.4. Using the general inequality of Niederreiter and Wills [33], we obtain
a somewhat better result

p(m) ,(m) ~(m)
(5.8) Dn(" S )

1
kE+m—1

< (@lk+m—1)+1) (Dn <€_(k+m—1)’ )\(k-}—m—l)’j(k—i-m—l)))

For various applications of transformations of random numbers we refer to [8].

To construct pseudo-random number sequences with different distributions we
just have to find a transformation which converts the Lebesgue measure into the
required probability measure by u(B) = A*) (F,C_I(B)) and if £ is a c.u.d. sequence,
then the sequence 7 = Fj,(€()) will have the desired distribution.

The main problem is that finding such an F} is usually not evident. As we will
see, for practical applications it is sufficient to find approximations of the required
distribution. For example, if we would like to have a pseudo-random number se-
quence close to Gaussian distribution, then using the Central Limit Theorem or
one of its quantified versions, the Berry-Esséen Theorem, we can prove that there
is a possibility to get the expected sequence.
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Theorem 5.5 (Berry-Esséen Theorem). Let k > 1 be an integer, &1,...,& be

independent random variables in R, each with zero mean, let a2 be the variance and
0; be the absolute third moment of & for 1 < i <k and let

k k
Z 012 and 0= Z 0;
i=1 i=1

be the average variance and the average absolute third moment of &1, ..., &, Tespec-
tively. Define the random variable

0'2:

| =
T =

1 k
77:%;&-

Let p be the probability measure corresponding to n and let v be the probability
measure corresponding to the standard Gaussian distribution.

If none of o01,..., 0k,0 is vanishing, then
11 o
sup |u(B) —v(B)| < —— ,
sup |u(B) ~(B) < | =%

where £ is the family of all intervals | — oo, z|.
Proof. See e.g. Theorem 12.4 in [1] O

Lemma 5.6. Let & be a c.u.d. sequence in [—%, %], let k be a positive integer, let
0<e<1 and let
F,:RF 5 R

be a linear transformation, such that

K
Fi(z) = Zfiiﬁi ;
i=1

where T = (x1,...,xx) and f1,..., fr € R, such that
2V/3

5.9 | >e—— forall 1<:i<k.
(5.9) |fil N f
If

k

Zf12:127

i=1

then the sequence n, defined by
N = Fy, (5,(7’;)) for all meN |

has discrepancy

.  33V3 2
Dy, (n,7,73) < (4k% +1) D, (6(’“),/\(’“),3(’“))’“ + Tf (1—e2) + % :
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~

where J and 3% are the families of all the intervals and azis-parallel intervals
in R and in R, respectively, v is the probability measure corresponding to the
standardized Gaussian distribution and X*) is the Lebesque measure in RF.

Proof. By the definition of D,, (n,v,3) and using Lemma 5.3, we have

Dy, (n,7,3) = gg; w — 7(3)‘
< sup (|20 ) 4 ) - ()]
(5.10)
< oup A2 u(B)‘ - sup [4(B) =1 (B)

< (4k% + 1) D, (5(’“), /\(’“),3(’“)) ot sup |u(B) ~7(B)| .

where g is the measure corresponding to the distribution of 7.
Since the sequence £ has variance %, the average variance o2 of the random
variables

f1€m7 f2§m+17 teey fk€m+k—1

is

k
1 1\ 11 1/1 1
2_ 1 T NI N P i DT
U_kz<’12> le;f’ k<12> =5

=1

whence vko = 1 and thus

k
- 1
5.11 m=Fp (EF)) = — i -
(5.11) o = Fi () Ty 2 fi
Furthermore, by (5.9),

12
f2> 62? for every 1<i<k.

If 1 <j <k issuch that

|fil = R | fil »
then
k 12
12 = Zf,? > f7+ (k- 1)82? ,
=1
whence

12 g2
. — _ 27 — _ =2 -
(5.12) max |fil < \/12 (k—1)e 7 2V/3 (1—¢e2)+ o
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Let B € J, such that inf B = x and sup B = y. Then
u(B) = v(B)| = (] = 00,y[) = (] =00, z[) = (] = o0,y ) + (] — 00,2 )]
<[u(] =00, yl) = (1= o0, y[) + [u(] =00, 2[) = v(] —o0,2] )| .
Hence, by (5. 11) (5.12) and Theorem 5.5, noticing that the third absolute moment

of £ is equal to ﬁ, we obtain

sup |W(B) —v(B)| < 2;}1€p2 |u(B') —~(B")]
11/ 1\ 31 5 1
() (1 ()
11N, s
:@ZVH

— max |fZ|Z|fz|2

64 1<i<k

| /\

IN

1 2
2V (1—82)4—%-12

33V/3 e’
= 2V (1 —e2) 4+ —
g (- + -
Here, as before, £ is the family of all intervals | — oo, x|.
Hence, by (5.10) the lemma follows. O
Corollary 5.7. With the conditions of Lemma 5.6, if F}, is such that the corre-

sponding
2f

then
 33V3
Dy (1,7,3) < (4% +1) D, (£0,00,300) 4 fE_ ,

Proof. Substituting € by 1, we obtain that

%(1 2) 1 s2 33\/\/; 33f

whence by Lemma 5.6, we obtain the statement.

Remark 5.8. We can choose & to be a very special c.u.d. sequence with a strong
property, namely, that there exists an increasing sequence of ky, (n =0,1,...), such
that

D, (g(k”),)\(k"),ﬁ(k")> —+0 as n— o0,

where A\Fn) is the k,, dimensional Lebesque-measure and 3%*») is the family of awis-
parallel intervals in RF» .

These kinds of sequences (in more general settings) are studied in [12] and [17].
In [12] the following result is proved:
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Theorem 5.9. Let 0 < © < % be fixed, k,, be a sequence of positive integers with
kn < (logn)®
if n € N s sufficiently large, let p, be a sequence of distinct positive integers and

let € be an arbitrary positive real number.

Then for almost all real s x s matriz M with dominating eigenvalue bigger than
1 there exists a constant ¢ depending on M, ¢, and the given integral sequences p
and k, such that

Dy (€80 A6*Ee) 36k0)) < ep=b+e forall meN,

where
Em = MP™ mod 1,

furthermore, AGE k) and 3(°kn) gre as given above.

Remark 5.10. The metric result of [12] can be extended to general exponent se-
quences as it is done in [17] for the case s = 1.

Lemma 5.11. Let 0 < © < 1 be fized, k,, be an increasing sequence with lim k,, =
oo, such that

(5.13) kn < (logn)® |
let & be a sequence of numbers in the interval [—%, %] , such that
(5.14) D, (£Fn) \Fn) 5n)y < ¢.p=3+e
with ¢ > 0 and0<€<% and let
F,:Rf 5 R

be an arbitrary sequence of linear functionals, satisfying

2V3 .
:\/E Vie{l,...k,} .

kn
Fn (i') - Z fn,ixi with |fn,i
i=1

Then the sequence

1s a completely Gaussian distributed sequence.
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Proof. If n is big enough, then c¢-n~Y/2%¢ < 1. Hence, by (5.13), (5.14) and by
Corollary 5.7, we have

N 5 _ e\ VEn 333
Do(0,7,3) = (4(ka)? + 1) Dy (£0), A00), 50600 ) T 4 22020

< (4 (log(n)®>% n 1) (c.n—%+e>1/1°g<n>® N :z\%/\g_i

<5 (log(n)e)% (c.n—%+e>1/1°g<n)® %\k/_g

= 510g(n)%ecl/10g(n)® . p(e=1/2)log(n) /log(n)® 33v/3
8Fn

— Slog(n) ¥/ 108(m® . (e=1/2)log(n) = 33v/3
8Vkn,

 Slog(n) 1O tes® _pie-i/a-o) | $3V3
8vFn

Clearly,
1
5 <(e=1/2)(1-0) <0,
whence
log(n)3€n(c=1/2(1-0) _, ¢
Furthermore,
Aos(m® 1 and 33V/3 Lo,
8vVkn
consequently,

Remark 5.12. One should be very careful with the conditions stated in the results.
In the followings we give an example of a u.d., but not c.u.d. sequence, such that
its linear transformation is not Gaussian distributed.

Example. Let

J
kn:max{]|zm§n} ,

m=1
let
kn
k(n) = Zm forall neN
m=1

and let &, be the sequence defined by

_n—=k(n) 1
e
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Further, we set

??‘

€n+] .

:0

We claim that £ is u.d. in [—%, %], but 7 is not Gaussian distributed.

Clearly,
k2 + k,
(5.15) w(n) = "2
and
k(n) <n < k(n)+k, ,
whence
(5.16) 0<n-—kx(n) <k,
and thus
&n € 11 for all eN
n T a9’ r .
55 orall n
Let
1 <a<b< 1
_ a, p—
2~ -2
and let

A(ni,na,[a,0),6) = #{j | na <j <mi, & € [a,b]} .
Then A([a,b]) = b — a and

A(n,la,b],§) = A\(n, k(n),[a,b],&) + A(k(n), [a,b], &)

kn

67

= A(n,k(n),[a,b),)+ > A (Z%Z]aab]f>+f4([ bl.£) -

m=2

Since R
N m m—1
(b_a’)_1<A Zijja[aab]aé Sm(b_a)_‘_l
j=1 j=1
and
0<A(L[a,0],§) <1,
thus

kn

m=2 m=2

Z(m(b—a)—l) < A(n,[a,b],&) <k, + i:(m(b—a)+1)+1,
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i.e.
n kTL
(b—a) > m—kn+1< An,[a,b],8) <kn+(b—a) > mtk,—1+1,
m=2 m=2

which is equivalent to
(b—a)(k(n) —1) =k, +1 < A(n,[a,b],&) <2k, + (b—a)(k(n) —1) .

Hence by (5.15) and (5.16),

(b=a)= g <b-a)- k,:(;)l
< (b— a)(/i(n)(—)l) —kn +1
_ b= a)s(m) = 1)~y +1
< Al [a, 8], )
< 2k, + (b —a)(k(n) — 1)
2k, + (b —a)(k(n) — 1)
= k(n)
<(b—a)+ :(k;:)
=0b—-a)+ kni—l )
This yields that
iy A0,

i.e. by definition, £ is uniformly distributed.
Observe now the sequence 7. Fix n € N and let 0 <[ < k,,, such that

n+1=xn)+k,

Then

??‘

]€n+3
j=0

?/ki (Z ETH—J + Z §n+]> :

j=0 j=l+1

(5.17)

We recall that

§n+l+1 = §m(n)+kn+1 =5
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and
1

€n+l = gn(n)—}-kn = 5 .

If [ is odd, then

if [ is even, then

whence

(5.18) 5~ S (Db < -5+

kn

N — S ——
j:;H( Y &nts kn +1 2 2 2(k, +1)

if [ is odd, but k,, is even, then

kn

, 1 k,—1-1 1 [+2
—1)ig, L = . _t__trs . ,
Jj=l+1
if [ is even, but k,, is odd, then

k
- : 1 k,—1-1

Z (=1)&n4j = —€ntir + 1 5

j=l+1

1 [+2
= —Lntit1 + 5 m
1 1 [+ 2
__‘___7
22 2(knt 1)

[+2
-1 =
2(kn, + 1)
and if both [ and k,, are even, then
k
- : 1 ky—1-2
j=l+1
[+3

PR R
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Summarizing the four cases and using that

1<€ <1
2— n+kn—27
we obtain .
[+3 = . 3 [+1
- < —1)Y&e i < = — — .
2(k, + 1) —ng;l( Vnti < 2 2k, +1)

Hence by (5.17) and (5.18), using that 0 <[ < k,,, we have

<

VEn ~ VEn
2V/3 K, 1 kn + 3
:m< - >>

4@%(111 2))

C2%kn 2k, 2(kn+1

\/§< ! 1 l+3>

<2 - - -
%Uin 2k 2(kn +1)

N>

IN
3

[\ [\
(\&]
S
VS
($V)
_|_
[y
N——

5

—~ [\&)

palalp

7 N\
[\]

—_

N

7

But this yields that n is convergent to zero, i.e. it cannot have Gaussian distribu-
tion. U

Remark 5.13. If we want to use a pseudo-random number sequence in practice, it
15 required to be a ‘good’ random sequence. Only the first approximation of goodness
15 that the sequence has the expected distribution. The ‘randomness’ is higher, if the
sequence passes more statistical tests. (Of course, the different tests have different
weights in the classification at a particular use of the pseudo-random sequence.)
In Appendiz C we make some experimental examinations of several sequences of
numbers. Remark 5.12 also gives an idea to test u.d. sequences by transforming
them into another distribution and testing the new sequence by the usual tests.



Chapter 6

Application of linear
recurring sequences

Let us consider the trinomial 2™ — Bz* — A € Z[z]. Ribenboim [38] has shown
that if £ = 1, then for a fixed n and B there exist only finitely many A’s for which
the trinomial is divisible by a quadratic polynomial and similarly if n and A are
fixed, then there exist only finitely many B’s for which the trinomial has a quadratic
factor. He used only elementary steps in the proof.

Schinzel in [40] presented a much more general result, in which he proved among
others that for a fixed A there exist only finitely many n’s,k’s and B’s for which
the trinomial is divisible by any polynomial. He could prove a similar result for a
fixed B, too. His proof is however not an elementary one.

We are also able to generalize Ribenboim’s result by extending his proof but
keeping its elementariness. Our result is less general than Schinzel’s one. The
results of this chapter are basically identical to the results of [21].

During this chapter we will use the notation yx(n) for the parity function of
n € N, ie.

0 if n=0 mod?2
X(n)_{l if n=1 mod 2

Let R be a commutative ring, and let u,, € R be a second-order linear recurring
sequence with recurrence relation

Uy = Up_1 + lUy_o for n>2,
with a € R and initial values u; = ug = 1. Let us define as in Chapter 1 the state

vector
_ Uu 1
Uy, = nt
Up,

and let M be the companion matrix of the sequence, i.e.

M:(i g).

With these definitions we have 4,1 = Mu,. We remark that the sequence can be
extended with the value u_; = 0.
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Lemma 6.1. Let 0 < k < n. With the previous definitions

k_k
UnUk—1 — Up—1UE — (_1) a Up_f—1 -

Proof. By definition we can write

Up U
UpUp—1 — Up_1Uy, = det
Un—1 Uk—1

— det (Mk < Un—k Uo ))
Up—k—-1 U—1

_ k Up—f 1
= (det M)" det (Un—k—l 0>

= (_a)k (_un—k—l) ’
which proves the lemma. [

Lemma 6.2. Let 0 < k <n and u,, as before. Then

Up = Up—kUg + QUp—k—1Uk—1 -

Proof.
Let
Ul_2:< R aul_1> for [=1,2,....

Uy—1 auj—2

Clearly,
U_1 =M and Ul+1 = MUl

whence

Up_o = M*1U_, = M* .
Hence,

U1 = M1 = Up—olin_g_1 ,
what we had to prove. [J
Corollary 6.3. Letn > 1. Then

2
Un+2 = UzUp — A& Up—2 .

Proof. By Lemma 6.2,
Upt2 = U2Up + AULUR—1 -

Using the substitution
Up—-1 — Up — AUp_2 ,

we obtain

2 2
Upto = (Ug + U1 ) Uy — A UL Up_2 = U3Uy — A Up_o . [
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Lemma 6.4. Let R be a unique factorization domain, n € N and let u be as above.
Then
ged(a,uy) =1 .

Proof. Let m; = ged(a,u;). By the recurrence relation, we have
Uj_1 = u; — auj_o forall >1,

whence
m; | u;—y forall i>2

and thus
m; | m;—q forall i>2.

This yields that
ged(a, uy) = my, | my = ged(a,uy) |ug =1,

whence ged(a,u;) =1. O

Lemma 6.5. Let R, n and u be as in Lemma 6.4. Then

ged(Upy1,un) =1 .

Proof. Let m; = ged(u;, u;—1). Similarly, as in the proof of Lemma 6.4, we have
au;_o = u; —uj—q forall 2>1,

whence m; | au;—s.
By Lemma 6.4, gcd(a, m;) = 1, thus m; | u;_s. This yields that

m; | ged(ui—1,u;—9) =mi—y; forall i>1,
whence
ged(Up41,Un) = Mpy1 | myp = ged(ug,ug) =1,
thus mp41 =1. O
Lemma 6.6. Let R be a unique factorization domain, n,k > 1 and u is a linear

recurring sequence, defined as above, and suppose that m = ged(n, k). Then

ged (Un—1, Uk—1) = Um—1 -

Proof. Without loss of generality, we may assume that £ < n.
Let
No=mn, k() =k
and

Ni4+1 = max{ni — ki, kz} s kH—l = mln{nz - k,’, k,} for 1 2 0.
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Clearly, n;+1 < n;, thus there exists j € N, such that n; > 0 but n;1; = 0 and for
this j, n; = k;. Furthermore, if n; > 0, then gcd(n;, k;) = m, whence m = n;.
By Lemma 6.1,

ki—1 _ k;,—1

(61) 'U/ni—luki—z - Uni—zuki—l - (_1) a’l Uni—ki—l 9

whence

ng(uni_]-’ U’ki—l) | aki_luni—ki—l

and by Lemma 6.4,
ged(a,ug,—1) =1,

thus
ng(uni_]-?Uki_l) | Un; —k;—1 -

Similarly, by (6.1) ,
ng(Uki—launi—ki—l) | Up; —1Uk; —2

and by Lemma 6.5,
ng (Uki—lvuki—2) =1 )

whence
ng(uki_]-?uni_ki_l) | Un;—1 -

These all together yield that
ged (Un, —1, U, —1) = ged (g, —1, Un;—k,—1) = ged(Un, |, 1, Uk, —1) -
Hence

ged(Un—1,up—1) = gcd(Ung—1, Ukg—1) = €Cd(Un, —1,Ug;—1) = Up;—1 = Upp—1 . [

Lemma 6.7. Let R be an integral domain and let u be a second-order linear re-
curring sequence over R satisfying the recurrence relation

Up42 = QUpt1 + bu, forall neN.

Suppose that the characteristic polynomial 2 —ax — b of u splits into linear factors
over R and has no multiple roots. Suppose further, that (a1 — )™t € R, where ay
and ay are the two different roots of 2 — ax — b.
Then
up, = diaf + doady  forall neN,

where d1,ds € R depend only on uy and u;.

Proof. With the conditions of the Lemma, the system of linear equations

up = di+ do

w1 = aidi+ aads
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has a solution in R, namely

QU — Uq

dy = ———
a1 — Q2

x1Ug — U1

dy = ————
a1 — Qg

Let n € N, dy,ds € R and suppose that
Up :dla’f+d2a'§ forall 0<k<n.
Since o and s are roots of 2 — ax — b, thus
ot =aa;+b and of =aa;+b.

Hence,
Uy = AQUp_1 + DUy _o
= adia} ™t + doad Tt + bdya T + daay 2
= d1o}7% (acy 4 b) + deah ™2 (s + b)
= dia 7?03 + dyaly 2}
= diaf + d2aty .
By induction we obtain the lemma. [

Remark 6.8. If R is an integral domain, but does not contain any of the required
elements in Lemma 6.7, then we can work in a proper R’ extension of R, instead.

Further on, let F,,(z) be the sequence of polynomials over Z satisfying the re-
currence relation

F.(x)=F,_1(z)+x-F, o(x) for n>2

with initial values Fy(z) = Fi(z) = 1.

Remark 6.9. Some of the first few elements of the sequence are:

Fy(z)=z+1 Fs(z)=2x+1
Fy(z) =22 +3z+1 Fs(z) =3z + 4z + 1
Fe(x) = 2® + 622 + 51 + 1 Fr(z) = 423 + 102% 4+ 62 + 1

Fg(z) =2+ 1023 + 1522 + T +1  Fo(x) = 5ot + 2023 + 2122 + 8z + 1
Lemma 6.10. Let n € N. With the previous definition of F,,(x) we have

n

deg (Fy () = [5] .

Proof. By definition, Fy(x) = Fy(x) = 1, thus

deg () = 3] and - aex (Fi(0)

I
1
Do =
—_—
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Let n > 2 and suppose that
k .
deg (F(x)) = {5] if k<n.

In the recurrence relation of F,(z) there are only addition and multiplication,
thus the leading coefficient of Fy(z) is positive, whence

deg (Fn(x)) = deg (Fn—l(l') +T- Fn—Q(x))
= max {deg (F,—1(z)) , deg (F—2(z)) + 1}

gt
-] m

Lemma 6.11. The leading coefficient of F,,(x) is

1ifn =2k

le(F,) =
¢(Fn) {k+1ifn:2k+1

with some k € N.
Proof. By Lemma 6.10,
deg(F12) = 1+ deg(F,) = 2+ deg(F,,_2)

and clearly
IC(F()) = IC(FQ) =1.

Suppose that n > 4 is even and
le(Fr—2) = lc(Fp—y) =
By Corollary 6.3,

Fo(r) = (22 + 1)F,_o(v) — 2°F,_4(x) .

Since
deg((2z + 1)F,_a(x)) = deg(z?F,,_4(z)) ,
le((2x + 1) Fr—2(z)) =2
and
le(22Fp_4(x)) =1,
thus

le(Fo(z)) =1 .
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Hence
le(F,,) =1 foralleven n .

Obviously,
le(F1) =1 and lc(F3) =2.

Suppose now that n > 5 is odd,

n—4
2

n— 2
2

1c(Fn_2):[ ]—i—l and 1C(Fn_4):[ ]+1,

Le.
le(Fr—2) =lc(Fp—q) + 1.

Similarly as above, we can write
le((2z + 1)F_o(x)) = 2(le(F—4(x)) + 1)

and
lc(2?Fp_4(x)) = lc(Fp_a(z)) ,

whence

le(Fn(z)) = 2(Ie(Fr-a()) + 1) — le(Fr—a(2)))
= lc(Fn-a(x))) + 2

= {"_4}+3: 3]+t

2
This proves that

lc(Fn):[g]—}—l for allodd n’s. O

Lemma 6.12. The roots of F,,(z) are
J
n+1
- .
(€ 1)

where 1 < 5 < [%] and &n41 15 an n + 1-th primitive root of unity.

Proof. Let
r,s € Z\ {0} with 72 +4+4s#0

and u,, be a sequence of integers satisfying the recurrence relation
U = TUm—1 + SUm—2 ,
such that |ug| + |u1| > 0. Then by Lemma 6.7,

Uy =a-&" +b-8™ forall meN,



78 T. Herendi: Linear recurring sequences

where «, 3 are the two different roots of the polynomial 22 —r -z — s (in the proper
extension of Q) and

ug- B —uy b_ul—uo-a
f-—a T -«

Suppose now that ¢ is a root of F,(x) and define u,, by the following:
Uy = Upp—1 + t* Upy—a Tor m > 2
with initial values ug = u; = 1. It is clear that
Fo(t) = um for m € N
and if ¢ # —i, then

CVI+dt-1 <1—\/1+4t>m+\/1+4t+1 <1+\/1+4t>m

b At dl 2 o1t dt 2
1 <1+\/1+4t>’"+1 <1—\/1+4t>m+1
1+ 4t 2 2

By the choice of ¢ we have 0 = F,,(t) = u,,, which yields

1+vT+a\"" (11— T+a ”“_0

2 2 -

i.e.
2 2

<1+m>"+1 _ <1_m>"+l |

Hence

(I+VIi+tat)=¢ ., - (1-VI+4)

for some j and &, 41, where &, is an n+1-th primitive root of unity and 1 < 5 < n.
Solving the equation we obtain

J

n+1

p=——nil
(ff1+1+1)

Observing the possible values of ¢ we find the followings:
(i) j # 2L (if £ is integer at all), otherwise

T+VIF+dt=¢ -1 -VI+4t)=vVI+dt—1

would hold, which is impossible.
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(ii) In the case j = 0 we have ¢t = —i and the corresponding recurring sequence

U, = "L This would yield that

1 n+1
= FTL _— = n = —— ,
0 ( 4> U on #0
which is a contradiction.

(ili) If0 < i,j < n+1 and i # 4, then

j J
g:z—f—l _ €n+1

Gat) (g, 1)

if and only if 1 + 7 = n + 1. Indeed,

I R <
. 2 .
(G +1) (Ele + 1)

2

if and only if

. . 2 . .
B Ent1 (53&1 + 1) — &1 (g + 1)2

Gt ) (1) @) ()

which is equivalent to

0— §3+1 _ §%+1

nt1 (ffﬁl + 1)2 — & (G +1)
= §;+1§2{il + 252+1f¥b+1 + §;+1 - f;+1€311 + 2f£+1§fz+1 + fth
=& 080 (&J:H—l - §Z+1> +&h— &
= ( ’;L'"L-{—léhgl—}-l - 1) (fiﬂ - :L—f-].)
=0.
Since 7 # j, the above can hold if and only if
ffzﬂfiﬂ —1=0,

which proves our claim.
This yields that the values
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are all different and by definition,
Fo(t;)=0 forall 1<j< [g] :

Since -
deg (Fu () = 3] -
we have
[%] §j
J=1 (5%-1—1 + 1)

Remark 6.13. The complex conjugate of the numbers EZH are EZii_j, whence by

J
the proof of Lemma 6.2 we find that the complexr conjugate of —(fniilly 15 itself.
n+1
This yields that all the roots of F,(x) are real.

Remark 6.14. It is clear from the proof of Lemma 6.12, that all the roots of F,(x)
are different.

Remark 6.15. Since 0 < j < [”TH], thus §fl+1 ¢ R, in particular, ff«;“ ¢{-1,1}.
Hence

(6.2)

§gz+1 + 1‘ <

gL—}-l‘ + 1=2 9
the sum of the conjugates, §£+1 + S;il are real and

(6.3) 5511‘ —9 .

<

&1+ & ffl+1‘ +

Furthermore, the difference of the conjugates, S;il — Z—H # 0 and 1s purely imag-
inary, whence

. SN2
(6.4) (f;-JH - ffz+1> €eR
The inequality (6.2) implies that

J

j ‘

n+1 n+1 1 1
(fnﬂ + 1) ‘ (ggm + 1) ‘ ( &1+ 1‘)
By (6.3) and (6.4) we have
. 2
. . —J _ . _a
i _ Ehit (§"+1 1) AR I
= . 5 = <0

: 2 : p : : N

(Ga+1) (Gn+1) (&h-1)  (8di-€4)
This and (6.5) together yield that all the roots of F,(x) are less than —%. Conse-
quently, since the leading coefficients of F,,(x) are positive, thus

<z < T .

1 1
0<F, (—1) < Fo(a2) < Fulws) forall —
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Remark 6.16. Let u,, be the sequence defined by the recurrence relation

1
Up = Un—-1 — Zun—2 fOT n>2,
with starting values ug = u; = 1.
Then
1
F, <_Z> =u, forall neN
and

1 n
Up, = (c1n + c2) <5> forall neN

with some c1,co € Q. (See e.g. Chapter C in [43].)
Solving the system of equations

we obtain that

F, (—i) =u, =(n+1) (%)n for all neN.

Remark 6.17. Let u, be the sequence defined by the recurrence

Up = Up—1 + T Up—2 fOT n=>2,

4
with starting values ug = u; = 1.
Then
1 21 v2 (1+v2\ 2-v2[1-v2\
Fn<1>:un: +4f< +2f> + 4‘[< 2‘[> forall neN.

Lemma 6.18. Let n € N. With the previous definitions, F,(x) has a rational
root if and only if gcd(n + 1,12) > 3 and the rational roots of F,(x) are in the set

CLono,
Proof. By Lemma 6.12, F,,(x) has a rational root if and only if

J
(66) . En—f—l _ p

<f£+1 + 1>2 1

for some j € {1,2,... , [%]} and p, q € Z, where q # 0.
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Equation (6.6) is equivalent to

: 2 : SN2 :
0=p (€£+1 + 1) +q€h 1 =D (€£+1> +(g+2p)& 40 +p -
Hence §fl+1 has to be a root of the polynomial

pr?+ (g +2p)x +p,

which yields that Eﬁ; 41 1s rational or a quadratic algebraic number.

On the other hand, 5;2 41 18 a root of unity and thus a primitive k-th root of
unity, with some k£ € N. It is known that a primitive k-th root of unity has degree
o(k), where (k) is the Euler-function. By the basic properties of ¢(k), we can
show that (k) < 2 if and only if k£ € {1,2,3,4,6}.

If fflﬂ is a primitive first root of unity, then &, =1, but j € {1,2,...,[2]},
which is a contradiction. _
Similarly, if & 41 1s a primitive second root of unity, then & +1 = —1, but this

can take place if and only if 25 = n + 1, which is, again, not possible.

It follows that, ffl 41 can be a primitive 3,4 or 6-th root of unity only, and the
corresponding values of ¢ are —1, —% and —%, respectively.

The algebraic number 52 41 is a primitive k-th root of unity if and only if

n+1|jk, but n+1tjk forany 1<k <k,
and this is true exactly when
n+1==Fk-ged(n+1,75) .
Thus F),(x) has a rational root if and only if
3|n+1, 4|n+1 or 6|n+1,
ie. ged(n+1,12) > 3. O
We will define the polynomial sequence f, (z,y) by the following relation:

yBl F(n) ifneN

f"(x’y):{o itn <0,

Remark 6.19. By Lemma 6.12, we can see that f,(x,y) are really polynomials
and not rational fractions.

Remark 6.20. With the previous definition

(67) 5071 : fn($,y) = yx(n—l) : fn—l(l',y) +x- fn—2($,y) fO’f’ n € Z 3
where
{0, ifn=20
50n — .
1, ifn#0.
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Proof. Let n > 2. Then

50n : fn(xvy) = fn(l',y)

::y%].ﬁh(%)
(e ) 3-(0)

:yH—%ﬂ.ﬁhﬂxw)+§y%—%ﬂ.ﬁhﬂ%y%

which is (6.7).
If n =1, then (6.7) has the form

1=¢y" 1420
and if n = 0, then (6.7) looks like
0=y-042-0,

which is also true. If n < 0, then (6.7) obviously holds. O

Remark 6.21. Replacing y by y? in the definition of f,(x,y) it is easy to prove
that

n n T
¥ fulz,y®) = y" Fy (?) .
Lemma 6.22. Let n,k € N, such that n > k. Then

v fua (,9%) P froa (2,97) — X7 fsa (2,97) ¥ fro (2,97)
_ (_1)k xk—1y2k—1yx(n—k—1) k1 (xvyz) )

Proof. By Remark 6.21 and Lemma 6.1,
gD f oy (2,y?) X ETD frs (2,y7) — vV frs (2,97) XY frs (2,97)
=y F (%) Tt 3 (%) — "y (%) y* T Py (%)
Yy ) Yy Yy
el _ x
=y +k 2(_1)’61,’6 an—k;—l <?>

k kel 2k—1 x(n—k—
= (1) aF Y tyx=hm ) (2,y?) - O
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Lemma 6.23. Let n,k € N and suppose that ged(n, k) = m. Then

yXm=D - f 0 (2,92 | XY fs (2, 97)

(By symmetry, obviously the same holds, if we replace n by k.)
Proof. By Lemma 6.6,

(68) Fm_1 |Fn_1 and Fm_1 | Fk—l .

Let R be an integral domain, [(z), P(x),Q(zx), S(z) € R[z], such that

with degrees
deg(P)=p, deg(Q)=gq and deg(S)=

Then we have

[(x) [(x) [(x)

”P(T) Q(T) 5(7) € Rlz,y]
and since p = q + s, thus
rp() =yt s 1))

< \

Y Y

Hence, by Remark 6.21 and (6.8) the Lemma follows. [

Lemma 6.24. Letn > 1. Then

fn+2(x7y) = (2£C+ y) : fn(l',y) - 1'2 : fn—2(x7y) .

Proof. By Corollary 6.3,
Frio(2) = F3(2)Fp(2) — 2% Fn_s(2) .

Substituting z by § and multiplying both sides of the equation by y[nTH] we obtain

W (5) <o (3) 90 () - () o5 ().

which is exactly what we had to prove. [
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Lemma 6.25. Let

22 +y +VD
D =Dy =y-(4dv+y), U =Ulry) = +
and
20+ y — \/1_)
@:w@w:——%—_.
Then
x(n+1) ntl x(n+1) n4l
e (v VD)o (D)
n\T:Y) = 1|5 .
e = 5) Y5

Proof. Define the following subsequences of f,(x,y):
up = for, and vk = forq1 .
By Lemma 6.24 we find
(2, y) = (20 + y)up (2,y) — 2%ug(z, y)

and
Ver2(7,y) = (27 + y)vir1 (2, y) — 220k (2, y)

for all k£ € N. The characteristic polynomial of v and v is
22— (22 +y)z+ 22,
which has the roots U; and U,. Clearly,

VD=U,~Us, uw=fo=1, wi=fa=z+y,
vo=fri=1 and vy =fz3=2zx+y.

Applying Lemma 6.7, we obtain

Usug — uy Uiuo — uy

ST, LT U,
:_M_(fE‘F?J)UkJrM_(x"‘y)Uk
vD ' vD ?
:_12a7+y—\/l_)—2a7—2yUk+l2:E+y+\/l_)—2a7—2yUk
2 VD L2 VD 2
ZEMUIC_EMUIC
2 vDb ' 2 VD ?
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Doing likewise, we have

Uz’UO — U1, Ul’UO — U1k

— 2T Uik, 10T Uy
YTt T T,

200y—VD _ (34 4 ) 204y +VD (94 4 )

— 75 Uf + —2 75
_ 3Q@uty—VD—dw-2y) . @0ty + VD —dr -2y
vD ' vD
_ 3oty +VD) o 5Qu+y— VD)

VD ' VD

| .
_ U+__U2+

Uy

Uy

Uy

VD! VD
Since

I uz if n is even
" Va1 ifnisodd
2

thus substituting the formulas we obtained for u and v, we arrive to the statement
of the Lemma. [

Remark 6.26. The result of Lemma 6.25 can be formulated as follows:
if n is odd, then

n+1

ntl n—1 n-1

Uu,z2 -U,? Ul—Uz 2 . on—1_ . 2 . on=1_,

falw,y) = = 2 — = Y UUT =) Ui, T T
vD vD = pars

or else, if n is even, then

fn(xvy): % \/5

This form has a special role, when we substitute x by & and y by v, such that
y-(4z+79)=0.
In this case Uy = Uy and

1 n-t
n—2+— U, > if n s odd,

fn(-%vg) =
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and . e
fu(Z,9) =UZ + g)ZUf_ if n is even.

Combining the above formulas, we obtain

200 g\ 1] )
)= (224 5) ol

Lemma 6.27. Let A, B € Z, such that A% # iB where i = 1,2,3,4 and let o and
B the roots of the polynomial x> — Az — B. Then o/ is not a root of unity.

Proof. See the Remarks on page 7 in [34].

Lemma 6.28. Let u, be a second-order linear recurring sequence, with two differ-
ent roots of its characteristic polynomial, o and (3. Suppose that || > |B|, a/f is
not a root of unity and u, has no first-order recurrence relation. Then, there exists
an effectively computable constant c1 depending on u,,, such that

|Un| > |a|n—cl logn )

Proof. The lemma is a simplified form of Theorem 3.1. of [43].

Lemma 6.29. Let &,y € Z, such that & < —1, y > 0 and 4% 4+ § < 0 and suppose
that n > c1, where c1 s effectively computable and depends only on = and j.
With the notation of Lemma 6.25, we have

Proof. Substituting x by £ and y by ¢ in Lemma 6.25, we obtain that

D(z,9) <0,
whence
UL(2,9)| = |U2(2,9)] -
Since
Ul('%vg) . UZ(-/IA:??)) = '%2 )
thus

Ur(2,9)] = 2] > 1.

By Lemma 6.27, Uy (%, §) /Ua(Z, §) is not a root of unity, whence by Lemma 6.28
and Lemma 6.25, we obtain

o (8,9) > UL (&, 9) |5 ] -e@Dos((*52])
where ¢(Z,9) is effective and depends only on % and g.

If
n>8-(c(,9)*+1,
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then

{n+1 n+1

5 ]—2-c(£,gj) { 5 ]>0.

Furthermore, if a > €2, then \/a > log a, thus if
n > 8- (c(,9))? + 2%,
then

{”;1] > 2 e(d ) {";1] >2-c(:ﬁ,gj)log([n;1]).

Hence, using that |Uy(Z,9)| > 2, we obtain

n+1

fu (8,9) > UL (&, 9) |15 |-e@) tos([=52])
]
> |U1(i]7g)| 2

—
)

INE]

> |U1(.TAJ,Q)|

n

>24 . [

The following lemma generalizes a result of Ribenboim [38] and is basic for the
proofs of the theorems.

Lemma 6.30. Letn > 2,1 <k <n and a,b,A,B € Z. If 22 — bx — a divides
z" — Bx* — A, then

B. bx(k—l) . fk—l (a,b2) — bx(n—l) . fn—l (CL, b2) :
and
A=ua- (bx(n—Z) c Fro (a, 52) — B2 (a,b2)> i
Proof. Assume that
z" — Bz" — A = (2% — bz — a) - p(v)
with
p(r) =22 +cp_32™ 3 + CpaZ™ ezt .
Then we have the following equations:
A=a-cy
51,k'B:CL'Cl+b'CO

(6.9) Oik-B=a-c;+b-ci_1—ci_o

5n—2,k B=a+b-c,_3—cCp_4

5n—1,k B=b-cp_3



Application of linear recurring sequences 89

1 ifi=y
0ij = )
0 otherwise .

where

First, we prove that if 1 <7 <n — 2, then
(6.10) Cnooi =X fi (a,0?) — B- X FD L (a,b?)
If i = 1, then f;(x,y) = 1 and since k < n, thus

fk—n+¢($7y) = 5n—1,k .

Hence (6.10) yields
Cp—2-1 = b-1—-B- bX(k_n+1) ' 5n—1,k )
i.e.
b itk<n-—1
Cpn—3 — .
b—B ifk=n-1,
which is true by (6.9).
If : = 2, then by Lemma 6.5,

filz,y) =z +y
and (6.10) yields
Crn—2 =a+b> — BX*=ntD . p (0, 0%)
i.e.
a + b2 ifk<n-—2
Chea =< a+b>—B ifk=n—-2
a+b?—Bb ifk=n—-1.

Substituting the values ¢,—3 and ¢,—4 into (6.9), we find (6.10) correct again.
Now, let 2 < i < n — 2 and suppose that (6.10) holds for every j with 1 < j < i.
By (6.9) we can write

Cn—2—i = Q" Cp_g_(ji—2) T+ b Ch_o_(j—1) = On_ik* B
(6.11) =a-Ci+b-Cy—0p_ijr-B
= (=2 .0y — p.pxk—n+i=2) .0 1 B. On—ik s

where

Cy =002 fi 5 (a,0%) = B- X072 o (a,b7)

Co =001 fi 4 (a,0%) = B-pX* D (a,b?)

Cy = p*XE=D) . f (a, bz) +a- fi—o (a, bz)

Cy = b=t i1 (a,0%) + a fyontioe (a,0?) .



90 T. Herendi: Linear recurring sequences

By Lemma 6.5,
Cs = fi(a,b*) and Cy= fr_1(a,b?) .

Substituting C3 and Cjy into (6.11), we obtain (6.10).
By (6.9) and (6.10) we have

O=a-ci+b-co—b1 B
—q- (bx(n—3) fus (a,0?) = B XE=D g (a,b’z))
Yb-a- (bx("—2> Sz (a,02) = B XD, (a,b2)> — 6y B
_ px(n=3) (b2x(n—2) o (@,0?) +a fos (a,bz)>

-B: (bX(k_?’) . (bZX(k_z) iz (a,0) +a- fr_s (a,b2)> + 51,k> ;
whence by Lemma 6.5, we come to
0 = px(»—1 + fa1 (a,bz) — B-px(k=1) fr_1 (a,b2) 7

what we had to prove.
By simple substitution of (6.10) into (6.9), we get

A=aq- (bx(n—2) fuz (a,02) = B XDy (a, bz)) ,

which completes the proof. [

Lemma 6.31. Let n,k,a,b, A, B as in Lemma 6.30.

If
pXED L ey (a, %) £ 0,

then
5 px(n—1) N (a,b2)
— bx(k_1) . fk—l (a, b2)

and

po XD f g (a,07)

A=aF(-1
a ( ) bx(k—l) . fk—l (a7 bZ)

Proof. Since

pXED L iy (a,b?) £ 0,

thus by Lemma 6.30, we can formulate

B pxtn=1) . f . (a,b2)
~ px(k—1) - fr—1 (a,b?) ’
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whence again by Lemma 6.30 we obtain

px(k=1) . £ b2
A= a - fk 1 (a’v )
X1 fi 4 (a,0?)

px(n=1 . f (a,b2)
Copx(=1) . f, b2)
(6.12) fi1 (a, %)

px(n=2) fr_2 (a, b2)

k=2, (a,52)>

<bX(k_1fk—1 ((1,, b2) bx(n—2)fn_2 (CL, bz)
=a

px(k=1) - fi_q

(a,6?)

px(k=1) . fi 4

B XD £ (a,0%) - bXE=2D) £ (6%52))
(a,0?)

By the definition of f,,, we have

px( £, (a, b2) — bx(n)(b2)[%]p

_ bx(nH‘2 % (

i)

M|QA

)

v (3)

Hence

D fiy (a,0%) XD f o (a,07)

O £ (0,2) 0Oy (a,87)

(6.13) = V" (b2> b P (

i)

S () v ()

e (e () s () s (3)

By Lemma 6.1,

o () s ()~ () s ()

whence by (6.13), we have

D fiy (a,0?) X s (a,07)

_ bX(”_l)fn_l (a, b2) .bx(k—Z)fk_2 (

— (_1)k—1ak—1bx(n—k—1)fn_k

Substituting this into (6.12), we obtain

1bx(n—k—l) ek

_1 (a,bQ) .

_ k(_1\k—
A=a*(=1) =1 . fy

_1(a,b?)

1 (a, bz) .

O

a, b2)

91
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Lemma 6.32. Let k,n € N and A € Z\ {0} be fized. Then there exist only finitely
many, effectively computable a,b, B € Z, such that

22 —br—al|z" —Bx* — A .

Proof. First, let us determine a,b € 7Z, such that

P fiy (a,b7) #0
(6.14) and
2?2 —br—al|2" —Bzk — A
With these conditions, by Lemma 6.30, a | A, whence a may assume only finitely

many different values and thus we may suppose that a is fixed.
Further, by Lemma 6.30,

(6.15)  0=A-p¥*D. i (a,0%) —a¥(—D)F ¥R g (a,07)

which is an algebraic equation with indeterminate b and with finitely many solu-
tions. The integer solutions of (6.15) are effectively computable, thus there exist
only finitely many (effectively computable) pairs of a, b satisfying (6.14).

Since

fr—1(a,0*) £0,

by Lemma 6.30, B is explicitly determinable from a and b, thus the set of the
suitable B’s is also finite and the values of B are effectively computable.
Now, assume that a, b are such that

(6.16) XED £ (a,0%) = 0.

Remark that £ > 1, otherwise (6.16) would be equal to 1. We exclude the case
a = 0, because by Lemma 6.30 we may write

(617)  A=a- (0D fop (0,0%) - B0 (a,07))

and thus A = 0 would hold.
Claim that

X2 o (a,b%) £0.

To prove, suppose the opposite.
First, let & be even. Then (6.16) looks like

bfk—l (G,, bz) =0 ’

whence either

or
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and
D fr o (a,07) = fra (a,0?)
If k = 2, then
fk—2 (a',b2) =1

or else if £ > 2, then by definition, fi_2(z,y) is homogeneous, whence, if
b=0 and fr_o (a,b2) =0,

then a = 0, which was excluded.
Now, let £ be odd. Then (6.16) has the form

fk—l (a',bz) =0,

and
ED - fr o (a,07) = bfi-s (a,07)

Since fr_1 (z,y) is homogeneous, thus
b=0 and fr_1 (a, bz) =0

yields that a = 0, which is, again, excluded.
If

fk—l (G,, bZ) = fk—2 (aabz) =0 3
then by Lemma 6.5,

fi(a,*) =0 forevery [>k—2,

in particular, for [ = n—2, whence by (6.17), A = 0, which is a contradiction. Thus
our claim is proven.
By (6.17), a | A, thus a may have only finitely many different values. Further-
more, by (6.16), either
b=10

or

bX(k_l)fk—l (a',b2) = bk_le—l <%) =0 )

aelll
b2 27 3

Hence, there exist only finitely many effectively computable a, b pairs satisfying
equation (6.15).
Fix now a and b. Since

whence by Lemma 6.18,

X2 o (a,b7) £0,

thus (6.17) is a linear equation in B which has only one solution and this solution
is explicitly given. Thus, we have found that a,b and B can have only finitely many
values satisfying the conditions of the lemma in both cases and they are effectively
computable. [
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Lemma 6.33. Let k,n € N, such that
ged(n, k,12) =1

and a,b, A, B € Z, such that A- B # 0.
If

22 —br—alz" —Bx* — A,

then
XEU iy (a,0%) #0 .

Proof. To the contrary, suppose that
(6.18) XE=D 1 (a,b?) =0 .

Then by Lemma 6.30,
D f1(a,0%) =0,

whence either

px(n=1) —
or
fn—l(a,b2) =0.
If
px(n=1 — o

then b = 0 and n is even.
Since
ged(n, k,12) =1,

thus k£ should be odd, whence
px(k=1) £

and by (6.18), we have
fk_l(a, bz) =0.

However, by the definition of fx_1, the vanishing of fx_1(a,0) implies that a = 0
and accordingly A = 0, which is a contradiction.
If
px(n=1) £
then
fn—l(a,b2) =0,
whence by similar considerations as above, b # 0.
Therefore, 5 is a root of F,_1(x) and by (6.18) ;5 is a root of Fj_1(x), too.
Hence, by Lemma 6.6, 75 is a root of Fy,_1(z), where m = ged(n, k).
Thus by Lemma 6.18,
ged(m, 12) > 3

and consequently,
ged(n, k,12) > 3

which is a contradiction again. [
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Theorem 6.34. Let k € N, A € Z \ {0}. Then there exist only finitely many
effectively computable polynomials in the form z™ — Bx* — A, where n € N, such

that ged(n, k,12) =1, B € Z\ {0} and
22 —bxr—a|2z" — Bz — A

for some a,b € 7, supposing that either a # —1 or |b| # 1.

Proof. Suppose that n € N, such that ged(n,k,12) =1, B € Z\ {0} and a,b € Z,
such that a - [b| # —1 and

2> —bxr—a|z" — BzF — A.

First, we prove that n is bounded.
By Lemma 6.33 and Lemma 6.31 we have

(XD (a,6?)

=A.
XD - fr_y (a,0%)

(6.19) a®(—1)

Since A # 0, thus a # 0, too. By the values of a and b we will distinguish different
cases:

(i) Assume that b2 > 4|a|. Then |b] > 2 and

a

b2

>~ =

<
Hence, by Remark 6.21 and Remark 6.15,

o) = 1 ()

e ()

_ 1
< |b|k ' cF_q <Z>

e (3)

—k— 1
> |b|n ol 'Fn—k—l <_Z> .

and

g )] =

‘bn—k—l‘ .
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Hence, by (6.19) and Remark 6.17, we obtain

YR f e (a,?)
XD fiy (a,?)

Al >

i.e.

n—2k
2P 1 1 E |A|>(n—1<;—1)-|b—| :
4 = 2

Since |b| > 2, the above yields that n is bounded. A rough upper bound:

1
n < max {2k, 2P 1Ry <Z) |A| + k + 1} :
(ii) Consider now the case 0 # b? < 4a < 4|A|.
Then, by Remark 6.15 and Remark 6.17,

Al s PO i (@.07) ‘

px(k=1) - fi._1 (a,b?)

b Fy 1 (3)
— b (&

)
242 (1+\/§>"_k_1 L 2=v3 (1_ﬁ>n—k—1

_ |b|"_2k 1 2 1 2
Fe—1 (33)
1 (1+\/§>n—k—1 B 1
> |b|n—2k 2 2
- Fio1 ()
1 (1+\/§>n—k—1 B 1
> |b|n—2k 2 2
- Fi—1 (JA]) ’
whence 1
n 1+V2
2|A[ - F—1 (|A]) > [p|"~%* ( 5 ) -2
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and thus n is bounded. An upper bound is

log (214 - Fi_1 (1A]) )
log <—1+2‘/§>
(iii) Further, we proceed with the case 0 # b? < —4a < 4|A].

Clearly, a # —1, otherwise 0 # b?> < —4a = 4 would imply that |b| = 1, which
would contradict a - |b] # —1. By Lemma 6.29, if

n < max { 2k, +k+1

n>t= max e},

where ¢; defined in the lemma, we get
fa (a,b%) > 27 .
Let R
F=  max {|b><<k—1> : fk_l(a,b2)|} .

alA, b2<—4a

We know that f > 0. If n > &, + k + 1, then

|A| >

px(n—k=1) fr—k—1 (a,bz) 2"—k—1
P foy (@87 |

Thus n is bounded. A rough estimate
n < max{(a +k+1,4log, (|A|f> +k+ 1} .

(iv) Finally, if b = 0, then by Lemma 6.30, k£ and n should be even, otherwise
A = 0. Nevertheless, gcd(n, k,12) = 1 which is a contradiction, thus the case b =0
cannot occur.

Finally, we have found that in all the cases n is bounded and the upper bound
depends only on k£ and A, whence by Lemma 6.32 the statement of the theorem
follows. [

Theorem 6.35. Let n,k € N, such that ged(n, k,12) =1 and n — k > 4 and let
B € Z\ {0} are fized. Then there exist only finitely many A € Z\ {0}, such that

2?2 —bxr—a|2z" — Bz — A

for some a,b € Z.

Proof. Let a,b, A € Z, such that A # 0 and
22 —br—a|2™ — BxF — A.
Then, by Lemma 6.33

P fy (a,0%) # 0,
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whence by Lemma 6.30

(6.20) B-pXF . (a,0?) =X f (a,07)

and

(621)  A=a- (0D fop (a,0%) - B0 (,87))
Hence by Lemma 6.22,

pxE=1 (a,b2) A=aqa- <bx(k—1) - et (a,b2) Spx(=2) (a,b2)
—BXED L (a,52) X ED L (a 52))
—q- <bx(k—1) ot (a,b2) . px(n=2) + fara (a,b2)

_pxn=1) g (a, b2) Xk gy (a,b2))
_ (_1)k—1akb2k—1bx(n—k—1) T (a,b2) :
whence
px(k=1)  fr_1 (a7 52) CA£0

implies that a # 0 and b # 0.
By (6.20) and Remark 6.21, we have

(6.22) B-Fyp, (3) — kg, (—) .

Since deg(Fj,—1) = [%51] and deg(F,_1) = [251], thus there exist real numbers

My, My, 1,29 > 0, such that if |x| > z1, then

kE—1
2

o1 (z)] < My - o]

and if |z| > zo, then
n—1
2

Fys(2)] > My - || T

with My, My > 0.
Let 2p = max (1,21, 22) and suppose that ‘1%‘ > xg. Then

=

a (5] a . a . a
BeMy- || 70> BB (55) = 1007 Faa (55) > 1004 M
Hence,
B-My ey [T sy
My > ‘b ‘ b_2 > ‘b ‘(.To) .

This yields that b is bounded, whence by (6.20) and (6.21) the integers a and A are
also bounded.
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Now suppose that ‘,;%‘ < o and let

1 —1
1= min{|x,~—xj||0<z',jg {"T]} :

where z7 .. - T[nz1] are the roots of the polynomial F,,_;(z).
2

Then
a
e (3)] <0
with some M and clearly, [ > 0.

It 1
min{xi—%‘|0<i§ {%]}Zl

then

rim o) 2,

whence by (6.22),
B-M
i)
and thus b is bounded. Since |a| < zg - b?, thus a is bounded, whence by (6.21) A

is also bounded.
. a . n—1
min $i_ﬁ‘|0<Z§T <l,

If
then by the definition of [, there exists a unique iy € {1,..., ["T_l]}, such that
Ti, — 35| < [. With this ip we have

2 [

a n_3 a
F(z?)‘ =155 o — g

whence by (6.22) we get

B-M a
6.23 e S ‘x _a
(6:23) 125 gt © P2

Since

b- fn—l (a7 bz) 7A 0,

thus

s () 40,

whence z;, # 5.

We assumed n—k > 4, whence the theorem of Roth on approximation of algebraic
numbers [39] implies that there exist only finitely many suitable pairs of a,b € Z
satisfying (6.23) for every x;, root of Fj,_1(x). The number of the roots of F,,_1(x)
is finite, thus a and b are bounded, whence A can be chosen from a finite set. [
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Theorem 6.36. Let n,k € N, such that ged(n, k,12) > 2 and n — k > 4 and let
B € Z\ {0} are fized. Then there exists an explicitly given sequence of integers A;
(t=1,...), such that

(6.24) 22 —br —a | z" — Bx® — A;

for some a,b € 7 and there are no other A’s satisfying (6.24).
Proof. Let ged(n, k,12) = m > 1. Then by Lemma 6.23, there exist

gl('ra y)v 92('7;7 y) € Z[Zl?, y]
, such that
y XD 1 (2,9%) = gu(@y) - XY s (2,97)

XD (2,y%) = gala,y) - yX T - fy (3,97)
Furthermore, by Lemma 6.30, we have
(6.25)  B-ga(z,y) - y¥™ V0 fry (2,92) = g1z, y) - XD - fr (2,97)

The a, b solutions of (6.25) are such that either

(6.26) pX(m=H g1 (a,0%) =0
or
(6.27) pXm=b . f 1 (a,b%) #0 .

If (6.26) holds, then either b = 0 or Fi,_1 (%) = 0. If b = 0, then a € Z is arbitrary
and by Lemma 6.30,

A=a- (bx(n—2) - (a, 52) —B-pxE2) (a7 (ﬂ)) )

If F,,_1 (l) = 0, then by Lemma 6.18,

b2
a 1 1
el S
B C { Ty 3} :
whence, again by Lemma 6.30, A can be explicitly determined.
If (6.27) holds, then we can cancel out bX(m=1. f,_; (a,b?) from (6.25) and the

simplified equation can be solved in similar way as (6.20) in the proof of Theorem
6.35. O

Remark 6.37. Schinzel showed that there exist a constant ¢ such that every tri-
nomial with integer coefficients having the property n/ged(n, k) > c is reducible if
and only if it has a linear or quadratic divisor. (See Consequence 1. of [40].) He

also proved some results similar to our Theorems 6.34, 6.35 and 6.36 in Theorem
9 of [40].
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In this appendix we give an example of a 12815 order 1
which is uniformly distributed modulo 2" for any n. The sequence is created by

the method given in Construction 4.22.

The coefficients of the recurrence relation are the following

0
0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

,0,1,0,0,1,0,1,1,0,000,1,o0,1,1,D0,00,1,o0,1,1,0,0,0,0,0,0,1,0,0, 1,0, 1,

The corresponding recurrence relation

Up—1 + Up—3 + -+ Up_1279 + Un—1280 + 3Un_1281

Up =

= 1. Another,

u1279 = 0, w1280

= Uy = ---

tial values ug

ini
tial values

A possible set of
"more random”

mi
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996, 302, 830, 19, 782, 386, 997, 207, 158, 592, 757, 948, 774, 577, 592, 528, 25, 481, 30, 873, 491, 231, 288, 263, 16, 362
313, 360, 53, 220, 705, 374, 689, 444, 999, 152, 434, 982, 966, 119, 449, 957, 631, 854, 422, 720, 159, 36, 241, 46, 436, 15
855, 726, 860, 489, 437, 174, 775, 12, 5, 392, 34, 602, 483, 887, 14, 293, 128, 583, 727, 612, 779, 749, 361, 980, 391, 609
143, 507, 21, 549, 426, 113, 701, 372, 459, 910, 935, 36, 416, 462, 815, 613, 817, 113, 917, 275, 313, 704, 155, 818, 902,
85, 887, 467, 200, 47, 128, 147, 341, 598, 450, 778, 51, 527, 241, 1015, 1017, 114, 761, 579, 92, 536, 503, 1011, 813, 200

226, 113

655,
667,
607,
898,
150,
680,

176,
942,
215,
664,
234,
440,

702, 423, 900, 420, 162, 922, 600, 11, 153, 50, 304, 881, 894, 338, 534, 842, 680, 822, 341, 672, 225, 762, 527
86, 932, 272, 711, 279, 147, 416, 667, 791, 976, 224, 642, 55, 891, 60, 560, 616, 899, 59, 706, 60, 308, 391, 322,
406, 697, 207, 241, 41, 872, 54, 1014, 124, 878, 649, 765, 288, 884, 981, 951, 457, 1010, 186, 165, 199, 441, 688
749, 130, 637, 219, 606, 922, 168, 85, 734, 342, 663, 343, 679, 259, 843, 392, 727, 521, 693, 812, 206, 673, 312,
355, 486, 205, 391, 543, 736, 826, 196, 599, 539, 748, 522, 17, 791, 196, 923, 973, 90, 728, 720, 768, 585, 858
485, 894, 280, 201, 151, 611, 142, 682, 992, 302, 377, 226, 790, 726, 144, 435, 780, 747, 333, 379, 64, 226, 333
108, 567, 751, 418, 213, 31, 575, 139, 171, 369, 508, 585, 22, 523, 970, 476, 858, 2, 597, 62, 569, 413, 614, 200

505, 292, 70, 201, 654, 433, 291, 170, 564, 750, 1017, 776, 131, 203, 270, 756, 519, 860, 606, 606, 478, 131, 798, 742, 525
1003, 833, 219, 130, 372, 715, 219, 186, 755, 751, 424, 712, 702, 686, 288, 592, 542, 585, 8, 556, 117, 7, 1019, 622, 561,
419, 777, 781, 944, 174, 788, 942, 422, 705, 847, 245, 98, 772, 609, 108, 230, 524, 446, 197, 921, 337, 246, 878, 660, 613
221, 170, 768, 385, 868, 431, 206, 719, 183, 833, 860, 705, 939, 574, 534, 762, 209, 481, 738, 490, 416, 658, 521,
026, 774, 446, 114, 396, 716, 794, 990, 35, 900, 708, 724, 777, 893, 774, 129, 633, 494, 95, 287, 17, 783, 860
345, 293, 359, 289, 919, 451, 77, 304, 618, 655, 567, 903, 475, 226, 131, 157, 752, 291, 327, 147, 871, 501, 17,
, 876, 63, 609, 223, 604, 576, 41, 260, 164, 495, 12, 744, 544, 711, 125, 138, 514, 647, 829, 149, 796, 193, 309
9, 302, 103, 884, 771, 276, 879, 856, 108, 775, 373, 760, 183, 537, 4, 932, 881, 563, 802, 683, 77, 31, 537, 781, 967, 226
1007, 532, 36, 931, 72, 608, 193, 753, 404, 220, 56, 703, 559, 994, 710, 771, 89, 142, 62, 594, 713, 465, 908, 86, 736, 848

399,
528,
238,
467,
930,
843,

60, 864 948, 423, 1005, 140, 469, 395, 196, 583, 220, 756, 1, 921, 519, 425, 777, 296, 731, 852, 190, 615, 209,

213,

1016, 168, 154, 970, 693, 59, 31, 873, 753, 898, 51, 1019, 134, 792, 747, 288, 212, 94, 613, 442, 824, 223, 524, 941,
6, 805, 548, 58, 17, 72, 801, 817, 768, 0, 942, 421, 640, 374, 934, 361, 845, 748, 379, 878, 905, 966, 997, 878, 922,
163, 587, 145, 383, 743, 459, 226, 919, 29, 212, 873, 183, 11, 776, 755, 917, 291, 505, 601, 760, 728, 185, 208, 837
600, 26, 335, 751, 871, 493, 642, 905, 436, 303, 503, 156, 52, 118, 508, 706, 1011, 209, 150, 720, 27, 420, 80, 207
576, 335, 344, 348, 004, 492, 445, 642, 644, 162, 932, 545, 899, 740, 977, 260, 976, 745, 846, 520, 625, 276, 853, 769
884, 820, 624, 868, 566, 1022, 453, 371, 290, 128, 94, 659, 435, 162, 633, 195, 1017, 988, 735, 16, 542, 90, 646, 54,

, 45, 726, 299, 515, 618, 225, 572, 826, 181, 340, 1017, 390, 21, 302, 90, 649, 527, 766, 90, 412, 515, 512, 339, 203,
, 703, 157, 591, 987, 891, 355, 846, 340, 202, 339, 11, 10, 544, 138, 773, 544, 821, 246, 593, 528, 579, 114, 907, 439

301, 17, 623, 475, 845, 727, 901, 246, 797, 358, 37, 672, 322, 505, 622, 503, 476, 799, 626, 996, 756, 609, 887, 497
444, 142, 639, 899, 388, 591, 424, 502, 379, 104, 548, 235, 635, 705, 232, 874, 847, 929, 893, 195, 272, 623, 50, 681,
540, 840, 606, 676, 488, 531, 151, 822, 693, 65, 318, 973, 85, 96, 43, 440, 821, 173, 156, 252, 522, 107, 916, 583, 312
97, 280, 568, 272, 120, 1000, 100, 368, 1009, 811, 782, 823, 884, 842, 810, 847, 665, 305, 165, 128, 935, 453, 365,
833, 697, 740, 982, 660, 750, 187, 194, 675, 267, 396, 547, 236, 855, 917, 975, 330, 600, 686, 590, 932, 68, 620, 742,
602, 68, 687, 353, 761, 1002, 639, 488, 387, 941, 383, 612, 874, 101, 28, 359, 472, 1023, 903, 646, 73, 804, 894, 491,
, 699, 27, 437, 965, 987, 239, 564, 361, 815, 670, 141, 797, 783, 41, 806, 670, 578, 307, 869, 82, 413, 14, 174, 666, 658
505, 873
676, 821, 403, 624, 449, 415, 218, 866, 412, 376, 256, 1011, 908, 567, 997, 12, 884, 171, 888, 918, 382, 450, 943, 216
882, 206, 354, 331, 313, 469, 513, 955, 759, 315, 252, 173, 101, 535, 404, 733, 162, 107, 810, 825, 665, 684, 475, 766
, 573, 823, 822, 648, 713, 412, 302, 981, 111, 520, 420, 39, 553, 797, 333, 645, 787, 929, 337, 79, 929, 893, 62, 1,
473, 242, 262, 925, 578, 3, 472, 621, 45, 372, 416, 769, 641, 703, 44, 265, 1004, 430, 127, 34, 571, 377, 135, 37
733, 758, 660, 143, 265, 108, 985, 752, 13, 926, 535, 175, 566, 519, 455, 106, 47, 302, 678, 536, 794, 475, 321,
4, 875, 211, 324, 145, 535, 167, 147, 998, 213, 260, 469, 895, 731, 873, 267, 872, 702, 154, 101, 915, 328, 703

82, 469 543 325 448 761 518 49, 895, 665, 117, 995, 726, 102, 179, 615, 17, 1022, 946, 973, 582, 491, 941, 126,

860, 462, 359, 6, 925, 544, 880, 721, 818, 528, 163, 381, 426, 606, 109, 271, 515, 986, 569, 528, 989, 823, 6, 920, 966

398,
259,
815,
104,
714,
320,

12, 793, 895, 636, 442, 390, 437, 530, 159, 981, 282, 286, 154, 404, 532, 943, 850, 928, 703, 595, 140, 218, 95
824, 845, 383, 233, 6, 434, 76, 320, 884, 189, 639, 178, 82, 142, 855, 169, 810, 882, 604, 110, 257, 298, 419, 389
491, 268, 781, 838, 54, 439, 505, 453, 196, 374, 846, 344, 916, 758, 391, 921, 66, 1014, 293, 703, 56, 677, 577,
595, 86, 421, 125, 969, 92, 748, 763, 396, 746, 18, 564, 178, 912, 932, 821, 979, 906, 606, 838, 714, 823, 845,
088, 568, 865, 610, 133, 240, 85, 151, 350, 614, 645, 595, 609, 434, 446, 808, 326, 740, 706, 136, 843, 709, 111,

875, 904, 297, 509, 807, 824, 49, 666, 733, 1001, 783, 384, 221, 121, 688, 257, 19,

where ug = 996, u; = 302, us = 830,

539,
450,
884,
518,
454,
379,
613,
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Experiments with transformation
of uniformly distributed sequences

Some computational experiments have been made concerning the construction
of Gaussian distributed random number generation of Chapter 5. We have created
some random number generators and tested them by linear transformations. For
computations we used the Maple package. The programs are available by the
authors.

Figure 1. This is the graph of the density (relative frequency) function of the
transformed Fibonacci sequence modulo 5. The used linear transformation: z,, =
(Fy1 + F, — 2)/4, where

a.) F,, is the nth Fibonacci number reduced modulo 5.

b.) F}, is the nth Fibonacci number reduced modulo 125.

c.) F}, is the nth Fibonacci number reduced modulo 3125.

c.) F, is the nth Fibonacci number reduced modulo 78125.

Figure 2. This is the graph of the density (relative frequency) function of the trans-
formed sequence of u,,, where

Up+9 = Up48 + Up4+3 + 2un+1 + Up

is the impulse response sequence. The used linear transformation at figures

a.) b.) ¢.) and d.) are the summation of the four consecutive elements of the
sequence with proper constant weight multiplier

e.) f.) g.) and h.) are the summation of the six consecutive elements of the
sequence with proper constant weight multiplier

i.) j.) k.) and l.) are the summation of the eight consecutive elements of the
sequence with proper constant weight multiplier.

The sequences are reduced at figures

a.) e.) and i.) modulo 2

b.) f.) and j.) modulo 16

c.) g.) and k.) modulo 1024

d.) h.) and l.) modulo 65536.

Figure 3. This is the graph of the density (relative frequency) function of the trans-
formed sequence of u,,, where
Up433 = Un+31 T Un+29 + Un426 + Unt+25 + Un423 + Unt22 + Upt21
+ Up420 + Un419 + Up417 + Un416 + Un414 + Un413 + Up412
+ Un+10 + Up+8 + Up+4 + Un+1 + U,
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is the impulse response sequence. The used linear transformation at figures

a.) b.) c.) and d.) are the summation of the 10 consecutive elements of the
sequence with proper constant weight multiplier

e.) f.) g.) and h.) are the summation of the 20 consecutive elements of the
sequence with proper constant weight multiplier

i.) j.) k.) and l.) are the summation of the 35 consecutive elements of the
sequence with proper constant weight multiplier.

The sequences are reduced at figures

a.) e.) and i.) modulo 2

b.) f.) and j.) modulo 16

c.) g.) and k.) modulo 1024

d.) h.) and l.) modulo 65536.
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