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ABSTRACT. We give all the $S$-integral points of elliptic curves via considering
linear forms in elliptic logarithms both the complex and the $p$-adic case. We
apply a lower bound for linear forms in $p$-adic elliptic logarithms in arbitrary
number of terms.

1. INTRODUCTION

It is well-known Siegel [20] proved in 1929 that the number of the integral points
on an elliptic curve $E$ over an algebraic number field $\mathbb{K}$ is finite and Mahler [17]
generalized this result to the $S$-integral points where $S$ is a finite set of places defined
over $\mathbb{K}$ . Relying upon the group structure of $E(\mathbb{Q})$ and properties of ordinary elliptic
logarithms, a different method for proving the finiteness of ordinary integral points
was proposed by Lang [14], Masser [18] and Zagier [27]. Using the explicit lower
bound for linear forms in ordinary elliptic logarithms by David [4], the argument
by Lang, Masser and Zagier could be transformed into an algorithm for computing
the integer points on elliptic curves which was done by Gebel, Peth\’o, Zimmer [6],
Stroeker, Tzanakis [24], Smart [22]. However, the approach depends on an unproved
lower bound for linear forms in -adic elliptic logarithms. In 1996, R\’emond and
Urfels proved such a bound for linear forms in two terms. Using this bound and
following Smart’s line of thought, Gebel, Peth\’o and Zimmer in [7], [8], found all
$S$-integral points on Mordell’s curves $y^{2}=x^{3}+k$ , with $|k|\leq 10^{4}$ and such that the
rank of the curve $<3$ . In [9], Gebel, Herrmann, Peth\’o and Zimmer could overcome
the absence of an explicit lower bound for linear forms in p–adic elliptic logarithms
by using the completely explicit upper bound for the $S$-integral solutions of elliptic
equations established by Hajdu and Herendi [10]. They determined the $S$-integral
solutions of several elliptic curves of various ranks up to 8 and compared their results
with earlier estimates. As of rank at most 2 elliptic curves, their method gives only
a larger upper bound for the $S$-integral points than using the estimate of R\’emond
and Urfels. This suggests that the existence of a similar bound to that of R\’emond
and Urfels for higher rank curves would lead to a similar lessening in the size of the
upper bound of the $S$-integral points. This is important in particular if the rank of
the elliptic curve is large, as then already a small improvement of the final bound
can considerably shrink the region of possible solutions, and hence the final search
can be done much faster.
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We show here an algorithm to find all $S$-integral points of elliptic curves of rank
greater than 2. As it was pointed out in Smart [23], the previous methods could
be extended to do so, however the theory of lower bounds for linear forms in $p$-adic
elliptic logarithms was not developed enough. As a new lower bound for linear
forms in $p$-adic elliptic logarithms has been proved [11], we could extend the very
efficient method using ordinary and p–adic elliptic logarithms first established by
Gebel, Peth\’o and Zimmer in [7], [8], to the case of elliptic curves of arbitrary rank.
In Section 2 we give the necessary notation and describe our method in detail. In
Section 3 we give an example. We include larger prime numbers in the set $S$ which
is a new feature compared to the previously solved elliptic equations.

2. BOUNDING THE $S$-INTEGRAL POINTS OF ELLIPTIC CURVES

We describe the method of finding the $S$-integral points on elliptic curves in a
most detailed way. We shall refer to the papers [7], [8], [9], [22]. Let $E$ be a given
elliptic curve defined by the equation

$E$ : $y^{2}=x^{3}+ax+b:=q(x)$ .

Here $a,$ $b\in \mathbb{Z}$ and the discriminant of $q(x)$ , i.e. $4a^{3}+27b^{2}$ is non-zero. By Mordell’s
theorem, the group $E(\mathbb{Q})$ of rational points on $E$ is finitely generated. More pre-
cisely,

$E(\mathbb{Q})\cong E_{tors}(\mathbb{Q})\cross \mathbb{Z}^{r},$

where $E_{tors}(\mathbb{Q})$ is the torsion group, and $r$ is the rank of $E(\mathbb{Q})$ . Let $P_{1},$
$\ldots,$

$P_{r}$ denote
a Mordell-Weil basis of $E(\mathbb{Q})$ . Then each rational point $P\in E(\mathbb{Q})$ has a unique
representation of the form

(1) $P=P_{0}+n_{1}P_{1}+\ldots+n_{r}P_{r},$

where $P_{0}\in E_{tors}(\mathbb{Q})$ is a torsion point and $n_{i}\in \mathbb{Z}(i=1, \ldots, r)$ .
We fix an arbitrary finite set $S$ of places of $\mathbb{Q}$ (including the infinite one) to be

$S:=\{p_{1}, \ldots,p_{s-1}, \infty\}.$

Let $E(\mathbb{Z}_{S})$ denote the set of $S$-integral points of $E(\mathbb{Q})$ , i.e.

$E(\mathbb{Z}_{S})=\{P=(x, y)\in E(\mathbb{Q})|H_{S}(P)\leq 1\},$

where

$H_{S}(P)= \prod_{q\not\in S}\max\{1, |x|_{q}\}$

with $|x|_{q}$ being the normalized multiplicative absolute value of $\mathbb{Q}$ corresponding to
the place $q$ . Put $N$

$:= \max_{1\leq i\leq r}|n_{i}|_{\infty}$ . If one searches for the set $E(\mathbb{Z}_{S})$ then first
an upper bound for $N$ has to be found and then this bound has to be gradually
decreased to a size where the actual points can already be identified by an exhaustive
search. To get the final bound $N_{final}$ for $N$ , the LLL-algorithm is applied. In the
following subsections we explain in detail how one proceeds.
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2.1. Height. The multiplicative height of a rational point $P=(x, y)\in E(\mathbb{Q})$ is
defined as the following product over all primes $p$ of $\mathbb{Q}$ (including $p=\infty$ ):

$H(P):= \prod_{p}\max\{1, |x|_{p}\}.$

Here we define the ordinary additive height as

(2) $h(P):= \frac{1}{2}\log H(P)$

and the N\’eron-Tate height is

$\hat{h}(P):=\frac{1}{2}\lim_{narrow\infty}\frac{h(2^{n}P)}{2^{2n}}.$

It is well-known (see for example [3]), that for all $P=(x, y)\in E(\mathbb{Q})$ we have
$\hat{h}(P)-h(P)\leq c_{1},$

where $c_{1}$ is an exphcitly computable positive constant depending only on the pa-
rameters of the curve. (Later $c_{2},$ $c_{3}$ , etc. will be also explicitly computable positive
constants depending only on the parameters of the curve and sometimes on the cho-
sen Mordell-Weil basis of the curve.) Furthermore, since $\hat{h}$ is a positive semidefinite
quadratic form on $E(\mathbb{R})$ , we obtain the lower estimate

$\hat{h}(P)\geq\lambda_{1}N^{2},$

where $\lambda_{1}>0$ is the smallest eigenvalue of the height-pairing matrix with respect to
the basis $P_{1},$

$\ldots,$
$P_{r}$ of $E(\mathbb{Q})$ . On combining the latter two inequalities, we get the

estimate

(3) $h(P)\geq\lambda_{1}N^{2}-c_{1}.$

Let now $P=(x, y)\in E(\mathbb{Q})$ be an $S$-integral point and choose $p\in S$ such that
(4) $|x|_{p}= \max\{|x|_{p_{1}}, \ldots, |x|_{p_{s-1}}, |x|_{\infty}\}.$

Then we conclude that
$H(P)\leq|x|_{p}^{s}$ , with $s:=\# S,$

hence that

(5) $h(P) \leq\frac{s}{2}\log|x|_{p}.$

Combining (3) and (5) yields the upper bound

(6) $\frac{1}{|x|_{p}^{1/2}}\leq c_{2}\exp(-c_{3}N^{2})$

with
$c_{2}=\exp(\begin{array}{l}\lrcorner cs\end{array}), c_{3}=_{s}^{\lambda}\lrcorner.$

2.2. Elliptic logarithms. $A$ lower bound for $|x|_{p}^{-1/2}$ can be obtained by estimating
linear forms in elhptic logarithms. Here two cases are to be distinguished, the
complex case and the p–adic case.
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2.2.1. Case 1: $p=\infty\in S$ . We shall use the Weierstrass-parametrization of our
elliptic curve $E$ . There exists a lattice $\Omega\subseteq \mathbb{C}$ such that the group of complex points
is

$E(\mathbb{C})\cong \mathbb{C}/\Omega,$

where $\Omega=\langle\omega_{1},$ $\omega_{2}\rangle$ is generated by the two fundamental periods $\omega_{1}$ and $\omega_{2}$ , where $\omega_{1}$

is real and $\omega_{2}$ is complex. We put $\tau=\omega_{2}/\omega_{1}$ and assume without loss of generality
that $\Im\tau>0$ . The above isomorphism is defined by Weierstrass’ $\wp$-function with
respect to $\Omega$ and its derivative $\wp’$ according to the assignment

$P=(\wp(u), \wp’(u))arrow umod \Omega,$

so that the coordinates of an integral point $P=(x, y)\in E(\mathbb{Q})$ are given by
$x=\wp(u), y=\wp’(u)$ .

The elliptic logarithm of $P$ is then (see e.g. [27])

$u=u(P) \equiv\int_{x}^{\infty}\frac{dt}{\sqrt{t^{3}+at+b}}(mod \Omega)$ .

Also, for later use define
$\phi(P):=u(P)/\omega_{1}.$

Actually, we have

$u=u(P)\equiv n_{1}u_{1}+n_{r}u_{r}+u_{r+1}(mod \Omega)$ ,

where $u_{i}\in \mathbb{R}$ are the (complex) elliptic logarithm of the generating points $P_{i}$ of
$E(\mathbb{Q})$ . Equivalently, we have

$\phi(P)\equiv n_{1}\phi(P_{1})+n_{r}\phi(P_{r})+\phi(P_{r+1})(mod 1)$ .

Hence an integer $n_{0}$ exists such that

$\phi(P)=n_{0}+n_{1}\phi(P_{1})+n_{r}\phi(P_{r})+\phi(P_{r+1})$ ,

so that assuming all $\phi$-values belong to $[0,1)$ ,

$|n_{0}|<rN+1.$

Let $t$ be the order of the torsion point $P_{r+1}$ . Then $t\phi(P_{r+1})\equiv\phi(\mathcal{O})\equiv 0(mod 1)$ ,
and hence $\phi(P_{r+1})=s/t$ , for some non-negative integer $s<t$ . Thus,

$\phi(P)=(n_{0}+\frac{s}{t})+n_{1}\phi(P_{1})+\ldots+n_{r}\phi(P_{r})$.

Now let

(7) $\Lambda:=u(P)=(n_{0}+\frac{s}{t})\omega_{1}+n_{1}u_{1}+\ldots+n_{r}u_{r}.$

In 1995, David [4] computed a lower bound for linear forms in complex elliptic
logarithms of shape (7). His bound involves the following quantities:

$g:=|E_{tors}(\mathbb{Q})|, c_{4}:=2.9\cdot 10^{6r+6}\cdot 4^{2r^{2}}(r+1)^{2r^{2}+9r+12.3},$

where $r$ is the rank of the curve,

$h:= \log(\max\{4|a\cdot j_{2}|_{\infty}, 4|b\cdot j_{2}|_{\infty}, |j_{1}|_{\infty}, |j_{2}|_{\infty}\})$ ,

95



where $j:=j_{1}/j_{2}$ is the $j$-invariant of the curve, and some numbers $V_{i}\in \mathbb{R}$ satisfying

$\log V_{i}\geq\max\{\hat{h}(P_{i}), h, \frac{3\pi.|u_{i}|^{2}}{\omega_{1}^{2}\Im(\tau)}\}, (i=1, \ldots, r)$ .

Using David’s result, the desired lower bound for $|x|_{\infty}^{-1/2}$ is given in the following
lemma.

Lemma 2.1. With the above notation we have
(8)

$\frac{\omega_{1}}{g\sqrt{8}}\exp(-c_{4}h^{r+1}(\log(\frac{r+1}{2}gN)+1)(\log\log(\frac{r+1}{2}gN)+1)^{r+1}\cdot\prod_{i=1}^{r}\log V_{i})$

$\leq\frac{1}{|x|_{\infty}^{1/2}}.$

Comparing the inequalities (6) and (8), we can derive an upper bound for $N$ in
the complex case.

2.2.2. Case 2: $p=p_{i}\in S$ (for some $i\in \mathbb{N}$ such that $1\leq i\leq s-1$). Up to now
there were only partial results in this case due to the lack of a $p$-adic analogue of
David’s lower bound for linear forms of arbitrary number of terms. Indeed, a lower
bound for linear forms in two terms was proved by R\’emond and Urfels [19] in 1996.
Recently, a generalization of this result to arbitrary number of terms was given by
the first author. Using the bound, we can get an analogue of (8). We explain in
detail how one proceeds in the p–adic case.

Let $\mathbb{Q}_{p}$ be the $p-$-adic completion of $\mathbb{Q}$ and $\mathbb{Z}_{p}$ its ring of p–adic integers. Denote
by

$E_{0}(\mathbb{Q}_{p})$ $:=$ { $P\in E(\mathbb{Q}_{p})|\tilde{P}$ is non-singular},
as well as by

$E_{1}(\mathbb{Q}_{p}):=\{P\in E(\mathbb{Q}_{p})|\tilde{P}=\tilde{\mathcal{O}}\}$

the kernel of the reduction map modulo $p$ , where $E$ is regarded as a curve over $\mathbb{Q}_{p}$

and $\tilde{P},\tilde{\mathcal{O}}$ are the reduced points $P,$ $\mathcal{O}$ modulo $p$ . It is known that if $E$ is minimal
at $p$ , then $[E(\mathbb{Q}_{p}) : E_{0}(\mathbb{Q}_{p})]$ is finite and equal to the Tamagawa number $c_{q}.$

Designate by $\mathcal{E}(p\mathbb{Z}_{p})$ the formal group associated to $E$ (see e.g. [21]). We consider
the isomorphism

$\mathcal{E}(p\mathbb{Z}_{p})arrow E_{1}(\mathbb{Q}_{p})$ , $z\mapsto\{\begin{array}{ll}0, if z=0,(\frac{z}{w(z)}, -\frac{1}{w(z)}) , if z\neq 0,\end{array}$

where
$z=- \frac{x}{y}, w(z)=-\frac{1}{y}.$

The equation for $w=w(z)$ inferred from the long Weierstrass equation for $E(\mathbb{Q})$

(i.e. of the shape $y^{2}+a_{1}xy+a_{3}y=x^{3}+a_{2}x^{2}+a_{4}x+a_{6}$ ) becomes

$w=z^{3}+(a_{1}z+a_{2}z^{2})w+(a_{3}+a_{4}z)w^{2}+a_{6}w^{3}=f(z, w)$ .
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A recursive procedure based on this equation (see $[21]$ ) leads to the power series

$w=z^{3}+a_{1}z^{4}+(a_{1}^{2}+a_{2})z^{5}+(a_{1}^{3}+2a_{1}a_{2}+a_{3})z^{6}$

$+(a_{1}^{4}+3a_{1}^{2}a_{2}+3a_{1}a_{3}+a_{2}^{2}+a_{4})z^{7}+\ldots\in \mathbb{Z}[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}][[z]].$

This is the unique power series in $z$ satisfying the relation
$w(z)=f(z, w(z))$ .

$\mathbb{R}om$ it we also get the Laurent series for $x$ and $y$ , respectively.

$x(z)= \frac{z}{w(z)}=\frac{1}{z^{2}}-\frac{a_{1}}{z}-a_{2}-a_{3}z-(a_{4}+a_{1}a_{3})z^{2}-\ldots,$

(9)
$y(z)=- \frac{1}{w(z)}=-\frac{1}{z^{3}}+\frac{a_{1}}{z^{2}}+\frac{a_{2}}{z}+a_{3}+(a_{4}+a_{1}a_{3})z+\ldots.$

The invariant differential has the expansion

$w(z)=(1+a_{1}z+(a_{1}^{2}+a_{2})z^{2}+(a_{1}^{3}+2a_{1}a_{2}+a_{3})z^{3}$

$+(a_{1}^{4}+3a_{1}^{2}a_{2}+6a_{1}a_{3}+a_{2}^{2}+2a_{4})z^{4}+\ldots)dz.$

Note that in these expansions the coefficients of the powers of $z$ each have the same
weight depending on the exponent of $z.$

The $p$-adic elliptic logarithm is now the image under the homomorphism to the
additive group $G_{a}$ (over the completion $\mathbb{C}_{p}$ of the algebraic closure of $\mathbb{Q}_{p}$ ) defined
as follows:

$\psi_{p}:E_{1}(\mathbb{Q}_{p})arrow\hat{G}_{a},$ $P=(x, y) \mapsto\psi_{p}(P)=\int w(z)=z+\frac{d_{2}}{2}z^{2}+\frac{d_{3}}{3}z^{3}+\ldots.$

In particular, the $p$-adic logarithm $\psi_{p}$ has the properties

$\psi_{p}(P+Q)=\psi_{p}(P)+\psi_{p}(Q)$

and

$| \psi_{p}(P)|_{p}=|z|_{p}=|-\frac{x}{y}|_{p}$

Now let $\tilde{E}$ be the reduced curve $E$ modulo $p$ and denote by $\mathcal{N}_{p}=\#\tilde{E}(\mathbb{F}_{p})$ the number
of rational points on $\tilde{E}/(\mathbb{F}_{p})$ and let $c_{p}$ denote the Tamagawa number with respect
to $p$ . With the order $g$ of the torsion subgroup of $E$ introduced earlier, we define

$m:=m_{p}=lcm(g, c_{p}\cdot \mathcal{N}_{p})$ .
Then, we have from the Lutz filtration of $E$ , see e.g. [16],

$mP_{i}=:P_{i}’\in E_{1}(\mathbb{Q}_{p}) (i=1, \ldots, r)$

for the generating points $P_{i}$ of $E(\mathbb{Q})$ and
$mP_{0}=\mathcal{O}$

for the torsion points $P_{0}\in E_{tors}(\mathbb{Q})$ .
The representation (1) of an $S$-integral point $P=(x, y)\in E(\mathbb{Q})$ gives rise to the

representation

(10) $P’=n_{1}’P_{1}+\ldots+n_{r}’P_{r}=n_{1}P_{1}’+\ldots+n_{r}P_{r}’, (n_{i}’:=mn_{i}\in \mathbb{Z})$
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of its $m$-multiple $P’=(x’, y’)=mP\in E_{1}(\mathbb{Q}_{p})$ . In analogy to (9), we have the
Laurent series

$x’= \frac{z’}{w(z’)}=\frac{1}{z^{2}}-\frac{a_{1}}{z}-a_{2}-a_{3}z’-(a_{4}+a_{1}a_{3})z^{\prime 2}-\ldots,$

and this expansion entails the estimate

(11) $|x’|_{p} \leq\frac{1}{|z|_{p}^{2}}=\frac{1}{|t’|_{p}^{2}},$

where we use the abbreviating notation $t’$ $:=\psi_{p}(P’)$ for the p–adic elliptic logarithm
of $P’.$

Combining inequalities (6) and (11) and observing that $|x’|_{p}\geq|x|_{p}$ , we obtain the

(12) $|t’|_{p} \leq\frac{1}{|x’|_{p}^{1/2}}\leq\frac{1}{|x|_{p}^{1/2}}\leq c_{2}\exp(-c_{3}N^{2})$

upper bound for the $p$-adic elliptic logarithm $t’=\psi(P’)$ of the point $P’=(x’, y’)=$
$mP$ . Therefore, what we need is a lower estimate for the $p$-value of the $p$-adic elliptic
logarithm $t’$ of $P’.$

Fkom the additive property of the p–adic elliptic logarithm and (10), we have the
relation

$t’=n_{1}’t_{1}+\ldots+n_{r}’t_{r}=n_{1}t_{1}’+\ldots+n_{r}t_{r}’=:\Lambda$

between the elliptic logarithms $t’=\psi_{p}(P’)$ of $P’,$ $t_{i}=\psi_{p}(P_{i})$ of the generating
points $P_{i}$ and $t_{i}’=\psi_{p}(P_{i}’)$ of their $m$-multiples $P_{i}’=mP_{i}\in E(\mathbb{Q})$ . Let

$C_{5}:=2^{4r^{2}+3r}\cdot(r+1)^{2r^{2}+9r+4},$

$h’$ $:=$ log max $(1, |a|_{\infty}, |b|_{\infty})$ ,
$a_{i} := \max(1,\hat{h}(P_{i}’), h’) (1\leq i\leq k)$ ,

$\beta :=\max(1,2h(n_{1}), \ldots, 2h(n_{r}))$ ,

$\rho$
$:=p^{-\lambda_{p}}$ for $\lambda_{p}$ $:=\{\begin{array}{ll}\frac{1}{p-1} if p>2,3 if p=2,\end{array}$

$\sigma:=\rho/\max(|t_{1}’|_{p}, \ldots, |t_{r}’|_{p})$ ,
$\delta:=\max(1, (\log\sigma)^{-1})$ ,

$\gamma :=\max(1, h’, \log a_{1}, \ldots, \log a_{r}, \log\delta)$ .
Then we have the following result.
Lemma 2.2. With the above notation, whenever we have $\Lambda\neq 0$ , we obtain

$| \Lambda|_{p}>\exp(-c_{5}\cdot\delta^{2r+2}\cdot\max(\beta, \gamma)\cdot\gamma^{r+1}\cdot a_{1}\cdots a_{r}\cdot\log\sigma)$.
Remark 2.1. The dependance on the prime $p$ appears in the definition of $\sigma.$

Remark 2.2. Note that the definition of additive height in [11] differs by a factor
2 from (2), therefore this difference also occurs in the definition of $\beta$ comparing to
the corresponding parameter $\log B$ of [11].

For any sufficiently large $N$ , the inequality of Lemma 2.2 can be turned into
(13) $\exp(-c_{6}\cdot\log N)\leq|t’|_{p},$

with $c_{6}=c_{5}\cdot\delta^{2r+2}\cdot\gamma^{r+1}\cdot a_{1}\cdots a_{r}\cdot\log\sigma.$
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Remark 2.3. Note that in contrast to the lower bound of David and that of R\’emond
and Urfels, estimation (13) does not contain the factor log log $N.$

Comparing the inequalities (12) and (13), we can derive an upper bound for $N$

in the $p$-adic case, as well.

2.3. LLL-reduction. Comparing the inequalities (6) and (8), we get

$c_{3}N^{2} \leq c_{4}h^{r+1}\prod_{i=1}^{r}\log V_{i}(\log(\frac{r+1}{2}gN)+1)(\log\log(\frac{r+1}{2}gN)+1)^{r+1}+$

$+ \log c_{2}-\log(\frac{\omega_{1}}{g\sqrt{8}})$

in the complex case and comparing the inequalities (12) and (13), we get
$c_{3}N^{2}\leq c_{6}\log N+\log c_{2}$

in the $p$-adic $c$ase. In both cases, for sufficiently large $N$ , the left hand side exceeds
the right hand side. Hence we obtain an initial upper bound $N\leq N_{0,p}$ for all $p\in S.$

However, this initial bound is too large to determine all $S$-integer solutions of the
given equation. Therefore we have to reduce it somehow. Actually, we use the
$LLL$-algorithm to do that. Again, we have to distinguish between the complex and
the $p$-adic case. As we do not know which $p$ satisfies our assumption (4), we need
to consider all possibilities. For the application of the $LLL$-algorithm, we refer to
the paper of Smart [22].

After carrying out the $LLL$ reduction as many times as it improves the upper
bound for $N$ , in case of all $p\in S$ , we have to choose the worst of them to be $N_{final}.$

Then we have to check the $(2N_{final}+1)^{r}$ possible points whose coordinates satisfy
$|n_{i}|\leq N_{final},$ $(i=1, \ldots, r)$ , whether they are $S$-integral points.

3. EXAMPLE
We illustrate the efficiency of our method through an example.

Theorem 3.1. All $\{$ 101, 103, 107, $\infty\}$ -integral solutions of the equation $y^{2}=x^{3}-$

$203472x+18487440$ are contained in Table 1.

Table 1: $S$-integral points $P=(x, y)=(_{\zeta}4_{2}, \not\in_{\zeta})=$

$\Sigma_{i=1}^{5}n_{i}P_{i}$ on $E$ : $y^{2}=x^{3}-203472xA18487440$ for $S=$
$\{101, 103, 107, \infty\}$
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Table 1–continued from previous page

Remark 3.1. For every $S$ -integral point $P=(x, y)$ on $E$ , of course -$P=(x, -y)$
is an $S$ -integral point, too. Because of the large number of $S$ -integral point pairs, $we$

listed only one from each pair in Table 1, in particular the one with positive second
coordinate.

Proof of Theorem 3.1.
Let $E$ denote the curve

$E$ : $y^{2}=x^{3}-203472x+18487440$

and set
$S=\{101,103,107, \infty\}.$

The rank of $E$ is 5 and a basis of the Mordell-Weil group is

$P_{1}=(36,3348) , P_{2}=(-36,5076) , P_{3}=(432,3348)$ ,

$P_{4}=(-216,7236) , P_{5}=(468,5076)$ .
First we compute the basic data of our curve. We find that the torsion subgroup is
trivial, therefore (1) reads as

$P=n_{1}P_{1}+\ldots+n_{5}P_{5}.$

100



TABLE 2. The data computed to get an initial upper bound for $N$ in
the $p$-adic case for $p\in\{101,103,107\}.$

TABLE 3. The new bound for $N$ in each case of $p$ after the ith step
of reduction is $N_{i,p}.$

As usual, let $N= \max(|n_{1}|, \ldots|n_{5}|)$ . We compute the Tamagawa numbers $c_{101}=$

$c_{103}=c_{107}=1$ and
$\mathcal{N}_{101}=108, \mathcal{N}_{103}=104, \mathcal{N}_{107}=96.$

Using these data we can compute the numbers $m_{p}$ and obtain that $m_{p}=\mathcal{N}_{p}$ for
$p\in\{101,103,107\}.$

Next we derive an upper bound of shape (6). We find that $c_{1}=3.575681\ldots,$
$\lambda_{1}=0.464930\ldots$ and $s=4$ . Therefore we arrive at the estimate

$\frac{1}{|x|_{p}^{1/2}}\leq 2.444694\cdot\exp(-0.11623263\cdot N^{2})$ .

Now we need to compute a lower bound for each value of $p$ . For $p=\infty$ , we get

$\frac{1}{|x|_{\infty}^{1/2}}\geq 0.09598\cdot\exp(-2.125933\cdot 10^{167}\cdot(\log 3N+1)(\log\log 3N+1)^{6})$.

Comparing the latter two estimates, we get $N\leq N_{0,\infty}=4.860551\cdot 10^{8}7$ . In the
$p$-adic case we compute all data contained in Table 2.

Therefore we get
$N_{0,101}=4.4807\cdot 10^{72}, N_{0,103}=3.7164\cdot 10^{72}, N_{0,107}\leq 2.4984\cdot 10^{92}.$

The results obtained after each step of LLL-reduction are contained in Table 3.
Recall, that we start the reduction with $N_{0,p}$ in the lst step and then in every
further step we repeat the reduction with using the value obtained in the previous
step for every $p\in S$ . It turns out that 15 cannot be improved further. Therefore
we have to check $(2\cdot 15+1)^{5}=31^{5}$ points whether they are $S$-integral points. We
find exactly those ones contained in Table 1.
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