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rial agents through inte
amphiphilic compounds
ylene glycol linker to en
two pyrrolidinofullerene
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Mannose-binding lectins expressed on the surface of huma
dendritic cells (DCs) play key roles in the infection processes of var
ious pathogens. For example, the C-type lectin receptor DC-SIG
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(dendritic cell specific ICAM-3 grabbing non-integrin) specifically
recognizes highly mannosylated structures of bacterial and viral
glycoconjugates and functions as an entry receptor for several
viruses such as HIV or Ebola by binding to their high-mannose-
containing envelope glycoproteins.1 The design and synthesis of
carbohydrate ligands which might inhibit the pathogen entry by
preferential binding to this receptor is of significant importance.

Multimeric presentation of the terminally exposed motif of the
high-mannose structure, the monosaccharide Man a and the disac-
charide Man(a 1?2)Man a, is considered to be an adequate strat-
egy to interact with mannose-binding lectins with high affinity.2

Indeed, it has been demonstrated by several groups that multiple
copies of mannose, oligomannoside and its glycomimetics were
able to block DC-SIGN.3–7 However, mannose is not specific enough

http://dx.doi.org/10.1016/j.tetlet.2014.10.104
0040-4039/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors. Tel.: +36 52 512913; fax: +36 52 512914 (M.C.);
tel./fax: +36 52 512914 (A.B.).

E-mail addresses: csavas.magdolna@science.unideb.hu (M. Csávás), borbas.
aniko@pharm.unideb.hu (A. Borbás).

Please cite this article in press as: Csávás, M.; et al. Tetrahedron Lett
cen, Hungary
10 Debrecen, Hungary

iated carbohydrate patterns, the Man(a1?2)Man a disaccharide motif is o
its multivalent derivatives are considered as potential antiviral or antibacte
ion with mannose-binding lectins. We present a straightforward synthesis o
taining a hydrolytically stable S-linked 1,2-mannobioside residue, a tetraeth
water solubility and various lipophilic carriers such as a hexadecyl chain an

rivatives. According to a dynamic light scattering study, the obtained amph
egates in water producing multivalent presentation of the thiomannobiosid

� 2014 Elsevier Ltd. All rights reserve
stability of oligosaccharides against enzymatic hydrolysis.8,9

Recently, we reported a simple and efficient synthesis of a
thio-linked mimic of the disaccharide Man(a 1?2)Man a via
photoinduced hydrothiolation of a 2,3-unsaturated glucoside.10

By exploitation of this hydrothiolation approach, we envisaged
the rapid assembly of amphiphiles composed of a hydrolytically

70stable S-linked mannobioside head, a hydrophilic linker to ensure
water solubility and various lipophilic carriers, example fullerene.
We assumed that these conjugates might display enhanced meta-
bolic stability due to the interglycosidic thio-linkage and would
form aggregates in water providing multivalent presentation of
the sugar residue. Schaeffer and co-workers have shown recently
that dynamic micelles of mannoside glycolipids displayed high
affinity interactions with DC-SIGN and inhibited HIV-1 trans-
infection more efficiently than multivalent polymers.7 Here, we
present the synthesis and aggregating properties of 1,2-thioman-

80nobioside glycoconjugates containing different lipophilic residues.
Commercially available 3,4,6-tri-O-acetyl-d-glucal (1) was

subjected to Ferrier rearrangement11 with tetraethylene glycol

. (2014), http://dx.doi.org/10.1016/j.tetlet.2014.10.104
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monotosylate12 to afford the spacer-armed Ferrier glycoside 2 in
95% yield as an anomeric mixture (a/b, 85:15) as determined
by 1H NMR spectroscopic analysis. Addition of 2,3,4,6-tetra-O-
acetyl-1-thio-a-d-mannopyranose (3)13 to enoside 2 in toluene
by irradiation at kmax 365 nm in the presence of 2,2-dimethoxy-
2-phenylacetophenone (DPAP) as a cleavage-type photoinitiator14

provided exclusively the axially linked thio-mannobioside mimic
90 4 in 71% yield. Replacement of the tosyloxy group by azide resulted

in compound 5, deacetylation of which by using the Zemplén
method afforded the mannobioside derivative 6 in 96% yield. Both
latter compounds were ready to be conjugated to lipophilic carrier
molecules bearing a terminal alkyne moiety (Scheme 1).

Initially, the Cu(I)-catalyzed azide–alkyne cycloaddition reac-
tion15 of the acetyl protected derivative 5 with hexadecyl propargyl
ether (7) was carried out in DMF to obtain compound 8 (Scheme 2).

At room temperature, only 50% conversion of 5 was observed
after 16 h. Repeating the experiment at 60 �C, the click reaction

100 went to completion after 3 h providing the coupled product in
80% yield. Zemplén deacetylation of 8 afforded the first mannobio-
side-containing amphiphile 9 in 97% yield. This compound was
also prepared directly via click reaction between 6 and 7. The
1,3-dipolar cycloaddition proceeded readily in water to afford 9
in 81% yield.16

It has been shown by Rojo and co-workers that globular glyco-
fullerenes with multimeric presentation of mannoses were able to
inhibit a DC-SIGN dependent viral infection.5 It is also known that
fullerene derivatives can form self-assembled supramolecular
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Pl
nostructures in water.17 Hence, we intended to conjugate our
annobioside mimic to C60 fullerene. However, water solubility
glycofullerenes substituted with one or two sugar residues is
ite limited.18 Therefore, we chose as a carrier, our recently
veloped pyrrolidinofullerene derivative 10, equipped with four
traethyleneglycol chains for improving water solubility, and a
opargyl ether residue allowing its functionalization with
active compounds via a 1,3-dipolar cycloaddition reaction.19

mpound 10 has been successfully applied for the synthesis of
self-assembled sialodisaccharide conjugate which exhibited
uraminidase inhibitory activity in a micromolar range.20 To
oid a deprotection procedure on the fullerene-sugar hybrid, the
e mannobioside derivative 6 was reacted with 10 in water under
pper(I)-catalysis with heating at 60 �C. The azide–alkyne cyclo-
dition reaction proceeded readily and the desired product 11

s isolated in good yields (Scheme 3).
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As we were determined to develop easy access to mannobio-
e-containing amphiphiles, besides 10 which was quite demand-

g to synthesize, the much simpler fullerene derivative 14 was
o designed as a lipophilic carrier. Similar to the synthesis of
,19 derivatization of the fullerene molecule was accomplished
the versatile Prato reaction,21 which is a 1,3-dipolar cycloaddi-
n of an azomethine ylide generated by the thermal reaction of
N-alkyl glycine with an aldehyde. In this case, triethylene glycol

rbonylmethyl ether propargyl ether 1222 was used as the alde-
de partner, reaction of which with N-methyl glycine (13) and
llerene afforded the pyrrolidine derivative 14 bearing a tetraeth-
ne glycol chain with a terminal alkyne moiety ready for the

bsequent click reaction with the azide partner. The free manno-
side derivative 6 was subjected to a 1,3-dipolar cycloaddition

action with 14, that went to completion providing readily the
ird mannobioside-containing amphiphile 15 (Scheme 4). It is
rth mentioning, however, that 15 was less soluble in polar

lvents compared to 11.
The cluster formation properties of the obtained mannobioside
phiphiles were studied by dynamic light scattering. According
these studies, compounds 9 (Fig. 1), 11 and 15 form 10–300 nm
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sized aggregates in water with a bimodal distribution. The effective
diameter of these clusters was 108 nm for 9, 66 nm for 11, and
133 nm for 15 (see Supporting information).

In conclusion, we have demonstrated that Ferrier rearrange-
ment combined with radical hydrothiolation is a simple and highly
efficient approach to produce spacer-armed and hydrolytically
stable 1,2-mannobioside mimics on a large scale.23 The azide-
functionalized disaccharides, both in protected and unprotected
forms, could be conjugated to propargyl-containing lipophilic
carriers. The obtained amphiphiles (9, 11 and 15) form nanoscale
aggregates in water and therefore can function as multivalent
ligands. Investigation of the binding affinity of the derivatives
toward mannose-binding lectins and the preparation of further
multivalent oligomannosides are underway.

Scheme 4. Functionalization of C60 fullerene via the Prato reaction and its
conjugation with the mannobioside mimic 6.

Figure 1. Size distribution of aggregates of compound 9 in water.
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(s, 1H), 2.46 (s, 3H), 2.33–1.88 (m, 18H); 13C NMR (CDCl3, 90 MHz): d (ppm)
170.8, 170.5, 169.8, 169.7 (6C, 6 � C@O), 144.8, 132.9 (2C, 2 � Cq arom), 129.8,
127.9 (4C, arom), 98.7 (C-1), 82.6 (C-10), 76.8, 70.8, 70.7, 70.6, 70.5, 70.1, 69.3,
69.2, 68.8, 68.6, 66.9, 66.1, 64.7 (skeleton carbons and OCH2), 62.9, 62.2 (2C, C-6,
C-60), 44.7 (C-2), 29.2 (C-3), 21.6, 21.0, 20.8, 20.7, 20.6 (7C, 7 � CH3). MALDI-TOF
(positive ion): m/z calcd for C39H56NaO21S [M+Na]+ 947.27 Found: 948.36.
Compound 5: 1H NMR (CDCl3, 360 MHz): d (ppm) 5.51–5.26 (m, 4H), 5.13 (dt, 1H,
J1 = 15.8 Hz, J2 = 7.8 Hz), 4.95 (s, 1H), 4.52–4.43 (m, 1H), 4.42–4.15 (m, 5H), 4.08
(ddd, 1H, J1 = 9.7 Hz, J2 = 4.8 Hz, J3 = 2.6 Hz), 3.91 (ddd, 1H, J1 = 9.5 Hz,
J2 = 4.0 Hz), 3.84–3.66 (m, 12H), 3.53–3.44 (m, 2H), 3.34 (s, 1H), 2.37–2.28 (m,
2H), 2.29–1.97 (m, 18 H); 13C NMR (CDCl3, 90 MHz): d (ppm) 170.7, 170.4, 169.7,
169.6, 169.5 (6C, C@O), 98.7 (C-1), 82.3 (C-10), 70.8, 70.6, 70.5, 70.0, 69.9, 69.2,
68.7, 66.8, 66.1, 64.7, 62.8, 62.2, 50.5 (skeleton carbons and OCH2), 44.6 (C-2),

29.1 (C-3), 20.9, 20.8, 20.7, 20.6, 20.5 (6C, 6 � AcCH3). MALDI-TOF (positive ion):
m/z calcd for C32H49N3NaO18S [M+Na]+ 818.26. Found: 818.38.
Compound 6: [a]24

D +118.41 (c 8.97, MeOH); Rf 0.48 (8:2 CH2Cl2-MeOH); 1H NMR
270(MeOH-d4, 400 MHz): d (ppm) 5.31 (s, 1H), 4.90 (s, 1H), 3.96–3.60 (m, 29H),

3.39–3.25 (m, 2H), 2.99 (s, 1H), 2.86 (s, 1H), 2.19–1.99 (m, 2H); 13C NMR (MeOH-
d4, 100 MHz) d (ppm) 100.4 (C-1), 87.4 (C-10), 75.5, 75.2, 73.6, 73.2, 71.7, 71.6,
71.5, 71.1, 69.0, 67.7, 63.9, 63.2, 62.9 (skeleton carbons and OCH2), 63.1, 62.8 (2C,
C-6, C-60), 51.8 (1C, CH2N3), 47.0 (C-2), 34.2 (C-3). MALDI-TOF (positive ion): m/z
calcd for C20H37N3NaO12S [M+Na]+ 566.20. Found: 566.24.
Compound 8: [a]24

D + 88.30 (c 0.49, CHCl3); Rf 0.23 (1:2 n-hexane–EtOAc); 1H NMR
(CDCl3, 360 MHz): d (ppm) 7.71 (s, 1H), 5.38–5.21 (m, 4H), 5.03 (d, 1H,
J = 9.6 Hz), 4.86 (s, 1H), 4.61 (s, 2H), 4.54 (t, 2H, J = 5.0 Hz), 4.40–4.36 (m, 1H),
4.28 (dd, 1H, J1 = 12.3 Hz, J2 = 5.2 Hz), 4.22–4.09 (m, 4H), 3.99–3.96 (m, 1H), 3.88

280(t, 2H, J = 5.0 Hz), 3.83–3.79 (m, 1H), 3.67–3.62 (m, 12H), 3.51 (t, 2H, J = 6.7 Hz),
3.24 (s, 1H), 2.96 (s, 2H), 2.89 (s, 2H), 2.24–1.97 (m, 20H), 1.58 (dd, 2H,
J1 = 13.8 Hz, J2 = 6.8 Hz), 1.26 (s, 20H), 0.88 (t, 3H, J = 6.6 Hz). 13C NMR (CDCl3,
90 MHz): d (ppm) 170.7, 170.4, 169.7, 169.6, 169.5 (6C, 6� C@O), 145.2 (1C,
HC@C), 123.4 (1C, HC@C), 98.7 (C-1), 82.3 (C-10), 70.8, 70.7, 70.5, 70.4, 70.1, 69.4,
69.2, 68.8, 66.8, 66.1, 64.7, 64.2, 62.8, 62.2, 50.1 (skeleton carbons and OCH2),
44.6 (C-2), 31.8 (C-3), 29.6, 29.4, 29.2, 26.0, 22.6 (14C, 14� CH2), 20.9, 20.8, 20.7,
20.6, 20.5 (6C, 6 � AcCH3), 14.0 (1C, CH3). MALDI-TOF (positive ion): m/z calcd
for C51H85N3NaO19S [M+Na]+ 1098.54. Found: 1098.65.
Compound 9: [a]24

D +79.57 (c 0.93, MeOH); Rf 0.50 (8:2 CH2Cl2-MeOH). MALDI-
290TOF (positive ion): m/z calcd for C39H73N3NaO13S [M+Na]+ 846.48. Found:

846.40.
Compound 14: 1H NMR (CDCl3, 360 MHz): d (ppm) 7.32 (s, 1H, HCO), 4.87 (d,
J = 9.4 Hz, 1H), 4.67–4.53 (m, 1H), 4.51–4.33 (m, 1H), 4.33–4.07 (m, 3H), 3.86–
3.57 (m, 11H), 3.06 (s, 3H), 1.64 (s, 2H); 13C NMR (CDCl3, 90 MHz): d (ppm)
146.9-135.5 (C60), 75.5, 74.3, 71.7, 71.5, 68.9, 57.9, 39.9. MALDI-TOF (positive
ion): m/z calcd for C73H23NNaO4 [M+Na]+ 1000.15. Found: 1000.16.
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