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Chapter 1

Introduction

Petri nets are graphical and mathematical modeling tools applicable to many systems.
They are promising tools for describing and studying information processing systems that
are characterized as being concurrent, asynchronous, distributed, parallel, nondetermin-
istic, and/or stochastic.

However, in many applications modeling by itself is of limited practical use if one cannot
analyze the modeled system. As means of gaining a better understanding of the Petri
net model, the decidability and computational complexity of typical automata theoretic
problems concerning Petri nets have been extensively investigated in the past four decades.

A language over an alphabet X is defined as a subset of the free monoid X∗ generated
by X. A Language of our interest is mainly determined by some procedure that is,
computation and derivation, and so on. By applying the concept of a automaton to a
Petri net, the Petri net generates a language, called a Petri net language, which is at
most context-sensitive. Originally the motivations are to check and validate a system by
analyzing the language generated by all possible sequences (words) of system actions, and
to automatically synthesis a Petri net that accepts only words of a specific language.

Recently many classes of languages based on Petri nets have been eagerly devised and
investigated. For example, some regulated grammars with Petri nets are introduced.
Their powers are interesting in the sense that they are often distinct from the classical
language classes.

A language L is called a code if it freely generates the submonoid L∗ in X∗. A prefix
code L is a code which no word in L is a proper left factor of any other word in L.
G.Tanaka defined four types of prefix codes based on Petri nets. He named them an
S-type, a D-type, a C-type and a B-type Petri net code, respectively[54].

Chapter 2 plays roles of the introduction for us to the basic notion and of the reference
of definitions and notation throughout the literature. These contents is mainly owed to
[40], [55]. At first, we introduce the definition of a Petri net and its related concepts
and notations. Next, we explain the basic concepts of automata and formal languages.
After then, we introduce four types of prefix codes generated by Petri nets and their
fundamental properties[54].
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Chapter 3 is spent on Petri net structures representing finite groups, which are treated
in [29, 28]. This is a joint work with Professor Genjiro Tanaka and Professor Toshimitsu
Inomata. The problem of automorphism groups of nets is described. We construct a
net, called a transformation net, from a transformation semigroup in a similar way that
we construct an automaton without outputs from a transformation semigroup. It is well
known that for a given group G there exists an automaton such that its automorphism
group is isomorphic to G. This fact is proved by using the property that the right regular
representation of a group G commutes with the left regular representation of G as a
permutation group on G. An analogous method is applied to prove our main result which
states that for a given finite group G there exists a net N such that its automorphism
group Aut(N) is isomorphic to G. That is, we construct a transformation net which
corresponds to the right regular representation of a given group G and we show that
Aut(N) is isomorphic to G by making some arc-weight of the net in certain conditions.

In Chapter 4 we discuss only about C-type Petri net codes (CPN code, for short)
introduced in Chapter 2. This is a joint work[23] with Professor Masami Ito. A CPN
code is the set of all minimal sequences with respect to the prefix order among the firing
sequences through which the state reach from the positive initial marking to a nonpositive
marking . A CPN code of course becomes a prefix code. A CPN code is called a maximal
CPN code if it is a maximal prefix code. In a Petri net which generates a maximal CPN
code, each transition is enable iff every reachable marking is positive. We will investigate
various properties of maximal CPN codes. Moreover, we will prove that a CPN code is a
context-sensitive language in two different ways.

In Chapter 5 we treat the open question raised in Chapter 4. This chapter is completely
my own work. A CPN code generated by some input-ordinary Petri net is called an
input-ordinary CPN code and obviously a maximal CPN code. The problem is whether
iCPNC = mCPNC or not, where iCPNC and mCPNC means the families of maximal
CPN codes and input-ordinary CPN codes, respectively. It is easily seen that the latter
is a subfamily of the former. But the reverse inclusion is still open in a general Petri net.
So we show that the inclusion is true in restricted cases, i.e., the case that the number of
places is ≤ 2, and the case that the number of transitions is equal to 1. The general case
still remains open.



Chapter 2

Definitions and Notation

This chapter plays roles of the introduction for us to the basic notion and of the reference
of definitions and notation throughout the literature. At first, we introduce the definition
of a Petri net and its related concepts and notation. These contents is mainly owed to
[40],[55]. Next, we explain the basic concepts of automata and formal languages. After
then, we introduce four types of prefix codes generated by Petri nets and their fundamental
properties[54].

2.1 Petri net

We introduce the definition of a Petri net and its related concepts and notation.

2.1.1 Definitions and Notation

A Petri net is viewed as a particular kind of directed graph, together with an initial
state µ0, called the initial marking. The underlying graph N of a Petri net is a directed,
weighted, bipartite graph consisting of two kinds of nodes, called places and transitions,
where arcs are either from a place to a transition or from a transition to a place.

DEFINITION 2.1.1 (Petri net) A Petri net PN is a 4-tuple, PN = (P, T, W, µ0)
where
(1) P = {p1, p2, . . . , pm} is a finite set of places,
(2) T = {t1, t2, . . . , tn} is a finite set of transitions,
(3) W : E → {0, 1, 2, 3, . . .}, i.e.,W ∈ N0

E, is a weight function, where E = (P × T ) ∪
(T × P ),
(4) µ0 : P → {0, 1, 2, 3, . . .}, i.e., µ0 ∈ N0

P , is the initial marking,
(5) P ∩ T = ∅ and P ∪ T 6= ∅.

When a Petri net structure (net, for short) N = (P, T, W ) without any specific initial
marking is denoted by N , a Petri net with a given initial marking µ0 is denoted by (N,µ0).

¤
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Remark A Petri net is often given as a 5-tuple (P, T, F, W, µ0) adding the set F of
flow relations, i.e., arcs with positive weights: F = {(p, t) |W (p, t) > 0}∪{(t, p) |W (t, p) >
0} ⊆ (P × T ) ∪ (T × P )[40]. Then, a Petri net structure is also given as 4-tuple N =
(P, T, F, W ). ¤

In graphical representation, places are drawn as circles, transitions as bars or boxes.
Arcs are labeled with their weights(positive integers), where a k-weighted arc can be
interpreted as the set of k parallel arcs. Labels for unity weight are usually omitted. A
marking (state) assigns a nonnegative integer k to each place. If a marking assigns a
nonnegative integer k to place p, we say that p is marked with k tokens. Pictorially, we
put k black dots (tokens) in place p. A marking is denoted by µ, an n-dimensional row
vector, where n is the total number of places. The p-th conponent of µ, denoted by µ(p),
is the number of tokens in place p.

EXAMPLE 2.1.1 Figure 2.1 shows a graphical representation of a Petri net. This
Petri net PN = (P, T, W, µ0) represents a process that a bicycle is assembled from one
boby and two wheels. The places are P = {body,wheel,bicycle} and the transitions
are T = {assembly}. Arcs f1 = (body, assembly), f2 = (wheel, assembly) and
f3 = (assembly,bicycle) have the weights of 1, 2 and 1, respectively. The other arcs
have the weights of 0, and they are not usually drawn in the picture. Note that the weights
of f1 and f3 is omitted since they are unity. That is, W (f1) = W (f3) = 1,W (f2) = 2,
W (f) = 0 for each f ∈ (P × T ) ∪ (T × P ) \ {f1, f2, f3}.

The initial marking µ0 is often denoted by a vector µ0 = (4, 3, 0). The place body is
marked with three tokens. Then we usually put the number of tokens in a place, instead
of black dots(tokens). ¤

In Chapters 4 and 5, we will discuss an input-ordinary Petri net defined in the following
definition. The concept of an input-ordinary Petri net is deeply related to the maximality
of a Petri net code.

DEFINITION 2.1.2 (ordinary Petri net) A Petri net PN = (P, T, W, µ0) is called
input-ordinary (resp., output-ordinary) if W (p, t) ≤ 1 (resp., W (t, p) ≤ 1) for each p ∈ P
and t ∈ T . A Petri net is called ordinary if it is input-ordinary and output-ordinary. ¤

DEFINITION 2.1.3 (positive marking) A marking is positive if it is a function
from P to N0 \ {0}. ¤

The behavior of many systems can be described in terms of system states and their
changes. In order to simulate the dynamic behavior of a system, a state or marking in
a Petri net PN = (P, T, W, µ) is changed according to the following transition (firing)
rule:
(1) A transition t ∈ T is said to be enabled (under the marking µ or under the Petri
net PN) if W (p, t) ≤ µ(p) for every place p ∈ P , where W (p, t) is the weight of the arc
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Figure 2.1: Graphical representation of a Petri net

from p to t. Then each input place p of t is marked with at least W (p, t) tokens. An
enabled transition may or may not fire (depending on whether or not the event actually
takes place).
(2) A firing of an enabled transition t removes W (p, t) tokens from each input place p
of t, and adds W (t, p) tokens to each output place p of t. As a consequence of the firing,
the current marking µ is replaced with the following new marking µ′:

µ′(p) = µ(p) − W (p, t) + W (t, p) for ∀p ∈ P. (2.1)

For the equation (2.1), we often use the notation µ [t>µ′ (or (N, µ) [t> (N, µ′), to
emphasize the underlying net).
(3) A sequence σ = t1t2 . . . tn of transitions is said to be a firing sequence of a Petri net
PN = (P, T, W, µ) if µ0 = µ, µn = µ′, and µi−1 [ti> µi for each i (1 ≤ i ≤ n). Then
we often also use the notation µ [σ>µ′. In particular, a firing sequence σ is said to be
positive if all µi (1 ≤ i ≤ n) are positive.
(4) A marking µ is said to be reachable from the initial marking µ0 if there exists a firing
sequence σ such that µ0 [σ>µ. Then µ is said to be reachable from µ0 through σ. The set
of all possible markings reachable from µ0 in a Petri net (N,µ0) is denoted by R(N,µ0)
or simply R(µ0). The set of all possible firing sequences from µ0 in a Petri net (N,µ0)
is denoted by L(N,µ0) or simply L(µ0). The set of all possible positive firing sequences
from µ0 in (N,µ0) is denoted by L+(N,µ0) or simply L+(µ0).

The transition function (or next-state function) δPN of the Petri net PN = (N,µ) is
defined by

δPN(µ0, σ) = µ′ if µ0 [σ>µ′,
δPN(µ0, σ) is undefined if µ′ 6∈ R(µ0).

We may denote δPN by δ if no confusion is possible.
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EXAMPLE 2.1.2 Consider the Petri net PN = (P, T, W, µ0) shown in Figure 2.1.
The transition assembly is enabled under the initial marking µ0 = (4, 3, 0). Once the
transition fires, the marking changes from µ0 to µ1 = (3, 1, 1). Then assembly is not
enabled under µ1 because W (wheel, assembly) = 2 ≤ µ(wheel) = 1 does not hold.
They cannot assemble any more bicycle due to lack of wheels. So the sequences 1(the
empty sequence) and assembly are firing sequences of PN but assembly assembly
isn’t a firing sequence. As concerns the next-state function δ of PN , δ(µ0, 1) = (4, 3, 0),
δ(µ0, assembly) = (3, 1, 1), δ(µ0, assembly assembly) is undefined. ¤

For ease of expression, the following notations will be used extensively throughout the
literature. Let (P, T,W, µ) be a Petri net, p ∈ P be a place, t ∈ T be a transition and σ
be a transition sequence. We implicitly assume that some orderings p1 ≤ p2 ≤ . . . ≤ pn

and t1 ≤ t2 ≤ . . . ≤ tm on P = {p1, p2, . . . , pn} and T = {t1, t2, . . . , tm} are established,
respectively.

∆(t) is the displacement of t, that is, n-dimensional row vector whose i-th component
is the value of −W (pi, t) + W (t, pi). The i-th component of ∆(t) is often denoted
by ∆(t)(pi). We denote Σk

i=1∆(si) by ∆(σ) where σ = s1s2 . . . sk (si ∈ T ). That is,
∆(σ) = δ(µ0, σ) − δ(µ0, 1) if σ is a firing sequence of the Petri net.

We use the following symbols for a pre-set and a post-set of a place p ∈ P or a transition
t ∈ T :

• t = {p ∈ P |W (p, t) > 0} is the set of input places of t.

t • = {p ∈ P |W (t, p) > 0} is the set of output places of t.

• p = {t ∈ T |W (t, p) > 0} is the set of input transitions of p.

p • = {t ∈ T |W (p, t) > 0} is the set of output transitions of p.

A transition t (a) without any output place (i.e., • t 6= ∅ and t • = ∅ ) (b) with at least
one input places and at least one output places (i.e., • t 6= ∅ and t • 6= ∅), (c) without
any input place(i.e., • t = ∅ and t • 6= ∅), or (d) without any input place and any output
place (• t ∪ t • = ∅) is called a sink, transform, source or isolated transition, respectively.

Note that a source transition is unconditionally enabled, and that the firing of a sink
transition consumes tokens, but does not produce any.

Similarly a place p is called (a) sink, (b) transform, (c) source or (d) isolated place if
• p 6= ∅ and p • = ∅, • p 6= ∅ and p • 6= ∅, • p = ∅ and p • 6= ∅ or • p∪ p • = ∅, respectively.

2.2 Languages and Codes

We explain terms and notations related to the formal language theory in Section 2.2.1,
and codes in Section 2.2.2
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Figure 2.2: Classification of transitions

2.2.1 Formal Languages

We call a (finite or infinite) set of letters (or symbols) an alphabet. Through the literature
we use X as an alphabet only if we don’t specify specially.

A finite sequence of letters in X is called a word (or string) over X. The empty word,
that is, the word contains no letter, will be denoted by 1. The number of letters occurring
in a word x is called the length of x and denoted by |x|. In particular, |1| = 0 and
|x| = 1 ⇐⇒ x ∈ X.

The set of all words over X attended with a binary associative operation · defined by
juxtaposition, sometimes called concatenation;

(a1a2 . . . am) · (b1b2 . . . bn) = a1a2 . . . amb1b2 . . . bn,

forms the semigroup with the identity 1, that is, is the monoid generated by X:

X∗ = 1 ∪ X ∪ X2 ∪ . . . ∪ Xn · · · .

The base of X∗ is obviously the alphabet X. Therefore X∗ is free, called the free monoid
generated by X. X+ = X∗ \ 1 is a semigroup, called the free semigroup generated by X.

A subset L of X∗ is called a language over X. A Language of our interest is mainly
produced by a mechanical way, that is, computation and derivation, and so on. Here we
explain generative grammars which produce languages.

Chomsky grammars

A phase-structure (or type 0) grammar is a quadruple G = (N,X, S, P ), where N,X
are disjoint alphabets, S ∈ N , P ⊆ V ∗NV ∗ ×V ∗, for V = N ∪X. The elements of N are
called nonterminal symbols, those of X are called terminal symbols, S is the start symbol
or the axiom, and P is the set of production rules; (u, v) ∈ P is written in the form u → v.

For x, y ∈ V ∗ we write x ⇒G y iff x = x1ux2, y = x1vx2, for some x1, x2 ∈ V ∗ and
u → v ∈ P . If G is understood, we write x ⇒ y. The reflective and transitive closure
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of the relation ⇒ is denoted by ⇒∗. The language generated by G is {x ∈ X∗ |S ⇒∗ x},
denoted by L(G).

A phase-structure grammar G = (N,X, S, P ) is called:

context-sensitive(or type 1) if each u → v ∈ P has u = u1Au2, v = u1xu2 for
u1, u2 ∈ V ∗, A ∈ N, x ∈ V +.

context-free (or type 2) if each production u → v ∈ P has u ∈ N .

linear if each production u → v ∈ P has u ∈ N and v ∈ X∗NX∗.

left-linear (or type 3) if each rule u → v ∈ P has u ∈ N and v ∈ X∗ ∪ NX∗.

regular if each rule u → v ∈ P has u ∈ N and v ∈ X ∪ XN ∪ {λ}.

In context-sensitive grammars, a production S → λ is allowed, providing S does not
appear in the right-hand members of rules in P .

A language generated by phase-structure (resp., context-sensitive, context-free, regular)
grammar is called a phase-structure (resp., context-sensitive, context-free, regular) lan-
guage and can be accepted by a Turing machine (resp., a linear-bounded Turing machine,
a pushdown automaton, a finite automaton).

We denote by RE,CS,CF, LIN,REG the family of languages generated by phase-
structure, context-sensitive, context-free, linear and regular grammars, respectively.

The well-known Chomsky hierarchy, that is, the following strict inclusion, holds: REG ⊂
LIN ⊂ CF ⊂ CS ⊂ RE.

2.2.2 Codes

Let X∗ be the free monoid generated by an alphabet X. A code is the base of a free
submonoid M in X∗, and conversely it freely generates the submonoid M in X∗. It is
formally defined as follows:

A nonempty language C is a code if for any two integers n, m ≥ 1 and any words
u1, u2, · · · , un, v1, v2, · · · , vm ∈ C,

u1u2 · · · un = v1v2 · · · vm

implies
n = m and ui = vi for i = 1, · · · , n.

If for two words w, u ∈ X∗ there exists some word v ∈ X∗ with w = uv (resp., w = vu),
then u is called a prefix (resp., suffix) or a left factor (resp., right factor) of w, and denoted
by u ≤p w (resp., u ≤s w). A prefix u (resp., a suffix u) of w is called proper if u 6= w,
and denoted by u <p w (resp., u <s w). A word u is a subword of a word w if there exist
words v1 and v2 (possibly empty) such that w = v1uv2.

A language L becomes a code, called a prefix code, if u, uv ∈ L implies v = 1 (equiva-
lently L∩LX+ = ∅). A suffix code is defined left-right dually. A prefix and suffix code is
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called a bifix code. A language L becomes a bifix code, called a infix code if u, v1uv2 ∈ L
implies v1 = v2 = 1. A nonempty subset U of Xn = {w | |w| = n} for some positive
integer n is a infix code, called a uniform code. Especially the uniform code U = Xn is
called a full uniform code. These codes have the following strict implication:

full uniform ⇒ uniform ⇒ infix ⇒ bifix ⇒ prefix/suffix.

A code (resp., prefix code) C ⊂ X+ is maximal (resp., maximal prefix) in X if C is not
included by any other code (resp., prefix code) over X.

Remark A maximal and prefix code is clearly a maximal prefix code because it is
not included in any code by the maximality. But a maximal prefix code is a prefix code,
but is not necessarily a maximal code[2].

2.3 Petri Net Codes

G.Tanaka defined four types of prefix codes, called S-type, D-type, C-type and B-type
Petri net codes, respectively, based on Petri nets[54]. Note that these codes is a Petri net
language whose element is a firing sequence itself and labelling function is the identity
mapping. Otherwise a obtained language cannot form a code. In this section we explain
their definitions and summarize fundamental properties of these codes.

DEFINITION 2.3.1 Let PN = (N, µ0) = (P, X, W, µ0) be a Petri net. The set

Stab(µ0) = {w |w ∈ L(µ0) and δ(µ0, w) = µ0}
forms a free submonoid of X∗. The base of Stab(µ0), that is

(Stab(µ0) \ {1}) \ (Stab(µ0) \ {1})2,

is said to be an S-type Petri net code (SPN code or SPNC, for short) if it is not empty,
and denoted by S(PN) or S(N, µ0). ¤

Since S(PN, µ0)X
+∩S(PN, µ0) = ∅, S(PN, µ0) is a prefix code over X. The following

set D(PN, µ0) is a subset of S(PN, µ0), so it is also a prefix codes.

DEFINITION 2.3.2 Let PN = (N, µ0) = (P, X, W, µ0) be a Petri net with a positive
marking µ0. The set of all positive firing sequences of S(PN, µ0) is said to be a D-type
Petri net code (DPN code or DPNC, for short), and denoted by D(PN) or D(N, µ0). ¤

.

EXAMPLE 2.3.1 Let PN = (P, T,W, µ0) be a Petri net where µ0 = (2, 4) shown
in Figure 2.3. Observing the reachability graph of PN , we obviously have Stab(µ0) =
{a3b, a2ba}∗ and S(PN) = {a3b, a2ba}. An element in S(PN) is a nonempty minimal
word in Stab(µ0) with respect to the prefix order ≤p. Since an element in D(PN) is a
positive firing sequence σ in S(PN) which for any prefix u of σ δ(µ0, u) must be positive,
a3b is in D(PN) but a2ba is not. Hence, D(PN) = {a3b}. ¤
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Figure 2.3: Petri net and its related codes

DEFINITION 2.3.3 Let PN = (N, µ0) = (P, X, W, µ0) be a Petri net with a pos-
itive marking µ0. By C(PN) or C(N, µ0) denoted the set of all sequences w ∈ L(µ0)
satisfying the following conditions:

(1) δ(µ0, w) is not a positive marking, i.e., w ∈ L(µ0) \ L+(µ0).
(2) δ(µ0, v) is a positive marking for any proper prefix v of w i.e., v ∈ L+(µ0). ¤

DEFINITION 2.3.4 Let PN = (N, µ0) = (P, X, W, µ0) be a Petri net with a posi-
tive marking µ0. By B(PN) or B(N, µ0) denoted the set of all sequences w ∈ C(PN, µ0)
satisfying δ(µ0, v) 6= µ0 for any prefix v(6= 1) of w . ¤

.

By the definition 2.3.3, C(PN) is obviously a prefix code over X if it is not empty. Since
the set B(PN) is a subset of the prefix code C(PN), so that B(PN) is also a prefix code
over X. Then C(PN) and B(PN) are said to be a C-type Petri net code (CPN code or
CPNC, for short) and B-type Petri net code (BPN code or BPNC, for short), respectively.

The following proposition shows the fundamental relationship among a BPN code, a
CPN code and a DPN code.

PROPOSITION 2.3.1 [54]Let PN = (P, X, W, µ0) be a Petri net with a positive
marking µ0. Then

C(PN) = D(PN)∗B(PN).

¤
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EXAMPLE 2.3.2 Again let PN = (P, T,W, µ0) be a Petri net where µ0 = (2, 4) shown
in Figure 2.3. C(PN, µ0) = {a3b, a2ba}∗{a4, a2b}. Noting that δ(µ0, a

3b) = δ(µ0, a
2ba) =

µ0, Only elements a4 and a2b in C(PN) are in B(PN), the others are not, where δ is the
next-state function of the Petri net. ¤

The family of SPN codes (resp., DPN codes, CPN codes, BPN codes) is denoted by
SPNC (resp., DPNC, CPNC, BPNC). The following inclusions are obvious.

DPNC ⊆ SPNC and BPNC ⊆ CPNC.

We will discuss the maximality of CPN codes in the following two chapters. Here we
prepare the related terminologies and notations. A CPN code is said to be a maximal
C-type Petri net code (maximal CPN code or mCPNC, for short) if it is a maximal prefix
code. The family of all maximal CPN codes is denoted by mCPNC.

A CPN code C is said to be a input-ordinary C-type Petri net code (input-ordinary
CPN code or iCPNC, for short) if C = C(PN) for some input-ordinary Petri net PN .
The family of all input-ordinary CPN codes is denoted by iCPNC.

Since an input-ordinary CPN code is clearly an maximal CPN code, we have the inclu-
sion relation iCPNC ⊆ mCPNC. The following problem remains open.

【Problem】mCPNC ⊆ iCPNC ?

Since it is too difficult to solve this problem in general Petri nets, in Chapter 5 we prove
that the problem is solved affirmatively in some restricted Petri nets.

The notion of maximality of a CPN code is very important in relation to liveness in
the following sense. Let C(PN) 6= ∅, PN = (P,X,W, µ0) with a positive marking µ0

be a maximal CPN code. If µ ∈ L+(µ0), that is, µ is reachable from µ0 by a positive
firing sequence, then every transition is enable at the marking µ. In other words, the
assumption is equivalent to u ∈ C(PN)(X+)−1, that is, u is a proper prefix of C(PN).



Part II

New Results of the Dissertation

14



Chapter 3

Automorphism Groups of Nets

In this chapter we discuss the problem of automorphism groups of nets [29]. We construct
a net called a transformation net from a transformation semigroup in a similar way to how
we construct an automaton without outputs from a transformation semigroup[10]. It is
well known that for a given group G there exists an automaton such that its automorphism
group is isomorphic to G. This fact is proved by using the property that the right regular
representation of a group G commutes with the left regular representation of G as a
permutation group on G. An analogous method is applied to prove our main result which
states that We slightly touch on the generalization of the right regular representation
of a group. That is, we construct a transformation net which corresponds to the right
regular representation of a given group G and we show that Aut(N) is isomorphic to G
by making some arc-weight of the net in certain conditions.

3.1 Transformation Nets

In this section, we define an automorphism of a net and a net called a transformation net.
We represent a finite group by using some transformation net.

DEFINITION 3.1.1 A net is a triple (P, T, W ) satisfying the following conditions (i)
and (ii).

(i) P and T are finite nonempty sets with P ∩ T 6= ∅. An element of P (resp., T ) is
called a place (resp. a transition).

(ii) W : (P ×T )∪ (T ×P ) → {0, 1, 2, · · ·} is called a weight function. Moreover, a ∈ F
iff W (a) > 0. ¤

The subset F of (P × T ) ∪ (T × P ) is called the flow relation of a net (P, T, W ) if
F = {(p, t) ∈ P × T |W (p, t) > 0} ∪ {(t, p) ∈ T × P |W (t, p) > 0}. An element of F is
called an arc.

DEFINITION 3.1.2 Let N1 = (P1, T1, W1) and N2 = (P2, T2, W2) be nets, and let
α : P1 → P2 and β : T1 → T2 be bijections. We define the mapping (α, β) : (P1 × T1) ∪
(T1 × P1) → (P2 × T2) ∪ (T2 × P2) by

15
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(α, β)(a) =

{
(α(p), β(t)) if a = (p, t) ∈ P1 × T1,
(β(t), α(p)) if a = (t, p) ∈ T1 × P1.

If W2((α, β)(a)) = W1(a) for all a ∈ (P1 × T1) ∪ (T1 × P1), then (α, β) is called an
isomorphism of N1 onto N2. An isomorhism is said to be an automorphism of N1 if
N1 = N2. ¤

The set Aut(N) of all automorphisms of a net N = (P, T, W ) is closed under the
multiplication defined by

(α1, β1) · (α2, β2) = (α1 · α2, β1 · β2).

Thus Aut(N) forms a group with the identity (1P , 1T ), where 1P and 1T are the identity
mappings of P and T , respectively.

DEFINITION 3.1.3 A net N = (P, T, W ) is said to be transformation type if
(i) P is the union of nonempty sets Q and S with Q ∩ S = ∅. We call the element of

Q (resp., S) an inner (resp., source) place.
(ii) For each t ∈ T ,

S ∩ t• = ∅ and | • t ∩ Q| = | • t ∩ S| = |Q ∩ t • | = 1,

where |X| is the cardinality of a set X.
(iii) For each (q, s) ∈ Q × S, there exists a unique t ∈ T such that • t = {q, s}.

¤

After this, a transformation type net is called transformation net simply.
Let S be a transformation semigroup on a set Q, then we can define a transformation

net N = (Q ∪ S, Q × S, W ), where F is the flow relation of it and

F = {(p, (p, s))|p ∈ Q, s ∈ S} ∪ {(s, (p, s))|p ∈ Q, s ∈ S}∪
{((p, s), s(p))|p ∈ Q, s ∈ S}.

Conversely, let N = (Q ∪ S, T, W ) be a transformation net, and let s ∈ S be a source
place. For each q ∈ Q there exists a unique t ∈ T such that (q, t), (s, t) ∈ F . Therefore
we can define a transformation s′ on Q by s′ : q 7→ p, where t • = {p}.

Let G be a group. For any y ∈ G, y′ denotes the transformation defined by y′ : G → G :
x 7→ xy, and by G′ we denote the group {y′|y ∈ G} with the multiplication of y′, z′ ∈ G′

defined by y′ · z′(x) = z′(y′(x)). It is obvious that G′ is isomorphic to G.

DEFINITION 3.1.4 Let G be a finite group. A net N = (G ∪G′, G×G′,W ) is called
a transformation net of G if It flow relation F satisfies

F = {(x, (x, y′))|x ∈ G, y′ ∈ G′} ∪ {(y′, (x, y′))|x ∈ G, y′ ∈ G′}∪
{((x, y′), xy)|x, y ∈ G, y′ ∈ G′}.

¤
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Figure 3.1: Structure of the Transformation Net of G

Besides, no restriction placed on a weight function W . In Figure 3.1, we show the
structure of the net representing G, where circles, a bar, and arrows denotes places, a
transition, and arcs respectively.

3.2 Automorphism Groups of Nets

In this section we construct a transformation net which corresponds to the right regular
representation of a given group G and we show that for an arbitrarily finite group G there
exists a net N such that Aut(N) is isomorphic to G by introducing appropriate weights
of arcs in the net.

First of all, it is easily verified that a set of all the automorphisms of a net N =
(P, T, W ) is a group with the identity (1P , 1T ), where 1P and 1T are identity mappings
of P and T , respectively.

THEOREM 3.2.1 Let G be a finite group and let N1 = (G ∪ G′, G × G′, W1) be a
transformation net of G, where the weight function W1 is defined as follows:

W1: For each x ∈ G and each y′ ∈ G′, W1(x, (x, y′)) = W1((x, y′), xy) = 1 and
W1(y

′, (x, y′)) = ρ(y′), where ρ : G′ → {2, 3, · · ·} is injective.
Then the automorphism group Aut(N1) of N1 is isomorphic to G. ¤

The following THEOREM 3.2.2 is another expression of THEOREM 3.2.1.

THEOREM 3.2.2 For a given finite group G, there exists a net N such that its
automorphism group Aut(N) is isomorphic to G. ¤

Since an automorphism group Aut(G) of a finite group G is also a finite group, we
have the following corollary by THEOREM 3.2.2. However, in the proof of the following
corollary we construct another net in a different way shown in the proof of THEOREM
3.2.1.
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The construction method of the net in the proof of COROLLARY 3.2.1 is effective for
the case that G is an automorphism group of some group H and the order of H is smaller
than that of G, because we can construct the transformation net N of H which has fewer
number of places and transitions than that of the transformation net of G.

COROLLARY 3.2.1 For a finite group G there exists a net N such that its auto-
morphism group Aut(N) is isomorphic to Aut(G). ¤

3.3 Remarks and Further Works

The notion of the automorphism group Aut(N) of a Petri net structure N is newly
introduced . We show the main theorem that for a given finite group G there exists a
Petri net structure N , called a transformation net, such that Aut(N) is isomorphic to G.
The structure N corresponds to the right regular representation of G.

A transformation net is only a Petri net structure without marking. We can consider a
behavior of a Petri net by adding a marking to it. I have had an equivalent condition to
the reachability problem with respect to a transformation net N = (G ∪ G′, G × G′,W ),
where G is the residue group of order n [27].

Let µ and λ be markings with λ(g′) = 0 for any g′ ∈ G′ (we may assume this condition
without loss of generality). Then if µ is reachable from λ, then

(1)
∑
g∈G

µ(g) =
∑
g∈G

λ(g),

(2)
∑
g∈G

g · (µ(g) + µ(g′)) ≡
∑
g∈G

g · λ(g) (mod n).

Though this is just a necessary condition for the reachability. We can compute and
check the conditions (1) and (2) in O(n) time, where n = |G|.

The remaining problem is the reverse implication, that is, whether both (1) and (2)
imply that µ is reachable from λ or not.

.



Chapter 4

Properties of CPN Codes

In this chapter, we consider the language over an alphabet X generated by a given Petri net
with a positive initial marking, called a CPN code. This code becomes a prefix code over
X. We are interested in CPN codes which are maximal prefix codes, called maximal CPN
codes over X. We will investigate various properties of maximal CPN codes. Moreover,
we will prove that a CPN code is a context-sensitive language in two different ways.

4.1 Maximal CPN Codes of the Form Cn

Let D = (P,X,W, µ0) be a Petri net with an initial marking µ0 where P is the set of
places, X is the set of transitions, W is the weihgt function and µ0 ∈ NP is a positive
marking, i.e. µ0(p) > 0 for any p ∈ P . Notice that µ0(p) is meant the number of tokens
at p of the marking µ0.

Let δ be the next-state function of D. A language C is called a CPN code over X
generated by D and denoted by C = C(D) if C = {u ∈ X+ | ∃p ∈ P, δ(µ0, u)(p) = 0,
∀q ∈ P, δ(µ0, u)(q) ≥ 0, and ∀q′ ∈ P, δ(µ0, u

′)(q′) > 0 for u′ ∈ Pr(u) \ {u} where Pr(u) is
the set of all prefixes of u}. Then it is obvious that C = C(D) is a prefix code over X if
C = C(D) 6= ∅. Notice that CPN codes were introduced in [54]. If C is a maximal prefix
code, then C is called an maximal CPN codes over X. Now let u = a1a2 . . . ar ∈ X∗ where
ai ∈ X. Then, for any p ∈ P , by p(u) we denote −∆(u)(p), that is, the negative value at
the place p of the displacement ∆(u) of u, which is the amount of consumed tokens at p
by the firing sequence u.

LEMMA 4.1.1 Let C = C(D) be a finite maximal CPN code where D = (P,X,W, µ0).
By tp we denote µ0(p) for any p ∈ P . For any u, v ∈ C, if there exists a p ∈ P such that
tp = p(u) = p(v), then C is a full uniform code over X, i.e. C = Xn for some n, n ≥ 1. ¤

LEMMA 4.1.2 Let A,B be finite maximal prefix codes over X. If AB is a maximal
CPN code over X, then B is a maximal CPN code over X. ¤

COROLLARY 4.1.1 Let Cn be a finite maximal CPN code over X for some n, n ≥ 2.
Then Ck is a maximal CPN code over X for any k, 1 ≤ k ≤ n. ¤

19
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Now we provide a fundamental result.

PROPOSITION 4.1.1 Let Cn be a finite maximal CPN code over X for some n, n ≥
2. Then C is a full uniform code over X. ¤

COROLLARY 4.1.2 The property being a maximal CPN code over X is not pre-
served under concatenation. ¤

REMARK 4.1.1 We can prove the above corollary in a different way. Let X = {a, b},
let A = {a, ba, bb} and let B = {b, ab, aa}. Then ab, aaa, bbb ∈ AB and |aaa|, |bbb| > |ab|.
By the following lemma, AB is not a maximal CPN code over {a, b}. ¤

LEMMA 4.1.3 Let C ⊆ X+ be a maximal CPN code over X. Then there exists
a ∈ X such that amin{|u||u∈C} ∈ C. ¤

REMARK 4.1.2 If C is an infinite maximal CPN code over X, then PROPOSITION
4.1.1 does not hold true. For instance, let X = {a, b} and let C = b∗a. Then both C and
C2 = b∗ab∗a are maximal CPN codes over X. ¤

4.2 Maximal CPN Codes of the Form AB

We can generalize PROPOSITION 4.1.1 to a maximal CPN code of the form AB as
follows:

PROPOSITION 4.2.1 Let A,B be finite maximal prefix codes over X. If AB is a
maximal CPN code over X, then A and B are full uniform codes over X. ¤

4.3 Constructions of Maximal CPN Codes

In this section, we provide two construction methods of maximal CPN codes.

DEFINITION 4.3.1 Let A,B ⊆ X+. Then by A⊕B we denote the language (∪b∈X

{(Pr(A)\A)¦Bb−1}b)∪(∪a∈X{(Pr(B)\B)¦Aa−1}a) where ¦ is meant the shuffle operation
and Ca−1 = {u ∈ X+|ua ∈ C} for C ⊆ X+ and a ∈ X. ¤

PROPOSITION 4.3.1 Let X = X1∪X2 where X1, X2 6= ∅, X1∩X2 = ∅. If A ⊆ X+
1

is a maximal CPN code over X1 and B ⊆ X+
2 is a maximal CPN code over X2, then

A ⊕ B is a maximal CPN code over X. ¤

EXAMPLE 4.3.1 Let X = {a, b}. Consider A = {a} and B = {bb}. Then both A
and B are maximal CPN codes over {a} and {b}, respectively. Hence A⊕B = {a, ba, bb}
is a maximal CPN codes over X. ¤
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PROPOSITION 4.3.2 Let A,B ⊆ X+ be finite maximal CPN codes over X. Then
A ⊕ B is a maximal CPN codes over X if and only if A = B = X. ¤

REMARK 4.3.1 For the class of infinite maximal CPN codes over X, the situation
is different. For instance, let X = {a, b} and let A = B = b∗a. Then A ⊕ B = b∗a and
A,B and A ⊕ B are maximal CPN codes over X. ¤

PROPOSITION 4.3.3 Let A,B ⊆ X+ be maximal CPN codes over X. Then there
exist an alphabet Y , a maximal CPN code D ⊆ Y + over Y , a λ-free homomorphism h of
Y ∗ onto X∗ such that A ⊕ B = h(D). ¤

THEOREM 4.3.1 The property being a maximal CPN code over X is not preserved
under λ-free homomorphism. ¤

LEMMA 4.3.1 Let C ⊆ X+ be a maximal CPN code over X and let a, b ∈ X. If
bbaa ∈ C, then baba ∈ C. ¤

REMARK 4.3.2 By the above lemma, a maximal prefix code over X having the
property in LEMMA 4.3.1 cannot be necessarily realized by a Petri net. For instance, let
X = {a, b} and let C = {a, ba, bbaa, bbab, bbb}. Then C is a maximal prefix code over X.
However, by LEMMA 4.3.1, it is not a maximal CPN code over X. ¤

Now we introduce another method to construct maximal CPN codes.

DEFINITION 4.3.2 Let A ⊆ X+. By m(A), we denote the language {v ∈ A | ∀u, v ∈
A,∀x ∈ X∗, v = ux ⇒ x = 1}. Obviously, m(A) is a prefix code over X. Let A,B ⊆ X+.
By A ⊗ B, we denote the language m(A ∪ B). ¤

PROPOSITION 4.3.4 Let A,B be maximal CPN codes over X. Then, A ⊗ B is a
maximal CPN code over X. ¤

EXAMPLE 4.3.2 It is obvious that a∗b and (a ∪ b)3 are maximal CPN codes over
{a, b}. Hence a∗b ⊗ (a ∪ b)3 = {b, ab, aaa, aab} is a maximal CPN code over {a, b}. ¤

REMARK 4.3.3 PROPOSITION 4.3.4 does not hold for the class of CPN codes
over X. The reason is the following: Suppose that A ⊗ B is a CPN code over X for
any two CPN codes A and B over X. Then we can show that, for a given finite CPN
code A over X, there exists a finite maximal CPN code B over X such that A ⊆ B as
follows. Let A ⊆ X+ be a finite CPN code over X which is not a maximal CPN code.
Let n = max{|u| |u ∈ A}. Consider Xn which is a maximal CPN code over X. By
assumption, A⊗Xn becomes a CPN code (in fact, a maximal CPN code) over X. By the
definition of the operation ⊗, it can be also proved that A ⊆ A ⊗ Xn. However, as the
following example shows, there exists a finite CPN code A over X such that there exists
no maximal CPN code B over X with A ⊆ B. Hence, PROPOSITION 4.3.4 does not
hold for the class of all CPN codes over X. ¤
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EXAMPLE 4.3.3 Consider the language A = {ab, aaba, aaa} ⊆ {a, b}+. Then this
language becomes a CPN code over {a, b} (see Fig. 4.1). Moreover, it can be proved that
there is no maximal CPN code B over {a, b} with A ⊆ B as follows: Suppose B ⊆ {a, b}+

is a maximal CPN coce with A ⊆ B over X. By LEMMA 4.1.3, b ∈ B or b2 ∈ B. Let
bi ∈ B where i = 1 or 2. Let tp = p(ab) where p ∈ P and P is the set of places of
the Petri net which recognizes B. If p(a) < 0. Then p(b) > tp and hence p(bi) > tp.
This contradicts the fact bi ∈ B. If p(a) > 0, then p(aaba) = p(ab) + 2p(a) > tp. This
contradicts the fact aaba ∈ B as well. Hence p(a) = 0 and p(aab) = tp. However, since
aab is a prefix of aaba ∈ B, p(aab) < tp. This yeilds a contradiction again. Therefore,
there is no maximal CPN code B ⊆ {a, b}+ with A ⊆ B. ¤
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Figure 4.1: Petri net D with C(D) = {ab, aaba, aaa}

REMARK 4.3.4 The set of all maximal CPN codes over X forms a semigroup under
⊗. Moreover, the operation ⊗ has the following properties:

(1) A ⊗ B = B ⊗ A, (2) A ⊗ A = A, (3) A ⊗ X = X.
Consequently, the set of all maximal CPN codes over X forms a commutative band with
zero under ⊗ (for bands, see [5]). ¤

4.4 Rank of CPN Codes

In this section, we will consider the rank and related decomposition of CPN codes.

DEFINITION 4.4.1 Let A ⊆ X+ be a CPN code over X. By r(A) we denote the
value min{|P | |D = (P,X,W, µ0), C(D) = A}. ¤

REMARK 4.4.1 Let A ⊆ X+ be a finite maximal CPN code over X. Then r(A) ≤
|A|. The proof can be done as follows: Let D = (P,X,W, µ0) be a Petri net with a
positive initial marking µ0 such that C(D) = A, and δ the next-state function of D. Let
P ′ = {pu ∈ P |u ∈ A, pu(u) = δ(µ0, u)} ⊆ P . The transition function δ′ can be defined as
δ′(µ|P ′ , a) = δ(µ, a)|P ′ where a ∈ X. Then A = C(D′) and it is obvious that r(A) ≤ |A|.
However, in general this inequality does not hold for a CPN code over X as the following
example shows. In Figure 4.2, C(D) = {aba} but r({aba}) 6= 1 because aba ∈ A if and
only if baa ∈ A for any CPN code with r(A) = 1. ¤
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Figure 4.2: Petri net D with r(L(D)) > 1

Now let A,B ⊆ X+ be maximal CPN codes over X. Then it is easy to see that |A⊗B| ≤
max{|A|, |B|}. Moreover, if A and B are finite, then r(A ⊗ B) ≤ r(A) + r(B).

We define three language classes as follows: CPN = {A ⊆ X+ |A is a CPN code over
X}, mCPN = {A ⊆ X+ |A is an maximal CPN code over X}, iCPN = {A ⊆ X+ |A is
a CPN code over X, ∃D = (P,X,W, µ0),∀p ∈ P, ∀a ∈ X,W (p, a) ≤ 1, C(D) = A}. Then
it is obvious that we have the following inclusion relations: iCPN ⊆ mCPN ⊆ CPN.
It is also obvious that mCPN 6= CPN.

Problem 4.1 Does mCPN = iCPN hold ?

PROPOSITION 4.4.1 Let A ∈ mCPN. Then there exist a positive integer k ≥ 1
and A1, A2, . . . , Ak ∈ CPN such that r(Ai) = 1, i = 1, 2, . . . , k and A = A1⊗A2⊗. . .⊗Ak.
Moreover, in the above, if A ∈ iCPN, then A1, A2, . . . , Ak are in iCPN and context-free.

¤

Problem 4.2 In the above proposition, can we take r(A) as k if A ∈ iCPN?

PROPOSITION 4.4.2 Let A ⊆ X+ be a finite maximal CPN code with r(A) = 1
over X. Then A is a full uniform code over X. ¤

PROPOSITION 4.4.3 Let A ⊆ X+ be a maximal CPN code with r(A) = 1 over X
and let k be a positive integer. Then Ak is a maximal CPN code with r(Ak) = 1 over
X. ¤

PROPOSITION 4.4.4 Let A ∈ iCPN. Then, by PROPOSITION 4.4.3, there exist
A1, A2, . . . , Ak ∈ iCPN such that r(Ai) = 1, i = 1, 2, . . . , k and A = A1 ⊗ A2 ⊗ . . . ⊗ Ak.
Let n1, n2, . . . , nk be positive integers. Then An1

1 ⊗ An2
2 ⊗ . . . ,⊗Ank

k ∈ iCPN. ¤



4.5. Context-sensitiveness of CPN Codes 24

4.5 Context-sensitiveness of CPN Codes

Consider the Petri net D = (P,X,W, µ0) depicted below. Then C(D) ∩ a+b+c+ =
∪n≥1{anbicn+i+1|1 ≤ i ≤ n} is not context-free. Hence C(D) is not context-free. There-
fore, the class of all CPN codes over an alphabet X is not necessary included in the
class of all context-free languages over X. However, in this section, we will prove the
context-sensitiveness of CPN codes.
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Figure 4.3: Petri net which generates a non-context-free language

THEOREM 4.5.1 Let C ⊆ X+ be a CPN code over X. Then C is a context-sensitive
language over X. ¤

Before giving the second proof, we provide a few notations. Let µ1, µ2, . . ., µr and µ be
markings of a Petri net. Then µ = µ1+µ2+ . . .+µr if µ(p) = µ1(p)+µ2(p)+ . . .+µr(p) for
any p ∈ P . Now let D = (P,X,W, µ0) be a Petri net with a positive initial marking µ0.
Let ND = max{W (p, a),W (b, q) | a, b ∈ X, p, q ∈ P} and let MD = max{µ0(p) | p ∈ P}.
By ΩD we denote the set of markings {µ | ∀p ∈ P, µ(p) ≤ MD + 3ND}. Notice that ΩD is
a finite set.

(Sketch of Proof) Let D = (P,X,W, µ0) be a Petri net with a positive marking µ0.
δ is the next-state function of D. We construct the following context-sensitive grammar
G = (V,X,R, S) where V is the set of variables, X is an alphabet, R is a set of productions
(rewriting rules) and S is a start symbol, as follows: V = {S, [δ]}∪ {[w] |w ∈ X2 ∪X3}∪
{[µ] |µ ∈ ΩD} ∪ {[πp] | p ∈ P} and R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪ R6 ∪ R7 ∪ R8, where

R1 = {S → w |w ∈ (X ∪ X2 ∪ X3) ∩ C(D)},
R2 = {S → [δ][µ0]},
R3 = {[δ][µ] → [w][δ][ν][ν ′] |µ ∈ NP ∩ ΩD, w ∈ X2 ∪ X3,

ν + ν ′ = δ(µ,w), ν, ν ′ ∈ ΩD, ∀w′ ∈ Pr(w), δ(µ,w′) ∈ NP},
R4 = {[µ][ν] → [µ′][ν ′] |µ + ν = µ′ + ν ′, µ, ν, µ′, ν ′ ∈ ΩD},
R5 = {[δ][µ] → [w][πp] | p ∈ P, µ ∈ NP ∩ ΩD, w ∈ X2 ∪ X3,

∀w′ ∈ Pr(w) \ {w}, δ(µ,w′) ∈ NP , δ(µ,w)(p) = 0},
R6 = {[πp][µ] → [πp][πp] | p ∈ P, µ ∈ ΩD, µ(p) = 0},
R7 = {[w][πp] → [πp][w] | p ∈ P,w ∈ X2 ∪ X3},
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R8 = {[w][πp] → w | p ∈ P,w ∈ X2 ∪ X3}

Consequently, L(G) = C(D) ¤



Chapter 5

Maximality of CPN Codes

In Chapter 5 we treat the open problem raised in Chapter 4. A CPN code generated by
some input-ordinary Petri net is called an input-ordinary CPN code (iCPNC, for short)
and obviously a maximal CPN code. The problem is whether mCPNC = iCPNC or
not, where mCPNC(resp., iCPNC) means the family of maximal CPN codes (resp.,
input-ordinary CPN codes). It is easily seen that the later is a subfamily of the former.
But the reverse inclusion is still open in a general Petri net. So we show that the inclusion
is true in restricted cases, i.e., the case that the number of places is ≤ 2, and the case
that the number of transitions is equal to 1.

5.1 Fundamental Properties

Here we state some fundamental properties used in the following sections.

DEFINITION 5.1.1 Let PN = (P,X,W, µ0) be a Petri net and µ0 be a positive
marking. For w ∈ X∗ and a ∈ X, the set Kw(a) of places is defined as follows. If δ(µ0, w)
is not defined, then Kw(a) = ∅. Otherwise,

Kw(a) = {p ∈ P | δ(µ0, w) = µ, W (a, p) = 0,∃n ∈ N ,
(µ + n · ∆(a))(p) = 0, and (µ + n · ∆(a))(q) ≥ 0 for ∀q ∈ P \ {p})}.

An element of Kw(a) is called a critical place (after reading the word w). Especially
Kw(a) is denoted by K(a) when w = 1(the empty word). Kw is a mapping from X to 2P ,
called the critical place mapping of the Petri net PN . ¤

A critical place p of a transition a means that p is a place where the number of tokens
first becomes zero when a fires one after another(see Figure 5.1).

THEOREM 5.1.1 (Fundamental Theorem) Let PN = (P,X,W, µ0) be a Petri
net with a positive marking µ0, K be its critical place mapping. If C = C(PN) is a

26
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Figure 5.1: Example of a critical place, K(a) = {q}.

maximal CPN code, then for any p ∈ P and a, b ∈ X the following conditions hold.

(1) p ∈ K(a) implies W (p, a) ≥ W (p, b),
(2) p ∈ K(a) ∩ K(b) implies W (p, a) = W (p, b).

¤

THEOREM 5.1.2 (Deletion of useless places) Let PN = (P,X,W, µ0) be a Petri
net with a positive marking µ0, C = C(PN) be a maximal prefix code. Let p ∈ P be a
place such that δ(µ0, w)(p) 6= 0 for any w ∈ C. And the Petri net PN ′ = (P ′, X,W ′, µ′

0)
is defined as follows:

P ′ = P \ {p},
W ′ is a restriction of Won(P ′ × X) ∪ (X × P ′),
µ′

0 is a restriction of µ0 on P ′.

Then，
C(PN) = C(PN ′).

PN ′ is obtained from PN by deleting the place p and its all input/output arcs attached
to p. ¤

Generally set P0 = {q ∈ P | ∃w ∈ C, δ(µ0, w)(q) = 0}. Applying the above theo-
rem repetitively, the theorem holds even if we replace P ′ in the theorem with P0. The
maximality in the theorem is needed because the following counter example exists.

EXAMPLE 5.1.1 Let P = {p, q}，X = {a, b}，W (p, a) = W (p, b) = 1,W (q, b) = 2,
µ0(p) = µ0(q) = 1. The weights of any other arcs are all zero. Then C = C(P,X,W, µ0) =
{a} is not a maximal CPN code. For any w ∈ C, δ(µ0, w)(q) 6= 0, where δ is the next-state
function of (P,X,W, µ0). However，Since P ′ = P \ {q} = {p}，W ′(p, a) = W ′(p, b) = 1,
µ′

0(p) = 1, The weights of any other arcs are all zero, C ′ = C(P ′, X,W ′, µ′
0) = {a, b}.

This shows that C = C ′ does not necessarily hold if C is not a maximal CPN code. ¤

THEOREM 5.1.3 (Reduction rule of two-way arcs) Let PN = (P,X,W, µ0) be
a Petri net with a positive marking µ0. Let C = C(PN) be a maximal prefix code. Let
p ∈ P, a ∈ X with W (p, a) > 0 and W (a, p) > 0. Then the Petri net PN ′ = (P,X,W ′, µ0)
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is defined as follows, which is obtained by replacing the weights of the two arcs (p, a) and
(a, p).

W (p, a) > W (a, p) ⇒ W ′(p, a) = W (p, a) − W (a, p), W ′(a, p) = 0
W (p, a) = W (a, p) ⇒ W ′(p, a) = W ′(a, p) = 0
W (p, a) < W (a, p) ⇒ W ′(a, p) = W (a, p) − W (p, a), W ′(p, a) = 0
q 6= p or b 6= a ⇒ W ′(b, q) = W (b, q),W ′(q, b) = W (q, b)

Then
C(PN) = C(PN ′).

¤

EXAMPLE 5.1.2 Let X be an alphabet and k be a positive integer. Suppose that
subsets X1 and X2 of X satisfy X = X1 ∪ X2 and X1 ∩ X2 = ∅. Then, the following
language C is an input-ordinary CPN code.

C = (
∪

0≤i<k

X2
iX1) ∪ X2

k.

¤
Especially，in this example by setting X1 = ∅ and X2 = X, then C = Xk = {w ∈

X∗| |w| = k}. Xk is called a (full) uniform code over X. Therefore a uniform code
becomes an input-ordinary CPN code.

5.1.1 In the case |P | = 1 or |X| = 1

At first we consider the case the number |P | of places equals 1 and the case the number
|X| of transitions equals 1.

THEOREM 5.1.4 Let PN = (P,X,W, µ0) be a Petri net with a positive marking µ0.
Assume that |X| = 1 or |P | = 1. If C = C(PN) is a maximal prefix code, then C is an
input-ordinary CPN code. ¤

Assume that |P | = 1, that is P = {p} in this theorem. Setting X1 = {a ∈ X|W (p, a) >
0,W (a, p) = 0} and X2 = X − X1, Then

C(P,X,W, µ0) = (X1
n−1 ¦ (

∪
ai∈X2

aiX1
ni)¦)X1,

where ni = W (ai, p)/n，¦ is the shuffle product over two languages L, K ⊂ X∗ defined by
L¦K = ∪x∈L, y∈Kx¦ y, x¦ y = {x1y1x2y2 · · · xnyn|x = x1x2 · · · xn, y = y1y2 · · · yn, xi, yi ∈
X∗ for 1 ≤ i ≤ n} for x, y ∈ X∗ and L¦ is the shuffle closure of a language L, defined by
L¦ = ∪i≥0L

¦ i，L¦ 0 = {1}，L¦(i+1) = L¦ i ¦ L.

In case that a Petri net has only a place or only a transition, we have proved that
mCPNC=iCPNC. In the following section, we consider the case that a Petri net has
two places.
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5.2 Maximal CPN Codes with two Places

Here we solve the problem whether mCPNC⊆iCPNC holds or not under the conditions
that a Petri net has just two places. All through this section, we assume that a Petri net
PN = (P,X,W, µ0) with a positive marking µ0 generating a code satisfies the following
conditions without the loss of generality.
(1) |P | = 2, Set P = {p, q}.
(2) X 6= ∅ and X includes no isolated transition because a marking is unchanged by a
isolated transition’s firing.

Moreover if C(PN) is a maximal CPN code, we implicitly assume that PN satifies the
next useful conditions.
(3) Every arc is one way by THEOREM 5.1.3. That is, for any p ∈ P and a ∈ X,
W (a, p) = 0 or W (p, a) = 0 .
(4) PN has no useless place by THEOREM 5.1.2. That is, for any p ∈ P , there exists
w ∈ C(PN) with δ(µ0, w)(p) = 0.

5.2.1 Without Source Transitions

In this subsection, each transition in X is either a sink transition or a transform transition.

THEOREM 5.2.1 Let PN = (P,X,W, µ0) be a Petri net without source transitions,
µ0 be positive and P = {p, q}. If C = C(PN) is a maximal CPN code, then C is an
input-ordinary CPN code.

(proof) Setting Xp and Xq as follows:

Xp = {a ∈ X | p ∈ K(a)} = K−1({p}),
Xq = {a ∈ X | q ∈ K(a)} = K−1({q}).

(note that Xp ∩ Xq = K−1({p, q}) = ∅ does not necessarily hold), where K is the critical
place mapping of PN .

Since an arbitrary transition a ∈ X is a sink or transform transition by the condition
(3), the number of tokens in p or q becomes zero when a fires in succession, that is,
X = Xp ∪ Xq holds.

By THEOREMs 5.1.1 and 5.1.3 there exist some positive integers np and k such that
W (p, a) = np, W (a, p) = 0 and µ0(p) = knp for any a ∈ Xp. Similarly, there exist some
positive integers nq and l such that W (q, a) = nq, W (a, q) = 0 and µ0(q) = lnq for any
a ∈ Xq

If k = l = 1, the statement of this theorem holds because the code C is the uniform
code X1. If Xp = ∅, that is X = Xq, then C is the uniform code C = X l ∈ iCPNC.
Similarly C is also a uniform code C = Xk if Xq = ∅. So we may assume that k · l > 1,
Xp 6= ∅ and Xq 6= ∅ hold.

If there exists neither a ∈ Xp such that nq 6 |W (q, a) or nq 6 |W (a, q), nor b ∈ Xq

such that np 6 |W (p, b) or np 6 |W (a, b), then the weight of each output arc from the place
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p (resp., q) is zero or np (resp., nq), the weight of every input arc to p (resp., q) is a multiple
of np(resp., nq). Therefore，C(PN) is the same as C(PN ′) generated by the following
input-ordinary Petri net PN ′ = (P ′, X ′, W ′, µ′

0):

P ′ = P = {p, q}, X ′ = X,
W ′(p, a) = W (p, a)/np ∈ {0, 1}, W ′(a, p) = W (a, p)/np ∈ N0 for ∀a ∈ X,
W ′(q, a) = W (q, a)/nq ∈ {0, 1}, W ′(a, q) = W (a, q)/nq ∈ N0 for ∀a ∈ X,
µ′

0(p) = µ0(p)/np = k, µ′
0(q) = µ0(q)/nq = l.

Hence, C(PN) is an input-ordinary CPN code．
The remaining cases are that there exists a ∈ Xp such that nq - W (q, a) or nq - W (a, q),

and that there exists b ∈ Xq such that np - W (p, b) or np - W (b, p). By considering the
symmetry, we must check the next the next cases:

(A)∃a ∈ Xp, ∃b ∈ Xq [x = W (p, b) > 0, y = W (q, a) > 0, and (np 6 |x or nq 6 |y)]
(B) ∃a ∈ Xp, ∃b ∈ Xq [x = W (b, p) > 0, y = W (q, a) > 0, and (np 6 |x or nq 6 |y)]
(C)∃a ∈ Xp, ∃b ∈ Xq [W (b, p) = 0, y = W (q, a) > 0, and nq 6 |y]
(D)∃a ∈ Xp, ∃b ∈ Xq [x = W (b, p) > 0, y = W (a, q) > 0, and (np 6 |x or nq 6 |y)]
(E)∃a ∈ Xp, ∃b ∈ Xq [x = W (b, p) > 0,W (q, a) = 0, and np 6 |x]

By LEMMA 5.2.1,5.2.2, 5.2.3 and 5.2.5, we can show that C is an input-ordinary CPN
code in case of (A), (B), (C) or (E), respectively. On the other hand the case (D) does
not happen because C is not a maximal CPN code by LEMMA 5.2.4. ¤

We state the LEMMA 5.2.1～5.2.5 in referred in the proof of THEOREM 5.2.1.

LEMMA 5.2.1 Let PN = (P,X,W, µ0) be a Petri net with a positive marking µ0 which
is satisfied the condition (A) in the proof of THEOREM 5.2.1. If C = C(PN) 6= ∅ is
a maximal CPN code, then it is a uniform code Xk，that is, an input-ordinary CPN
code. ¤

LEMMA 5.2.2 Let PN = (P,X,W, µ0) be a Petri net with a positive marking µ0

which is satisfied the condition (B) in the proof of THEOREM 5.2.1. If C = C(PN) 6= ∅
is an maximal CPN code, then it is an input-ordinary CPN code. ¤

LEMMA 5.2.3 Let PN = (P,X,W, µ0) be a Petri net with a positive marking µ0

which is satisfied the condition (C) in the proof of THEOREM 5.2.1. If C = C(PN) 6= ∅
is a maximal CPN code,then it is an input-ordinary CPN code. ¤

LEMMA 5.2.4 Let PN = (P,X,W, µ0) be a Petri net with a positive marking µ0

which is satisfied the condition (D) in the proof of THEOREM 5.2.1. If C = C(PN)
cannot be a maximal CPN code. ¤

LEMMA 5.2.5 Let PN = (P,X,W, µ0) be a Petri net with a positive marking µ0

which is satisfied the condition (E) in the proof of THEOREM 5.2.1. If C = C(PN) 6= ∅
is a maximal CPN code,then it is an input-ordinary CPN code. ¤
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Figure 5.2: Arc connection under conditions (A) to (E).

5.2.2 With at least one Source Transitions

In this subsection we show that the code which is generated by a Petri net with two places
and at least one source transitions.

REMARK 5.2.1 A Petri net PN = (P,X,W, µ0) is called semi-input-ordinary if the
following condition is satisfied.

For each place p, there exists a positive integer np such that W (p, a) = 0 or = np and
W (a, p) is a multiple of np for any transition a ∈ X, and µ0(p) is a multiple of np.

If a Petri net PN = (P,X,W, µ0) is semi-input-ordinary, then the code C(PN) is
obviously an input-ordinary CPN code. ¤

DEFINITION 5.2.1 Let PN = (P,X,W, µ0) be a Petri net. A place p ∈ P is con-
trollable if there are a source transition c ∈ X and a sink or transform transition a ∈ X
satisfying either of the following two conditions (a) or (b) for any place q ∈ P \ {p}.

(a) x > 0 and xv − uy > 0,
(b) x > 0, u > 0, y∗ > 0 and v = 0,

where x = W (p, a), y = W (q, a), u = W (c, p), v = W (c, q) and y∗ = W (a, q). Otherwise
p is called uncontrollable. ¤
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For example, in case of |P | = 2, there are the fifteen ways to give weights on the arcs
among arbitrary two places p and q, a source transition c ∈ X and a sink or transfrom
transition a ∈ X.

FACT Let u and x be nonnegative integers and d = gcd(u, x) be the greatest common
divisor of u and x (note that gcd(0, x) = x and gcd(u, 0) = u). Then us+xt = d for some
integers s and t. ¤

LEMMA 5.2.6 Let PN = (P,X,W, µ0) be a Petri net with source transitions. If a
place p ∈ P be controllable, then the following conditions hold:

For arbitrary nonnegative integers i and j with µ0(p) − d × i ≥ 0, there is a word
w ∈ X+ such that

δ(µ0, w)(p) = µ0(p) − d × i,
δ(µ0, w)(q) ≥ µ0(q) + j, for ∀q ∈ P \ {p}.

¤

The next theorem holds regardless of the number |P | of places.

LEMMA 5.2.7 Let PN = (P,X,W, µ0) be a Petri net with source transitions and µ0

be a positive marking. Let C = C(PN) be a maximal CPN code. If a place p ∈ P is
controllable, the following conditions hold.

(1) There exists some positive integer np such that W (p, a) = 0 or W (p, a) = np for any
a ∈ X.

(2) np|W (a, p) for any a ∈ X .
(3) np|µ0(p). ¤

COROLLARY 5.2.1 Let PN = (P,X,W, µ0) be a Petri net with at least one source
transitions and µ0 be a positive marking. If each p ∈ P is controllable and C = C(PN)
is a maximal CPN code, then C is an input-ordinary CPN code. ¤

Note that the COROLLARY5.2.1 is true independently to the number of places. Then
we check the case that both two places are uncontrollable and the case that one place
is controllable but the other is not. The remaining cases needs the restriction that the
number of places is two.

LEMMA 5.2.8 Let PN = (P,X,W, µ0) be a Petri net with at least one source transi-
tions, µ0 be a positive marking and |P | = 2 (P = {p, q}). If each place is uncontrollable
and C = C(PN) is a maximal CPN code, then C is an input-ordinary CPN code. ¤

LEMMA 5.2.9 Let PN = (P,X,W, µ0) be a Petri net with source transitions, µ0 be
a positive marking and |P | = 2 (P = {p, q}). One place p is controllable and the other
place q is not. If C = C(PN) be a maximal CPN code, then C is an input-ordinary CPN
code. ¤
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The LEMMAs 5.2.7 to 5.2.9 that are stated above derives the next theorem 5.2.2

THEOREM 5.2.2 Let PN = (P,X,W, µ0) be a Petri net with source transitions, µ0 be
positive and |P | = 2. If C = C(PN) is a maximal CPN code, then C is an input-ordinary
CPN code. ¤

We obtain the final result of this chapter from the THEOREMs 5.2.1 and 5.2.2.

THEOREM 5.2.3 Let PN = (P,X,W, µ0) be a Petri net, µ0 be positive and |P | = 2.
If C = C(PN) is a maximal CPN code, then C is an input-ordinary CPN code. ¤



Chapter 6

Conclusion

Recently Petri nets are used not only as technical modeling tools for parallel/concurrent
systems, but also as theoretical model of computation like automata, language generators,
grammar controllers, and so on. Petri net theory is one of advanced and interested fields
in automata, formal languages and computation. In this literature we treated two topics,
the Petri net structures (in Chaper 3) and Petri net codes (in Chapters 4 and 5).

In Chapter 3, the notion of automorphism group of a Petri net structure was newly
introduced. We showed the main theorem that for a given finite group G there exists a
Petri net structure N , called a transformation net, such that Aut(N) is isomorphic to G.
The structure N corresponds to the right regular representation of G.

The four (S-, D-, C-, B-) types of Petri net codes, which are all prefix codes, were
introduced as similar way to define Petri net languages. Mainly we use Petri nets as
accepters of codes and treat firing sequences themselves without labeling functions. In
Chapters 4 and 5, C-type Petri net (CPN, for short) codes are mainly focused. The
CPN code C(N,µ0) generated by a Petri net (N,µ0) is the set of all nonpositive firing
sequences in (N,µ0) whose proper prefixes are all positive firing sequences instead. That
is, C(N,µ0) = L \ LX+, where L = L(N,µ0) \ L+(N,µ0). If a CPN code is a maximal
prefix code, then we call it a maximal CPN code.

In the first half of Chapter 4, various properties of finite maximal CPN codes were
investigated and two operations ⊕(some kind of parallel operation) and ⊗(some kind of
interruption) were introduced.

The property being a maximal CPN code over X is not preserved under concatenation,
⊕ and λ-free homomorphism but is preserved under ⊗. In the second half, we investigated
the generative power of CPN codes. There it is shown that there exists a CPN code which
is not context-free, but arbitrary CPN code is a context-sensitive language.

In Chapter 5 we considered the open problem raised in Chapter 4. That is, whether
the family mCPNC stated above is included in the family iCPNC of CPN codes which
are generated by some input-ordinary Petri nets.

The notion of maximality of a CPN code is very important in relation to liveness or
deadlock. C(N,µ0) is a maximal prefix code or C(N,µ0) = ∅ if and only if all of transitions

34
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are enabled under a marking reachable from µ0 through a positive firing sequence in
(N,µ0). This condition is obviously true if (N,µ0) is input-ordinary. Conversely we
wonder whether the set of all positive firing sequences in a general Petri net (N,µ0)
with C(N,µ0) being a maximal prefix code is identical with the set of all positive firing
sequences in some input-ordinary Petri net (N1, µ1), that is, L+(N,µ0) = L+(N1, µ1).

We proved that mCPNC = iCPNC is true in restricted cases, i.e., in the case that
the number of places is ≤ 2, and in the case that the number of transitions is equal to 1.
It still remains open in a general Petri net.
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