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CHAPTER 1

Introduction

Until recently, programming was about using pure, single-paradigm techniques. How-
ever, nowadays programming languages tend to converge to one another, i.e., features
of one paradigm are appearing in languages based on another paradigm [23, 24]. This
process can be observed primarily in the area of imperative, object-oriented, and func-
tional programming languages. For example, C# or D are based on the imperative C
language, extended with object-oriented and functional language elements. Another
example is CLOS, which is a functional language based on Lisp, with added object-
oriented features. Such languages are called multiparadigm programming languages.

The advantage of these languages is that the programmer may select the paradigm
best suited for solving a particular problem. We may even choose to create di�erent
parts of the same program using techniques from di�erent programming paradigms.
If a small part of a large application requires high e�ciency, imperative code is used,
reusable types are created in an object-oriented way, while in some domains of com-
putation, we choose the functional approach because solutions to problems in these
domains can be expressed in a more succinct way compared to using imperative code.

I believe that multiparadigm languages can be a great help in the education of
computer science. Instructors may show di�erent versions of the same algorithm de-
pending on the paradigm used to implement it, and later students may decide which
paradigm to choose in a homework assignment, an exam, or at work, depending on
the problem speci�cation and the student's programming experience. Of course, we
don't necessarily need to use multiparadigm languages for this purpose, we can also use
multiple single-paradigm languages, but this way, we don't have to teach and students
don't have to learn yet another language just for coding a particular algorithm.

During my research, I examined the possibility of using F# as a new multiparadigm
programming language for coding di�erent algorithms in the area of arti�cial intelli-
gence (AI). I chose this area for three main reasons. First, I used to be an instructor
of the seminars of the Introduction to Arti�cial Intelligence course at the University of
Debrecen [28]. Second, AI and search algorithms, in particular, seemed to be a �eld
of computation where we can make use of functional programming because some sub-
stantial parts of these algorithms (like, for example, checking operator preconditions)
are essentially functional. And third, I had a couple of imperative and object-oriented
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implementations of the algorithms in question, which proved to be a good starting
point for creating the F# versions [13, 12].

The other main area of my research was trying to �nd an answer to the following
question: �Why do most of our students majoring Software Information Technology
BSc have a hard time ful�lling the requirements of most nonbasic courses?� Based
on my ten years of teaching experience at the University of Debrecen, I can say that
our students have to face a number of di�culties during their studies. I think these
di�culties root from two main problems: students are unmotivated and cannot sense
the coherence between the knowledge taught in the various courses. I found that we
could alleviate both of these problems by assigning long-term projects to students,
which they can work on throughout their studies, dealing with a particular aspect of
the project in each course.

Programming contests may be another motivating factor. We have been organizing
at least one in-house contest per semester for more than ten years now, and I can say
that there are at least a couple of students whose interest is piqued by those contests.
During these ten years, we developed two applications for evaluating the contestants'
submissions on-line. The �rst one is called Programming Contest Result Manager
(PCRM), and it is an e-mail-based console application, while the second one is called
ProgCont, which is a web application with a client/server architecture. PCRM is
described in detail in [14, 12], now I introduce ProgCont along with our experience
with it.

To summarize the above, my thesis sets the following goals:

• to create di�erent sample implementations of the most popular AI search algorithms
in C# and F#, including those that compute the next move in a two-player game,

• to compare the di�erent implementations of these algorithms (from purely object-
oriented to mostly functional),

• to give some examples of how to create C# and F# implementations of speci�c
problems and games that can be �tted into the above-mentioned algorithms,

• to argue for using multiparadigm programming languages in the teaching of arti�cial
intelligence based on the above implementations,

• to design some sample long-term projects to be assigned to students as part of a
new methodology for teaching computer science,

• to share our experience with the programming contests organized by the Faculty
of Informatics at the University of Debrecen as well as the applications managing
them.

Chapter 2 contains a brief overview of functional programming, the basics of lambda
calculus, and the possible use of FP in the teaching of arti�cial intelligence. Chapters 3
and 4 provide a possible course guide for the practical course of the subject Introduction
to Arti�cial Intelligence. In Chapter 3, I present a couple of implementations of search
algorithms for single-agent, state-space-repesented problems, compare them with one
another, and give the state-space representation and various implementations of two
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such problems (a simple and a complex one) as examples. The structure of Chapter 4
is similar to that of Chapter 3, but instead of single-agent problems, it deals with two-
player games and search algorithms on game trees. Chapter 5 is about some problems
our students have to face with during their studies and a possible �cure� for these
problems. In Chapter 6, I discuss programming contests, the way ACM contests are
conducted, and a new application developed for managing ACM-like and other kinds
of contests. Finally, I summarize the results of my thesis in Chapter 7.



CHAPTER 2

Overview of Functional Programming

Chapters 3 and 4 describe a possible course guide that can be used in the practical
courses of Introduction to Arti�cial Intelligence or other AI-related subjects. Chapter
3 presents a couple of multiparadigm implementations of single-agent problems, while
chapter 4 deals with two-player games. Before going into the details, let's discuss
shortly the basics of functional programming and multiparadigm languages.

The functional programming (FP) paradigm was born together with the �rst func-
tional programming language, IPL, in 1955, one year before Fortran. The second FP
language, Lisp, was invented in 1958; its variants are still in use today. Despite the fact
that many FP languages have been developed since 1955, FP remained a programming
language primarily used only in academic areas until recently. One reason for this is
the immediate success of the �rst two major imperative languages, Fortran and Cobol.
These two languages and their derivatives (and thus, imperative paradigm) dominated
business programming for more than 30 years, when object-oriented languages took the
leading role. Today, however, the promise of FP is �nally being realized as enterprises
recognize the need for more sophisticated computing solutions.

In pure functional programming, programs consist of expressions, among which the
most important are function de�nitions. The functions in a functional program are
very much like mathematical functions�they accept arguments, return values, but
they cannot have side e�ects, and because of this, do not change the state of the
program. Instead of changing values, functions create new values by copying them
and applying modi�cations to the copies. Of course, this is not always e�cient during
runtime, but allows programmers to use really neat programming constructs, like, for
example, treating functions themselves as values. Once a value is no longer required,
it is usually automatically disposed of by a garbage collector.

The main di�erences between imperative and functional programming are the fol-
lowing:

• With an imperative approach, the programmer writes step by step how a particular
problem can be solved. In contrast, using a functional approach, the programmer
only declares what the problem is by decomposing it to simple function calls.

• The state of an imperative program is an important factor, whereas a purely func-
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tional program does not have states, because it uses only immutable data and special
functional data structures for storing them. For example, lists are used instead of
arrays.

• Because of stateless programming, the execution of a purely functional program
does not have side e�ects. This also implies that the order in which the expressions
are evaluated is not important; neither is the place of their occurrence in the source
code. The program will yield the same output on the same input in any evaluation
order and at any place of the program. This is called referential transparency.

• The main building blocks of an imperative program are statements, while a func-
tional program consists almost exclusively of expressions. Some basic control struc-
tures (such as conditionals or loops), which are statements in an imperative lan-
guage, may also appear in functional programs but only as expressions.

• In imperative programming, the primary �ow controls are conditionals, loops, and
function (or method) calls. In functional programming, only function calls exist as
�ow controls, including recursion, which plays a much more signi�cant role than in
imperative programs.

The biggest advantage of functional programming over imperative programming is
that in most cases, FP requires much less and clearer code to achieve the same result
than imperative programming because of language constructs of a higher abstraction
level. Less code also means less chance of errors, less testing, and due to this, more
productivity. Functional programs are less error-prone, can be more easily parallelized,
and they can be developed in a shorter time. Because of these advantages, functional
programming is becoming more and more popular nowadays; even software industry is
looking for more and more programmers with expertise in functional programming.

2.1 The Lambda Calculus

Functional programming languages are based on a formal system for expressing com-
putation, called the Lambda Calculus [4]. It was designed to formalize mathematics
in terms of functions, variables, variable binding, and substitution. In this section, I
present the most basic concepts of Lambda Calculus as de�ned by Alonzo Church in
1936 [2], and then give some examples of using these concepts in F#.

We select a particular list of symbols {, }, (, ), λ, [, ], and an enumerably in�nite
set of symbols a, b, c, . . . to be called variables. And we de�ne the word formula
to mean any �nite sequence of symbols out of this list. The terms well-formed
formula, free variable, and bound variable are then de�ned by induction as fol-
lows. A variable x standing alone is a well-formed formula and the occurrence of
x in it is an occurrence of x as a free variable in it; if the formulas F and X are
well-formed, {F}(X) is well-formed, and an occurrence of x as a free (bound)
variable in F or X is an occurrence of x as a free (bound) variable in {F}(X); if
the formula M is well-formed and contains an occurrence of x as a free variable
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inM , then λx[M ] is well-formed, any occurrence of x in λx[M ] is an occurrence
of x as a bound variable in λx[M ], and an occurrence of a variable y, other
than x, as a free (bound) variable in M is an occurrence of y as a free (bound)
variable in λx[M ].

When writing particular well-formed formulas, we adopt the following abbre-
viations. A formula {F}(X) may be abbreviated as F (X) in any case where
F is or is represented by a single symbol. A formula {{F}(X)}(Y ) may be
abbreviated as {F}(X,Y ), or, if F is or is represented by a single symbol, as
F (X,Y ). And {{{F}(X)}(Y )}(Z) may be abbreviated as {F}(X,Y, Z), or as
F (X,Y, Z), and so on. A formula λx1[λx2[. . . λxn[M ] . . . ]] may be abbreviated
as λx1x2 . . . xn ·M or as λx1x2 . . . xnM .

The expression Sx
NM | is used to stand for the result of substituting N for x

throughout M .

We consider the three following operations on well-formed formulas:

I. To replace any part λx[M ] of a formula by λy[Sx
yM |], where y is a variable

which does not occur in M .

II. To replace any part {λx[M ]}(N) of a formula by Sx
NM |, provided that

the bound variables in M are distinct both from x and from the free
variables in N .

III. To replace any part Sx
NM | (not immediately following λ) of a formula by

{λx[M ]}(N), provided that the bound variables in M are distinct both
from x and from the free variables in N .

Any �nite sequence of these operations is called a conversion, and if B is obtain-
able from A by a conversion, we say that A is convertible into B, or �A convB.�
If B is identical with A or is obtainable from A by a single application of one
of the operations I, II, III, we say that A is immediately convertible into B.

A conversion which contains exactly one application of Operation II, and no
application of Operation III, is called a reduction.

A formula is said to be in normal form if it is well-formed and contains no part
of the form {λx[M ]}(N). And B is said to be a normal form of A if B is in
normal form and A convB.

The originally given order a, b, c, . . . of the variables is called their natural order.
And a formula is said to be in principal normal form if it is in normal form,
and no variable occurs in it both as a free variable and as a bound variable, and
the variables which occur in it immediately following the symbol λ are, when
taken in the order in which they occur in the formula, in natural order without
repetitions, beginning with a and omitting only such variables as occur in the
formula as free variables.1 The formula B is said to be the principal normal

1For example, the formulas λab ·b(a) and λa ·a(λc ·b(c)) are in principal normal form, and λac ·c(a),
and λbc · c(b), and λa · a(λa · b(a)) are in normal form but not in principal normal form. Use of
the principal normal form was suggested by S. C. Kleene as a means of avoiding the ambiguity of
determination of the normal form of a formula, which is troublesome in certain connections.
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form of A if B is in principal normal form and A convB.

For practical reasons, we can also consider operators (such as +) and constants
(numbers, for example) as variables.2 We can write the lambda expression λx ·+(x, 1)
in F# as fun x -> x + 1. Here, we can consider the symbol 1 as the numeric constant
1, and the symbol + as the symbol of the arithmetic addition operator. This way, we
created an anonymous function that takes a parameter (x) and returns x + 1. If we
want to call this function, we can write the lambda expression {λx · +(x, 1)}(3) or in
F#, (fun x -> x + 1) 3. Using reduction, this lambda expression can be converted
into +(3, 1). If we now consider the + symbol as the arithmetic addition operator,
which returns the sum of its two arguments, another reduction yields 4, which is the
normal form of the expression {λx ·+(x, 1)}(3).

The de�nition of the lambda expression implies that each lambda function may only
take exactly one parameter. For example, the expression λxy ·+(x, y) is equivalent to
λx·λy ·+(x, y), or in F#, fun x -> fun y -> x + y. This function can then be called
with two arguments, which will result in a number: the sum of the two arguments. But
we can also call the function with only one argument, as in {λx · λy ·+(x, y)}(3) or in
(fun x -> fun y -> x + y) 3. The result of this function call is another function:
λy ·+(3, y) or fun y -> 3 + y. We call this partial function application or currying ;
and we call the form of functions in which they take exactly one argument, the cur-
ried form of functions. Strictly speaking, F# also uses curried functions, but we can
simulate functions that take multiple arguments with the help of the tuple type. For
example, the function fun x -> fun y -> x + y can be abbreviated as fun x y ->

x + y, which means the same thing: a function that takes one argument and returns
another function that takes one argument and returns a number. However, if we write
fun (x, y) -> x + y, we get a function that takes one tuple argument (in this case,
a pair of numbers) and returns a number. This function can only be called with ex-
actly one argument of type tuple containing two numbers, as in (fun (x, y) -> x +

y) (3, 4). As this function does not return another function, we cannot use partial
application here.

Currying is possible because functions are treated as values in functional program-
ming. This means that a function can be an argument or the return value of an-
other function. Functions that take other functions as parameters or return func-
tions are called higher-order functions. For example, λfxy · f(x, y), or in F#, fun
f x y -> f x y is a function that takes another function as its �rst parameter and
applies it to its second and third parameters. We can call this function like this:
{λfxy · f(x, y)}(λxy ·+(x, y), 3, 4), or in F#, (fun f x y -> f x y) (+) 3 4, which
both yield the sum of 3 and 4. If we now replace the argument function with (-), we
will get the di�erence of 3 and 4.

Lambda Calculus is only the pure mathematical background of FP. Programming,
however, is impure in this sense�there are a lot of functional programming techniques
that make FP really usable and powerful in some computing domains. Such techniques
include type inference, closures, continuations, monads, just to mention but a few.

2In programming language context, variables are called values because they never change.
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2.2 Functional Approach in Teaching Arti�cial Intel-
ligence

Teaching search algorithms to our students is a great pedagogical challenge. At our
university, they �rst meet arti�cial intelligence during the course Introduction to Ar-
ti�cial Intelligence, which is one of the core subjects of our three main undergraduate
programs, Software Information Technology, Business Information Technology, and En-
gineering Information Technology. In the lectures, the pseudocode of these algorithms
is presented, together with some examples, but this is not always enough for students
to understand what is going on behind the scenes. In the seminars, the instructors
show the same algorithms written in a high-level programming language, which used
to be Pascal and C, but nowadays we use Java and C#. However, the high-level lan-
guage code is merely another representation of the pseudocode, so students with little
programming background do not �nd it useful in understanding the operation of the
algorithms. The idea is that we should try presenting the search algorithms also by us-
ing a very di�erent approach, namely, functional programming. A functional program
can hide the unimportant steps of searching, and focuses only on the problem itself.
It may be useful even if students do not have any former knowledge of functional pro-
gramming, because a functional program is just another way for describing a problem,
and not for solving it (although the problem description usually incorporates at least
parts of the solution).

Besides coding in an object-oriented language, I also propose using the functional
approach for programming the solutions of state-space-represented problems for the
following reasons:

• These are complex problems. We do not teach programming in the frame of this
course anymore; instead, we teach how the previously learned programming knowl-
edge can be combined with the theory of search algorithms. The more complex a
problem is, the more elegantly it can be implemented using functional programming.

• Some parts of the AI search algorithms are functional by their very nature. The
source code of these parts simply looks better in a functional language.

• It is worth implementing a couple of problems and search algorithms with both
paradigms so that students can see the di�erence between them. Later they can
decide which approach to use in their homework or during a test.

• Functional programming is an exciting challenge for the students, and challenge can
be a great motivating force. They prefer dealing with challenging problems even if
those problems are di�cult or abstract.

As a proof of the succinctness of a functional program solving an AI problem, I
present a short C code and a purely functional F# code of the solution of the well-
known n-queens puzzle. Here is the C code �rst:

1 #include <stdio.h>

2 #include <stdlib.h>
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3

4 typedef enum {FALSE, TRUE} BOOL;

5

6 #define N 8

7

8 int board[N + 1];

9

10 void print_array()

11 {

12 int i;

13 for (i = 1; i <= N; ++i)

14 printf("%d ", board[i]);

15 putchar('\n');

16 }

17

18 BOOL conflicting(int col, int row)

19 {

20 int i;

21 for (i = 1; i < col; ++i)

22 if (board[i] == row || col - i == abs(row - board[i]))

23 return TRUE;

24 return FALSE;

25 }

26

27 void find_solutions(int col)

28 {

29 static int num = 0;

30 if (col > N)

31 {

32 printf("Solution #%02d: ", ++num);

33 print_array();

34 }

35 else

36 {

37 int row;

38 for (row = 1; row <= N; ++row)

39 if (!conflicting(col, row))

40 {

41 board[col] = row;

42 find_solutions(col + 1);

43 }

44 }

45 }

46

47 int main()

48 {

49 find_solutions(1);

50 return EXIT_SUCCESS;

51 }
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And here is the F# code:

1 let N = 8

2

3 let conflicting col row (queen : int list) =

4 let rec checkCol c =

5 c < col &&

6 let r = queen.[c]

7 r = row || col - c = abs (row - r) || checkCol (c + 1)

8 checkCol 0

9

10 let nextCol col newSolutions solution =

11 seq {1 .. N}

12 |> Seq.filter (fun row -> not (conflicting col row solution))

13 |> Seq.fold (fun solutions row ->

14 solutions @ [solution @ [row]]) newSolutions

15

16 let rec findSolutions col allSolutions =

17 if col = N then

18 allSolutions

19 else

20 findSolutions (col + 1)

21 (allSolutions |> List.fold (nextCol col) [])

22

23 findSolutions 0 [[]]

24 |> List.iteri (fun i solution ->

25 printfn "Solution #%02d: %A" (i + 1) solution)

Both programs �nd the 92 possible solutions of the 8-queens problem, although
they are not fully equivalent. The C code uses recursive backtracking, while the F#
code is more like an optimized recursive breadth-�rst search, in which most of the work
is done by built-in functions such as Seq.fold.

The C code works the following way: It takes a one-dimensional array of N elements
(actually N+1 so we do not have to bother with the zero index), and calls the recursive
function find_solutions, which tries to �nd an appropriate (noncon�icting) row for
a queen in the next column of the table in a for loop. The index of the next column
is stored in col, which is 1 at the beginning. If there is no such row, a backtracking
is performed, i.e., find_solutions returns to its previous instance in the call stack
(where the value of col was one less than its current value), and so it tries to �nd the
next good row in the previous column inside the for loop. While we can �nd a good
place for a queen in the current column, we continue calling find_solutions with an
incremented col value. When col reaches N+ 1, all N queens have been placed on the
table, i.e., a solution is found. We print the solution, and continue with the search by
backtracking (i.e., returning to the previous function in the call stack) until we return
to the main function, which means that a backtracking was performed from the initial
state.

The F# code uses a list of lists to store all the solutions. Each of the inner lists
will �nally contain N numbers with the row values for each column just like the array
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in the C version. At the beginning, we start with a one-element list of an empty list
([[]]), and then try to place a queen to all the possible rows in the column indicated
by col. For example, when col is 0 and allSolutions is [[]], the result of the
expression allSolutions |> List.fold (nextCol col) [] will be a list of 8 one-
element list containing the numbers 1 to 8: [[1], [2], [3], ...]. After this, the
findSolutions function is called recursively with an incremented col value, which
results in a list containing only 2-element lists with all the possible layouts of two
queens in two columns. This is repeated until col reaches N, when the resulting list
will contain all possible solutions.

Of course, we could also have written here the recursive breadth-�rst search in C.
The reason I chose backtracking instead is that it is much shorter because in back-
tracking, we only have to store the current path, and it is done for us by the call stack
of the find_solutions function. In breadth-�rst search, however, we would have to
keep track of the partial solutions (those in which one less columns are already �lled
than we are currently dealing with), which would require us to handle some kind of
data structure (a linked list, for example). The F# version does this with the built-in
list data type. Just for comparison, here is the C# implementation of the recursive
breadth-�rst search, which resembles the most the F# program in functionality (C#
also has a built-in List data type):

1 using System;

2 using System.Text;

3 using System.Collections.Generic;

4

5 class Board

6 {

7 public static int N = 8;

8

9 private int[] board;

10 private int col;

11

12 public Board()

13 {

14 board = new int[N + 1];

15 col = 1;

16 }

17

18 public Board(Board parent, int row)

19 {

20 board = (int[])parent.board.Clone();

21 board[parent.col] = row;

22 col = parent.col + 1;

23 }

24

25 public bool Conflicting(int row)

26 {

27 for (int i = 1; i < col; ++i)

28 if (board[i] == row || col - i == Math.Abs(row - board[i]))



2.2. FUNCTIONAL APPROACH IN TEACHING ARTIFICIAL INTELLIGENCE 13

29 return true;

30 return false;

31 }

32

33 public override string ToString()

34 {

35 StringBuilder sb = new StringBuilder();

36 for (int i = 1; i <= N; ++i)

37 sb.Append(board[i] + " ");

38 return sb.ToString();

39 }

40 }

41

42 class Program

43 {

44 static List<Board> findSolutions(int col, List<Board> allSolutions)

45 {

46 if (col > Board.N)

47 return allSolutions;

48 List<Board> newSolutions = new List<Board>();

49 foreach (Board solution in allSolutions)

50 for (int row = 1; row <= Board.N; ++row)

51 if (!solution.Conflicting(row))

52 newSolutions.Add(new Board(solution, row));

53 return findSolutions(col + 1, newSolutions);

54 }

55

56 static void Main()

57 {

58 int num = 0;

59 List<Board> initialList = new List<Board>();

60 initialList.Add(new Board());

61 foreach (Board solution in findSolutions(1, initialList))

62 Console.WriteLine("Solution #{0:00}: {1}", ++num, solution);

63 }

64 }

As you can see, the C# code is still much longer and, in my opinion, less expressive
than the F# version of the very same algorithm.

2.2.1 Search Algorithms in Di�erent Programming Languages

The �rst implementations of AI search algorithms were programmed using the �rst
popular high-level imperative programming language, Fortran, and the �rst functional
programming language, IPL. The General Problem Solver, created in 1959, was able
to solve theoretically any formalized symbolic problems [17]. Later, as newer and
newer imperative programming languages (such as C or Pascal) dominated business
computing, search algorithms were rewritten in a number of imperative languages.



14 CHAPTER 2. OVERVIEW OF FUNCTIONAL PROGRAMMING

With the appearance of object-oriented paradigm, programmers had the possibility to
easily create more abstract and general implementations of these algorithms.

Meanwhile, functional programming languages were undergoing vigorous develop-
ment too. Lisp, for example, was invented in 1958, and its variants (Common Lisp,
Scheme, and Clojure among others) are still in use today. As an example, there is
a Lisp implementation for solving the �farmer, wolf, goat, and cabbage problem� in
[16]. Another popular functional language is Haskell, which was used for implementing
depth-�rst search in [11].

Prolog, designed speci�cally for logic programming in 1972, is a natural choice when
it comes to programming AI search algorithms. If we would like to create the most
concise implementation, we should probably use Prolog.

2.3 Multiparadigm Languages and F#

As I already mentioned, imperative programming dominated the �rst few decades of
commercial computing. The problem with imperative languages lies in their verbose-
ness. Even a very simple algorithm can take a lot of lines of code to implement. On
the other hand, functional and logic programming languages require programmers to
acquire a very special way of thinking about things, which may be appropriate for
some sorts of real-world problems, but is unnatural for most problems. Some think
it is a better way to combine the advantages of the di�erent paradigms by merging
their features in one programming language. Others say that this way we ruin the pure
conceptual background of the language. In my opinion, we gain more than we lose with
this multiparadigm approach. Nowadays, programming languages tend to converge to
one another, i.e., functional features are appearing in imperative languages and vice
versa (as in D, Python, C#, or F#). This way, developers may choose to do some
kinds of computation functionally instead of the �traditional way.� A good example of
this is LINQ in C#.

My choice fell on F#, Microsoft's �rst truly functional programming language. F#
was designed to be compatible with the .NET framework, including its object-oriented
concepts. This is not a full compatibility, however, as some OO features would interfere
with the functional part of the language. For example, the protected accessibility
modi�er might cause problems in lambda functions. F# is basically a special version of
Objective Caml (OCaml), an object-oriented FP language, extended to support .NET
interoperability. It combines all three major programming paradigms (imperative,
object-oriented, and functional), so programmers may choose the most suitable way
to solve a particular problem. They may write a program purely functionally, partly
imperatively, using object-oriented tools, such as classes and objects, or by mixing any
or all of these techniques [19, 26]. In F#, programmers may use object states, and
this way, we do not have to write mystic code, for example, for handling complex data
structures. Another drawback of pure functional programming is the ine�ciency of
the executable code: copying data requires more memory and more runtime than just
performing a small modi�cation of existing data. Additionally, F# can help students
realize that no single programming paradigm is best for everything. These are the



2.3. MULTIPARADIGM LANGUAGES AND F# 15

reasons why F# seemed to be a good choice to implement the search algorithms,
which we already had at our disposal in Java and C# [13, 12].



CHAPTER 3

Some Implementations of Search
Algorithms for Single-Agent Problems

In this chapter, I present various implementations of AI search algorithms for solving
arbitrary single-agent, state-space-represented problems. The implemented algorithms
are the following:

• backtracking (with optional cycle check and depth bound check)

• branch-and-bound algorithm (with optional cycle check and initial cost bound)

• breadth-�rst search

• depth-�rst search

• Dijkstra's algorithm (uniform-cost search) [6]

• best-�rst search

• A algorithm

These algorithms and their derivatives are the most widespread in practice nowadays [8,
22, 9], and these algorithms form the core part of the subject Introduction to Arti�cial
Intelligence�both in the lectures and in the seminars [28]. In the code listings, I will
only present two of the above-listed algorithms throughout this chapter: backtracking
and A algorithm.

First, I introduce the class hierarchy created by Kósa Márk and myself [13] when
we started to use Java in the seminars of the aforementioned subject for coding the
search algorithms. Next, I present a pure object-oriented C# implementation and
three multiparadigm F# implementations of these algorithms, comparing them with
one another from various aspects and emphasizing the main di�erences between them.
Finally, I show some possible F# implementations of a couple of examples of speci�c
problems that can be solved using the presented algorithms.
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3.1 A Class Hierarchy for Search Algorithms

This section covers the classes and their members related to the state-space represen-
tation in an abstract level and three of the listed search algorithms with the help of a
UML class diagram. Figure 3.1 shows two abstract classes for the state-space repre-
sentation itself (State and Operator) as well as four Node classes, which represent the
graph nodes used by the search algorithms:

Figure 3.1. Classes representing the state space and the graph nodes.

State is used as a base class for the classes representing the states of concrete
problems, while the Operator class serves as a base class for the concrete operators,
which transform our problem from one state to another. The members of these classes
are the following:

• Operators: the set of all operators relevant to the problem.

• GoalState: true if the current state is a goal state.
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• PreCondition: true if the argument operator is applicable to the current state.

• Apply: applies the argument operator to the current state and returns the resulting
state.

• Heuristic: a heuristic value that is an estimation of the cost of reaching the nearest
goal state from the current state.

• Cost: the cost of applying the current operator to the argument state.

The four Node classes contain the following important members:

• State: the state represented by the node.

• Parent: the node to which an operator was applied to reach the current node.

• Oper: the operator that was applied to the parent node.

• Depth: the current node's depth in the spanning tree of the graph.

• Cost: the total cost of reaching the current node from the start node.

• OperatorsToTry: a list of operators applicable to the current node and not tried
yet.

Node is used with non-cost-based graph search algorithms (e.g., breadth-�rst search),
NodeWithCost is used with cost-based graph search algorithms (e.g., A algorithm),
BacktrackNode is used with backtracking, and BacktrackNodeWithCost is used with
the branch-and-bound algorithm.

Figure 3.2 shows another part of the UML class diagram, which contains the classes
representing some of the search algorithms and their relations to other classes.

Here you can see two enumeration types. SearchProp contains some �ags which
control the operation of the search algorithms. If AllSolutionsFlag is set, the al-
gorithm will search for all solutions, otherwise it will stop when the �rst solution is
found. If SolutionIsStateFlag is set, the algorithm considers the goal state as the
solution, otherwise the solution is considered to be the operator sequence leading from
the initial state to the goal state. CycleCheckFlag is used only with backtracking and
branch-and-bound search. If it is set, the algorithm will check for cycles in the current
path during the search, otherwise it may enter an in�nite loop. Verbosity contains
three verbosity levels which control the amount of information printed to the output
during the search. The caller may pass as an argument any combination of the search
property �ags as well as one of the verbosity levels to the constructor of a particular
search algorithm.

SearchAlg is an abstract class which is the base of all search algorithms and contains
the following members:

• AllSolutions and SolutionIsState are two logical values which are relevant to
all search algorithms. They provide easy access to two of the �ags so that we do
not have to mask the �ags argument every time they are needed.
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Figure 3.2. Classes representing some search algorithms.

• GoalNodes: a list of the goal nodes found during the search.

• PropertiesText: a string representation of the search properties.

• PrintLogEntry: prints the given text to the output if the verbosity level of the
search algorithm is greater than or equal to the given level.

• PrintSolution: prints the solution taken as an argument to the output.

• Search: an abstract method that does the actual work; it must be overridden by
the concrete search algorithms.
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In addition to these members, BacktrackSearch and BranchAndBoundSearch also
store the current path as a stack of nodes, while GraphSearchAlg stores the open and
closed nodes as lists of nodes. GraphSearchAlg contains an abstract Expand method,
which must be overridden by the concrete graph search algorithms.

3.2 Various Implementations of Search Algorithms

In this section, I show four possible implementations of AI search algorithms: a purely
object-oriented and three multiparadigm versions with di�erent amount of imperative
code in them.

3.2.1 The C# Implementation

The following code contains no functional elements�it served as a starting point for the
F# implementations. It consists of the classes introduced in Section 3.1. The presented
code is not complete; it is listed here mainly for serving as a base for comparison, so I
won't go into details explaining it. You can �nd a full explanation in [13, 12].

1 using System;

2 using System.Collections.Generic;

3

4 namespace StateSpace

5 {

6 public abstract class State

7 {

8 public static ICollection<Operator> Operators { get; set; }

9 public abstract bool GoalState { get; }

10 public abstract bool PreCondition(Operator op);

11 public abstract State Apply(Operator op);

12 public virtual double Heuristic

13 {

14 get { return 0; }

15 }

16 }

17

18 public abstract class Operator

19 {

20 public virtual double Cost(State state)

21 {

22 return 1;

23 }

24 }

25

26 public class InvalidOperatorException : Exception

27 {

28 public InvalidOperatorException()

29 : base("No such operator!")
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30 {

31 }

32 }

33 }

This part of the code de�nes the two abstract classes (State and Operator) re-
quired for the state-space representation itself and the InvalidOperatorException

class, which will be thrown by the concrete problems in their PreCondition and Apply

methods if they are given an Operator object that is not relevant to that particular
problem. The two abstract classes will be inherited and their abstract methods will be
implemented by speci�c problems (see Section 3.3). Note that there is a default imple-
mentation of the Heuristic property so that we can use heuristic search algorithms
(e.g., best-�rst search) even with states which do not override this property. Similarly,
we gave a default implementation for the Cost method of the Operator class, this
way ensuring that any operator may participate in a cost-based search (e.g., Dijkstra's
algorithm).

1 using System.Collections.Generic;

2 using StateSpace;

3

4 namespace SearchAlg

5 {

6 public class Node

7 {

8 internal State State { get; set; }

9 internal Node Parent { get; set; }

10 internal Operator Oper { get; set; }

11 internal int Depth { get; set; }

12

13 public Node(State initState)

14 {

15 State = initState;

16 Parent = null;

17 Oper = null;

18 Depth = 0;

19 }

20

21 public Node(Node parent, Operator oper)

22 {

23 State = parent.State.Apply(oper);

24 Parent = parent;

25 Oper = oper;

26 Depth = parent.Depth + 1;

27 }

28

29 public override bool Equals(object obj)

30 {

31 return obj is Node && State.Equals(((Node)obj).State);

32 }
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33

34 public override int GetHashCode()

35 {

36 return 0;

37 }

38

39 public override string ToString()

40 {

41 string s = string.Format("{0}{1} (depth={2}",

42 Oper == null ? "" : Oper + " => ", State, Depth);

43 System.Reflection.PropertyInfo heurProp =

44 State.GetType().GetProperty("Heuristic");

45 if (heurProp.DeclaringType == heurProp.ReflectedType)

46 return s + string.Format(", heuristic={0})", State.Heuristic);

47 else

48 return s + ")";

49 }

50 }

51

52 public class NodeWithCost : Node

53 {

54 public double Cost { get; private set; }

55

56 public NodeWithCost(State initState)

57 : base(initState)

58 {

59 Cost = 0;

60 }

61

62 public NodeWithCost(NodeWithCost parent, Operator oper)

63 : base(parent, oper)

64 {

65 Cost = parent.Cost + oper.Cost(parent.State);

66 }

67

68 public override string ToString()

69 {

70 return base.ToString() + ", cost=" + Cost;

71 }

72 }

73

74 public class BacktrackNode : Node

75 {

76 public IList<Operator> OperatorsToTry { get; private set; }

77

78 private void Init()

79 {

80 OperatorsToTry = new List<Operator>();

81 foreach (Operator op in State.Operators)
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82 if (State.PreCondition(op))

83 OperatorsToTry.Add(op);

84 }

85

86 public BacktrackNode(State initState)

87 : base(initState)

88 {

89 Init();

90 }

91

92 public BacktrackNode(BacktrackNode parent, Operator oper)

93 : base(parent, oper)

94 {

95 Init();

96 }

97 }

98

99 public class BacktrackNodeWithCost : BacktrackNode

100 {

101 public double Cost { get; private set; }

102

103 public BacktrackNodeWithCost(State initState)

104 : base(initState)

105 {

106 Cost = 0;

107 }

108

109 public BacktrackNodeWithCost(BacktrackNodeWithCost parent,

110 Operator oper)

111 : base(parent, oper)

112 {

113 Cost = parent.Cost + oper.Cost(parent.State);

114 }

115

116 public override string ToString()

117 {

118 return base.ToString() + ", cost=" + Cost;

119 }

120 }

121 }

These are the four Node classes used by the di�erent search algorithms. There are
three interesting things to note in this code:

• Each of these classes has two constructors: one for creating the start node and one
for creating a child node from a parent node during an operator application.

• It is very important to override the Equals method this way because the search
algorithms will lookup nodes in di�erent data structures (stacks or lists), and it is
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crucial for them to �nd a node with the same state, regardless of its parent or its
depth in the spanning tree.

• The ToString method uses re�ection to determine whether the concrete problem
has overridden the default implementation of the Heuristic property of the State
class. If so, it's value is added to the end of the string representation of the state.

1 using System;

2 using System.Collections.Generic;

3

4 namespace SearchAlg

5 {

6 [Flags]

7 public enum SearchProp : byte

8 {

9 None = 0,

10 AllSolutionsFlag = 1,

11 SolutionIsStateFlag = 2,

12 CycleCheckFlag = 4

13 }

14

15 public enum Verbosity : byte

16 {

17 None, Info, Debug

18 }

19

20 public abstract class SearchAlg

21 {

22 protected Verbosity verbosity;

23 protected bool AllSolutions { get; private set; }

24 protected bool SolutionIsState { get; private set; }

25 public IList<Node> GoalNodes { get; private set; }

26

27 protected SearchAlg(SearchProp properties = SearchProp.None,

28 Verbosity verbosity = Verbosity.Info)

29 {

30 this.verbosity = verbosity;

31 AllSolutions = (properties & SearchProp.AllSolutionsFlag) !=

32 SearchProp.None;

33 SolutionIsState = (properties & SearchProp.SolutionIsStateFlag) !=

34 SearchProp.None;

35 GoalNodes = new List<Node>();

36 }

37

38 protected virtual string PropertiesText

39 {

40 get

41 {

42 return (AllSolutions ? "Searching for all solutions.\n" :
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43 "Searching for the first solution.\n") +

44 (SolutionIsState ? "The goal state" :

45 "The operator sequence leading to the goal state") +

46 " is considered to be the solution.\n" +

47 "Verbosity level: " + verbosity + "\n";

48 }

49 }

50

51 protected void PrintLogEntry(Verbosity minLevel, string entry)

52 {

53 if (verbosity >= minLevel)

54 Console.WriteLine(entry);

55 }

56

57 public void PrintSolution(Node node)

58 {

59 if (SolutionIsState)

60 try

61 {

62 Console.WriteLine(node.State);

63 }

64 catch (NullReferenceException)

65 {

66 Console.WriteLine("Null as a solution???");

67 }

68 else if (node != null)

69 {

70 PrintSolution(node.Parent);

71 Console.WriteLine(node);

72 }

73 }

74

75 public abstract void Search();

76 }

77 }

Some issues worth noting here are the following:

• The Flags attribute is applied to the SearchProp enumeration type to denote that
the listed properties may occur in combination. Their numeric values are the powers
of 2 for the same reason.

• The constructor of SearchAlg clears all search properties by default and sets the
default value of the verbosity level to Info unless the caller gives arguments to the
constructor. Furthermore, an empty list is created for the goal nodes.

• The virtual property PropertiesText initially contains the string representation of
those two search properties (AllSolutions and SolutionIsState) that are com-
mon to all search algorithms, as well as the verbosity level. It may be overridden
by the concrete algorithm classes to extend it with further properties.
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• The PrintSolution method prints just the goal state represented by the goal node
given as a parameter if the SolutionIsState search property is set. Otherwise, it
recursively prints a sequence of operator/state pairs from the start node to the goal
node.

1 using System;

2 using System.Collections.Generic;

3 using StateSpace;

4

5 namespace SearchAlg

6 {

7 public class InvalidBoundException : Exception

8 {

9 public InvalidBoundException()

10 : base("Negative bound!")

11 {

12 }

13 }

14

15 public class BacktrackSearch : SearchAlg

16 {

17 protected bool cycleCheck;

18 protected int depthBound;

19 protected Stack<BacktrackNode> currPath;

20

21 public BacktrackSearch(State initState,

22 SearchProp properties = SearchProp.None,

23 Verbosity verbosity = Verbosity.Info,

24 int depthBound = 0)

25 : base(properties, verbosity)

26 {

27 if (depthBound < 0)

28 throw new InvalidBoundException();

29 this.depthBound = depthBound;

30 cycleCheck = (properties & SearchProp.CycleCheckFlag) !=

31 SearchProp.None;

32 currPath = new Stack<BacktrackNode>();

33 currPath.Push(new BacktrackNode(initState));

34 }

35

36 protected override string PropertiesText

37 {

38 get

39 {

40 return base.PropertiesText +

41 (cycleCheck ? "Cycle check is on.\n" :

42 "Cycle check is off.\n") +

43 (depthBound > 0 ? "Depth bound: " + depthBound + "\n" :

44 "Depth bound check is off.\n");
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45 }

46 }

47

48 public override void Search()

49 {

50 while (currPath.Count > 0)

51 {

52 BacktrackNode currNode = currPath.Peek();

53 string depthText = depthBound > 0 ?

54 " (depth=" + currNode.Depth + ")" : "";

55 PrintLogEntry(Verbosity.Debug,

56 "Current state: " + currNode.State + depthText);

57 if (currNode.State.GoalState)

58 {

59 if (!(SolutionIsState && GoalNodes.Contains(currNode)))

60 GoalNodes.Add(currNode);

61 if (AllSolutions)

62 {

63 PrintLogEntry(Verbosity.Info,

64 "Found a solution, backtracking.");

65 currPath.Pop();

66 continue;

67 }

68 else

69 break;

70 }

71 if (depthBound > 0 && currNode.Depth == depthBound)

72 {

73 PrintLogEntry(Verbosity.Info,

74 "Reached depth bound, backtracking.");

75 currPath.Pop();

76 continue;

77 }

78 if (currNode.OperatorsToTry.Count == 0)

79 {

80 PrintLogEntry(Verbosity.Info,

81 "No more applicable operators, backtracking.");

82 currPath.Pop();

83 continue;

84 }

85 Operator op = currNode.OperatorsToTry[0];

86 PrintLogEntry(Verbosity.Debug, "Applying operator: " + op);

87 BacktrackNode newNode = new BacktrackNode(currNode, op);

88 PrintLogEntry(Verbosity.Debug, "New state: " + newNode.State);

89 if (cycleCheck && currPath.Contains(newNode))

90 PrintLogEntry(Verbosity.Info, "Found a cycle.");

91 else

92 currPath.Push(newNode);

93 currNode.OperatorsToTry.Remove(op);
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94 }

95 }

96

97 public override string ToString()

98 {

99 return verbosity == Verbosity.None ? "" :

100 "Searching using backtracking.\n" + PropertiesText;

101 }

102 }

103 }

This is a possible C# implementation of the backtracking algorithm with optional
cycle check and depth bound check. First, InvalidBoundException is de�ned, which
is thrown if a negative bound is given to the constructor of BacktrackSearch. The
algorithm itself is written to be as close to the pseudocode presented in the lectures
as possible. It starts in the constructor with creating an empty stack of nodes (actu-
ally BacktrackNodes) for storing the current path (currPath) and pushing the start
node onto it. Creating a new BacktrackNode involves generating a list of operators
applicable to that node (OperatorsToTry).

The control �ow of the Search method is a bit complicated because of the di�erent
search properties we have to consider. The main control structure is a while loop that
runs until the current path becomes empty, which occurs when a backtrack operation
is performed in the start node. First, the current node (the top element in the stack
of the current path) is checked whether it contains a goal state. If so, it is added to
the list of the goal nodes, and the algorithm will either stop (if only one solution is
required), or continue with a backtrack operation. If the current node is not a goal
node, then two other conditions are checked which imply backtracking: (1) the depth
of the current node reaches the depth bound, and (2) there are no more applicable
operators left in the current node. If neither of these conditions are true, the next
applicable operator is applied to the current state, and the applied operator is removed
from the list of the applicable operators. Finally, we check for a cycle if required and
push the new node generated by the operator application to the stack of the current
path.

1 using System;

2 using System.Collections.Generic;

3 using StateSpace;

4

5 namespace SearchAlg

6 {

7 public abstract class GraphSearchAlg : SearchAlg

8 {

9 protected List<Node> openNodes, closedNodes;

10

11 protected GraphSearchAlg(SearchProp properties = SearchProp.None,

12 Verbosity verbosity = Verbosity.Info)

13 : base(properties, verbosity)

14 {
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15 openNodes = new List<Node>();

16 closedNodes = new List<Node>();

17 }

18

19 private void PrintNodesCount()

20 {

21 Console.WriteLine("Open nodes: {0}, closed nodes: {1}.",

22 openNodes.Count, closedNodes.Count);

23 }

24

25 private void PrintDatabase()

26 {

27 Console.WriteLine("Open nodes:");

28 foreach (Node node in openNodes)

29 Console.WriteLine(node);

30 Console.WriteLine("Closed nodes:");

31 foreach (Node node in closedNodes)

32 Console.WriteLine(node);

33 Console.WriteLine();

34 }

35

36 protected void PrintInfo()

37 {

38 if (verbosity == Verbosity.Info)

39 PrintNodesCount();

40 else if (verbosity == Verbosity.Debug)

41 PrintDatabase();

42 }

43

44 protected abstract void Expand(Node node);

45 }

46

47 public class AAlgorithm : GraphSearchAlg

48 {

49 public AAlgorithm(State initState,

50 SearchProp properties = SearchProp.None,

51 Verbosity verbosity = Verbosity.Info )

52 : base(properties, verbosity)

53 {

54 openNodes.Add(new NodeWithCost(initState));

55 }

56

57 protected override void Expand(Node node)

58 {

59 foreach (Operator op in State.Operators)

60 if (node.State.PreCondition(op))

61 {

62 NodeWithCost newNode =

63 new NodeWithCost((NodeWithCost)node, op);
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64 int index;

65 if ((index = openNodes.IndexOf(newNode)) != -1)

66 {

67 NodeWithCost oldNode = (NodeWithCost)openNodes[index];

68 if (newNode.Cost < oldNode.Cost)

69 {

70 openNodes.Remove(oldNode);

71 openNodes.Add(newNode);

72 }

73 }

74 else if ((index = closedNodes.IndexOf(newNode)) != -1)

75 {

76 NodeWithCost oldNode = (NodeWithCost)closedNodes[index];

77 if (newNode.Cost < oldNode.Cost)

78 {

79 closedNodes.Remove(oldNode);

80 openNodes.Add(newNode);

81 }

82 }

83 else

84 openNodes.Add(newNode);

85 }

86 }

87

88 public override void Search()

89 {

90 while (openNodes.Count > 0)

91 {

92 PrintInfo();

93 NodeWithCost currNode = (NodeWithCost)openNodes[0];

94 if (currNode.State.GoalState)

95 {

96 GoalNodes.Add(currNode);

97 if (AllSolutions)

98 {

99 PrintLogEntry(Verbosity.Info, "Found a solution.");

100 openNodes.Remove(currNode);

101 closedNodes.Add(currNode);

102 continue;

103 }

104 else

105 break;

106 }

107 openNodes.Remove(currNode);

108 closedNodes.Add(currNode);

109 Expand(currNode);

110 openNodes.Sort(new AAlgComparer());

111 }

112 PrintInfo();
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113 }

114

115 public override string ToString()

116 {

117 return verbosity == Verbosity.None ? "" :

118 "Searching using A algorithm.\n" + PropertiesText;

119 }

120

121 class AAlgComparer : IComparer<Node>

122 {

123 int IComparer<Node>.Compare(Node n1, Node n2)

124 {

125 return (((NodeWithCost)n1).Cost + n1.State.Heuristic).CompareTo

126 (((NodeWithCost)n2).Cost + n2.State.Heuristic);

127 }

128 }

129 }

130 }

This is the implementation of the abstract base class of all graph search algorithms
(GraphSearchAlg) and one of the concrete algorithm classes (AAlgorithm). The ab-
stract GraphSearchAlg class contains the database in the form of two lists of nodes
(openNodes and closedNodes), which store the open nodes and closed nodes of the
search tree, respectively. Both of these lists are initialized with empty lists at this
point. There are also a couple of methods printing some information about the open
and closed nodes for debugging purposes, as well as an abstract Expand method, which
has to be overridden by the concrete algorithm classes.

A algorithm is one of the most popular search algorithms. It starts with adding the
start node to the list of open nodes in the constructor. Instead of Node, NodeWithCost
is used to store the nodes of the search tree because this algorithm also takes into
account the cost of reaching the current node from the start node when choosing the
open node to expand. The Search method consists again of a while loop that runs
until there are no more open nodes in our database, i.e., the entire state-space graph
has been discovered. We take the �rst node of the list of open nodes (with the lowest
value of the evaluation function among the open nodes), check whether it is a goal
node, and if so, add this node to the list of goal nodes. If only one solution is needed,
the algorithm stops, otherwise the current node is moved to the closed nodes (without
expansion), and the algorithm continues. In case the current node does not contain a
goal state, it is expanded and moved to the closed nodes.

Expansion in A algorithm works as follows: Each operator that is applicable to the
node is applied. If the newly created node contains a state that is already present in
the database, we have to check whether this state is now reached with less cost than
earlier. If so, the old node is replaced with the new one, even if the old node is a closed
node, in which case it is also moved to the list of open nodes to reexpand it later. After
expanding the current node, the new list of open nodes is sorted by the sum of their
cost and heuristic values. A private class implementing the IComparer interface is used
for this purpose.
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The classes of the omitted search algorithms contain only minor modi�cations
to those listed above. Branch-and-bound algorithm is very similar to backtracking,
whereas graph search algorithms are much like simpli�ed versions of A algorithm.

The Main Program

Finally, let's see how we could write a main program that calls one of these algorithms to
�nd a solution to a speci�c problem. Suppose that we already have the implementation
of the Towers of Hanoi problem at our disposal (see Section 3.3). A possible main
program may then look like the following:

1 using System;

2 using SearchAlg;

3

4 class Program

5 {

6 static void Main()

7 {

8 SearchAlg.SearchAlg searchAlg =

9 new BacktrackSearch(new Hanoi.HanoiState(),

10 SearchProp.CycleCheckFlag | SearchProp.AllSolutionsFlag,

11 Verbosity.Debug, 10);

12 Console.WriteLine(searchAlg);

13 searchAlg.Search();

14 int num = 0;

15 foreach (Node solution in searchAlg.GoalNodes)

16 {

17 Console.WriteLine("\nSolution #{0}:", ++num);

18 searchAlg.PrintSolution(solution);

19 }

20 Console.WriteLine("\nNumber of solutions: " +

21 searchAlg.GoalNodes.Count);

22 }

23 }

As you can see, this sample main program will search for all solutions of the Towers
of Hanoi problem using backtracking with cycle check and a depth bound of 10 and
printing all debug information to the screen. After instantiating the BacktrackSearch
class, the search properties are printed, and then the Search method is called, which
will generate the solutions in the GoalNodes list. Finally, the solutions are printed one
by one using a foreach loop, together with the number of solutions found.

3.2.2 The First F# Implementation

The aim of �rst F# version of these algorithms I present here was to be as close to
the C# version as possible, considering the peculiarities of the F# language. This
version uses almost the same class hierarchy as discussed above, with a number of
imperative language constructs and mutable data structures. However, no mutable
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variables or �elds were required for this implementation. The most notable di�erence
is the lack of jump statements (such as break or continue), which had to be replaced
with tail-recursive function calls. Let's now examine the code in details.

State and Operator are two classes that are common to all three implementations.
Here is the code which de�nes these classes:

1 namespace StateSpace

2

3 open System.Collections.Generic

4

5 type [<AbstractClass>] State() =

6 static let operators = HashSet<Operator>()

7 static member Operators = operators

8 abstract GoalState : bool

9 abstract PreCondition : Operator -> bool

10 abstract Apply : Operator -> State

11 abstract Heuristic : double

12 default this.Heuristic = 0.0

13

14 and [<AbstractClass>] Operator() =

15 abstract Cost : State -> double

16 default this.Cost(_) = 1.0

17

18 exception InvalidOperator

As I wanted to avoid mutable �elds, an initial value had to be assigned to all
nonabstract �elds and properties. That is why operators is initialized with an empty
HashSet already in the abstract State class (instead of the concrete class of a speci�c
problem). Although this seems to be a restriction, no part of the code depends on the
exact type of this collection.

1 namespace SearchAlg

2

3 open System

4 open System.Collections.Generic

5 open StateSpace

6

7 type Node =

8 val private state : State

9 val private parent : Node option

10 val private oper : Operator option

11 val private depth : int

12

13 member internal this.State = this.state

14 member internal this.Parent = this.parent

15 member internal this.Oper = this.oper

16 member internal this.Depth = this.depth

17

18 new(initState : State) =
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19 { state = initState; parent = None; oper = None; depth = 0 }

20

21 new(parent : Node, oper : Operator) =

22 { state = parent.state.Apply(oper)

23 parent = Some parent

24 oper = Some oper

25 depth = parent.depth + 1 }

26

27 override this.Equals(other) =

28 match other with

29 | :? Node as otherNode ->

30 this.state.Equals(otherNode.state)

31 | _ ->

32 false

33

34 override this.GetHashCode() =

35 hash this.state

36

37 override this.ToString() =

38 let s =

39 sprintf "%s%O (depth=%d"

40 (if this.oper = None then "" else

41 this.oper.Value.ToString() + " => ")

42 this.state this.depth

43 let heurProp = this.state.GetType().GetProperty("Heuristic")

44 if heurProp.DeclaringType = heurProp.ReflectedType then

45 s + sprintf ", heuristic=%g)" this.state.Heuristic

46 else

47 s + ")"

48

49 type NodeWithCost =

50 inherit Node

51

52 val private cost : double

53 member this.Cost = this.cost

54

55 new(initState : State) =

56 { inherit Node(initState); cost = 0.0 }

57

58 new(parent : NodeWithCost, oper : Operator) =

59 { inherit Node(parent, oper);

60 cost = parent.cost + oper.Cost(parent.State) }

61

62 override this.ToString() =

63 base.ToString() + ", cost=" + this.cost.ToString()

The implementation of the two Node classes is almost the same as in the C# version.
The only di�erence is that the Parent property is of type Node option and the Oper
property is of type Operator option. I used F#'s option type to simulate C#'s
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reference type. It is needed here because both properties may or may not have an
object value; namely, the start node does not have a parent, and there is no operator
used to reach it. As the null value cannot be assigned to Parent and Oper in F#,
None is used instead.

Another interesting thing to note here is that there is no BacktrackNode or Back-
trackNodeWithCost class. It is because of the di�erent operation of the backtracking
algorithm�I will cover it later in more detail.

1 namespace SearchAlg

2

3 open System

4 open System.Collections.Generic

5

6 [<Flags>]

7 type SearchProp =

8 | None = 0b00000000

9 | AllSolutionsFlag = 0b00000001

10 | SolutionIsStateFlag = 0b00000010

11 | CycleCheckFlag = 0b00000100

12

13 type Verbosity =

14 | None = 0

15 | Info = 1

16 | Debug = 2

17

18 [<AbstractClass>]

19 type SearchAlg(?properties, ?verbosity) =

20 let properties = defaultArg properties SearchProp.None

21 let verbosity = defaultArg verbosity Verbosity.Info

22 let allSolutions =

23 properties &&& SearchProp.AllSolutionsFlag <> SearchProp.None

24 let solutionIsState =

25 properties &&& SearchProp.SolutionIsStateFlag <> SearchProp.None

26 let goalNodes = List<Node>()

27

28 member this.AllSolutions = allSolutions

29 member this.SolutionIsState = solutionIsState

30 member this.GoalNodes = goalNodes

31

32 abstract PropertiesText : string

33 default this.PropertiesText =

34 (if allSolutions then

35 "Searching for all solutions.\n"

36 else

37 "Searching for the first solution.\n") +

38 (if solutionIsState then

39 "The goal state"

40 else

41 "The operator sequence leading to the goal state") +
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42 " is considered to be the solution.\n" +

43 "Verbosity level: " + verbosity.ToString() + "\n"

44

45 member this.PrintLogEntry(minLevel, entry) =

46 if verbosity >= minLevel then

47 printfn "%s" entry

48

49 member this.PrintSolution(node : Node option) =

50 if solutionIsState then

51 try

52 printfn "%O" node.Value.State

53 with

54 :? NullReferenceException ->

55 printfn "Null as a solution???"

56 elif node.IsSome then

57 this.PrintSolution(node.Value.Parent)

58 printfn "%O" node.Value

59

60 abstract Search : unit -> unit

There is only one minor di�erence here from the C# version: in the PrintSolution
method, the node parameter is of type Node option instead of just Node. The reason
for this is the same as for Parent being of type Node option.

1 namespace SearchAlg

2

3 open System.Collections.Generic

4 open StateSpace

5

6 exception InvalidBound

7

8 type BacktrackSearch(initState, ?properties, ?verbosity, ?depthBound) =

9 inherit SearchAlg(defaultArg properties SearchProp.None,

10 defaultArg verbosity Verbosity.Info)

11

12 let properties = defaultArg properties SearchProp.None

13 let verbosity = defaultArg verbosity Verbosity.Info

14 let depthBound = defaultArg depthBound 0

15 let cycleCheck =

16 properties &&& SearchProp.CycleCheckFlag <> SearchProp.None

17 let currPath = Stack<Node>()

18

19 do

20 if depthBound < 0 then

21 raise InvalidBound

22 currPath.Push(Node(initState))

23

24 override this.PropertiesText =

25 base.PropertiesText +
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26 (if cycleCheck then

27 "Cycle check is on.\n"

28 else

29 "Cycle check is off.\n") +

30 (if depthBound > 0 then

31 "Depth bound: " + depthBound.ToString() + "\n"

32 else

33 "Depth bound check is off.\n")

34

35 override this.Search() =

36 let currNode = currPath.Peek()

37 let depthText =

38 if depthBound > 0 then

39 sprintf " (depth=%d)" currNode.Depth

40 else

41 ""

42 if currNode.State.GoalState then

43 this.PrintLogEntry(Verbosity.Debug,

44 sprintf "Current state: %O%s" currNode.State depthText)

45 if not (this.SolutionIsState &&

46 this.GoalNodes.Contains(currNode)) then

47 this.GoalNodes.Add(currNode)

48 if this.AllSolutions then

49 this.PrintLogEntry(Verbosity.Info,

50 "Found a solution, backtracking.")

51 currPath.Pop() |> ignore

52 elif depthBound > 0 && currNode.Depth = depthBound then

53 this.PrintLogEntry(Verbosity.Debug,

54 sprintf "Current state: %O%s" currNode.State depthText)

55 this.PrintLogEntry(Verbosity.Info,

56 "Reached depth bound, backtracking.")

57 currPath.Pop() |> ignore

58 else

59 State.Operators

60 |> Seq.filter (fun op -> currNode.State.PreCondition(op))

61 |> Seq.takeWhile (fun _ ->

62 this.AllSolutions || this.GoalNodes.Count = 0)

63 |> Seq.iter (fun op ->

64 this.PrintLogEntry(Verbosity.Debug,

65 sprintf "Current state: %O%s"

66 currNode.State depthText)

67 this.PrintLogEntry(Verbosity.Debug,

68 sprintf "Applying operator: %O" op)

69 let newNode = Node(currNode, op )

70 this.PrintLogEntry(Verbosity.Debug,

71 sprintf "New state: %O" newNode.State)

72 if cycleCheck && currPath.Contains(newNode) then

73 this.PrintLogEntry(Verbosity.Info,

74 "Found a cycle.")
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75 else

76 currPath.Push(newNode)

77 this.Search())

78 if this.AllSolutions || this.GoalNodes.Count = 0 then

79 this.PrintLogEntry(Verbosity.Debug,

80 sprintf "Current state: %O%s"

81 currNode.State depthText)

82 this.PrintLogEntry(Verbosity.Info,

83 "No more applicable operators, backtracking.")

84 currPath.Pop() |> ignore

85

86 override this.ToString() =

87 if verbosity = Verbosity.None then

88 ""

89 else

90 "Searching using backtracking.\n" + this.PropertiesText

The implementation of the backtracking algorithm has the biggest di�erence from
that of the C# version. It would have made no sense to simulate the while loop with
tail-recursive function calls as backtracking is recursive by itself, even if its pseudocode
is iterative. When I �rst created the �simulated� version, I saw that it contained a lot of
unnecessary overhead. First, each continue statement in the Search method had to be
replaced with a recursive call, which is not required in the presented version. Second,
we can get rid of the OperatorsToTry property of the BacktrackNode class because
we apply each applicable operator one after the other inside the lambda function of
the Seq.iter function in line 63. This way, there is no need to store the operators
not tried yet, and since the OperatorsToTry property is the only di�erence between
the Node and BacktrackNode classes, we can also get rid of the BacktrackNode class
itself.

Let's see how the Search method works in this implementation. The �rst couple of
steps are the same as in the C# version. We take the top element in the stack of the
current path, check whether it contains a goal state, and if so, add it to the list of the
goal nodes. If we are searching for all solutions, we pop this element from the stack,
and simply return from the Search method to its previous instance in the call stack to
line 77, where the next operator will be tried by the Seq.iter function. The same will
happen if depth bound is reached. In all other cases, we take all operators relevant to
the problem (line 59) and �lter out those that are not applicable to the current state
(line 60). If there are no applicable operators, this gives us an empty sequence, and
the control will jump to line 78. Otherwise, we have to check if a solution has already
been found and only one solution is required. If this condition is true, then again we
can �jump� to line 78.

Then we iterate through all applicable operators using the Seq.iter function (line
63), whose argument lambda function applies the operator (line 69), checks if the new
state occurs already in the current path (line 72), and if not, pushes the new node onto
the current path (line 76) and calls the Search method recursively (line 77). After
the control returns back here, the next operator in the sequence is processed. When
all operators have been tried, then again a backtracking operation is performed by
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popping the current node from the current path and returning to the caller. If there
are no more instances of the Search method in the call stack, the search is �nished.

1 namespace SearchAlg

2

3 open System.Collections.Generic

4 open StateSpace

5

6 [<AbstractClass>]

7 type GraphSearchAlg(?properties, ?verbosity) =

8 inherit SearchAlg(defaultArg properties SearchProp.None,

9 defaultArg verbosity Verbosity.Info)

10

11 let verbosity = defaultArg verbosity Verbosity.Info

12 let openNodes = List<Node>()

13 let closedNodes = List<Node>()

14

15 member this.OpenNodes = openNodes

16 member this.ClosedNodes = closedNodes

17

18 member this.PrintInfo() =

19 let printNodesCount () =

20 printfn "Open nodes: %d, closed nodes: %d."

21 this.OpenNodes.Count this.ClosedNodes.Count

22

23 let printDatabase () =

24 printfn "Open nodes:"

25 for node in openNodes do

26 printfn "%O" node

27 printfn "Closed nodes:"

28 for node in closedNodes do

29 printfn "%O" node

30 printfn ""

31

32 if verbosity = Verbosity.Info then

33 printNodesCount ()

34 elif verbosity = Verbosity.Debug then

35 printDatabase ()

36

37 abstract Expand : Node -> unit

38

39 type AAlgorithm(initState, ?properties, ?verbosity) as this =

40 inherit GraphSearchAlg(defaultArg properties SearchProp.None,

41 defaultArg verbosity Verbosity.Info)

42

43 let verbosity = defaultArg verbosity Verbosity.Info

44

45 do this.OpenNodes.Add(NodeWithCost(initState))

46
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47 override this.Expand(node) =

48 State.Operators

49 |> Seq.filter (fun op -> node.State.PreCondition(op))

50 |> Seq.iter (fun op ->

51 let newNode = NodeWithCost(node :?> NodeWithCost, op)

52 let index = this.OpenNodes.IndexOf(newNode)

53 if index <> -1 then

54 let oldNode = this.OpenNodes.[index] :?> NodeWithCost

55 if newNode.Cost < oldNode.Cost then

56 this.OpenNodes.Remove(oldNode) |> ignore

57 this.OpenNodes.Add(newNode)

58 else

59 let index = this.ClosedNodes.IndexOf(newNode)

60 if index <> -1 then

61 let oldNode =

62 this.ClosedNodes.[index] :?> NodeWithCost

63 if newNode.Cost < oldNode.Cost then

64 this.ClosedNodes.Remove(oldNode) |> ignore

65 this.OpenNodes.Add(newNode)

66 else

67 this.OpenNodes.Add(newNode))

68

69 override this.Search() =

70 this.PrintInfo()

71 if this.OpenNodes.Count > 0 then

72 let currNode = this.OpenNodes.[0]

73 if currNode.State.GoalState then

74 this.GoalNodes.Add(currNode)

75 if this.AllSolutions then

76 this.PrintLogEntry(Verbosity.Info,

77 "Found a solution.")

78 this.OpenNodes.Remove(currNode) |> ignore

79 this.ClosedNodes.Add(currNode)

80 this.Search()

81 else

82 this.OpenNodes.Remove(currNode) |> ignore

83 this.ClosedNodes.Add(currNode)

84 this.Expand(currNode)

85 this.OpenNodes.Sort({ new IComparer<Node> with

86 member this.Compare(n1, n2) =

87 let f1 = (n1 :?> NodeWithCost).Cost +

88 n1.State.Heuristic

89 let f2 = (n2 :?> NodeWithCost).Cost +

90 n2.State.Heuristic

91 f1.CompareTo(f2) })

92 this.Search()

93

94 override this.ToString() =

95 if verbosity = Verbosity.None then
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96 ""

97 else

98 "Searching using A algorithm.\n" + this.PropertiesText

The implementation of these classes di�ers from that of the C# version in the
Expand and Search methods of the concrete algorithm class. First, instead of the
foreach loop, the Expand method uses the Seq.iter higher-order function to apply
all applicable operators to the argument node. Second, the Search method uses two
tail-recursive calls to simulate the while loop. Moreover, to sort the list of open nodes,
the IComparer object is created using an object expression, instead of instantiating a
private class.

The Main Program

To achieve the same result as in the C# implementation, we can write the following
main program (as a function):

1 open SearchAlg

2

3 let main () =

4 let searchAlg =

5 BacktrackSearch(Hanoi.HanoiState(),

6 SearchProp.CycleCheckFlag ||| SearchProp.AllSolutionsFlag,

7 Verbosity.Debug, 10)

8 printfn "%O" searchAlg

9 searchAlg.Search()

10 searchAlg.GoalNodes

11 |> Seq.iteri (fun i solution ->

12 printfn "\nSolution #%d:" (i + 1)

13 searchAlg.PrintSolution(Some solution))

14 printfn "\nNumber of solutions: %d" searchAlg.GoalNodes.Count

Apart from the syntax, this main program is just like that of the C# version. The
di�erence is the same here as in the Search method: the solutions are printed using
the iteri function from the Seq module, instead of a foreach loop.

3.2.3 The Second F# Implementation

After creating the �rst F# implementation of the search algorithms, we can realize that
it is actually not a functional code, even though it contains some functional elements,
such as using sequences and higher-order functions from the Seq module to simulate
foreach loops. The �rst version can be used as a starting point for students who
are not familiar with functional programming but are familiar with object-oriented
programming.

So, the obvious next step is to �nd a way to make the code more functional. One
possibility for this is to get rid of classes which do not hold data (or do not hold much
data) but are used only to provide some functionality, and to replace such classes with
functions that return an object implementing the abstract methods (or overriding the
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concrete methods) of a �base class� or interface. In our case, such classes are those
representing the speci�c search algorithms, such as BacktrackSearch or AAlgorithm.
We can, for example, substitute BacktrackSearch with a function which takes the
same parameters as the constructor of the BacktrackSearch class, creates a SearchAlg
object using an object expression, and returns this object:

1 module Backtrack

2

3 open System.Collections.Generic

4 open StateSpace

5 open SearchAlg

6

7 exception InvalidBound

8

9 let backtrackSearch initState properties verbosity depthBound =

10 let properties = defaultArg properties SearchProp.None

11 let verbosity = defaultArg verbosity Verbosity.Info

12 let depthBound = defaultArg depthBound 0

13 if depthBound < 0 then

14 raise InvalidBound

15 let cycleCheck =

16 properties &&& SearchProp.CycleCheckFlag <> SearchProp.None

17 let currPath = Stack<Node>()

18 let backtrack =

19 { new SearchAlg(properties, verbosity) with

20 override this.PropertiesText =

21 base.PropertiesText +

22 (if cycleCheck then

23 "Cycle check is on.\n"

24 else

25 "Cycle check is off.\n") +

26 (if depthBound > 0 then

27 "Depth bound: " + depthBound.ToString() + "\n"

28 else

29 "Depth bound check is off.\n")

30

31 override this.Search() =

32 let currNode = currPath.Peek()

33 let depthText =

34 if depthBound > 0 then

35 sprintf " (depth=%d)" currNode.Depth

36 else

37 ""

38 if currNode.State.GoalState then

39 this.PrintLogEntry(Verbosity.Debug,

40 sprintf "Current state: %O%s"

41 currNode.State depthText)

42 if not (this.SolutionIsState &&

43 this.GoalNodes.Contains(currNode)) then
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44 this.GoalNodes.Add(currNode)

45 if this.AllSolutions then

46 this.PrintLogEntry(Verbosity.Info,

47 "Found a solution, backtracking.")

48 currPath.Pop() |> ignore

49 elif depthBound > 0 && currNode.Depth = depthBound then

50 this.PrintLogEntry(Verbosity.Debug,

51 sprintf "Current state: %O%s"

52 currNode.State depthText)

53 this.PrintLogEntry(Verbosity.Info,

54 "Reached depth bound, backtracking.")

55 currPath.Pop() |> ignore

56 else

57 State.Operators

58 |> Seq.filter (fun op ->

59 currNode.State.PreCondition(op))

60 |> Seq.takeWhile (fun _ ->

61 this.AllSolutions ||

62 this.GoalNodes.Count = 0)

63 |> Seq.iter (fun op ->

64 this.PrintLogEntry(Verbosity.Debug,

65 sprintf "Current state: %O%s"

66 currNode.State depthText)

67 this.PrintLogEntry(Verbosity.Debug,

68 sprintf "Applying operator: %O" op)

69 let newNode = Node(currNode, op )

70 this.PrintLogEntry(Verbosity.Debug,

71 sprintf "New state: %O" newNode.State)

72 if cycleCheck &&

73 currPath.Contains(newNode) then

74 this.PrintLogEntry(Verbosity.Info,

75 "Found a cycle.")

76 else

77 currPath.Push(newNode)

78 this.Search())

79 if this.AllSolutions ||

80 this.GoalNodes.Count = 0 then

81 this.PrintLogEntry(Verbosity.Debug,

82 sprintf "Current state: %O%s"

83 currNode.State depthText)

84 this.PrintLogEntry(Verbosity.Info,

85 "No more applicable operators, backtracking.")

86 currPath.Pop() |> ignore

87

88 override this.ToString() =

89 if verbosity = Verbosity.None then

90 ""

91 else

92 "Searching using backtracking.\n" +
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93 this.PropertiesText }

94 currPath.Push(Node(initState))

95 backtrack

Similarly, we can create functions for the graph search algorithms, but they will
have GraphSearchAlg serving as the �base class� in the object expression:

1 module GraphSearchAlg

2

3 open System.Collections.Generic

4 open StateSpace

5 open SearchAlg

6

7 let aAlgorithm initState properties verbosity =

8 let properties = defaultArg properties SearchProp.None

9 let verbosity = defaultArg verbosity Verbosity.Info

10 let aAlg =

11 { new GraphSearchAlg(properties, verbosity) with

12 override this.Expand(node) =

13 State.Operators

14 |> Seq.filter (fun op -> node.State.PreCondition(op))

15 |> Seq.iter (fun op ->

16 let newNode =

17 NodeWithCost(node :?> NodeWithCost, op)

18 let index = this.OpenNodes.IndexOf(newNode)

19 if index <> -1 then

20 let oldNode =

21 this.OpenNodes.[index] :?> NodeWithCost

22 if newNode.Cost < oldNode.Cost then

23 this.OpenNodes.Remove(oldNode) |> ignore

24 this.OpenNodes.Add(newNode)

25 else

26 let index = this.ClosedNodes.IndexOf(newNode)

27 if index <> -1 then

28 let oldNode =

29 this.ClosedNodes.[index]

30 :?> NodeWithCost

31 if newNode.Cost < oldNode.Cost then

32 this.ClosedNodes.Remove(oldNode)

33 |> ignore

34 this.OpenNodes.Add(newNode)

35 else

36 this.OpenNodes.Add(newNode))

37

38 override this.Search() =

39 this.PrintInfo()

40 if this.OpenNodes.Count > 0 then

41 let currNode = this.OpenNodes.[0]

42 if currNode.State.GoalState then
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43 this.GoalNodes.Add(currNode)

44 if this.AllSolutions then

45 this.PrintLogEntry(Verbosity.Info,

46 "Found a solution.")

47 this.OpenNodes.Remove(currNode) |> ignore

48 this.ClosedNodes.Add(currNode)

49 this.Search()

50 else

51 this.OpenNodes.Remove(currNode) |> ignore

52 this.ClosedNodes.Add(currNode)

53 this.Expand(currNode)

54 this.OpenNodes.Sort({ new IComparer<Node> with

55 member this.Compare(n1, n2) =

56 let f1 = (n1 :?> NodeWithCost).Cost +

57 n1.State.Heuristic

58 let f2 = (n2 :?> NodeWithCost).Cost +

59 n2.State.Heuristic

60 f1.CompareTo(f2) })

61 this.Search()

62

63 override this.ToString() =

64 if verbosity = Verbosity.None then

65 ""

66 else

67 "Searching using A algorithm.\n" +

68 this.PropertiesText }

69 aAlg.OpenNodes.Add(NodeWithCost(initState))

70 aAlg

To summarize: the only di�erence from the �rst version is that we did not create
separate classes for all search algorithms, only the two abstract classes (SearchAlg
and GraphSearchAlg) remained. Instead, we used functions for creating the objects
representing each of the search algorithms. Although this code has the same number
of lines as the �rst implementation, using functions and object expressions instead of
classes seems to be a good �rst step in the process of making our code more functional.

The Main Program

The main program in this implementation becomes the following:

1 open SearchAlg

2 open Backtrack

3

4 let main () =

5 let searchAlg =

6 backtrackSearch (Hanoi.HanoiState())

7 (Some (SearchProp.CycleCheckFlag |||

8 SearchProp.AllSolutionsFlag))

9 (Some Verbosity.Debug) (Some 10)
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10 printfn "%O" searchAlg

11 searchAlg.Search()

12 searchAlg.GoalNodes

13 |> Seq.iteri (fun i solution ->

14 printfn "\nSolution #%d:" (i + 1)

15 searchAlg.PrintSolution(Some solution))

16 printfn "\nNumber of solutions: %d" searchAlg.GoalNodes.Count

As you can see, the only di�erence is that we now have to call the backtrackSearch
function to get the object that executes the backtracking algorithm with the same
properties as earlier. The �rst argument of the function is the same as before, but
the other three arguments are now of option type so that we can use None to work
with the default values. It was not necessary in the �rst version because methods may
have optional arguments whose names begin with a question mark (?), and the type of
such arguments are automatically converted to option type by the F# compiler. If an
optional argument is omitted by the caller, the value of the corresponding parameter
will be None. F# functions, however, may not have optional arguments, so we need to
use option types explicitly.

3.2.4 The Third F# Implementation

Apart from the way of creating the objects representing the di�erent search algorithms,
the second implementation does not di�er from the �rst one. We can make our code
really functional by placing the functionality of all abstract and concrete algorithm
classes into one search function, which takes the following parameters:

• the initial state of a speci�c problem (initState)

• search properties (properties)

• verbosity level (verbosity)

• the algorithm to be used for searching along with further properties speci�c to that
algorithm (algorithm)

So, instead of creating di�erent functions for the di�erent search algorithms, we will
create only one function that takes care of everything and returns the list of the goal
nodes. For the algorithm parameter, we need a discriminated union covering the
possible algorithm types and their special properties:

1 type AlgorithmType =

2 | Backtrack of int option

3 | BranchAndBound of double option

4 | BreadthFirstSearch

5 | DepthFirstSearch

6 | Dijkstra

7 | BestFirstSearch

8 | AAlgorithm
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Besides the properties handled with �ags (i.e., one bit in the properties parameter:
AllSolutionsFlag, SolutionIsStateFlag, and CycleCheckFlag), backtracking may
have a depth bound parameter, whereas branch-and-bound search may have an initial
cost bound parameter. None of the other algorithms require special properties.

Inside the search function, local values are used instead of properties like AllSo-
lutions or GoalNodes, and local helper functions will play the role of the ToString

or PrintLogEntry methods. Local functions will also be used to simulate inheritance,
for example, backtrack and graphSearchAlg will be local functions of search.

I will now use a top-down approach to introduce the search function. Let's have a
look at the outermost level �rst:

1 let search initState properties verbosity algorithm =

2 let properties = defaultArg properties SearchProp.None

3 let verbosity = defaultArg verbosity Verbosity.Info

4 let allSolutions =

5 properties &&& SearchProp.AllSolutionsFlag <> SearchProp.None

6 let solutionIsState =

7 properties &&& SearchProp.SolutionIsStateFlag <> SearchProp.None

8 let cycleCheck =

9 properties &&& SearchProp.CycleCheckFlag <> SearchProp.None

10 let goalNodes = List<Node>()

11

12 let printSearchInfo () =

13 let printCommonProperties () =

14 if allSolutions then

15 printfn "Searching for all solutions."

16 else

17 printfn "Searching for the first solution."

18 if solutionIsState then

19 printf "The goal state"

20 else

21 printf "The operator sequence leading to the goal state"

22 printfn " is considered to be the solution."

23 printfn "Verbosity level: %O" verbosity

24

25 match algorithm with

26 | Backtrack depthBound ->

27 printfn "Searching using backtracking."

28 if verbosity <> Verbosity.None then

29 printCommonProperties ()

30 if cycleCheck then

31 printfn "Cycle check is on."

32 else

33 printfn "Cycle check is off."

34 if depthBound.IsSome then

35 printfn "Depth bound: %d" depthBound.Value

36 else

37 printfn "Depth bound check is off."

38 | BranchAndBound initBound ->
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39 printfn "Searching using branch-and-bound algorithm."

40 if verbosity <> Verbosity.None then

41 printCommonProperties ()

42 if cycleCheck then

43 printfn "Cycle check is on."

44 else

45 printfn "Cycle check is off."

46 if initBound.IsSome then

47 printfn "Initial cost bound: %g" initBound.Value

48 else

49 printfn "No initial cost bound."

50 | BreadthFirstSearch ->

51 printfn "Searching using breadth-first search."

52 if verbosity <> Verbosity.None then

53 printCommonProperties ()

54 | DepthFirstSearch ->

55 printfn "Searching using depth-first search."

56 if verbosity <> Verbosity.None then

57 printCommonProperties ()

58 | Dijkstra ->

59 printfn "Searching using Dijktra's algorithm."

60 if verbosity <> Verbosity.None then

61 printCommonProperties ()

62 | BestFirstSearch ->

63 printfn "Searching using best-first search."

64 if verbosity <> Verbosity.None then

65 printCommonProperties ()

66 | AAlgorithm ->

67 printfn "Searching using A algorithm."

68 if verbosity <> Verbosity.None then

69 printCommonProperties ()

70 printfn ""

71

72 let printLogEntry minLevel entry =

73 if verbosity >= minLevel then

74 printfn "%s" entry

75

76 let backtrack depthBound =

...

136 let branchAndBound initBound =

...

196 let graphSearchAlg () =

...
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335 printSearchInfo ()

336 match algorithm with

337 | Backtrack depthBound -> backtrack depthBound

338 | BranchAndBound initBound -> branchAndBound initBound

339 | _ -> graphSearchAlg ()

At the beginning of the function, values common to all search algorithms are de�ned,
which were properties of SearchAlg or one of its subclasses. goalNodes is initialized
again with an empty list of nodes. Then comes the local function printSearch-

Info, which is a substitute for the former ToString methods. It uses the algorithm

parameter to decide what information is to be printed to the screen. printLogEntry

is another local function that was a method in the SearchAlg class. One method
is missing though: PrintSolution. It will also become a function but not a local
function, because it will be called outside the search function (see later).

Before the actual body of the function, three more local functions are de�ned: one
for backtracking (backtrack), one for branch-and-bound search (branchAndBound),
and one for the graph search algorithms (graphSearchAlg). Finally, the actual work
is done in a couple of lines: after printing all the search information, we call one of the
local functions depending on the value of the algorithm parameter, and the return
value of these functions will also become the return value of the search function.

Let's continue with the backtrack function:

76 let backtrack depthBound =

77 let depthBound = defaultArg depthBound 0

78 if depthBound < 0 then

79 raise InvalidBound

80 let currPath = Stack<Node>()

81 currPath.Push(Node(initState))

82

83 let rec doWork () =

84 let currNode = currPath.Peek()

85 let depthText =

86 if depthBound > 0 then

87 sprintf " (depth=%d)" currNode.Depth

88 else

89 ""

90 if currNode.State.GoalState then

91 printLogEntry Verbosity.Debug

92 (sprintf "Current state: %O%s" currNode.State depthText)

93 if not (solutionIsState &&

94 goalNodes.Contains(currNode)) then

95 goalNodes.Add(currNode)

96 if allSolutions then

97 printLogEntry Verbosity.Info

98 "Found a solution, backtracking."

99 currPath.Pop() |> ignore

100 elif depthBound > 0 && currNode.Depth = depthBound then

101 printLogEntry Verbosity.Debug
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102 (sprintf "Current state: %O%s" currNode.State depthText)

103 printLogEntry Verbosity.Info

104 "Reached depth bound, backtracking."

105 currPath.Pop() |> ignore

106 else

107 State.Operators

108 |> Seq.filter (fun op -> currNode.State.PreCondition(op))

109 |> Seq.takeWhile (fun _ ->

110 allSolutions || goalNodes.Count = 0)

111 |> Seq.iter (fun op ->

112 printLogEntry Verbosity.Debug

113 (sprintf "Current state: %O%s"

114 currNode.State depthText)

115 printLogEntry Verbosity.Debug

116 (sprintf "Applying operator: %O" op)

117 let newNode = Node(currNode, op)

118 printLogEntry Verbosity.Debug

119 (sprintf "New state: %O" newNode.State)

120 if cycleCheck && currPath.Contains(newNode) then

121 printLogEntry Verbosity.Info "Found a cycle."

122 else

123 currPath.Push(newNode)

124 doWork ())

125 if allSolutions || goalNodes.Count = 0 then

126 printLogEntry Verbosity.Debug

127 (sprintf "Current state: %O%s"

128 currNode.State depthText)

129 printLogEntry Verbosity.Info

130 "No more applicable operators, backtracking."

131 currPath.Pop() |> ignore

132

133 doWork ()

134 goalNodes

A new recursive function (doWork) has been introduced to do the work of the former
Search method. After checking the value of the depthBound parameter and initializing
the current path with the start node, we just have to call the doWork function and return
the list of the goal nodes.

The branchAndBound function is very similar, but graphSearchAlg is a little more
complicated, so let's see how it works:

196 let graphSearchAlg () =

197 let openNodes = List<Node>()

198 let closedNodes = List<Node>()

199

200 let printInfo () =

201 let printNodesCount () =

202 printfn "Open nodes: %d, closed nodes: %d."

203 openNodes.Count closedNodes.Count
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204

205 let printDatabase () =

206 printfn "Open nodes:"

207 for node in openNodes do

208 printfn "%O" node

209 printfn "Closed nodes:"

210 for node in closedNodes do

211 printfn "%O" node

212 printfn ""

213

214 if verbosity = Verbosity.Info then

215 printNodesCount ()

216 elif verbosity = Verbosity.Debug then

217 printDatabase ()

218

219 let rec graphSearch sortOpenNodes =

...

296 let breadthFirstSearch () =

297 openNodes.Add(Node(initState))

298 fun () -> ()

299

300 let depthFirstSearch = breadthFirstSearch

301

302 let dijkstra () =

303 openNodes.Add(NodeWithCost(initState))

304 fun () -> openNodes.Sort({ new IComparer<Node> with

305 member this.Compare(n1, n2) =

306 (n1 :?> NodeWithCost).Cost.CompareTo(

307 (n2 :?> NodeWithCost).Cost) })

308

309 let bestFirstSearch () =

310 openNodes.Add(Node(initState))

311 fun () -> openNodes.Sort({ new IComparer<Node> with

312 member this.Compare(n1, n2) =

313 n1.State.Heuristic.CompareTo(n2.State.Heuristic) })

314

315 let aAlgorithm () =

316 openNodes.Add(NodeWithCost(initState))

317 fun () -> openNodes.Sort({ new IComparer<Node> with

318 member this.Compare(n1, n2) =

319 let f1 = (n1 :?> NodeWithCost).Cost + n1.State.Heuristic

320 let f2 = (n2 :?> NodeWithCost).Cost + n2.State.Heuristic

321 f1.CompareTo(f2) })

322

323 let sortOpenNodes =

324 match algorithm with

325 | BreadthFirstSearch -> breadthFirstSearch ()
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326 | DepthFirstSearch -> depthFirstSearch ()

327 | Dijkstra -> dijkstra ()

328 | BestFirstSearch -> bestFirstSearch ()

329 | AAlgorithm -> aAlgorithm ()

330 | _ ->

331 failwith "Invalid graph search algorithm"

332 graphSearch sortOpenNodes

333 goalNodes

openNodes, closedNodes, and printInfo are the respective counterparts of the
two properties and the method with similar names in the GraphSearchAlg class.

The most interesting part of the code follows. It is easy to see that all graph
search algorithms have almost a common control �ow with only three major di�erences
between them (there is one more minor di�erence between Dijkstra's algorithm and
the other algorithms, see later):

• the type of nodes in the database (Node versus NodeWithCost),

• the operation of expansion, and

• the sort criteria when sorting the list of open nodes after an expansion.

Because of this, it seemed reasonable to write only one recursive function (graph-
Search) for all graph search algorithms that calls two other functions for expanding a
node and for sorting the open nodes after it. For this to work, we need as many func-
tions for expanding and sorting as many graph search algorithms we want to support.
We can use two di�erent approaches to select the appropriate function:

1. We can write these functions outside graphSearch and pass the appropriate one as
an argument to it (in which case graphSearch becomes a higher-order function).

2. The other alternative is to place these functions inside graphSearch as local func-
tions and select the appropriate one before calling it.

In this code, I chose the �rst alternative for sorting, and the second for expansion�just
for the sake of variety.

The sortOpenNodes parameter of graphSearch is the function that will be called
after each expansion. Before calling graphSearch, we have to assign a correct value to
this parameter. This is achieved in lines 323�331, where the value of sortOpenNodes
is set using a match expression. For each possible value of the algorithm parameter,
a function is called, which does two things:

• initializes the list of open nodes with the start node of the appropriate type, and

• returns a lambda function which does the sorting the usual way, i.e., using an
IComparer object, or in case of breadth-�rst search and depth-�rst search, it is an
empty function.
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Now, graphSearch can be called with the returned lambda function as an argument,
and then we can return the list of the goal nodes.

And �nally, here is the last part of the search function containing the �common
graph search algorithm�:

219 let rec graphSearch sortOpenNodes =

220 let expand (node : Node) =

221 let processNodeBFS op =

222 let newNode = Node(node, op)

223 if not (openNodes.Contains(newNode) ||

224 closedNodes.Contains(newNode)) then

225 openNodes.Add(newNode)

226

227 let processNodeDFS op =

228 let newNode = Node(node, op)

229 if not (openNodes.Contains(newNode) ||

230 closedNodes.Contains(newNode)) then

231 openNodes.Insert(0, newNode)

232

233 let processNodeDijkstra op =

234 let newNode = NodeWithCost(node :?> NodeWithCost, op)

235 let index = openNodes.IndexOf(newNode)

236 if index <> -1 then

237 let oldNode = openNodes.[index] :?> NodeWithCost

238 if newNode.Cost < oldNode.Cost then

239 openNodes.Remove(oldNode) |> ignore

240 openNodes.Add(newNode)

241 elif not (closedNodes.Contains(newNode)) then

242 openNodes.Add(newNode)

243

244 let processNodeAAlg op =

245 let newNode = NodeWithCost(node :?> NodeWithCost, op)

246 let index = openNodes.IndexOf(newNode)

247 if index <> -1 then

248 let oldNode = openNodes.[index] :?> NodeWithCost

249 if newNode.Cost < oldNode.Cost then

250 openNodes.Remove(oldNode) |> ignore

251 openNodes.Add(newNode)

252 else

253 let index = closedNodes.IndexOf(newNode)

254 if index <> -1 then

255 let oldNode = closedNodes.[index] :?> NodeWithCost

256 if newNode.Cost < oldNode.Cost then

257 closedNodes.Remove(oldNode) |> ignore

258 openNodes.Add(newNode)

259 else

260 openNodes.Add(newNode)

261

262 let processNode =



54 CHAPTER 3. SEARCH ALGORITHMS FOR SINGLE-AGENT PROBLEMS

263 match algorithm with

264 | BreadthFirstSearch

265 | BestFirstSearch -> processNodeBFS

266 | DepthFirstSearch -> processNodeDFS

267 | Dijkstra -> processNodeDijkstra

268 | AAlgorithm -> processNodeAAlg

269 | _ ->

270 failwith "Invalid graph search algorithm"

271 State.Operators

272 |> Seq.filter (fun op -> node.State.PreCondition(op))

273 |> Seq.iter processNode

274

275 printInfo ()

276 if openNodes.Count > 0 then

277 let currNode = openNodes.[0]

278 if algorithm <> AlgorithmType.Dijkstra ||

279 not (goalNodes.Count > 0 &&

280 (currNode :?> NodeWithCost ).Cost >

281 (goalNodes.[0] :?> NodeWithCost).Cost) then

282 if currNode.State.GoalState then

283 goalNodes.Add(currNode)

284 if allSolutions then

285 printLogEntry Verbosity.Info "Found a solution."

286 openNodes.Remove(currNode) |> ignore

287 closedNodes.Add(currNode)

288 graphSearch sortOpenNodes

289 else

290 openNodes.Remove(currNode) |> ignore

291 closedNodes.Add(currNode)

292 expand currNode

293 sortOpenNodes ()

294 graphSearch sortOpenNodes

The graphSearch function begins with the de�nition of expand, which is an inner
function responsible for expansion. As you can see, there is only one expand function for
all graph search algorithms. This is because expansion itself works the same way in all
algorithms (lines 271�273 contain its code): we iterate through all operators applicable
to the current state and process the current node by applying each operator and doing
something else, which is algorithm-dependent. So, only this algorithm-dependent part
of the code needs to be separated from the expand function and placed in distinct
functions like processNodeDFS or processNodeAAlg. Then, the appropriate function
is selected again with a match expression in lines 262�270, and the selected function is
given as an argument to the Seq.iter higher-order function (in line 273).

Lines 275�294 contain the actual body of the graphSearch function. Expansion
of the current node can be found in line 292, sorting the open nodes is in the next
line, both as function calls. The other parts of the code is the same in all graph search
algorithms, except for the condition in lines 278�281, which became a little complicated
because Dijkstra's algorithm should stop if we already have a solution with a cost less
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than that of the current node.
There is only one missing function left: printSolution. Here it is:

1 let rec printSolution (node : Node option) solutionIsState =

2 if solutionIsState then

3 try

4 printfn "%O" node.Value.State

5 with

6 :? NullReferenceException -> printfn "Null as a solution???"

7 elif node.IsSome then

8 printSolution node.Value.Parent solutionIsState

9 printfn "%O" node.Value

As printSolution is now an external function, it needs one more parameter besides
the goal node: solutionIsState. Otherwise, it works the same way as the previous
implementations.

The Main Program

For the third implementation of the search algorithms, we can use a similar main
program as earlier:

1 open SearchAlg

2

3 let main () =

4 let solutions = search (Hanoi.HanoiState())

5 (Some (SearchProp.CycleCheckFlag |||

6 SearchProp.AllSolutionsFlag))

7 (Some Verbosity.Debug)

8 (Backtrack (Some 10))

9 solutions

10 |> Seq.iteri (fun i solution ->

11 printfn "\nSolution #%d:" (i + 1)

12 printSolution (Some solution) false)

13 printfn "\nNumber of solutions: %d" solutions.Count

The main function di�ers from the previous versions mainly in that now there is
no GoalNodes property, it is replaced with the return value of the search function.
The algorithm to be used for searching is given as the last argument to search, along
with its special properties (depth bound in our case). And �nally, printSolution now
requires a second argument, which denotes whether the goal state itself or the operator
sequence leading to it is considered to be the solution.

3.2.5 Comparing the Four Implementations

My goal with creating the presented implementations of AI search algorithms was to
give students more approaches to understand the same pseudocode. Although I do not
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know if they can better acquire the operation of these algorithms by thinking function-
ally, giving more than just one implementation cannot be harmful. Now, I present a
partly subjective comparison of the four implementations from various aspects.

• Code metrics: Despite that we cannot use the same metrics in case of a functional
language as in case of imperative languages, I will use three metrics here that may
be relevant to both C# and F#: lines of code, number of classes, and number of
functions (including methods). Table 3.1 summarizes the values of these metrics in
the di�erent implementations:

C# F# ver. 1 F# ver. 2 F# ver. 3

Lines of code 842 537 536 417

Number of classes 15 13 6 4

Number of functions 49 43 43 34

Table 3.1. Some code metrics.

The lines of code metric denotes the number of lines in all source �les, including
empty lines, but not including the source code of any speci�c problems. The num-
ber of classes includes all classes de�ned in the source code but does not include
exception classes, enumerations, and IComparer classes. The number of functions
includes all functions and nonabstract method implementations, including construc-
tors, but does not include lambda expressions.

As you can see, the third F# implementation is half the size of the C# imple-
mentation. Of course, this di�erence comes mainly from the compact syntax of
the F# language. The other reason for the F# implementations being shorter
is that they do not contain two classes from the C# code (BacktrackNode and
BacktrackNodeWithCost), which take 57 lines of code.

The decrease in the number of classes is a result of making the code more functional.
The �rst F# implementation has two classes less than the C# version because it
lacks the above-mentioned two classes. In the second version, the seven concrete
algorithm classes are replaced with seven functions. In the third version, the two
abstract classes SearchAlg and GraphSearchAlg are also converted to functions.
The four remaining classes are State, Operator, Node, and NodeWithCost. To
make the code purely functional, we would have to get rid of these classes too, but
it would not result in a shorter or more readable code. For example, with these
four classes, it is easy to write reusable code for an operator application: we just
have to call the Apply method of the abstract State class without knowing how it
is implemented in the concrete class representing the states of a speci�c problem.
And this is exactly what the constructors of the two Node classes do. Actually, the
two Node classes might be replaced with record types because these classes are not
inherited by any other classes, but again, it would not be more readable, and on
top of that, we would not be able to use such .NET methods as Contains.
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The number of functions are very similar in each implementation. It is because
each method in a class maps to a function in a classless implementation. Even con-
structors have corresponding functions; for example, there is a backtrackSearch

function corresponding to the constructor of the BacktrackSearch class. The third
F# implementation, however, contains somewhat less functions than the other
three. The reason for this is that it lacks the seven overrides of the ToString

method in each of the concrete algorithm classes (or objects). There is only one
printSearchInfo function instead. The same is true for the Expand and Search

methods in the graph search algorithms. All of the corresponding functions of these
methods contain match expressions based on the algorithm used for searching. This
shows well the di�erence between the object-oriented and the functional approach
to the problem of introducing a new subclass of a base class and introducing new
functionality to the subclasses. The OO approach is better if we want to introduce
a new subclass because we do not have to touch the existing subclasses, just write
the new class with all the functionality inherited from the base class. In FP, we
need to add a new branch to all of the match expressions. However, FP is better if
we want to add new functionality to the existing subclasses because we just have to
write a new function with a similar match expression to the existing ones. In OO,
we need to extend the base class with a new method and all of its subclasses with
method overrides.

• Mutable data structures used : There is no di�erence in this aspect between the
implementations. Although purely functional programs use no mutable data at all,
I used the following mutable data structures in each implementation:

� State.Operators of type HashSet<Operator>

� SearchAlg.GoalNodes of type List<Node>

� BacktrackSearch.currPath of type Stack<Node>

� BranchAndBoundSearch.currPath of type Stack<NodeWithCost>

� GraphSearchAlg.OpenNodes of type List<Node>

� GraphSearchAlg.ClosedNodes of type List<Node>

If we want, we can replace the type of any or all of these data collections with
F#'s immutable list or seq data type. The resulting code would be of the same
size, but it would be less e�cient because the recursive functions in the List and
Seq modules are slower than the corresponding .NET methods. It is particularly
true when elements are added to or deleted from these collections: in case of an
immutable data structure, we have to copy the original collection with a slight
modi�cation in its elements. This is the reason why I used .NET collections instead
of F#'s immutable data types for storing the collections listed above.

• Functional language constructs used : The C# implementation does not contain any
functional constructs, it is purely object-oriented. The �rst F# implementation
uses tail-recursive functions and sequence operations as a replacement for loops.
Although object expressions are not functional language constructs, the second
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F# implementation is full of them as a substitute for subclasses. The third F#
implementation contains the most functional elements: a discriminated union is
used for storing the algorithm type, match expressions are used to deal with it,
some functions are used as �rst-class values, and graphSearch is a higher-order
function.

• E�ciency : As functional languages are more abstract than object-oriented lan-
guages, they need a more complicated runtime environment. This is the main
reason why functional programs are generally less e�cient than object-oriented
programs, even if they are compiled and not interpreted. I ran the presented main
programs of all implementations on the same computer, a Gigabyte T1028X Touch-
Note netbook with Intel Atom N280 CPU at 1.33 GHz and 1 GB of RAM, and all
programs compiled with Microsoft Visual Studio 2010: the C# program �nished in
less than half a second, while the F# programs all ran for about 7 seconds. As I
wrote, it would have been even worse if immutable F# data types were used.

As a �nal conclusion, my opinion is that it is not worth insisting on one or the other
paradigm if we can use more of them within one program. Functional code is sometimes
more abstract, more readable, or just shorter than its object-oriented counterpart. On
the other hand, OO code is usually more e�cient and sometimes more reusable than
its functional counterpart. This is why I think multiparadigm languages like F# can
be more advantageous mainly in large-scale applications but also in smaller programs.

3.3 Implementing Speci�c Problems

Implementing the search algorithms themselves is not the only area where we can bene-
�t from functional (or multiparadigm) programming. Creating an implementation for a
speci�c state-space-represented problem has its own peculiarities too. In this section, I
present a simple and a more complex problem, and give some possible implementations
of them.

3.3.1 Towers of Hanoi

The Problem

We will now consider a simpli�ed version of the original puzzle. It consists of three
pegs and three discs of di�erent sizes which can slide onto any peg. The puzzle starts
with the discs in a neat stack in ascending order of size on one peg, the smallest at the
top, thus making a conical shape. The objective of the puzzle is to move the entire
stack to another peg, obeying the following rules:

• Only one disc may be moved at a time.

• Each move consists of taking the upper disc from one of the pegs and sliding it onto
another peg, on top of the other discs that may already be present on that peg.

• No disc may be placed on top of a smaller disc.
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The solution of the problem is a sequence of moves.

State-Space Representation

Let's denote the three pegs with the letters A, B, and C, and the discs with the
numbers 1, 2, and 3 in ascending order of their sizes (i.e., 1 denotes the smallest disc,
and 3 denotes the largest). Let's consider a relevant property of the problem the pegs
on which each disc can be found. This seems to be the most e�cient representation
with very little memory required for storing a state. As each disc can occur on any of
the pegs, we can assign the same base set to each of the discs:

H1 = H2 = H3 = {A,B,C}

The states of the problem will be elements of the Cartesian product of these base sets:

S ⊆ H1 ×H2 ×H3 = {(A,A,A), (A,A,B), (A,A,C),

(A,B,A), (A,B,B), (A,B,C),

(A,C,A), (A,C,B), (A,C,C),

(B,A,A), (B,A,B), (B,A,C),

(B,B,A), (B,B,B), (B,B,C),

(B,C,A), (B,C,B), (B,C,C),

(C,A,A), (C,A,B), (C,A,C),

(C,B,A), (C,B,B), (C,B,C),

(C,C,A), (C,C,B), (C,C,C)}

As all the elements of the H1 ×H2 ×H3 set are valid states of our problem, there is
no need for any constraints to narrow this set, i.e., the state space of the problem will
be exactly this set:

S = H1 ×H2 ×H3

At the initial state, all discs are on peg A:

start = (A,A,A) ∈ S

The set of goal states consists of two elements, which denote that all discs are on peg
B or all discs are on peg C:

G = {(B,B,B), (C,C,C)} ⊂ S

The set of operators contains nine elements:

O = {Move(disc, peg)}

where

disc ∈ {A,B,C }
peg ∈ { 1, 2, 3 }

The Move(disc, peg) operator is applicable to state h = (h1, h2, h3) ∈ S if all of the
following preconditions are met:
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• disc is the smallest one on its peg:

∀i (i < disc ⊃ hi 6= hdisc)

• there are no smaller discs on peg than disc:

∀i (i < disc ⊃ hi 6= peg)

• disc is currently not on peg :
hdisc 6= peg

The application of the Move(disc, peg) operator to state h = (h1, h2, h3) ∈ S results in
a new state h′ = (h′1, h

′
2, h
′
3) ∈ S where

h′i =

{
peg if i = disc,

hi otherwise.

By de�ning the S state space, the start initial state, the G set of goal states, and the O
set of operators, we have given a possible p = 〈S, start,G,O〉 state-space representation
of our problem. In �gure 3.3, you can see the whole state-space graph of this puzzle,
M denoting the Move operator:

The C# Implementation

Figure 3.4 shows the two classes representing the states and operators of this particular
problem.

The only extra member in HanoiState is discs, which is an array of pegs where
each disc can be found. This �eld holds all information contained by a state in the
representation. Move comes with two members in addition to the inherited ones: Disc
tells us which disc to move, while Peg is the destination peg. These two members
correspond to the parameters of the Move operator.

Let's see now the source code of the Move and HanoiState classes:

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using StateSpace;

5

6 namespace Hanoi

7 {

8 class Move : Operator

9 {

10 internal int Disc { get; private set; }

11 internal char Peg { get; private set; }

12

13 public Move(int disc, char peg)

14 {
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Figure 3.3. State-space graph of the Towers of Hanoi problem.

15 Disc = disc;

16 Peg = peg;

17 }

18

19 public override string ToString()

20 {

21 return "HanoiMove[ disc=" + Disc + ", peg=" + Peg + " ]";

22 }

23

24 public override double Cost(State state)

25 {

26 return Disc;

27 }

28 }

29

30 class HanoiState : State

31 {

32 const int N = 3;

33

34 static HanoiState()
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Figure 3.4. Classes representing a speci�c problem.

35 {

36 Operators = new HashSet<Operator>();

37 for (int disc = 1; disc <= N; ++disc)

38 for (char peg = 'A'; peg <= 'C'; ++peg)

39 Operators.Add(new Move(disc, peg));

40 }

41

42 char[] discs;

43

44 public HanoiState()

45 {
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46 discs = new char[N];

47 for (int i = 0; i < N; ++i)

48 discs[i] = 'A';

49 }

50

51 HanoiState(HanoiState parent)

52 {

53 discs = new char[N];

54 parent.discs.CopyTo(discs, 0);

55 }

56

57 public override bool GoalState

58 {

59 get

60 {

61 if (discs[0] == 'A')

62 return false;

63 foreach (char peg in discs)

64 if (peg != discs[0])

65 return false;

66 return true;

67 }

68 }

69

70 public override bool PreCondition(Operator op)

71 {

72 if (op is Move)

73 {

74 Move m = (Move)op;

75 for (int i = 0; i < m.Disc - 1; ++i)

76 if (discs[i] == discs[m.Disc - 1] ||

77 discs[i] == m.Peg)

78 return false;

79 return discs[m.Disc - 1] != m.Peg;

80 }

81 else

82 throw new InvalidOperatorException();

83 }

84

85 public override State Apply(Operator op)

86 {

87 if (op is Move)

88 {

89 HanoiState newState = new HanoiState(this);

90 Move m = (Move)op;

91 newState.discs[m.Disc - 1] = m.Peg;

92 return newState;

93 }

94 else
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95 throw new InvalidOperatorException();

96 }

97

98 public override bool Equals(object obj)

99 {

100 return obj is HanoiState && ToString() == obj.ToString();

101 }

102

103 public override int GetHashCode()

104 {

105 return discs.GetHashCode();

106 }

107

108 public override string ToString()

109 {

110 StringBuilder sb = new StringBuilder("HanoiState[ discs=(");

111 for (int i = 0; i < N; ++i)

112 {

113 if (i > 0)

114 sb.Append(",");

115 sb.Append(discs[i]);

116 }

117 return sb.Append(") ]").ToString();

118 }

119

120 public override double Heuristic

121 {

122 get

123 {

124 double value1 = N, value2 = N;

125 foreach (char peg in discs)

126 if (peg == 'B')

127 --value1;

128 else if (peg == 'C')

129 --value2;

130 return Math.Min(value1, value2);

131 }

132 }

133 }

134 }

The implementation of the Move operator is fairly straightforward. The Cost

method has been overridden: in our implementation, the cost of moving a disc to
another peg is proportional to its size, independently of the state to which the opera-
tor is applied.

The HanoiState class de�nes a one-dimensional array of characters for storing the
pegs of each disc. The size of this array is N which stands for the number of discs in the
problem. The smaller the index of an array element, the smaller the disc it represents.

The static constructor is responsible for creating all the possible operator instances
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and adding them to the static Operators property. The class has two constructors:
the public constructor creates the initial state with each disc being on peg A, while
the private constructor is actually a copy constructor, which creates a clone of the
HanoiState object taken as a parameter.

The GoalState property �rst makes sure that the smallest disc is not on peg A,
then checks whether all the discs are on the same peg (with the help of a foreach loop).
The skeletons of the PreCondition and Apply methods are the same: they both go
through all the possible operator types (there is only one in our case: Move) and throw
an exception if the argument is an operator of an unknown type. The PreCondition

method has to make sure that none of the discs smaller than the one to be moved
are on the source or the destination pegs and that the disc to be moved is not on the
destination peg. The Apply method is very simple: it copies the current state and
replaces the peg of the disc to be moved with the one given by the operator. Finally,
the Heuristic property determines the number of discs not being on peg B and the
same for peg C, and returns the smaller of the two numbers because at least that many
moves are required to reach one of the two goal states.

The F# Implementation

A possible F# implementation of this problem, which uses imperative, object-oriented,
and functional elements, may look like the following:

1 module Hanoi

2

3 open System.Text

4 open StateSpace

5

6 type Move(disc, peg) =

7 inherit Operator()

8 member this.Disc = disc

9 member this.Peg = peg

10

11 override this.ToString() =

12 sprintf "HanoiMove[ disc=%d, peg=%c ]" disc peg

13

14 override this.Cost(_) = double disc

15

16 type HanoiState() =

17 inherit State()

18

19 static let N = 3

20 let discs = Array.create N 'A'

21

22 static do

23 for disc in 1 .. N do

24 for peg in 'A' .. 'C' do

25 State.Operators.Add(Move(disc, peg)) |> ignore

26
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27 member private this.Discs = discs

28

29 private new(parent : HanoiState) as this =

30 HanoiState() then

31 parent.Discs.CopyTo(this.Discs, 0)

32

33 override this.GoalState =

34 let rec allTheSame index =

35 index >= discs.Length - 1

36 || discs.[index] = discs.[index + 1]

37 && allTheSame (index + 1)

38 discs.[0] <> 'A' && allTheSame 0

39

40 override this.PreCondition(op) =

41 match op with

42 | :? Move as move ->

43 let rec checkSmallerDiscs index =

44 index >= move.Disc - 1

45 || discs.[index] <> discs.[move.Disc - 1]

46 && discs.[index] <> move.Peg

47 && checkSmallerDiscs (index + 1)

48 checkSmallerDiscs 0 && discs.[move.Disc - 1] <> move.Peg

49 | _ ->

50 raise InvalidOperator

51

52 override this.Apply(op) =

53 match op with

54 | :? Move as move ->

55 let newState = HanoiState(this)

56 newState.Discs.[move.Disc - 1] <- move.Peg

57 upcast newState

58 | _ ->

59 raise InvalidOperator

60

61 override this.Equals(other) =

62 match other with

63 | :? HanoiState as otherHanoiState ->

64 this.Discs = otherHanoiState.Discs

65 | _ ->

66 false

67

68 override this.GetHashCode() =

69 hash discs

70

71 override this.ToString() =

72 let sb = StringBuilder("HanoiState[ discs=(")

73 for i in 0 .. N - 1 do

74 if i > 0 then

75 sb.Append(',') |> ignore
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76 sb.Append(discs.[i]) |> ignore

77 sb.Append(") ]").ToString()

78

79 override this.Heuristic =

80 let value1 = ref N

81 let value2 = ref N

82 for peg in discs do

83 if peg = 'B' then

84 decr value1

85 elif peg = 'C' then

86 decr value2

87 double (min !value1 !value2)

There is not much di�erence between the C# and the F# implementations, yet
the F# code is much shorter, but this di�erence in size is again due to the concise
syntax of the F# language. Some interesting points about the code worth noting are
the following:

• Unlike in the C# code, a Discs property had to be de�ned here because we cannot
refer to the discs �eld of a HanoiState object other than the current instance (see,
for example, parent.Discs in the explicit constructor).

• Both the GoalState property and the PreConditionmethod use recursive functions
instead of loops to iterate through the discs array.

• The Equals method uses structural equality to compare the arrays in the two
objects. The C# code compares the string representations of the objects because
in C#, the equality operator between arrays implies reference equality. Since the
string representations are di�erent if the arrays of the two objects are di�erent,
and the equality operator is overloaded for strings, the use of the equality operator
seems adequate in this situation (although it makes comparison rather slow). (We
could also use the SequenceEqual extension method of LINQ.)

• I used two reference cells (i.e., mutable data) and a for loop in the Heuristic

property. In this case, these imperative language elements do not make the code
longer or less readable. We could also write this property purely functionally, like
this:

79 override this.Heuristic =

80 let rec noOfOtherPegs peg i acc =

81 if i = N then

82 acc

83 else

84 let otherPeg = if discs.[i] = peg then 0 else 1

85 noOfOtherPegs peg (i + 1) (acc + otherPeg)

86

87 double (min (noOfOtherPegs 'B' 0 0) (noOfOtherPegs 'C' 0 0))
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3.3.2 Funfair Puzzle

The Problem

Happy is a family with �ve children. This year, on the birthdays of each child, they
went to the amusement park, and from there, to a confectionery where they had the
favorite cake of the birthday kid. Based on the given information, determine

• which month each kid has their birthday,

• which game they tried �rst in the park, and

• what kind of cake they ordered in the confectionery.

These are the facts:

1. The names of the children are the following: Alex, Carol, Paula, Robert, and Tim.

2. The months of the birthdays are the following: March, April, July, August, and
November.

3. The games in the park are the following: dodgem, enchanted castle, roller coaster,
carousel, and scenic railway.

4. The cakes are the following: chocolate, walnut, caramel, almond, and vanilla.

5. Carol was not born in March.

6. Neither Alex nor Carol ran from the entrance straight to the enchanted castle.

7. Scenic railway was the �rst �stop� in the park either in March or in April, and this
happened either on Paula's birthday or when they had the vanilla cake.

8. Chocolate cake is neither Alex's nor Paula's favorite, and they didn't have it on the
November birthday.

9. Paula's birthday is in a month with the same number of days as the month of Tim's
birthday.

10. They had the almond cake before Paula's birthday.

11. Carol is not very fond of the almond cake, but she ate some for her sibling's sake.
This happened on a di�erent day from when they rode the roller coaster �rst.

12. Neither Alex nor Paula chose the walnut cake, and they had it on a di�erent day
from when they went to the carousel �rst in the park.

13. Carol was born either in March or in April.

14. The chocolate cake was asked for either in August or in November by one of the
Happy kids.

15. The day when the carousel was the �rst stop in the park, they weren't celebrating
Paula's birthday, nor did they have almond cake in the confectionery.
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State-Space Representation

The relevant properties of our problem are the Happy children and, related to them,

• the months of their birthdays,

• the games they tried �rst in the park, and

• the kinds of cake they ordered in the confectionery.

This approach implies that we will try to assign the months, the games, and the types
of cake to the children.

For a convenient notation, let's assign sequence numbers to the children:

Child's name: Alex Carol Paula Robert Tim

Number: 1 2 3 4 5

Similarly, let's assign sequence numbers to the categories:

Category: month game cake

Number: 1 2 3

From now on, we will refer to the children and the categories with their sequence
numbers.

Let's now de�ne the base sets that contain all possible months that can be assigned
to each child:

Hi,1 = { 3, 4, 7, 8, 11 } ∪ { 0 }, i ∈ { 1, 2, 3, 4, 5 }

The 0 symbol denotes that no month is assigned yet to child i.
Let's now de�ne the base sets that contain all possible games that can be assigned

to each child:

Hi,2 = {dodgem, castle, roller, carousel, scenic } ∪ { 0 }, i ∈ { 1, 2, 3, 4, 5 }

The 0 symbol denotes that no game is assigned yet to child i.
Let's now de�ne the base sets that contain all possible types of cake that can be

assigned to each child:

Hi,3 = { choco,walnut, caramel, almond, vanilla } ∪ { 0 }, i ∈ { 1, 2, 3, 4, 5 }

The 0 symbol denotes that no cake is assigned yet to child i.
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The Cartesian product of these sets is the following:

H1,1×H2,1×. . .×H5,1×H1,2×H2,2×. . .×H5,2×H1,3×H2,3×. . .×H5,3 =

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,
3 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,
4 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, . . . ,
3 0 0 0 0
0 0 0 roller 0
0 0 0 0 0

, . . . ,
3 4 0 0 0
0 0 0 roller 0
0 0 choco 0 0

, . . . ,
 3 0 0 0 8
carousel 0 0 roller 0
vanilla 0 choco 0 walnut

, . . . ,
 3 4 7 8 11
dodgem castle roller carousel scenic
choco walnut caramel almond vanilla

, . . . ,
 3 4 7 11 8
dodgem scenic roller castle carousel
almond vanilla caramel walnut choco

, . . .


The elements of this set are ordered 15-tuples, or matrices of size 3×5 if the elements
are arranged in the form of a matrix. The number of elements in this set is 615 =
470 184 984 576. However, if we take into consideration that the same month, game,
or type of cake cannot be assigned to more than one child at a time, we get a lot
less 15-tuples. We can also de�ne additional constraints: The months, games, and
types of cake should be assigned to the children in this order, i.e., �rst all the months
are assigned, then all the games, and �nally, all the cake types. Furthermore, we
can also assign a value from each category to the children in order, e.g., again in the
order of their sequence numbers. We can also de�ne a number of constraints based on
the information given in the problem description, like �the month of Carol's birthday
cannot be March,� or formally, h2,1 6= 3.

There are only 839 15-tuples satisfying all of these constraints, so our state space
consists of that many states:

S =

h | h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∧ constraints(h)


The initial state describes the situation when no values are assigned to any of the
children:

start =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ S
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The set of goal states contains such elements in which the lower right element of
the matrix is not zero, i.e., the type of cake is already assigned to Tim:

G =

h | h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∧ h5,3 6= 0

 ⊆ S
The set of operators is de�ned using three operator identi�ers, each with two pa-

rameters, resulting in 75 operators altogether:

O = {Month(ch, month), Game(ch, game), Cake(ch, cake)} ,

where

ch ∈ { 1, 2, 3, 4, 5 }
month ∈ { 3, 4, 7, 8, 11 }
game ∈ {dodgem, castle, roller, carousel, scenic }
cake ∈ { choco, walnut, caramel, almond, vanilla }

The Month(ch, month) operator is applicable to state

h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∈ S
if all of the following preconditions are met:

• child ch has not been assigned a month yet:

hch,1 = 0

• if month is not to be assigned to Alex (the �rst child), then the child with a sequence
number one less than ch must already have a month assigned:

ch 6= 1 ⊃ hch−1,1 6= 0

• month has not been assigned to any child with a sequence number less than ch:

∀i (i < ch ⊃ hi,1 6= month)

• March must not be assigned to Carol (child #2):

ch = 2 ⊃ month 6= 3

• March must not be assigned to Paula (child #3):

ch = 3 ⊃ month 6= 3



72 CHAPTER 3. SEARCH ALGORITHMS FOR SINGLE-AGENT PROBLEMS

• if we know that Paula (child #3) was born in April or November, then Tim (child
#5) must also be assigned April or November:

(h3,1 = 4 ∨ h3,1 = 11) ∧ ch = 5 ⊃ month = 4 ∨ month = 11

• if we know that Paula (child #3) was born neither in April nor in November, then
Tim (child #5) must not be assigned April or November either:

(h3,1 = 3 ∨ h3,1 = 7 ∨ h3,1 = 8) ∧ ch = 5 ⊃ month 6= 4 ∧ month 6= 11

• if Carol (child #2) is to be assigned a month, then month must be either March or
April:

ch = 2 ⊃ month = 3 ∨ month = 4

• if March is to be assigned to someone, and we know that it is not Carol (child #2)
who was born in April, then March may only be assigned to Carol:

∀i (month = 3 ∧ hi,1 = 4 ∧ i 6= 2 ⊃ ch = 2)

• if April is to be assigned to someone, and we know that it is not Carol (child #2)
who was born in March, then April may only be assigned to Carol:

∀i (month = 4 ∧ hi,1 = 3 ∧ i 6= 2 ⊃ ch = 2)

The application of the Month(ch, month) operator to state

h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∈ S
results in a new state

h′ =

 h′1,1 h′2,1 h′3,1 h′4,1 h′5,1
h′1,2 h′2,2 h′3,2 h′4,2 h′5,2
h′1,3 h′2,3 h′3,3 h′4,3 h′5,3

 ∈ S
where

h′i,j =

{
month if i = ch ∧ j = 1,

hi,j otherwise.

The Game(ch, game) operator is applicable to state

h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∈ S
if all of the following preconditions are met:
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• child ch has not been assigned a game yet:

hch,2 = 0

• Alex (child #1) may only be assigned a game if Tim (child #5) has already been
assigned a month:

ch = 1 ⊃ h5,1 6= 0

• if game is not to be assigned to Alex (the �rst child), then the child with a sequence
number one less than ch must already have a game assigned:

ch 6= 1 ⊃ hch−1,2 6= 0

• game has not been assigned to any child with a sequence number less than ch:

∀i (i < ch ⊃ hi,2 6= game)

• Alex (child #1) must not be assigned the enchanted castle:

ch = 1 ⊃ game 6= castle

• Paula (child #3) must not be assigned the enchanted castle:

ch = 3 ⊃ game 6= castle

• scenic railway may only be assigned to a child who was born in March or April:

game = scenic ⊃ hch,1 = 3 ∨ hch,1 = 4

• if we know that the favorite game of the child who was born in April is not the
scenic railway, and now a game is to be assigned to the child who was born in
March, then that game must be scenic railway:

∀i (hi,1 = 4 ∧ hi,2 6= 0 ∧ hi,2 6= scenic ∧ hch,1 = 3 ⊃ game = scenic)

• if we know that the favorite game of the child who was born in March is not the
scenic railway, and now a game is to be assigned to the child who was born in April,
then that game must be scenic railway:

∀i (hi,1 = 3 ∧ hi,2 6= 0 ∧ hi,2 6= scenic ∧ hch,1 = 4 ⊃ game = scenic)

• Paula (child #3) must not be assigned the carousel:

ch = 3 ⊃ game 6= carousel
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The application of the Game(ch, game) operator to state

h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∈ S
results in a new state

h′ =

 h′1,1 h′2,1 h′3,1 h′4,1 h′5,1
h′1,2 h′2,2 h′3,2 h′4,2 h′5,2
h′1,3 h′2,3 h′3,3 h′4,3 h′5,3

 ∈ S
where

h′i,j =

{
game if i = ch ∧ j = 2,

hi,j otherwise.

The Cake(ch, cake) operator is applicable to state

h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∈ S
if all of the following preconditions are met:

• child ch has not been assigned a cake yet:

hch,3 = 0

• Alex (child #1) may only be assigned a cake if Tim (child #5) has already been
assigned a game:

ch = 1 ⊃ h5,2 6= 0

• if cake is not to be assigned to Alex (the �rst child), then the child with a sequence
number one less than ch must already have a cake assigned:

ch 6= 1 ⊃ hch−1,3 6= 0

• cake has not been assigned to any child with a sequence number less than ch:

∀i (i < ch ⊃ hi,3 6= cake)

• Paula (child #3) must not be assigned the vanilla cake:

ch = 3 ⊃ cake 6= vanilla

• if we know that the favorite game of Paula (child #3) is not the scenic railway, then
vanilla cake may only be assigned to the child whose favorite game is the scenic
railway:

h3,2 6= 0 ∧ h3,2 6= scenic ∧ cake = vanilla ⊃ hch,2 = scenic
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• if we know that the favorite game of Paula (child #3) is not the scenic railway, and
the favorite game of the child to whom a cake is to be assigned is the scenic railway,
then cake must be vanilla cake:

h3,2 6= 0 ∧ h3,2 6= scenic ∧ hch,2 = scenic ⊃ cake = vanilla

• Alex (child #1) must not be assigned the chocolate cake:

ch = 1 ⊃ cake 6= choco

• Paula (child #3) must not be assigned the chocolate cake:

ch = 3 ⊃ cake 6= choco

• chocolate cake must not be assigned to the child who was born in November:

cake = choco ⊃ hch,1 6= 11

• almond cake must be assigned to a child who was born in an earlier month than
Paula (child #3):

cake = almond ⊃ hch,1 < h3,1

• Carol (child #2) must not be assigned the almond cake:

ch = 2 ⊃ cake 6= almond

• almond cake must not be assigned to the child whose favorite game is the roller
coaster:

cake = almond ⊃ hch,2 6= roller

• Alex (child #1) must not be assigned the walnut cake:

ch = 1 ⊃ cake 6= walnut

• Paula (child #3) must not be assigned the walnut cake:

ch = 3 ⊃ cake 6= walnut

• walnut cake must not be assigned to the child whose favorite game is the carousel:

cake = walnut ⊃ hch,2 6= carousel

• chocolate cake may only be assigned to a child who was born in August or November:

cake = choco ⊃ hch,1 = 8 ∨ hch,1 = 11
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• if a cake is to be assigned to the child who was born in August, and the child who
was born in November did not order chocolate cake, then cake must be chocolate
cake:

∀i (hch,1 = 8 ∧ hi,1 = 11 ∧ hi,3 6= 0 ∧ hi,3 6= choco ⊃ cake = choco)

• if a cake is to be assigned to the child who was born in November, and the child
who was born in August did not order chocolate cake, then cake must be chocolate
cake:

∀i (hch,1 = 11 ∧ hi,1 = 8 ∧ hi,3 6= 0 ∧ hi,3 6= choco ⊃ cake = choco)

• almond cake must not be assigned to the child whose favorite game is the carousel:

cake = almond ⊃ hch,2 6= carousel

The application of the Cake(ch, cake) operator to state

h =

 h1,1 h2,1 h3,1 h4,1 h5,1
h1,2 h2,2 h3,2 h4,2 h5,2
h1,3 h2,3 h3,3 h4,3 h5,3

 ∈ S
results in a new state

h′ =

 h′1,1 h′2,1 h′3,1 h′4,1 h′5,1
h′1,2 h′2,2 h′3,2 h′4,2 h′5,2
h′1,3 h′2,3 h′3,3 h′4,3 h′5,3

 ∈ S
where

h′i,j =

{
cake if i = ch ∧ j = 3,

hi,j otherwise.

By de�ning the S state space, the start initial state, the G set of goal states,
and the O set of operators, we have given a possible p = 〈S, start,G,O〉 state-space
representation of our problem.

The C# Implementation

Implementing the operators is easy, here is the source code:

1 using StateSpace;

2

3 namespace FunFair

4 {

5 enum Child

6 {

7 Alex, Carol, Paula, Robert, Tim

8 }



3.3. IMPLEMENTING SPECIFIC PROBLEMS 77

9

10 enum GameType

11 {

12 Dodgem = 1, EnchantedCastle, RollerCoaster, Carousel, ScenicRailway

13 }

14

15 enum CakeType

16 {

17 Choco = 1, Walnut, Caramel, Almond, Vanilla

18 }

19

20 class FunFairMonth : Operator

21 {

22 internal Child Child { get; private set; }

23 internal int Month { get; private set; }

24

25 public FunFairMonth(Child child, int month)

26 {

27 Child = child;

28 Month = month;

29 }

30

31 public override string ToString()

32 {

33 return "Month[ child=" + Child + ", month=" + Month + " ]";

34 }

35 }

36

37 class FunFairGame : Operator

38 {

39 internal Child Child { get; private set; }

40 internal GameType Game { get; private set; }

41

42 public FunFairGame(Child child, GameType game)

43 {

44 Child = child;

45 Game = game;

46 }

47

48 public override string ToString()

49 {

50 return "Game[ child=" + Child + ", game=" + Game + " ]";

51 }

52 }

53

54 class FunFairCake : Operator

55 {

56 internal Child Child { get; private set; }

57 internal CakeType Cake { get; private set; }
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58

59 public FunFairCake(Child child, CakeType cake)

60 {

61 Child = child;

62 Cake = cake;

63 }

64

65 public override string ToString()

66 {

67 return "Cake[ child=" + Child + ", cake=" + Cake + " ]";

68 }

69 }

70 }

The types Child, GameType, and CakeType are de�ned as enumeration types. Birth-
day months are stored as integers because I found unnecessary to work with the names
of the months instead of their numbers. It is important that no identi�ers with a value
of 0 exist in GameType and CakeType because zero will be used to denote that no game
or cake is assigned to a child yet. That is why the value 1 is assigned to the �rst
identi�er in both enumeration types. The other option would be to introduce a new
identi�er (e.g., None) as the �rst one with an underlying value of 0, but then, care
should be taken to exclude this value when constructing the Operators collection (see
the second F# implementation).

All three operator classes have two properties representing the parameters of the
operators. They also have a constructor and a ToString method, which is fairly simple
because we use the identi�ers of the values de�ned in the enumeration types as their
string representations.

The states of the problem are represented by the FunFairState class:

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using StateSpace;

5

6 namespace FunFair

7 {

8 enum Category

9 {

10 Month, Game, Cake

11 }

12

13 class FunFairState : State

14 {

15 const int N = 5, M = 3;

16

17 const int MONTH = (int)Category.Month;

18 const int GAME = (int)Category.Game;

19 const int CAKE = (int)Category.Cake;
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20

21 const int ALEX = (int)Child.Alex;

22 const int CAROL = (int)Child.Carol;

23 const int PAULA = (int)Child.Paula;

24 const int ROBERT = (int)Child.Robert;

25 const int TIM = (int)Child.Tim;

26

27 const int DODGEM = (int)GameType.Dodgem;

28 const int CASTLE = (int)GameType.EnchantedCastle;

29 const int ROLLER = (int)GameType.RollerCoaster;

30 const int CAROUSEL = (int)GameType.Carousel;

31 const int SCENIC = (int)GameType.ScenicRailway;

32

33 const int CHOCO = (int)CakeType.Choco;

34 const int WALNUT = (int)CakeType.Walnut;

35 const int CARAMEL = (int)CakeType.Caramel;

36 const int ALMOND = (int)CakeType.Almond;

37 const int VANILLA = (int)CakeType.Vanilla;

38

39 static FunFairState()

40 {

41 Operators = new HashSet<Operator>();

42 foreach (Child child in Enum.GetValues(typeof(Child)))

43 {

44 foreach (int month in new int[] {3, 4, 7, 8, 11})

45 Operators.Add(new FunFairMonth(child, month));

46 foreach (GameType game in Enum.GetValues(typeof(GameType)))

47 Operators.Add(new FunFairGame(child, game));

48 foreach (CakeType cake in Enum.GetValues(typeof(CakeType)))

49 Operators.Add(new FunFairCake(child, cake));

50 }

51 }

52

53 int[,] h;

54

55 public FunFairState()

56 {

57 h = new int[N, M];

58 }

59

60 FunFairState(FunFairState parent)

61 {

62 h = new int[N, M];

63 Array.Copy(parent.h, h, N * M);

64 }

65

66 public override bool GoalState

67 {

68 get
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69 {

70 return h[N - 1, M - 1] != 0;

71 }

72 }

73

74 public override bool PreCondition(Operator op)

75 {

76 if (op is FunFairMonth)

77 {

78 FunFairMonth m = (FunFairMonth)op;

79 int ch = (int)m.Child;

80 int month = m.Month;

81 if (h[ch, MONTH] != 0)

82 return false;

83 if (ch != 0 && h[ch - 1, MONTH] == 0)

84 return false;

85 for (int i = 0; i < ch; ++i)

86 if (h[i, MONTH] == month)

87 return false;

88 if (ch == CAROL && month == 3)

89 return false;

90 if (ch == PAULA && month == 3)

91 return false;

92 if ((h[PAULA, MONTH] == 4 || h[PAULA, MONTH] == 11) &&

93 ch == TIM && month != 4 && month != 11)

94 return false;

95 if ((h[PAULA, MONTH] == 3 || h[PAULA, MONTH] == 7 ||

96 h[PAULA, MONTH] == 8) && ch == TIM &&

97 !(month != 4 && month != 11))

98 return false;

99 if (ch == CAROL && month != 3 && month != 4)

100 return false;

101 for (int i = 0; i < N; ++i)

102 if (month == 3 && h[i, MONTH] == 4 && i != CAROL &&

103 ch != CAROL)

104 return false;

105 for (int i = 0; i < N; ++i)

106 if (month == 4 && h[i, MONTH] == 3 && i != CAROL &&

107 ch != CAROL)

108 return false;

109 return true;

110 }

111 else if (op is FunFairGame)

112 {

...

144 return true;

145 }
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146 else if (op is FunFairCake)

147 {

...

199 return true;

200 }

201 else

202 throw new InvalidOperatorException();

203 }

204

205 public override State Apply(Operator op)

206 {

207 if (op is FunFairMonth)

208 {

209 FunFairMonth month = (FunFairMonth)op;

210 FunFairState newState = new FunFairState(this);

211 newState.h[(int)month.Child, MONTH] = month.Month;

212 return newState;

213 }

214 else if (op is FunFairGame)

215 {

216 FunFairGame game = (FunFairGame)op;

217 FunFairState newState = new FunFairState(this);

218 newState.h[(int)game.Child, GAME] = (int)game.Game;

219 return newState;

220 }

221 else if (op is FunFairCake)

222 {

223 FunFairCake cake = (FunFairCake)op;

224 FunFairState newState = new FunFairState(this);

225 newState.h[(int)cake.Child, CAKE] = (int)cake.Cake;

226 return newState;

227 }

228 else

229 throw new InvalidOperatorException();

230 }

231

232 public override bool Equals(object obj)

233 {

234 return obj is FunFairState && ToString() == obj.ToString();

235 }

236

237 public override int GetHashCode()

238 {

239 return h.GetHashCode();

240 }

241

242 public override string ToString()
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243 {

244 StringBuilder sb = new StringBuilder("FunFairState[ h=(\n");

245 for (int ch = 0; ch < N; ++ch)

246 sb.AppendFormat("{0,-16}", (Child)ch);

247 sb.Append('\n');

248 for (int ch = 0; ch < N; ++ch)

249 sb.AppendFormat("{0,-16}", h[ch, MONTH]);

250 sb.Append('\n');

251 for (int ch = 0; ch < N; ++ch)

252 sb.AppendFormat("{0,-16}", (GameType)h[ch, GAME]);

253 sb.Append('\n');

254 for (int ch = 0; ch < N; ++ch)

255 sb.AppendFormat("{0,-16}", (CakeType)h[ch, CAKE]);

256 return sb.Append("\n) ]").ToString();

257 }

258 }

259 }

First, a number of named constants are de�ned to make the code more readable.
Then, in the static constructor, the Operators static property is initialized with a
HashSet containing all the 75 operators relevant to the problem.

The only �eld of the class (not counting the named constants) is h. For the sake
of simplicity, it is a 5×3 matrix of integers. It is easier to refer to the elements using
two indexes (the �rst for the child, the second for the category) than �nding the
appropriate element in a 15-tuple (represented by a 15-element vector or list). The type
of elements is int, which means that the months, the games, and the types of cake are
all represented by integers. We could also use elements of Object type, but then, a lot
of type conversions would be necessary: months to int, games to GameType, and types
of cake to CakeType. This is why the type int seemed to be more convenient, and this
is why I de�ned the named constants to ease the work with the matrix elements. The
values associated with the elements of the Child and Category enumeration types are
of great importance because they are used as indexes of the matrix. In our case, all of
the declared identi�ers have default values, which means that the �rst identi�er has a
value of 0, and the value of all other identi�ers is one greater than that of the previous
one. This is exactly what we need when it comes to indexing an array. The drawback
of using a matrix as the type of h is that we lose compile-time type checking for the
matrix elements because of arrays being homogeneous data types.

There are two constructors in the class: the public constructor creates the initial
state, with all elements set to 0 in the matrix implicitly, while the private constructor
is used by the Apply method to clone an existing state by copying the original matrix
to the new state. The GoalState property is pretty simple in this representation: if
the lower right element of the matrix is already assigned a value, then each element is
assigned a value that satis�es all preconditions, so the state is a goal state.

The type of this problem implies that PreCondition is a rather complex method
with a lot of conditions. In our case, the representation lists 40 formulae as operator
preconditions, some of which contain universal quanti�ers. The body of the method
uses the same skeleton as in the previous subsection: the runtime type of the op
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parameter is checked and the appropriate block is run unless the operator is not relevant
to our problem, in which case an exception is thrown. Instead of using one compound
condition for each operator, I broke it up to smaller parts, just like in the representation.
This way, I got 40 if statements, with some of them embedded in a for loop.

Since almost all of the formulae have an implication as their main logical operator,
and C# does not have such an operator, I used the following logical law to implement
it:

A ⊃ B ≡ ¬A ∨B

or rather its negated counterpart:

¬(A ⊃ B) ≡ A ∧ ¬B

The negated implication is necessary because each formula is checked one after the
other, and if either one is false, then the whole precondition is false, so we can return
false. The precondition is satis�ed only if all formulae are true.

Similarly, universal quanti�cation is implemented using a for loop which checks for
all possible values of the quanti�ed variable (i) whether the subformula is false, and if
so, it returns false. For this, I used one of De Morgan's laws:

¬∀i(P (i)) ≡ ∃i(¬P (i))

The Apply method has the same skeleton as the PreCondition method. Applying
an operator to a state involves copying that state and changing the value of one element
of the matrix in the new state. The �rst index of the element to be changed is deter-
mined by the Child property of the operator, while the second index is determined by
the type of the operator.

In this problem, overriding the Equals method is not so important, because there
are no cycles in the representation graph. We could just as well omit the Equalsmethod
if we only considered the search algorithms, thus improving e�ciency. And �nally, the
ToStringmethod mimics the appearance of the matrices in the representation, printing
an additional header with the names of the children above the �rst row.

The First F# Implementation

Here is the listing of the F# version that uses the same principles as the C# version�
with a couple of exceptions:

1 module FunFair

2

3 open System

4 open System.Text

5 open StateSpace

6

7 [<Literal>]

8 let N = 5

9 [<Literal>]

10 let M = 3
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11

12 type Category =

13 | Month = 0

14 | Game = 1

15 | Cake = 2

16

17 let MONTH = int Category.Month

18 let GAME = int Category.Game

19 let CAKE = int Category.Cake

20

21 type Child =

22 | Alex = 0

23 | Carol = 1

24 | Paula = 2

25 | Robert = 3

26 | Tim = 4

27

28 let ALEX = int Child.Alex

29 let CAROL = int Child.Carol

30 let PAULA = int Child.Paula

31 let ROBERT = int Child.Robert

32 let TIM = int Child.Tim

33

34 type GameType =

35 | Dodgem = 1

36 | EnchantedCastle = 2

37 | RollerCoaster = 3

38 | Carousel = 4

39 | ScenicRailway = 5

40

41 let DODGEM = int GameType.Dodgem

42 let CASTLE = int GameType.EnchantedCastle

43 let ROLLER = int GameType.RollerCoaster

44 let CAROUSEL = int GameType.Carousel

45 let SCENIC = int GameType.ScenicRailway

46

47 type CakeType =

48 | Choco = 1

49 | Walnut = 2

50 | Caramel = 3

51 | Almond = 4

52 | Vanilla = 5

53

54 let CHOCO = int CakeType.Choco

55 let WALNUT = int CakeType.Walnut

56 let CARAMEL = int CakeType.Caramel

57 let ALMOND = int CakeType.Almond

58 let VANILLA = int CakeType.Vanilla

59
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60 type Month(child : Child, month : int) =

61 inherit Operator()

62

63 member this.Child = child

64 member this.Month = month

65

66 override this.ToString() =

67 sprintf "Month[ child=%O, month=%d ]" child month

68

69 type Game(child : Child, game : GameType) =

70 inherit Operator()

71

72 member this.Child = child

73 member this.Game = game

74

75 override this.ToString() =

76 sprintf "Game[ child=%O, game=%O ]" child game

77

78 type Cake(child : Child, cake : CakeType) =

79 inherit Operator()

80

81 member this.Child = child

82 member this.Cake = cake

83

84 override this.ToString() =

85 sprintf "Cake[ child=%O, cake=%O ]" child cake

86

87 type FunFairState() =

88 inherit State()

89

90 static do

91 for ch in Enum.GetValues(typeof<Child>) do

92 let child = downcast ch

93 for month in [3; 4; 7; 8; 11] do

94 State.Operators.Add(Month(child, month)) |> ignore

95 for game in Enum.GetValues(typeof<GameType>) do

96 State.Operators.Add(Game(child, downcast game)) |> ignore

97 for cake in Enum.GetValues(typeof<CakeType>) do

98 State.Operators.Add(Cake(child, downcast cake)) |> ignore

99

100 let h = Array2D.zeroCreate N M

101

102 member private this.H = h

103

104 private new(parent : FunFairState) as this =

105 FunFairState() then

106 Array.Copy(parent.H, this.H, N * M)

107

108 override this.GoalState =
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109 h.[N - 1, M - 1] <> 0

110

111 override this.PreCondition(op) =

112 let inline (=>) antecedent consequent =

113 if antecedent then consequent else true

114

115 let checkForAll cond =

116 let rec checkForAll cond ch =

117 ch = N || (cond ch) && checkForAll cond (ch + 1)

118 checkForAll cond 0

119

120 match op with

121 | :? Month as month ->

122 let ch = int month.Child

123 let month = month.Month

124 h.[ch, MONTH] = 0

125 && ch <> 0 => (ch <> 0 && h.[ch - 1, MONTH] <> 0)

126 && checkForAll (fun i ->

127 i < ch => (h.[i, MONTH] <> month))

128 && ch = CAROL => (month <> 3)

129 && ch = PAULA => (month <> 3)

130 && ((h.[PAULA, MONTH] = 4 || h.[PAULA, MONTH] = 11)

131 && ch = TIM) => (month = 4 || month = 11)

132 && ((h.[PAULA, MONTH] = 3 || h.[PAULA, MONTH] = 7 ||

133 h.[PAULA, MONTH] = 8) && ch = TIM) =>

134 (month <> 4 && month <> 11)

135 && ch = CAROL => (month = 3 || month = 4)

136 && checkForAll (fun i ->

137 (month = 3 && h.[i, MONTH] = 4 &&

138 i <> CAROL) => (ch = CAROL))

139 && checkForAll (fun i ->

140 (month = 4 && h.[i, MONTH] = 3 &&

141 i <> CAROL) => (ch = CAROL))

142 | :? Game as game ->

...

163 | :? Cake as cake ->

...

199 | _ ->

200 raise InvalidOperator

201

202 override this.Apply(op) =

203 match op with

204 | :? Month as month ->

205 let newState = FunFairState(this)

206 newState.H.[int month.Child, MONTH] <- month.Month
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207 upcast newState

208 | :? Game as game ->

209 let newState = FunFairState(this)

210 newState.H.[int game.Child, GAME] <- int game.Game

211 upcast newState

212 | :? Cake as cake ->

213 let newState = FunFairState(this)

214 newState.H.[int cake.Child, CAKE] <- int cake.Cake

215 upcast newState

216 | _ ->

217 raise InvalidOperator

218

219 override this.Equals(other) =

220 match other with

221 | :? FunFairState as otherFunFairState ->

222 this.H = otherFunFairState.H

223 | _ ->

224 false

225

226 override this.GetHashCode() =

227 hash h

228

229 override this.ToString() =

230 let sb = StringBuilder("FunFairState[ h=(\n")

231 for ch in 0 .. N - 1 do

232 sb.AppendFormat("{0,-16}", enum<Child> ch) |> ignore

233 sb.Append('\n') |> ignore

234 for ch in 0 .. N - 1 do

235 sb.AppendFormat("{0,-16}", h.[ch, MONTH]) |> ignore

236 sb.Append('\n') |> ignore

237 for ch in 0 .. N - 1 do

238 sb.AppendFormat("{0,-16}", enum<GameType> h.[ch, GAME])

239 |> ignore

240 sb.Append('\n') |> ignore

241 for ch in 0 .. N - 1 do

242 sb.AppendFormat("{0,-16}", enum<CakeType> h.[ch, CAKE])

243 |> ignore

244 sb.Append("\n) ]").ToString()

Some notable di�erences between this F# code and the C# code are the following:

• Enumeration types in F# are discriminated unions in which all identi�ers must
be assigned a value explicitly. I used the same values here as in the C# version,
although some of them are implicitly assigned by the C# compiler.

• In contrast to the C# version, the PreCondition method uses one complex for-
mula as the precondition of each operator. We can do this because we now use
the checkForAll recursive function instead of for loops to implement universal
quanti�cations. The argument of this function is a lambda expression representing
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the immediate subformula of the quanti�er as a function of the quanti�ed variable.
Using the checkForAll function, all formulae can be easily connected by logical &&
operators to form one formula as the return value.

• For implementing implication, a new user-de�ned operator (=>) is introduced, mak-
ing the formulae containing implications more similar to those in the representation.
Of course, this also makes the source code of the PreCondition method much more
succinct. However, we have to be careful when using this operator: as F# uses ea-
ger evaluation by default, both the antecedent and the consequent are evaluated
before the function is called, i.e., the consequent is evaluated even if the antecedent
is false. Consider, for example, the following formula:

ch 6= 1 ⊃ hch−1,1 6= 0

This formula cannot be implemented with the expression

ch <> 0 => (h.[ch - 1, MONTH] <> 0),

because it would cause an exception if ch = 0. The antecedent must be repeated in
the consequent with a short-circuit && operator if we want to avoid this exception:

ch <> 0 => (ch <> 0 && h.[ch - 1, MONTH] <> 0)

Another alternative is to use lazy evaluation in case of the consequent. As there are
only three formulae in our problem a�ected by this issue, I chose not to use lazy
evaluation in each implication but rather repeat the antecedent in these formulae.

• Static type conversion is an area where F# needs more overhead than C#. In
particular, F# requires static upcast in some situations where C# does not. You
can see such situations in the Apply method, where newState must be explicitly
converted from FunFairState to State. Additionally, in the static constructor,
an extra downcast is necessary when using the Enum.GetValues method because
in F#, the objects in the array returned by the method are not automatically
converted to any type.

• The structural equality check used in the Equalsmethod is much more e�cient than
comparing the string representations of the states as in the C# version. However,
as stated earlier, the override of the Equals method could also be omitted.

The Second F# Implementation

As I mentioned earlier, the use of a matrix to store the relevant data of our problem has
the drawback of losing compile-time type checking of the matrix elements: theoretically,
we could assign any integer value to any of the elements, e.g., we could assign chocolate
cake as the favorite game of Alex. The second F# implementation di�ers from the �rst
one mainly in that it uses a �ve-element vector of structures to store the data of a
state, thus providing type safety:
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1 module FunFair2

2

3 open System

4 open System.Text

5 open StateSpace

6

7 [<Literal>]

8 let N = 5

9

10 type Child =

11 | Alex = 0

12 | Carol = 1

13 | Paula = 2

14 | Robert = 3

15 | Tim = 4

16

17 let ALEX = int Child.Alex

18 let CAROL = int Child.Carol

19 let PAULA = int Child.Paula

20 let ROBERT = int Child.Robert

21 let TIM = int Child.Tim

22

23 type GameType =

24 | None = 0

25 | Dodgem = 1

26 | EnchantedCastle = 2

27 | RollerCoaster = 3

28 | Carousel = 4

29 | ScenicRailway = 5

30

31 let GNONE = GameType.None

32 let DODGEM = GameType.Dodgem

33 let CASTLE = GameType.EnchantedCastle

34 let ROLLER = GameType.RollerCoaster

35 let CAROUSEL = GameType.Carousel

36 let SCENIC = GameType.ScenicRailway

37

38 type CakeType =

39 | None = 0

40 | Choco = 1

41 | Walnut = 2

42 | Caramel = 3

43 | Almond = 4

44 | Vanilla = 5

45

46 let CNONE = CakeType.None

47 let CHOCO = CakeType.Choco

48 let WALNUT = CakeType.Walnut

49 let CARAMEL = CakeType.Caramel
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50 let ALMOND = CakeType.Almond

51 let VANILLA = CakeType.Vanilla

52

53 [<Struct>]

54 type ChildData =

55 val mutable month : int

56 val mutable game : GameType

57 val mutable cake : CakeType

58

59 type Month(child : Child, month : int) =

60 inherit Operator()

61

62 member this.Child = child

63 member this.Month = month

64

65 override this.ToString() =

66 sprintf "Month[ child=%O, month=%d ]" child month

67

68 type Game(child : Child, game : GameType) =

69 inherit Operator()

70

71 member this.Child = child

72 member this.Game = game

73

74 override this.ToString() =

75 sprintf "Game[ child=%O, game=%O ]" child game

76

77 type Cake(child : Child, cake : CakeType) =

78 inherit Operator()

79

80 member this.Child = child

81 member this.Cake = cake

82

83 override this.ToString() =

84 sprintf "Cake[ child=%O, cake=%O ]" child cake

85

86 type FunFairState() =

87 inherit State()

88

89 static do

90 for ch in Enum.GetValues(typeof<Child>) do

91 let child = downcast ch

92 for month in [3; 4; 7; 8; 11] do

93 State.Operators.Add(Month(child, month)) |> ignore

94 for game in Enum.GetValues(typeof<GameType>) do

95 let game = downcast game

96 if game <> GNONE then

97 State.Operators.Add(Game(child, game)) |> ignore

98 for cake in Enum.GetValues(typeof<CakeType>) do
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99 let cake = downcast cake

100 if cake <> CNONE then

101 State.Operators.Add(Cake(child, cake)) |> ignore

102

103 let h = Array.create N (ChildData())

104

105 member private this.H = h

106

107 private new(parent : FunFairState) as this =

108 FunFairState() then

109 Array.Copy(parent.H, this.H, N)

110

111 override this.GoalState =

112 h.[N - 1].cake <> CNONE

113

114 override this.PreCondition(op) =

115 let inline (=>) antecedent consequent =

116 if antecedent then consequent else true

117

118 let checkForAll cond =

119 let rec checkForAll cond ch =

120 ch = N || (cond ch) && checkForAll cond (ch + 1)

121 checkForAll cond 0

122

123 match op with

124 | :? Month as month ->

125 let ch = int month.Child

126 let month = month.Month

127 h.[ch].month = 0

128 && ch <> 0 => (ch <> 0 && h.[ch - 1].month <> 0)

129 && checkForAll (fun i ->

130 i < ch => (h.[i].month <> month))

131 && ch = CAROL => (month <> 3)

132 && ch = PAULA => (month <> 3)

133 && ((h.[PAULA].month = 4 || h.[PAULA].month = 11) &&

134 ch = TIM) => (month = 4 || month = 11)

135 && ((h.[PAULA].month = 3 || h.[PAULA].month = 7 ||

136 h.[PAULA].month = 8) && ch = TIM) =>

137 (month <> 4 && month <> 11)

138 && ch = CAROL => (month = 3 || month = 4)

139 && checkForAll (fun i ->

140 (month = 3 && h.[i].month = 4 && i <> CAROL) =>

141 (ch = CAROL))

142 && checkForAll (fun i ->

143 (month = 4 && h.[i].month = 3 && i <> CAROL) =>

144 (ch = CAROL))

145 | :? Game as game ->

...
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166 | :? Cake as cake ->

...

201 | _ ->

202 raise InvalidOperator

203

204 override this.Apply(op) =

205 match op with

206 | :? Month as month ->

207 let newState = FunFairState(this)

208 newState.H.[int month.Child].month <- month.Month

209 upcast newState

210 | :? Game as game ->

211 let newState = FunFairState(this)

212 newState.H.[int game.Child].game <- game.Game

213 upcast newState

214 | :? Cake as cake ->

215 let newState = FunFairState(this)

216 newState.H.[int cake.Child].cake <- cake.Cake

217 upcast newState

218 | _ ->

219 raise InvalidOperator

220

221 override this.Equals(other) =

222 match other with

223 | :? FunFairState as otherFunFairState ->

224 this.H = otherFunFairState.H

225 | _ ->

226 false

227

228 override this.GetHashCode() =

229 hash h

230

231 override this.ToString() =

232 let sb = StringBuilder("FunFairState[ h=(\n")

233 for ch in 0 .. N - 1 do

234 sb.AppendFormat("{0,-16}", enum<Child> ch) |> ignore

235 sb.Append('\n') |> ignore

236 for ch in 0 .. N - 1 do

237 sb.AppendFormat("{0,-16}", h.[ch].month) |> ignore

238 sb.Append('\n') |> ignore

239 for ch in 0 .. N - 1 do

240 sb.AppendFormat("{0,-16}", h.[ch].game) |> ignore

241 sb.Append('\n') |> ignore

242 for ch in 0 .. N - 1 do

243 sb.AppendFormat("{0,-16}", h.[ch].cake) |> ignore

244 sb.Append("\n) ]").ToString()
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Here, I used the ChildData structure type to store information related to each
child. This way, we can substitute a one-dimensional array of this type for the integer
matrix in the previous implementation. As type safety is now provided, two new values
had to be introduced in the two enumeration types to take the role of zero: GNONE and
CNONE. Note that these values must be omitted in the static constructor when creating
the operator objects. The implicit constructor creates the array with N elements, each
containing 0 as the month, GNONE as the game, and CNONE as the type of cake. It is
because structures are value types, so they have an implicit default constructor that
sets the values of their �elds to zero. The explicit constructor creates a shallow copy
of the array. If we used a record instead of a structure, we would have to replace the
shallow copy with a deep copy because records are reference types. All other parts of
the code di�er from the corresponding parts of the �rst implementation only in the
way of referring to a speci�c piece of information about the children. For example,
instead of h.[ALEX, CAKE], we have to use h.[ALEX].cake.



CHAPTER 4

Some Implementations of Search
Algorithms on Game Trees

Besides single-agent problems, arti�cial intelligence also covers two-player games, and
provides search algorithms on game trees. Games, in general, can be classi�ed into two
main categories: gambles, in which the players do not have in�uence to the outcome of
the game, and strategy games, where the outcome of the game is actively a�ected by
the players. Strategy games can be further classi�ed based on the following aspects:

• Considering the number of players, there are two-player, three-player, . . . , n-player
games.

• Considering the length of the game, there are �nite games, in which each player
can choose from a �nite set of moves, and each game terminates in a �nite number
of moves. Games that are not �nite are called in�nite games.

• Considering the sum of the players' gains and losses, there are zero-sum and non-
zero-sum games. In zero-sum games, the sum of the players' gains and losses is
zero.

• If a game has random factors, it is called stochastic, otherwise deterministic.

• In a game with perfect information, the players have all information related to the
game at their disposal. A game with imperfect information does not have perfect
information.

The algorithms presented in this chapter are capable of computing the next move in
arbitrary state-space-represented, �nite, deterministic, zero-sum, two-player strategy
games with perfect information. (From now on, I will refer to such games shortly as
two-player games.) The implemented algorithms are the following [18]:

• minimax algorithm

• negamax algorithm

• the above algorithms with alpha-beta pruning
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As in the previous chapter, I present �rst the class hierarchy serving as a base for
the C# implementation. Then, I give three implementations of the aforementioned
algorithms: one in C# and two in F# with di�erent amount of functional elements.
I will use Nim, a simple two-player game, as an example to demonstrate how these
implementations can be applied to play a particular game.

4.1 A Class Hierarchy for Search Algorithms

Figure 4.1 shows a UML class diagram containing all classes related to the implementa-
tion of the state-space representation, the game tree search algorithms, and the control
of the game.

The State and Operator abstract classes are similar to those used in the case of
single-agent search algorithms. The Operator class has no members, as the cost of
operator applications is usually not relevant in two-player games. The Operators,
PreCondition, and Apply members of the State class have exactly the same role here
as in the state-space representation used by single-agent path-�nding algorithms. The
additional members are the following:

• Player: the player in turn in the current state, represented by a single character
(A or B). Player A is always the starting player, who makes the opening move.

• SwitchPlayer: switches the player in turn in the current state, typically invoked
by the Apply method as the �nal step of an operator application.

• EndState: true if the current state is an end state, i.e., the game has come to an
end.

• AWon and BWon: true if the current state is an end state, and the game is won by
player A or player B, respectively. If EndState is true, but neither AWon nor BWon
is true, then the game is a tie.

• MinimaxGoodness and NegamaxGoodness: the goodness value of the current state
to be used by the minimax and negamax algorithms, respectively. A positive num-
ber represents a �good state� for player A (in case of minimax algorithm) or the
player in turn (in case of negamax algorithm). A negative number represents a
�bad state�, and zero represents an even position. Typically, MinimaxGoodness
and NegamaxGoodness are equal if the player in turn is player A (i.e., the starting
player), otherwise, they are the negation of each other.

• ReadMove: reads the next move of a human player from the standard input and
returns the corresponding Operator object.

GameProp is an enumeration type used for setting the game properties. It contains
the following �ags:

• AgainstHumanFlag: if set, two human players will play against each other, the
program will just control the game and possibly give hints to the players. If not
set, a human player will play against the computer.
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Figure 4.1. Classes representing state space, search algorithms, and game control.

• ComputerStartsFlag: if set, the computer will start the game, otherwise, the
human player is the starting player. Relevant only if AgainstHumanFlag is set.
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• NegamaxFlag: if set, the search algorithm used by the computer as a player and for
hints will be the negamax algorithm instead of the default minimax algorithm.

• AlphaBetaFlag: if set, alpha-beta pruning will be used during the search.

• NoHintFlag: if set, the program will not give hints to the human player(s).

As the name suggests, GameControl is the class responsible for controlling the game.
Its constructor takes the following arguments:

• the initial state

• game properties (as a combination of �ags)

• a depth value used by the computer as a player

• a depth value used when computing a hint for the human player

The initial state is mandatory, the other three are optional arguments. By default, there
are no �ags set, and both depth values are 5. PropertiesText gives the string repre-
sentation of the game properties; it is used by the ToStringmethod. ComputeNextMove
computes the next move for the computer as a player or for giving a hint to the human
player. It takes the current state as its �rst argument, and uses one of the four search
algorithms to build a part of the game tree with the current node as root and choose
the most promising next move. The method returns the operator corresponding to this
move. The depth in which the game tree is to be explored by the search algorithm is
controlled by the second argument. After instantiating a new GameControl object, the
Play method should be called to start the game.

Each search algorithm is represented by a class derived from the abstract SearchAlg
class, which has the following members:

• PLUS_INFINITY and MINUS_INFINITY: these two integer constants are used inter-
nally as initial values for selecting the minimum or maximum of goodness values
that belong to the children of a particular node in the game tree. By default,
PLUS_INFINITY is int.MaxValue and MINUS_INFINITY is the negation of it. Note
that we cannot use int.MinValue as MINUS_INFINITY, because the negamax algo-
rithm may negate this value, which would cause an arithmetic over�ow.

• MAX_GOODNESS and MIN_GOODNESS: these integers mark the lower and upper bounds
between which all concrete implementations of MinimaxGoodness and Negamax-

Goodness should return a value. By default, they have an absolute value one less
than PLUS_INFINITY, ensuring that they do not interfere with PLUS_INFINITY and
MINUS_INFINITY during minimum and maximum selection.

• State: the current game state represented by the current node in the game tree.

• Depth: the depth value in which the game tree is to be explored from the current
node.
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• Goodness: the goodness value of the current state after the relevant part of the
game tree (with the current node as root) has been fully explored.

• Oper: the operator that leads to the state to which Goodness is assigned, i.e., the
operator chosen as the next move.

• Positions: the total number of positions evaluated during graph exploration; used
mainly for debugging purposes.

As you can see, a SearchAlg object represents not only a particular search algorithm
but also a node in the game tree as well as the explored part of the game tree with
the current node as root. State and Depth may be considered as input data, whereas
Goodness, Oper, and Positions as output data, which may be queried after the search
has �nished.

The four concrete algorithm classes are very similar to one another. As you can see
in Section 4.2, they all have a recursive constructor, which actually does the search.
MinimaxAlphaBeta and NegamaxAlphaBeta have two additional private �elds for stor-
ing the current alpha and beta values, but they are only required by the ToString

method if we want them to be part of the string representation of the algorithm ob-
jects.

4.2 Various Implementations of Search Algorithms

This section covers three possible implementations of two algorithms: minimax algo-
rithm without alpha-beta pruning and negamax algorithm with alpha-beta pruning.
The C# version conforms to the class diagram presented in the previous section, while
the two F# versions contain multiparadigm code in two di�erent approaches.

4.2.1 The C# Implementation

Let's see �rst the implementation of the abstract classes constituting the state-space
representation:

1 using System;

2 using System.Collections.Generic;

3

4 namespace StateSpace

5 {

6 public abstract class Operator

7 {

8 }

9

10 public class InvalidOperatorException : Exception

11 {

12 public InvalidOperatorException()

13 : base("No such operator!")

14 {
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15 }

16 }

17

18 public abstract class State

19 {

20 public static ICollection<Operator> Operators { get; set; }

21 public char Player { get; set; }

22

23 public void SwitchPlayer()

24 {

25 Player = Player == 'A' ? 'B' : 'A';

26 }

27

28 public abstract bool EndState { get; }

29 public abstract bool AWon { get; }

30 public abstract bool BWon { get; }

31 public abstract bool PreCondition(Operator op);

32 public abstract State Apply(Operator op);

33 public abstract int MinimaxGoodness { get; }

34 public abstract int NegamaxGoodness { get; }

35 public abstract Operator ReadMove();

36 }

37 }

These three classes resemble those with the same names presented in Section 3.2.
The main di�erence is in the members of the State class. As the Player property
is common to all concrete two-player games, it is more convenient to be de�ned here.
So is SwitchPlayer, a very simple method, used to switch the player in turn in the
current state. EndState, AWon, BWon, MinimaxGoodness, and NegamaxGoodness are
de�ned as abstract properties, while ReadMove is an abstract method.

The implementation of the four search algorithms follows:

1 using System;

2 using StateSpace;

3

4 namespace Game

5 {

6 abstract class SearchAlg

7 {

8 protected const int PLUS_INFINITY = int.MaxValue;

9 protected const int MINUS_INFINITY = -PLUS_INFINITY;

10 public const int MAX_GOODNESS = PLUS_INFINITY - 1;

11 public const int MIN_GOODNESS = -MAX_GOODNESS;

12

13 protected State State { get; set; }

14 protected int Depth { get; set; }

15 protected int Goodness { get; set; }

16 internal Operator Oper { get; set; }

17 protected int Positions { get; set; }
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18

19 protected SearchAlg(State state, int depth)

20 {

21 State = state;

22 Depth = depth;

23 Positions = 1;

24 }

25 }

26

27 class Minimax : SearchAlg

28 {

29 public Minimax(State state, int depth)

30 : base(state, depth)

31 {

32 if (state.EndState || depth == 0)

33 Goodness = state.MinimaxGoodness;

34 else

35 {

36 Goodness = state.Player == 'A' ? MINUS_INFINITY : PLUS_INFINITY;

37 foreach (Operator op in State.Operators)

38 if (state.PreCondition(op))

39 {

40 State newState = state.Apply(op);

41 Minimax newAlg = new Minimax(newState, depth - 1);

42 bool betterState = state.Player == 'A' ?

43 newAlg.Goodness > Goodness :

44 newAlg.Goodness < Goodness;

45 if (betterState)

46 {

47 Goodness = newAlg.Goodness;

48 Oper = op;

49 }

50 Positions += newAlg.Positions;

51 }

52 }

53 }

54

55 public override string ToString()

56 {

57 return "Minimax[ state=" + State + ", depth=" + Depth +

58 ", operator=" + Oper + ", goodness=" + Goodness +

59 ", number of evaluated positions=" + Positions + " ]";

60 }

61 }

62

63 class NegamaxAlphaBeta : SearchAlg

64 {

65 int alpha, beta;

66
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67 public NegamaxAlphaBeta(State state, int depth,

68 int _alpha = MINUS_INFINITY, int _beta = PLUS_INFINITY)

69 : base(state, depth)

70 {

71 alpha = _alpha;

72 beta = _beta;

73 if (state.EndState || depth == 0)

74 Goodness = state.NegamaxGoodness;

75 else

76 {

77 foreach (Operator op in State.Operators)

78 {

79 if (alpha >= beta)

80 break;

81 if (state.PreCondition(op))

82 {

83 State newState = state.Apply(op);

84 NegamaxAlphaBeta newAlg =

85 new NegamaxAlphaBeta(newState, depth - 1, -beta, -alpha);

86 if (-newAlg.Goodness > alpha)

87 {

88 alpha = -newAlg.Goodness;

89 Oper = op;

90 }

91 Positions += newAlg.Positions;

92 }

93 }

94 Goodness = alpha;

95 }

96 }

97

98 public override string ToString()

99 {

100 return "NegamaxAlphaBeta[ state=" + State + ", depth=" + Depth +

101 ", operator=" + Oper + ", goodness=" + Goodness +

102 ", alpha=" + alpha + ", beta=" + beta +

103 ", number of evaluated positions=" + Positions + " ]";

104 }

105 }

106 }

The SearchAlg abstract class has only four constant �elds and �ve auto-implement-
ed properties; there are no methods common to the search algorithms. The constructor
initializes Positions to 1, which represents the root node of the subtree to be explored.
State and Depth are also initialized, although they are only used in the ToString

methods of the concrete algorithm classes.
As you can see, the presented two algorithm classes have the same structure: they

have a recursive constructor and a ToString method. In case of alpha-beta pruning,
two additional private �elds are de�ned (alpha and beta), but only for debugging
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purposes. They can be omitted if we do not want to print their values in the ToString
method.

If we consider recursion as a functional programming element, then this code is
multiparadigm in itself. Exploring the game tree means that for each child node, a
new object is instantiated with the child node as root and with one less depth than in
the parent. If the current node is an end node or depth reaches zero, then recursion
is stopped, and the goodness value is set to whatever the evaluation function returns.
Otherwise, a minimum or maximum selection is performed among the goodness values
of each child node. Oper is set to the operator which results in the child node with the
best goodness value, and Positions will be the total number of nodes explored from
the current node as root (unless there is more than one path to reach a node, in which
case it will be counted multiple times).

The code listing clearly shows the di�erence between minimax and negamax algo-
rithms. Negamax is somewhat simpler because we do not have to check which player is
in turn in the current state�it works the same way in both cases. However, in games
where players can make several successive moves, negamax algorithm cannot be used.
For negamax algorithm to work, the game tree must be such that the distance from
the root to a node in which player A is in turn is even, and the distance from the root
to a node in which player B is in turn is odd. Minimax algorithm does not have this
restriction, because it works di�erently if player A is in turn or player B.

Alpha-beta pruning improves minimax and negamax algorithms by breaking the
foreach loop that traverses the children of the current node for �nding the best move
when it turns out that there is no use exploring the remaining children.

Finally, here is the implementation of the GameControl class:

1 using System;

2 using StateSpace;

3

4 namespace Game

5 {

6 [Flags]

7 public enum GameProp : byte

8 {

9 None = 0,

10 AgainstHumanFlag = 1,

11 ComputerStartsFlag = 2,

12 NegamaxFlag = 4,

13 AlphaBetaFlag = 8,

14 NoHintFlag = 16

15 }

16

17 public class GameControl

18 {

19 const int DEPTH = 5;

20

21 bool againstHuman, computerStarts, negamax, alphaBeta, noHint;

22 int computerDepth, humanDepth;
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23 State initState;

24

25 public GameControl(State initState,

26 GameProp properties = GameProp.None,

27 int computerDepth = DEPTH, int humanDepth = DEPTH)

28 {

29 this.initState = initState;

30 this.computerDepth = computerDepth;

31 this.humanDepth = humanDepth;

32 againstHuman = (properties & GameProp.AgainstHumanFlag)

33 != GameProp.None;

34 computerStarts = (properties & GameProp.ComputerStartsFlag)

35 != GameProp.None;

36 negamax = (properties & GameProp.NegamaxFlag)

37 != GameProp.None;

38 alphaBeta = (properties & GameProp.AlphaBetaFlag)

39 != GameProp.None;

40 noHint = (properties & GameProp.NoHintFlag)

41 != GameProp.None;

42 }

43

44 private string PropertiesText

45 {

46 get

47 {

48 string s = "";

49 if (againstHuman)

50 s += "A human plays against a human.\n";

51 else

52 {

53 s += "A human plays against the computer.\n";

54 if (computerStarts)

55 s += "The computer starts the game.\n";

56 else

57 s += "The human starts the game.\n";

58 }

59 if (negamax)

60 s += "Searching using the negamax algorithm.\n";

61 else

62 s += "Searching using the minimax algorithm.\n";

63 if (alphaBeta)

64 s += "Using alpha-beta pruning.\n";

65 else

66 s += "Not using alpha-beta pruning.\n";

67 if (noHint)

68 s += "No hints.\n";

69 else

70 s += "With hints.\n";

71 return s;
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72 }

73 }

74

75 private Operator ComputeNextMove(State state, int depth, string text)

76 {

77 SearchAlg searchAlg;

78 if (!negamax && !alphaBeta)

79 searchAlg = new Minimax(state, depth);

80 else if (negamax && !alphaBeta)

81 searchAlg = new Negamax(state, depth);

82 else if (!negamax && alphaBeta)

83 searchAlg = new MinimaxAlphaBeta(state, depth);

84 else

85 searchAlg = new NegamaxAlphaBeta(state, depth);

86 Console.WriteLine("Current search algorithm: " + searchAlg + "\n");

87 Console.WriteLine(text + ": " + searchAlg.Oper + "\n");

88 return searchAlg.Oper;

89 }

90

91 public void Play()

92 {

93 State state = initState;

94 while (!state.EndState)

95 {

96 Operator op;

97 Console.WriteLine("Current state: " + state);

98 if (!againstHuman && (state.Player == 'A' && computerStarts ||

99 state.Player == 'B' && !computerStarts))

100 op = ComputeNextMove(state, computerDepth, "Computer's move");

101 else

102 {

103 if (!noHint)

104 ComputeNextMove(state, humanDepth, "Recommended move");

105 else

106 Console.WriteLine();

107 Console.WriteLine("The move of player '" + state.Player +

108 "':\n");

109 op = state.ReadMove();

110 }

111 state = state.Apply(op);

112 }

113 Console.Write("The game is over. ");

114 if (state.AWon || state.BWon)

115 Console.WriteLine("The game is won by player '" +

116 (state.AWon ? 'A' : 'B') + "'.");

117 else

118 Console.WriteLine("The result is a tie.");

119 }

120
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121 public override string ToString()

122 {

123 return "Two-player game.\n" + PropertiesText;

124 }

125 }

126 }

GameProp is de�ned in a way as �ags are usually de�ned: the values assigned to the
identi�ers are the powers of 2. DEPTH is a named constant used by the constructor if
the caller omits the third and fourth argument. The constructor sets the initial state of
the game, the �ve game properties, and the look-ahead depths: one for the computer
player and one for the hints for the human player. PropertiesText gives the string
representation of the �ve game properties, which will be utilized by the ToString

method. The private ComputeNextMove method �rst determines the search algorithm
to be used for �nding the next move, based on two of the game properties, then creates
an algorithm object of the appropriate type. The constructor of the algorithm object
selects the most promising move in the current game state, which is �rst printed and
then returned. The algorithm object itself too is printed after the search for debugging
purposes with all the relevant information regarding the search (such as the number of
evaluated positions).

The Play method is responsible for controlling the game �ow. It �rst initializes
the current state with the initial state, then runs a while loop until the current state
becomes an end state. If it is the computer's turn, the ComputeNextMove method is in-
voked with the appropriate look-ahead depth, otherwise, a move may be recommended
for the human player (again, using the ComputeNextMove method) unless the hints are
disabled, and then the human player's move is read by the ReadMove method. Finally,
if an end state is reached, the result of the game is printed, and the game is over.

The Main Program

The main program is simpler than those in the previous chapter because now only the
Play method must be called after instantiating a GameControl object with the initial
state of a speci�c game (Nim, in this case):

1 using System;

2 using Game;

3

4 class Program

5 {

6 static void Main()

7 {

8 GameControl game = new GameControl(new Nim.NimState(),

9 GameProp.NegamaxFlag | GameProp.AlphaBetaFlag);

10 Console.WriteLine(game);

11 game.Play();

12 }

13 }
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This sample program will play a game of Nim using the negamax algorithm with
alpha-beta pruning. The user will play against the computer, the user will be the
starting player, the program will give hints to the user, and it will use the default
depth of 5 for computing the next move in each state for both the human player (i.e.,
for the hints) and itself.

4.2.2 The First F# Implementation

As in the previous chapter, the �rst F# version is very similar to the C# implemen-
tation, though there are some di�erences. Let's see �rst the abstract classes Operator
and State:

1 namespace StateSpace

2

3 open System.Collections.Generic

4

5 [<AbstractClass>]

6 type Operator() =

7 class

8 end

9

10 [<AbstractClass>]

11 type State(?player) =

12 let player = defaultArg player 'A'

13 static let operators = HashSet<Operator>()

14 static member Operators = operators

15 member this.Player = player

16 member this.OtherPlayer =

17 if player = 'A' then 'B' else 'A'

18 abstract EndState : bool

19 abstract AWon : bool

20 abstract BWon : bool

21 abstract PreCondition : Operator -> bool

22 abstract Apply : Operator -> State

23 abstract MinimaxGoodness : int

24 abstract NegamaxGoodness : int

25 abstract ReadMove : unit -> Operator

26

27 exception InvalidOperator

The di�erences between this code and its C# counterpart are the following:

• The static collection of operators is instantiated right here instead of the concrete
class of a game so that it does not have to be mutable.

• The implicit constructor of State now has an optional argument (player). This
way, the player �eld does not have to be mutable, because its value is only
�changed� when it is created.
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• For the same reason, an OtherPlayer property is introduced as a substitution for
the SwitchPlayer method. It does not change the value of player but returns the
player that is not the current one. It is used as an argument of the constructor
when creating a new state from the current state.

Here comes the source code of the search algorithms:

1 namespace Game

2

3 open StateSpace

4

5 [<AbstractClass>]

6 type SearchAlg(state : State, depth : int) =

7 [<DefaultValue>]

8 val mutable private goodness : int

9 [<DefaultValue>]

10 val mutable private oper : Operator

11

12 let mutable positions = 1

13

14 static member internal PLUS_INFINITY = System.Int32.MaxValue

15 static member internal MINUS_INFINITY = -SearchAlg.PLUS_INFINITY

16 static member MAX_GOODNESS = SearchAlg.PLUS_INFINITY - 1

17 static member MIN_GOODNESS = -SearchAlg.MAX_GOODNESS

18

19 member internal this.State = state

20 member internal this.Depth = depth

21 member internal this.Goodness

22 with get () = this.goodness

23 and set value = this.goodness <- value

24 member internal this.Oper

25 with get () = this.oper

26 and set value = this.oper <- value

27 member internal this.Positions

28 with get () = positions

29 and set value = positions <- value

30

31 type internal Minimax(state, depth) as this =

32 inherit SearchAlg(state, depth)

33

34 do

35 if state.EndState || depth = 0 then

36 this.Goodness <- state.MinimaxGoodness

37 else

38 this.Goodness <- if state.Player = 'A'

39 then SearchAlg.MINUS_INFINITY

40 else SearchAlg.PLUS_INFINITY

41 State.Operators

42 |> Seq.filter (fun op -> state.PreCondition(op))
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43 |> Seq.iter (fun op ->

44 let newState = state.Apply(op)

45 let newAlg = Minimax(newState, depth - 1)

46 let betterState =

47 if state.Player = 'A'

48 then newAlg.Goodness > this.Goodness

49 else newAlg.Goodness < this.Goodness

50 if betterState then

51 this.Goodness <- newAlg.Goodness

52 this.Oper <- op

53 this.Positions <- this.Positions + newAlg.Positions)

54

55 override this.ToString() =

56 sprintf "Minimax[ state=%O, depth=%d, operator=%O, \

57 goodness=%d, number of evaluated positions=%d ]"

58 this.State this.Depth this.Oper this.Goodness this.Positions

59

60 type internal NegamaxAlphaBeta(state, depth, ?alpha, ?beta) as this =

61 inherit SearchAlg(state, depth)

62

63 let mutable alpha = defaultArg alpha SearchAlg.MINUS_INFINITY

64 let mutable beta = defaultArg beta SearchAlg.PLUS_INFINITY

65

66 do

67 if state.EndState || depth = 0 then

68 this.Goodness <- state.NegamaxGoodness

69 else

70 State.Operators

71 |> Seq.takeWhile (fun _ -> alpha < beta)

72 |> Seq.filter (fun op -> state.PreCondition(op))

73 |> Seq.iter (fun op ->

74 let newState = state.Apply(op)

75 let newAlg = NegamaxAlphaBeta(newState, depth - 1,

76 -beta, -alpha)

77 if -newAlg.Goodness > alpha then

78 alpha <- -newAlg.Goodness

79 this.Oper <- op

80 this.Positions <- this.Positions + newAlg.Positions)

81 this.Goodness <- alpha

82

83 override this.ToString() =

84 sprintf "NegamaxAlphaBeta[ state=%O, depth=%d, operator=%O, \

85 goodness=%d, alpha=%d, beta=%d, \

86 number of evaluated positions=%d ]" this.State this.Depth

87 this.Oper this.Goodness alpha beta this.Positions

The abstract SearchAlg class has three mutable �elds, two of which (goodness and
oper) having no explicit initial values; they are initialized with the default values of
their types (0 and null, respectively). Besides them, the class contains nine members:
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four constant �elds, two immutable properties, and three mutable properties. The
immutable properties serve as input, the mutable properties serve as output of the
search algorithms.

The two algorithm classes are very much like their respective C# counterparts. The
only di�erence is that they use higher-order functions from the Seq module to simulate
imperative control structures: takeWhile is substituted for break, filter for if, and
iter for foreach. Although the mechanisms are di�erent, these functions�applied
in chain using the forward pipe (|>) operator�give the same result as the imperative
language constructs.

And now, let's see the implementation of the GameControl class:

1 namespace Game

2

3 open System

4 open StateSpace

5

6 [<Flags>]

7 type GameProp =

8 | None = 0b00000000

9 | AgainstHumanFlag = 0b00000001

10 | ComputerStartsFlag = 0b00000010

11 | NegamaxFlag = 0b00000100

12 | AlphaBetaFlag = 0b00001000

13 | NoHintFlag = 0b00010000

14

15 type GameControl(initState, ?properties, ?computerDepth, ?humanDepth) =

16 static let DEPTH = 5

17

18 let properties = defaultArg properties GameProp.None

19 let computerDepth = defaultArg computerDepth DEPTH

20 let humanDepth = defaultArg humanDepth DEPTH

21

22 let againstHuman = properties &&& GameProp.AgainstHumanFlag

23 <> GameProp.None

24 let computerStarts = properties &&& GameProp.ComputerStartsFlag

25 <> GameProp.None

26 let negamax = properties &&& GameProp.NegamaxFlag

27 <> GameProp.None

28 let alphaBeta = properties &&& GameProp.AlphaBetaFlag

29 <> GameProp.None

30 let noHint = properties &&& GameProp.NoHintFlag

31 <> GameProp.None

32

33 member internal this.PropertiesText =

34 (if againstHuman then

35 "A human plays against a human.\n"

36 else

37 "A human plays against the computer.\n" +

38 (if computerStarts then
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39 "The computer starts the game.\n"

40 else

41 "The human starts the game.\n")) +

42 (if negamax then

43 "Searching using the negamax algorithm.\n"

44 else

45 "Searching using the minimax algorithm.\n") +

46 (if alphaBeta then

47 "Using alpha-beta pruning.\n"

48 else

49 "Not using alpha-beta pruning.\n") +

50 (if noHint then

51 "No hints.\n"

52 else

53 "With hints.\n")

54

55 member this.Play() =

56 let rec doWork (state : State) =

57 let computeNextMove depth text =

58 let searchAlg : SearchAlg =

59 if not negamax && not alphaBeta then

60 upcast Minimax(state, depth)

61 elif negamax && not alphaBeta then

62 upcast Negamax(state, depth)

63 elif not negamax && alphaBeta then

64 upcast MinimaxAlphaBeta(state, depth)

65 else

66 upcast NegamaxAlphaBeta(state, depth)

67 printfn "Current search algorithm: %O\n" searchAlg

68 printfn "%s: %O\n" text searchAlg.Oper

69 searchAlg.Oper

70

71 if state.EndState then

72 printf "The game is over. "

73 if state.AWon || state.BWon then

74 printfn "The game is won by player '%c'."

75 (if state.AWon then 'A' else 'B')

76 else

77 printfn "The result is a tie."

78 else

79 printfn "Current state: %O" state

80 if not againstHuman &&

81 (state.Player = 'A' && computerStarts ||

82 state.Player = 'B' && not computerStarts) then

83 let op = computeNextMove computerDepth

84 "Computer's move"

85 doWork (state.Apply(op))

86 else

87 if not noHint then
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88 computeNextMove humanDepth "Recommended move"

89 |> ignore

90 else

91 printfn ""

92 printfn "The move of player '%c':\n" state.Player

93 doWork (state.Apply(state.ReadMove()))

94

95 doWork initState

96

97 override this.ToString() =

98 "Two-player game.\n" + this.PropertiesText

The major di�erence from the C# version lies in the Play method. While the main
control structure in the C# code is a while loop, in F#, a recursive inner function
(doWork) is responsible for the control of the game. The Play method itself does only
one thing: it calls doWork with initState as its argument; the rest is done by doWork.
All recursive functions consist of branches, some of which stop recursion. In our case,
doWork has three branches. If the parameter state is an end state, the result is printed,
and recursion is stopped. The second branch is evaluated if it is the computer's turn in
the current state: computeNextMove computes the best move for the computer player,
the corresponding operator is applied to the current state, and the game is continued
by a tail-recursive call with the new state as an argument. If the human player is in
turn, the third branch is evaluated. If hints are on, then again computeNextMove is
called, but its return value is discarded�the recommended move will be printed as
a side e�ect. The ReadMove method reads the human player's next move, which is
executed, and the game continues again with a tail-recursive call.

computeNextMove is now a local function of doWork. This way, it needs only two
arguments, since state, as a parameter of the enclosing function, is also accessible
from the inner function. The other notable di�erence here is the excessive use of the
upcast operator for converting the various concrete algorithm types to their common
base type of SearchAlg.

The Main Program

A very simple main function that behaves exactly like the C# main program may look
like this:

1 open Game

2

3 let main () =

4 let game = GameControl(Nim.NimState(),

5 GameProp.NegamaxFlag ||| GameProp.AlphaBetaFlag)

6 printfn "%O" game

7 game.Play()
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4.2.3 The Second F# Implementation

We can make the same modi�cations to the �rst F# version as in the previous chapter
to make our code more functional:

• We can get rid of the concrete algorithm classes and replace them with functions.
As the constructors of these classes were recursive, the replacement functions will
be recursive too.

• The ToString methods of the concrete algorithm classes can be made inline in the
computeNextMove function because they were only used once in the code.

• The GameControl class can be replaced with a play function, which takes the
same parameters as the constructor of the GameControl class. No extra algorithm
parameter is required in this case, because the search algorithm to be used is now
determined based on the game properties.

• A private enumeration type will be used to deal with the possible search algorithms.

• Two new immutable types will be introduced to store the data used by the search
algorithms: one for the minimax and negamax algorithms, and another for the
algorithms using alpha-beta pruning. Both the parameter and the return value of
each algorithm function will be of these types.

The StateSpace namespace remains the same in this implementation as in the
�rst one. Let's see now the listing of the functions implementing the di�erent search
algorithms:

1 module Game

2

3 open System

4 open StateSpace

5

6 let internal PLUS_INFINITY = Int32.MaxValue

7 let internal MINUS_INFINITY = -PLUS_INFINITY

8 let MAX_GOODNESS = PLUS_INFINITY - 1

9 let MIN_GOODNESS = -MAX_GOODNESS

10

11 type internal SearchAlgData(state : State, depth, goodness,

12 oper, positions) =

13 member internal this.State = state

14 member internal this.Depth = depth

15 member internal this.Goodness = goodness

16 member internal this.Oper = oper

17 member internal this.Positions = positions

18

19 type internal AlphaBetaData(state, depth, goodness, oper,

20 positions, alpha, beta) =

21 inherit SearchAlgData(state, depth, goodness, oper, positions)

22
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23 member internal this.Alpha = alpha

24 member internal this.Beta = beta

25

26 let private initMinimaxGoodness (state : State) =

27 if state.Player = 'A' then MINUS_INFINITY else PLUS_INFINITY

28

29 let rec internal minimaxAlg (data : SearchAlgData) =

30 if data.State.EndState || data.Depth = 0 then

31 SearchAlgData(data.State, data.Depth, data.State.MinimaxGoodness,

32 data.Oper, data.Positions)

33 else

34 State.Operators

35 |> Seq.filter (fun op -> data.State.PreCondition(op))

36 |> Seq.fold (fun acc op ->

37 let newState = acc.State.Apply(op)

38 let newAlg =

39 minimaxAlg

40 (SearchAlgData(newState, acc.Depth - 1,

41 initMinimaxGoodness newState, None, 1))

42 let newPos = acc.Positions + newAlg.Positions

43 let betterState = if data.State.Player = 'A'

44 then newAlg.Goodness > acc.Goodness

45 else newAlg.Goodness < acc.Goodness

46 if betterState then

47 SearchAlgData(acc.State, acc.Depth,

48 newAlg.Goodness, Some op, newPos)

49 else

50 SearchAlgData(acc.State, acc.Depth,

51 acc.Goodness, acc.Oper, newPos)

52 ) data

53

54 let rec internal negamaxAlphaBeta (data : AlphaBetaData) =

55 if data.State.EndState || data.Depth = 0 then

56 AlphaBetaData(data.State, data.Depth, data.State.NegamaxGoodness,

57 data.Oper, data.Positions, data.Alpha, data.Beta)

58 else

59 State.Operators

60 |> Seq.filter (fun op -> data.State.PreCondition(op))

61 |> Seq.fold (fun acc op ->

62 if acc.Alpha >= acc.Beta then

63 acc

64 else

65 let newState = acc.State.Apply(op)

66 let newAlg =

67 negamaxAlphaBeta

68 (AlphaBetaData(newState, acc.Depth - 1, 0,

69 None, 1, -acc.Beta, -acc.Alpha))

70 let newPos = acc.Positions + newAlg.Positions

71 if -newAlg.Goodness > acc.Alpha then
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72 AlphaBetaData(acc.State, acc.Depth,

73 -newAlg.Goodness, Some op,

74 newPos, -newAlg.Goodness, acc.Beta)

75 else

76 AlphaBetaData(acc.State, acc.Depth, acc.Alpha,

77 acc.Oper, newPos, acc.Alpha, acc.Beta)

78 ) data

SearchAlgData is a class with the same members as SearchAlg in the previous im-
plementation. A big di�erence is that now all members are immutable. AlphaBetaData
is derived from SearchAlgData and extends it with two additional members (Alpha
and Beta). They contain both input and output data of search algorithms. They could
also be record types, but then it would be cumbersome to refer to the common part
in an AlphaBetaData record. On the other hand, it would be more convenient to copy
objects of these types using record expressions.

initMinimaxGoodness is just a helper function to make the code more readable in
functions minimaxAlg and computeNextMove. It returns the initial goodness value of
a state depending on the player in turn needed by the minimax algorithm.

The main di�erences between the �rst and second implementations regarding the
search algorithms themselves are the following:

• The parameter of the algorithm functions in the second implementation is an ob-
ject of type SearchAlgData or AlphaBetaData, which contains all the input data
required by the algorithm. The parameters of the constructors in the �rst imple-
mentation are only the input data as individual parameters.

• The return value of the algorithm functions in the second implementation is an
object of type SearchAlgData or AlphaBetaData, which contains all the output
data produced by the algorithm. The constructors in the �rst implementation
return the algorithm object storing the output data in its mutable members.

• The minimum or maximum selection in the second implementation is performed by
the Seq.fold higher-order function generating a number of intermediate Search-

AlgData objects but without changing state. The same result is achieved by the �rst
implementation using the Seq.iter higher-order function by changing the values of
the mutable properties of the same object without generating intermediate objects.

• In alpha-beta pruning, the �rst implementation uses Seq.takeWhile to stop itera-
tion over operators if necessary. The second implementation does not stop iteration
in this case, but the inner lambda function will return the same intermediate object
(acc) until the iteration �nishes. We cannot use Seq.takeWhile, because the al-
pha and beta values of the intermediate objects are not accessible outside the inner
lambda function of Seq.fold.

• The initial values of goodness, alpha, and beta (PLUS_INFINITY or MINUS_INFIN-
ITY) are set at the beginning of the constructors in the �rst implementation. In
the second implementation, these initial values are set by the computeNextMove

function when calling the appropriate algorithm function.
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Here is the remaining part of the Game module:

140 type private AlgorithmType =

141 | Minimax = 1

142 | Negamax = 2

143 | MinimaxAlphaBeta = 3

144 | NegamaxAlphaBeta = 4

145

146 [<Flags>]

147 type GameProp =

148 | None = 0b00000000

149 | AgainstHumanFlag = 0b00000001

150 | ComputerStartsFlag = 0b00000010

151 | NegamaxFlag = 0b00000100

152 | AlphaBetaFlag = 0b00001000

153 | NoHintFlag = 0b00010000

154

155 let play initState properties computerDepth humanDepth =

156 let DEPTH = 5

157

158 let properties = defaultArg properties GameProp.None

159 let computerDepth = defaultArg computerDepth DEPTH

160 let humanDepth = defaultArg humanDepth DEPTH

161

162 let againstHuman = properties &&& GameProp.AgainstHumanFlag

163 <> GameProp.None

164 let computerStarts = properties &&& GameProp.ComputerStartsFlag

165 <> GameProp.None

166 let negamax = properties &&& GameProp.NegamaxFlag

167 <> GameProp.None

168 let alphaBeta = properties &&& GameProp.AlphaBetaFlag

169 <> GameProp.None

170 let noHint = properties &&& GameProp.NoHintFlag

171 <> GameProp.None

172

173 let printGameInfo () =

174 printfn "Two-player game."

175 if againstHuman then

176 printfn "A human plays against a human."

177 else

178 printfn "A human plays against the computer."

179 if computerStarts then

180 printfn "The computer starts the game."

181 else

182 printfn "The human starts the game."

183 if negamax then

184 printfn "Searching using the negamax algorithm."

185 else

186 printfn "Searching using the minimax algorithm."
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187 if alphaBeta then

188 printfn "Using alpha-beta pruning."

189 else

190 printfn "Not using alpha-beta pruning."

191 if noHint then

192 printfn "No hints."

193 else

194 printfn "With hints."

195 printfn ""

196

197 let rec doWork (state : State) =

198 let computeNextMove depth text =

199 let algorithm =

200 if not negamax && not alphaBeta then

201 AlgorithmType.Minimax

202 elif negamax && not alphaBeta then

203 AlgorithmType.Negamax

204 elif not negamax && alphaBeta then

205 AlgorithmType.MinimaxAlphaBeta

206 else

207 AlgorithmType.NegamaxAlphaBeta

208 let data =

209 match algorithm with

210 | AlgorithmType.Minimax ->

211 minimaxAlg

212 (SearchAlgData(state, depth,

213 initMinimaxGoodness state, None, 1))

214 | AlgorithmType.Negamax ->

215 negamaxAlg (SearchAlgData(state, depth,

216 MINUS_INFINITY, None, 1))

217 | AlgorithmType.MinimaxAlphaBeta ->

218 minimaxAlphaBeta

219 (AlphaBetaData(state, depth, 0, None, 1,

220 MINUS_INFINITY, PLUS_INFINITY))

221 :> SearchAlgData

222 | AlgorithmType.NegamaxAlphaBeta ->

223 negamaxAlphaBeta

224 (AlphaBetaData(state, depth, 0, None, 1,

225 MINUS_INFINITY, PLUS_INFINITY))

226 :> SearchAlgData

227 | _ ->

228 failwith "Invalid game tree search algorithm"

229 printf "Current search algorithm: %O" algorithm

230 printf "[ state=%O, depth=%d, operator=%O, goodness=%d, "

231 data.State data.Depth

232 data.Oper.Value data.Goodness

233 if alphaBeta then

234 let alphaBetaData = data :?> AlphaBetaData

235 printf "alpha=%d, beta=%d, "
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236 alphaBetaData.Alpha alphaBetaData.Beta

237 printfn "number of evaluated positions=%d ]\n"

238 data.Positions

239 printfn "%s: %O\n" text data.Oper.Value

240 data.Oper.Value

241

242 if state.EndState then

243 printf "The game is over. "

244 if state.AWon || state.BWon then

245 printfn "The game is won by player '%c'."

246 (if state.AWon then 'A' else 'B')

247 else

248 printfn "The result is a tie."

249 else

250 printfn "Current state: %O" state

251 if not againstHuman &&

252 (state.Player = 'A' && computerStarts ||

253 state.Player = 'B' && not computerStarts) then

254 let op = computeNextMove computerDepth "Computer's move"

255 doWork (state.Apply(op))

256 else

257 if not noHint then

258 computeNextMove humanDepth "Recommended move"

259 |> ignore

260 else

261 printfn ""

262 printfn "The move of player '%c':\n" state.Player

263 doWork (state.Apply(state.ReadMove()))

264

265 printGameInfo ()

266 doWork initState

AlgorithmType is not a discriminated union but an enumeration for two reasons:

• there are no special properties of the individual search algorithms,

• we use the identi�ers de�ned in the enumeration as the names of the algorithms
when printing the search information in the computeNextMove function, and for
that, it is easier to use the ToString method of the Enum class than writing our
own ToString implementation.

The play function begins with initializing some local values that were private �elds
of the GameControl class in the �rst implementation. Then two helper functions fol-
low: printGameInfo plays the role of the ToString method and the PropertiesText
property of the GameControl class, while doWork is a recursive function actually re-
sponsible for the game control (just like in the �rst implementation). The body of the
play function consists only of calls to these helper functions.

The doWork function works exactly the same way in both implementations. The
di�erences lie between the two local computeNextMove functions:
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• The second implementation �rst sets the algorithm value to the appropriate iden-
ti�er of the AlgorithmType enumeration. This value is then used in a match ex-
pression to determine which search algorithm is to be used, and one more time
later, when printing the results of the search to the output: the identi�er will serve
as the name of the used algorithm.

• As I previously mentioned, the algorithm functions must be given an argument of
type SearchAlgData or AlphaBetaData with all the initial values the algorithm re-
quires. In the �rst implementation, only state and depth were given as arguments
to the appropriate constructor; all other values were initialized by the constructor.

• After the search has �nished, all relevant search information is printed to the output.
In the second implementation, this is done inline, whereas the �rst implementation
used the ToString method of the algorithm object to achieve the same result.

The Main Program

The main program now consists only of a call to the play function with four arguments,
as F# functions may not have optional arguments:

1 open Game

2

3 let main () =

4 play (Nim.NimState())

5 (Some (GameProp.NegamaxFlag ||| GameProp.AlphaBetaFlag))

6 None None

4.2.4 Comparing the Three Implementations

The implementations presented in this chapter resemble one another to a greater extent
than those in the previous chapter. It is because now even the original C# version used
recursion in the implementation of the search algorithms, so the code could be made
more functional only by replacing mutable data and assignments with immutable data
and higher-order functions working with them. However, these modi�cations did not
make the code shorter or more readable.

The most conspicuous di�erence between the second F# implementation and the
other two is that it contains only one mutable data structure: the Operators property
of the State class. It could be easily replaced with a sequence, but it would cause no
increase in the abstraction level; Operators is used as a sequence everywhere in the
code anyway.

The algorithms are the same, the approach is di�erent, but students too are di�er-
ent, so some of them may better understand the algorithms based on a more functional
approach than on a pure object-oriented code. For example, the Seq.fold function
using a lambda expression with an accumulator parameter (acc) may better describe
how minimum or maximum selection is performed for students who think recursively
(functionally).
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The observations made regarding the various implementations of search algorithms
for single-agent problems are valid for search algorithms on game trees too. Table 4.1
shows the same code metrics discussed in Section 3.2:

C# F# ver. 1 F# ver. 2

Lines of code 359 252 261

Number of classes 8 8 4

Number of functions 14 14 11

Table 4.1. Some code metrics.

It is interesting to see that the number of lines in the second F# implementation is a
little greater than in the �rst one. This too shows that we could not bene�t much from
converting the algorithm classes and the GameControl class into functions, and from
replacing mutable data with immutable data. On the other hand, there are fewer classes
and fewer functions in the second F# implementation. The reason for fewer classes
is the substitution of functions for six classes; only State and Operator remained as
classes. However, two new classes were introduced for storing search information, this
is why there are four classes instead of two. The decrease in the number of functions
comes mainly from eliminating the ToString methods of the four algorithm classes.

4.3 Implementing Speci�c Problems

Just like single-agent problems, two-player games can also be challenging when it comes
to creating or implementing their state-space representation. However, the most chal-
lenging job in this case is typically not the representation of the precondition or appli-
cation of operators but �nding a usable evaluation function for computing the goodness
value of states. If it is simple, it may not give a correct estimation of the goodness; if it
is too complicated, it may take a lot of time to execute. We have to �nd a compromise
between the two, which may be easier thinking functionally.

In this section, I present the state-space representation and two implementations
of a simple and well-known two-player game: Nim. It is usually used as an example in
the seminars of Introduction to Arti�cial Intelligence as well at our university because
of its simplicity.

The Problem

Nim is a sort of �take-away game,� in which players alternately remove objects from
distinct heaps, and the player who takes the last object wins (or loses). There are a
number of variants of this game, depending on how many heaps of objects exist initially,
how many objects a player may take away in one move, and whether the player who
makes the last move wins or loses. We will now consider the following game:

• There are initially 3 heaps of objects, containing 2, 4, and 3 objects, respectively.
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• Players move alternately, and they can remove any positive number of objects from
exactly one heap.

• The player who cannot move, loses. This happens when there are no more objects
left in any of the heaps. In other words, the player who makes the last move wins.

State-Space Representation

Let's denote the heaps with the numbers 1, 2, and 3. A relevant property of the game
is the number of objects in each heap. We can limit the maximum number of objects
in each heap to MAX = 10. As each heap may contain any number of objects between
0 and MAX, we can assign the same base set to each heap:

H1 = H2 = H3 = {0, 1, . . . ,MAX}

Another relevant property of the game is the player in turn. Let's denote the players
with the letters A and B. We can then de�ne the following base set:

P = {A,B}

The states of the game will be elements of the Cartesian product of these base sets:

S ⊆ H1 ×H2 ×H3 × P = {(0, 0, 0, A), (0, 0, 0, B),

(0, 0, 1, A), (0, 0, 1, B),

. . . ,

(MAX,MAX,MAX, A), (MAX,MAX,MAX, B)}

As all the elements of the H1 ×H2 ×H3 ×P set are valid states of our problem, there
is no need for any constraints to narrow this set, i.e., the state space of the problem
will be exactly this set:

S = H1 ×H2 ×H3 × P
At the initial state, we have 2, 4, and 3 objects in the respective heaps, and player A
is in turn:

start = (2, 4, 3, A) ∈ S
The set of end states consists of two elements, in which each heap is empty:

E = {(0, 0, 0, p)} ⊂ S

If p = A, the winner is player B, otherwise the winner is player A. There is no tie in
this game. The set of operators contains 3 ·MAX elements:

O = {Move(heap, number)}

where

heap ∈ { 1, 2, 3 }
number ∈ { 1, 2, . . . ,MAX }

The Move(heap, number) operator is applicable to state h = (h1, h2, h3, p) ∈ S if the
following precondition is met:
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• there are at least number objects in heap heap:

hheap ≥ number

The application of the Move(heap, number) operator to state h = (h1, h2, h3, p) ∈ S
results in a new state h′ = (h′1, h

′
2, h
′
3, p
′) ∈ S where

h′i =

{
hi − number if i = heap,

hi otherwise,

and

p′ =

{
A if p = B,

B otherwise.

By de�ning the S state space, the start initial state, the E set of end states, and the O
set of operators, we have given a possible g = 〈S, start, E ,O〉 state-space representation
of our game.

The C# Implementation

Figure 4.2 shows the two classes representing the states and operators of this particular
problem.

NimState has two constant �elds: one for the number of heaps and another for the
maximum number of objects in each heap. heaps is an array of integers that stores
the current number of objects in each heap. Note that the player in turn is declared
in the State class. The NimMove class has two properties (Heap and Number), which
correspond to the parameters of the Move operator.

A possible C# implementation of these two classes is the following:

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using StateSpace;

5 using Game;

6

7 namespace Nim

8 {

9 class NimMove : Operator

10 {

11 internal int Heap { get; private set; }

12 internal int Number { get; private set; }

13

14 public NimMove(int heap, int number)

15 {

16 Heap = heap;

17 Number = number;

18 }

19
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Figure 4.2. Classes representing a speci�c game.

20 public override string ToString()

21 {

22 return "NimMove[ heap=" + Heap + ", number=" + Number + " ]";

23 }

24 }

25

26 class NimState : State

27 {

28 const int NUMBER_OF_HEAPS = 3;

29 const int MAX_NUMBER = 10;
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30

31 static NimState()

32 {

33 Operators = new HashSet<Operator>();

34 for (int h = 1; h <= NUMBER_OF_HEAPS; ++h)

35 for (int num = 1; num <= MAX_NUMBER; ++num)

36 Operators.Add(new NimMove(h, num));

37 }

38

39 int[] heaps;

40

41 public NimState()

42 {

43 Player = 'A';

44 heaps = new int[] {2, 4, 3};

45 }

46

47 NimState(NimState parent)

48 {

49 Player = parent.Player;

50 heaps = new int[NUMBER_OF_HEAPS];

51 parent.heaps.CopyTo(heaps, 0);

52 }

53

54 public override bool EndState

55 {

56 get

57 {

58 foreach (int num in heaps)

59 if (num != 0)

60 return false;

61 return true;

62 }

63 }

64

65 public override bool AWon

66 {

67 get

68 {

69 return EndState && Player == 'B';

70 }

71 }

72

73 public override bool BWon

74 {

75 get

76 {

77 return EndState && Player == 'A';

78 }
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79 }

80

81 public override int MinimaxGoodness

82 {

83 get

84 {

85 int nega = NegamaxGoodness;

86 return Player == 'A' ? nega : -nega;

87 }

88 }

89

90 public override int NegamaxGoodness

91 {

92 get

93 {

94 int sum = 0;

95 foreach (int num in heaps)

96 sum ^= num;

97 return sum != 0 ? SearchAlg.MAX_GOODNESS

98 : SearchAlg.MIN_GOODNESS;

99 }

100 }

101

102 public override bool PreCondition(Operator op)

103 {

104 if (op is NimMove)

105 {

106 NimMove move = (NimMove)op;

107 return heaps[move.Heap - 1] >= move.Number;

108 }

109 else

110 throw new InvalidOperatorException();

111 }

112

113 public override State Apply(Operator op)

114 {

115 if (op is NimMove)

116 {

117 NimState newState = new NimState(this);

118 NimMove move = (NimMove)op;

119 newState.heaps[move.Heap - 1] -= move.Number;

120 newState.SwitchPlayer();

121 return newState;

122 }

123 else

124 throw new InvalidOperatorException();

125 }

126

127 public override Operator ReadMove()
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128 {

129 Operator op;

130 while (true)

131 {

132 Console.WriteLine("Enter your move:");

133 Console.Write("Heap: ");

134 int heap = int.Parse(Console.ReadLine());

135 Console.Write("Number: ");

136 int number = int.Parse(Console.ReadLine());

137 if (heap < 1 || heap > NUMBER_OF_HEAPS ||

138 number < 1 || number > MAX_NUMBER)

139 {

140 Console.WriteLine("Invalid operator!");

141 continue;

142 }

143 op = new NimMove(heap, number);

144 if (PreCondition(op))

145 break;

146 else

147 Console.WriteLine("This operator cannot be applied!");

148 }

149 Console.WriteLine();

150 return op;

151 }

152

153 public override string ToString()

154 {

155 StringBuilder sb = new StringBuilder("NimState[ heaps=(");

156 for (int h = 0; h < heaps.Length; ++h)

157 {

158 if (h > 0)

159 sb.Append(',');

160 sb.Append(heaps[h]);

161 }

162 return sb.Append("), player='" + Player + "' ]").ToString();

163 }

164 }

165 }

The NimMove class has no interesting elements.
NimState starts with the de�nition of the two named constants, followed by the

static constructor, which generates all the possible operator objects (30 in this case)
and adds them to the Operators set. Then comes the de�nition of heaps and two con-
structors: the public default constructor constructs the initial state, while the private
copy constructor constructs a clone of its parameter. EndState, AWon, and BWon are
very simple properties in this game. The current state is an end state if all the heaps
are empty, and a player has won the game if the current state is an end state and the
other player is in turn.

In the case of this game, it is easier to compute the goodness value of a state



126 CHAPTER 4. SEARCH ALGORITHMS ON GAME TREES

based only on the position, i.e., independently on the player in turn. This is why
MinimaxGoodness is de�ned in terms of NegamaxGoodness. If the player in turn is
player A, they are equal, otherwise, they are the negative of each other. For the player
in turn, we can give a perfect heuristic. This means that we can tell about each possible
position whether it is a winner or a loser position. It is a well-known fact that if the
�nim-sum� (exclusive or) of the numbers of objects in each heap is zero, then it is a loser
position for the player in turn, otherwise, it is a winner position. As a consequence,
the search algorithms will �nd the winner move even if the depth of the search is set
to 1.

The PreCondition and Apply methods are fairly simple in this game, and they
have the same skeleton as the same methods in the previous chapter. Note that the
Apply method uses the inherited SwitchPlayer method to change the player in turn.
We can do this as a part of all operator applications because in Nim, players always
move alternately, i.e., no two consecutive moves are made by the same player.

The ReadMove method reads from the input the heap number and the number
of objects to remove in an in�nite loop until the user enters a valid move. Then,
the corresponding operator object is created, and its precondition is checked. If the
operator is applicable, the method breaks the in�nite loop and returns the operator.
Finally, the ToString method is very simple too: the number of objects in each heap
is printed one after the other, followed by the player in turn.

The F# Implementation

Let's see now a multiparadigm implementation of the NimMove and NimState classes:

1 module Nim

2

3 open System

4 open System.Text

5 open StateSpace

6 open Game

7

8 type NimMove(heap, number) =

9 inherit Operator()

10

11 member this.Heap = heap

12 member this.Number = number

13

14 override this.ToString() =

15 sprintf "NimMove[ heap=%d, number=%d ]" heap number

16

17 type NimState private (player) =

18 inherit State(player)

19

20 static let NUMBER_OF_HEAPS = 3

21 static let MAX_NUMBER = 10

22

23 let heaps = [|2; 4; 3|]
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24

25 static do

26 for h in 1 .. NUMBER_OF_HEAPS do

27 for num in 1 .. MAX_NUMBER do

28 State.Operators.Add(NimMove(h, num)) |> ignore

29

30 member private this.Heaps = heaps

31

32 new() =

33 NimState('A')

34

35 private new(parent : NimState, move : NimMove) as this =

36 NimState(parent.OtherPlayer) then

37 parent.Heaps.CopyTo(this.Heaps, 0)

38 this.Heaps.[move.Heap - 1] <-

39 this.Heaps.[move.Heap - 1] - move.Number

40

41 override this.EndState =

42 Array.fold (fun acc num -> acc && num = 0) true heaps

43

44 override this.AWon =

45 this.EndState && this.Player = 'B'

46

47 override this.BWon =

48 this.EndState && this.Player = 'A'

49

50 override this.MinimaxGoodness =

51 let nega = this.NegamaxGoodness

52 if this.Player = 'A' then nega else -nega

53

54 override this.NegamaxGoodness =

55 let sum = Array.fold (fun acc num -> acc ^^^ num) 0 heaps

56 if sum <> 0 then MAX_GOODNESS else MIN_GOODNESS

57

58 override this.PreCondition(op) =

59 match op with

60 | :? NimMove as move ->

61 heaps.[move.Heap - 1] >= move.Number

62 | _ ->

63 raise InvalidOperator

64

65 override this.Apply(op) =

66 match op with

67 | :? NimMove as move ->

68 upcast NimState(this, move)

69 | _ ->

70 raise InvalidOperator

71

72 override this.ReadMove() =
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73 printfn "Enter your move:"

74 printf "Heap: "

75 let heap = Int32.Parse(Console.ReadLine())

76 printf "Number: "

77 let number = Int32.Parse(Console.ReadLine())

78 if heap < 1 || heap > NUMBER_OF_HEAPS ||

79 number < 1 || number > MAX_NUMBER then

80 printfn "Invalid operator!"

81 this.ReadMove ()

82 else

83 let op = NimMove(heap, number)

84 if this.PreCondition(op) then

85 printfn ""

86 upcast op

87 else

88 printfn "This operator cannot be applied!"

89 this.ReadMove ()

90

91 override this.ToString() =

92 let sb = StringBuilder("NimState[ heaps=(")

93 for h in 0 .. heaps.Length - 1 do

94 if h > 0 then

95 sb.Append(',') |> ignore

96 sb.Append(heaps.[h]) |> ignore

97 sb.Append("), player='" + this.Player.ToString() +

98 "' ]").ToString()

Although this code works similarly to the C# code (for example, it uses an array
for storing the number of objects in the heaps), there are some substantial di�erences:

• The NimState class has now three constructors. The private implicit constructor
sets the player in turn to the given argument and initializes the heaps array to the
initial position. The public default constructor constructs the initial state of the
game by calling the implicit constructor with player A as an argument. The third
constructor is private too; it is responsible for the actual operator application. It
takes two parameters: a parent state and an operator to be applied to the parent
state. First, the implicit constructor is called with the OtherPlayer property of the
parent state as an argument, as we have to switch players as part of the operator
application. Then, the heaps array is copied from the parent to the current state
and modi�ed according to the operator. This way, the only job of the Apply method
will be to call this constructor and return the newly constructed state, so it does
not have to change any state. Because of this, we could easily replace the type of
heaps with an immutable list and make the entire code purely functional; although
it would not result in a shorter or more readable code.

• The EndState and NegamaxGoodness properties use the Array.fold higher-order
function instead of foreach loops to perform di�erent kinds of summation on the
heaps array. It results in a more succinct code but also less e�cient in the case
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of EndState because Array.fold traverses the whole array, whereas the foreach

loop stops if the current element is not zero.

• The Apply method is much simpler than in the C# code because after checking
whether the argument operator is of the correct type, it just calls the third con-
structor, which actually performs the operator application.

• Instead of an in�nite loop, the ReadMove method now recursively calls itself if the
user enters an invalid or inapplicable move.



CHAPTER 5

A New Methodology for Teaching
Computer Science

Based on my ten years of teaching experience at the University of Debrecen, I can say
that students majoring Software Information Technology BSc have to face a number of
di�culties during their studies. I think these di�culties root from two main problems:
students are unmotivated and cannot sense the coherence between the knowledge ac-
quired in the various courses. This chapter tries to give some remedy to both of these
problems by the idea of introducing some long-term projects to students, which they
can work on throughout their studies, dealing with a particular aspect of the projects
in each course.

5.1 Overview

For the last few years, most of the students majoring in some area of computer science
at our university have been having a hard time ful�lling the requirements of most
nonbasic courses. This is partly because of the big number of students. First, we have
to launch many practical courses for the same subject with many students in each
of them. Due to this, we need many instructors (including student instructors), who
have to deal with a lot of students and have much less time to deal with each of them
individually. Second, a lot of the students come to our university not because of their
interest in computer science but for other reasons (like parental pressure, the popularity
of information technology, good job prospects, or simply because they misunderstand
the program objectives), and therefore they are often undermotivated.

However, mass education is not the only reason for �mass failure� and poor perfor-
mance. I believe that we, the instructors, do have some in�uence on the e�ciency of
the education. The key is to �nd a way to pique students' interest. We can do this by
assigning them tasks in which they are interested. Creating a two-player game with
competitive arti�cial intelligence and a graphical front-end, writing a library informa-
tion system that keeps track of data about books, patrons, and loans, or creating a
web-based network analysis tool which computes di�erent statistical data about net-
work tra�c may be such tasks. For example, we can read about the idea of using
Reversi as a teaching tool in [27], teaching fundamental programming concepts via
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two-dimensional game development in [15], or using physical and virtual models of
discrete games to help students learn the fundamental concepts and problem solving
strategies in computer science in [1]. In particular, two computer games are used to
teach the concepts of boolean expressions and recursion in [7]. Even abstract knowledge
of mathematical logic can be presented through playful tasks [25]. In fact, nowadays
one can hardly �nd a renowned journal or conference on computer science education
without a publication about teaching via real-world projects. As examples, we can men-
tion the journals Computers & Education (impact factor: 2.621, publisher: Elsevier) or
the Journal of Computer Assisted Learning (impact factor: 1.464, publisher: Wiley),
and conferences like the 3rd Annual International Conference on Computer Science
Education: Innovation and Technology (held on November 19�20, 2012, in Singapore)
or the Consortium for Computing Sciences in Colleges � Northeastern Region (held
on April 12�13, 2013, in Albany, New York).

Whatever the task is about, the secret is that it should be a large-scale project,
which covers more (or even most) of the subjects students encounter during their
studies. Throughout the project work, they apply the knowledge discussed in the
lectures and practical courses of the related core subjects. They learn the applicability
and usability of the topics of each subject as well as the problems emerging during the
application of that knowledge. I think that if we can �nd appropriate assignments, we
may achieve better performance not only in solving the assignments but also in the
�nal examinations of the courses.

De�ning assignments related to developing real-world applications has the following
bene�ts:

• Compelling examples increase students' motivation.

• Via a complex project, students can practice a number of aspects of computer
science.

• Using the same complex project in more courses will help students better under-
stand the relationship between the knowledge behind those courses.

• Projects make computer science education more practice-oriented.

• Projects validate the theoretical knowledge acquired during the lectures and answer
the question of how to use that knowledge.

I would like to emphasize that the idea of project-oriented education is already
applied in most graduate (master) programs of computer science at most Hungarian
universities. According to the current act on higher education, even undergraduate
programs must contain some amount of project work. We can see a good example of this
at the Eötvös Loránd University, Faculty of Informatics, where students can participate
in a cooperative training for 16 credits [3]. The goal of the cooperative training is to
provide students with the possibility of getting acquainted with the practical side of
computer science under the supervision of experienced professionals at real companies
in the software industry. Another example is the subject titled Project Laboratory at the
Budapest University of Technology and Economics, Faculty of Electrical Engineering
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and Informatics [21] or at the University of Debrecen, Faculty of Informatics, where
students may deepen their knowledge and get some experience in a speci�c �eld of
computer science. Project-based education is also applied in foreign institutions; for
instance, at the University of Paderborn, teams of three have to develop operating
systems during one of the undergraduate courses.

There are, however, some important di�erences between the proposed approach of
�teaching with projects� and the above-mentioned examples:

• Both cooperative training and the Project Laboratory courses are independent from
the core subjects of an undergraduate program in the sense that they are separate
educational units. According to my proposal, the projects would form a part of
the course materials of most core subjects, so students can work on projects in the
frame of the existing subjects, and no separate subjects or trainings are required.

• While cooperative training and the Project Laboratory courses focus on only one
or two areas of computer science, the proposed approach covers the topics of most
core subjects.

• Cooperative training and the Project Laboratory subject both have strict prerequi-
sites, i.e., they are based on knowledge acquired during earlier studies. However,
using the proposed approach, students start working on projects as early as the �rst
semester. This also means that instructors have to deal with a lot more students,
who have not participated in project works before. On the other hand, instructors
may also be inexperienced in project management, and they need to cooperate with
one another in order to achieve a better result.

• Although cooperative training is a part of education, the institute forfeits its right
to control the �ow of the training and the assessments. Another drawback is that it
is not so easy to �nd the necessary number of companies with appropriate projects
outside the capital.

5.2 Current Program Requirements

Let's �rst have a look at the requirements of the Software Information Technology BSc
major. The program lasts for 6 semesters, and students have to gather a total of 180
credits according to the following list:

• 120 credits from core subjects

• 29 credits from compulsory elective subjects

• 11 credits from elective nonvocational subjects

• 20 credits from the thesis

Table 5.1 contains the full list of the core subjects with credit numbers, contact
hours, prerequisites, and recommended semesters [5].



5.2. CURRENT PROGRAM REQUIREMENTS 133

Sub-

ject

code

Subject name
Cred-

it

Lec-

tures

Semi-

nars
Labs

Pre-

requi-

sites

Recom-

mended
semester

CS101 Discrete Mathematics 1 5 2 2 1

CS111 Calculus 1 5 2 2 1

CS401 Logic in Computer Science 5 2 2 1

CS201 Introduction to Informatics 5 2 2 1

CS202 HTML, XML 2 2 1

CS711 Computer Architectures 5 2 2 1

CS102 Discrete Mathematics 2 5 2 2 CS101 2

CS112 Calculus 2 5 2 2 CS111 2

CS131
Probability Theory
and Statistics

5 2 2
CS101
CS111

2

CS421
Data Structures
and Algorithms

5 2 2 CS201 2

CS301 Programming Languages 1 5 2 2 CS201 2

CS211 Operating Systems 1 5 2 2 CS201 2

CS411
Automata and
Formal Languages

5 2 2 CS101 3

CS302 Programming Languages 2 5 2 2 CS301 3

CS212 Operating Systems 2 5 2 2 CS211 3

CS501 Database Systems 5 2 2 CS301 3

CS601
Introduction to
Computer Graphics

5 2 2
CS101
CS301

3

CS141 Numerical Methods 5 2 2 CS102 3

CS441
Introduction to
Arti�cial Intelligence

5 2 2

CS302
or

(CS301
and

CS401)

4

CS311 Programming Environments 2 2 CS302 4

CS321 Programming Technologies 5 2 2 CS302 4

CS721
Computer Network
Architectures and Protocols

5 2 2
CS711
CS212

4

CS511 Database Administration 3 2 CS501 5

CS521
Technology of
System Development

5 2 2 CS321 5

CS001 Thesis 1 10 CS321 5

CS451
Algorithm Design
and Analysis

5 2 2
CS401
CS411

6

CS231 Internet Tools and Services 3 2 CS521 6

CS002 Thesis 2 10 CS321 6

Table 5.1. Core subjects.
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The compulsory elective subjects are divided into �ve subject groups (called blocks),
each containing four subjects with a total of 16�18 credits:

• Block A: Arti�cial Intelligence

• Block B: Database Systems

• Block C: Operating Systems and Networks

• Block D: Computer Graphics

• Block S: Information Theory and Applied Mathematics

Students have to complete at least one subject from each of these blocks. The remaining
credits needed for the 29 credits can be earned by completing other subjects from
the blocks or additional elective vocational subjects launched by the faculty at the
beginning of each semester.

As you can see, students have to take and complete at least 37 subjects during their
studies, which is a rather big number for only 6 semesters. I think that some of these
subjects should be a part of graduate programs, and others (the basic subjects) should
get more emphasis with more contact hours.

However, even if we insist on this study plan, we may still �nd projects that involve
a number of the listed areas. Let's now have a look at a couple of examples.

5.3 Some Possible Projects

If we take a closer look at Table 5.1, we can soon realize that even a medium-sized soft-
ware development project needs some knowledge from at least three core subjects. We
can state this based merely on the names of the subjects, without knowing the detailed
topics of them and without knowing the goal of the application to be developed. The
three most basic subjects, which are involved in every software development project,
are Introduction to Informatics, Data Structures and Algorithms, and Programming
Languages 1.

In this section, I would like to present two projects of medium di�culty, parts of
which may be used as assignments from as early as the �rst semester.

5.3.1 Project #1: Creating a Reversi Application

Of course, Reversi may be replaced by any (not too di�cult) two-player game here.
The main goals of this project are the following:

• To learn some basic programming idioms in at least one programming language.

• To learn how to represent the data structures used during the implementation as
well as the algorithms that work with them.

• To learn some basic arti�cial intelligence methods that are good enough to beat at
least a weak human player.
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For the assignments to make sense, I brie�y introduce the rules of the game [8].
Reversi (or Othello) is a strategy board game for two players, played on an 8 × 8
uncheckered board with 64 pieces colored di�erently on each side, which correspond
to the opponents of a game. The color facing up indicates which of the two players
controls the square occupied by the piece. The game begins with the central four
squares occupied: each player controls one of the diagonals. Players take turns placing
pieces on the board with their assigned color facing up until neither can make a move
(usually when all 64 squares are occupied). The player who controls the most squares
is the winner. A legal move must be to an empty square and must bracket at least
one of the opponent's pieces in a straight line between an existing piece of the player
in turn and the newly played piece. Upon moving to that square, all of the bracketed
opponent's pieces are �ipped, in all 8 directions. If a player has no legal move, they
must pass, and their opponent will move. If a player has a legal move, they must make
it even if it hurts their game.

Here is the list of subjects that may be a�ected by this project, along with topics
of interest and example assignments regarding each subject:

• Discrete Mathematics 1 : This is a subject with topics from set algebra, linear
algebra, number theory, and combinatorics. We can say that almost all projects re-
quire some mathematical knowledge, though not necessarily in-depth knowledge. In
the seminars, students can be asked combinatorial questions regarding the Reversi
game. Example assignments for this subject include the following:

� How many arrangements of an 8× 8 board are possible?

� How many games in a 6× 6 board are possible?

• Introduction to Informatics: During the lectures, students learn the basic concepts
that are essential for everyone with a degree in computer science. They learn, among
others, about hardware and software, data representation, and basic searching and
sorting algorithms. In the laboratories, they practice data representation and start
writing simple programs in C. As for the project, the instructors may show how in-
tegers, real numbers, characters, strings, or other basic data may be represented in
the memory. Although this knowledge is not essential for creating our application, I
agree with those who say that data representation is a basic building stone of infor-
matics without which the operation of a computer cannot be understood. Another
signi�cant result of this subject is that students write their �rst C programs so they
can begin experimenting with the language. I think it is very important to start
writing programs as soon as possible because it takes some time to get accustomed
to using the language features for someone who has never seen a high-level program
code before. Example assignments for this subject include the following:

� Suppose we later want to write a function H(b, p) = P (b, p)+8E(b, p)+64C(b, p)
where b is the board, p is one of the players, P (b, p) computes the number of
pieces p has on board b, E(b, p) computes the number of edge pieces p has on
board b, and C(b, p) computes the number of corner pieces p has on board b.
Suggest a representation of the value of H(b, p) considering its minimum and
maximum possible value.
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� Create a well-formed text document containing the rules of Reversi as well as
the schedule of a Reversi tournament.

• HTML, XML: As the name suggests, this subject deals with the syntax and use of
these two important markup languages. Students learn how HTML can be used
to create simple, static web pages, and how XML can be used to store almost any
kind of hierarchically organized data. The knowledge provided by this subject can
be useful for any project because all projects may make use of a simple web page or
an XML database. In our case, we can store, for example, a game �ow in an XML
�le. Example assignments for this subject include the following:

� Create a simple static HTML website containing information about our future
Reversi game (e.g., the game rules).

� Design an XML data structure (DTD) for storing the game �ow.

• Logic in Computer Science: Mathematical logic is used in a number of areas in
computer science. In this introductory course, students learn about �rst-order
predicate calculus. It is a big problem that a lot of students do not see at this point
why this subject is important, and where they can use the acquired knowledge in
the future. The instructors should explain them that all programming languages
use conditions, and that conditions are actually logical formulae with all of their
properties. Students should know how logical operators (such as implication or
the universal quanti�er) can be implemented in a programming language that does
not implicitly contain those operators. As no laboratory belongs to this subject,
these tasks are usually completed only during Introduction to Arti�cial Intelligence
lessons. Other concepts that also occur during programming are those of free and
bound variables, which may be implemented using parameters and local variables,
respectively. Mathematical logic also plays a role in other subjects like Database
Systems or Introduction to Arti�cial Intelligence. Example assignments for this
subject include the following:

� Create a new �rst-order language with syntax and semantics which can be used
to express di�erent elements of the Reversi game. The language may include
functions like the number of each player's pieces or the number of empty squares,
and atomic formulae, e.g., for deciding whether a particular square of the board
contains a particular player's piece, the game is over, the player in turn has
won, the player in turn can win in the next move, or one of the players has
more pieces than the other.

� Formalize some interesting assertions about the game as compound formulae
such as �if there are no empty squares left, the game is over� or �all nonempty
squares contain a piece of either Player 1 or Player 2.�

• Data Structures and Algorithms: The goal of this subject is to present the most
popular abstract data structures (including �les) and their di�erent implementa-
tions to the students. In the seminars, students �rst learn about three searching and
at least �ve sorting algorithms in detail with C implementations, and then practice
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the use of the most important data structures that have been talked about during
the lectures. This is the �rst subject in time that has a greater direct in�uence on
our project. From the application's point of view, one of the most important data
structures is the array or its two-dimensional version, the matrix. It is because the
board of the Reversi game and the pieces of the players can most conveniently be
represented using an 8×8 matrix. It is interesting to mention how to implement the
matrix in a language (like C) that does not support multidimensional arrays. Of
course, matrix is not the only data structure used in this project. We will later need,
among others, a record to store the states of the game, which can be implemented
as a class in an object-oriented language, or a nonbinary tree to represent a part of
the game tree, which again can be implemented as a class. Example assignments
for this subject include the following:

� Implement an 8×8 matrix representing the board in C language. Write functions
that execute simple operations on the board like setting all squares in a given row
between two given columns to a given piece.

� Implement a stack for storing the board states after successive moves for undo-
ing/redoing the moves.

• Programming Languages 1 : From a programming aspect, this is the most important
subject, which has the most in�uence on any software development project. The lec-
tures teach students all the concepts related to high-level programming languages,
while in the laboratories, students should acquire the use of a speci�c procedural
language. At our university, this language has been C for ages now because of
its signi�cance and because it serves as a base for other, object-oriented languages
like Java. Learning a programming language via small sample programs is a good
method for the beginning, but they are not enough for learning how to use that
language. This is where a larger-scale application comes in handy. It not only
inspires students to spend some time with programming but also makes them meet
situations that otherwise would not come to the front. So in the laboratories, after
learning the language itself (which should not take more than 4 weeks), students
can create the �rst version of the Reversi application with the help of the instructor.
Of course, students have to use the data structures learned in the parallel course
Data Structures and Algorithms. After �nishing the second semester, they may be
entitled to say that they are able to create simple (but usable) applications in C.
Example assignments for this subject include the following:

� Write a function in C that takes a board and a player as parameters and returns
the number of pieces the given player has on the given board.

� Write a procedure that takes a board and a player as parameters, reads the given
player's next move from the keyboard in a loop until the user enters a legal move,
and updates the board according to the move. The code that checks the legality
of a move should be placed in a distinct function.

After successfully completing a number of such assignments, students will have their
�rst working version of the Reversi game, which is able to store the state of the
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game, draw the board to a character-based console, read the players' input from the
keyboard, check the legality of the moves, check if the game is over, and print the
result. As an optional assignment, they may improve the �rst version of the game
with the ability to play against the computer. The computer may choose its move
randomly in this version. The user should have the possibility to decide whether
they want to play with the computer and if so, select the starting player.

• Programming Languages 2 : The aim of this subject is to get students know the ins
and outs of the object-oriented (OO) paradigm. The lectures also touch functional
programming, but in the laboratories, they only have to learn one or two object-
oriented languages (currently Java and C#). As newer and newer concepts are
introduced in the lectures (classes, inheritance, polymorphism, interfaces, etc.),
students can gradually rewrite the code of our game application in Java or C#.
This way, they can compare the procedural and OO version of the same program
and much better see the bene�ts of the OO paradigm. Example assignments for
this subject include the following:

� Recode the �rst version of the game in Java and/or C#.

� Try to rework the result so that it uses more and more OO programming idioms,
classes, inheritance, interfaces, and OO data types (especially for collections).

• Introduction to Arti�cial Intelligence: The lectures of this subject are about state-
space representation, various search algorithms, problem reduction representation,
and look-ahead algorithms for �nding the best move in a two-player game. In
the seminars, students �rst create state-space representations for various problems.
After this, they learn how to implement logical formulae in Java or C#, then create
a class hierarchy for the most popular search algorithms, and �nally implement the
minimax and negamax algorithms for two-player games. Although theoretically the
subject has no laboratory courses, students still use computers and write programs
during the seminars in the second part of the semester. Needless to say, this subject
is of great importance concerning our project. By the end of the semester, students
are able to build the minimax algorithm into the application so that human players
can play against the computer. The instructors may even organize a contest among
the students' programs to further motivate them to write the best possible heuristic
function. Example assignments for this subject include the following:

� Create the Java or C# code implementing all the logical operators of �rst-order
logic.

� Augment the latest version of your program by integrating a minimax (or nega-
max) algorithm and eventually, alpha-beta pruning.

• Programming Environments: This is a laboratory-only subject, which focuses on
the usage of integrated development environments, debugging, CASE tools, the
control of compilation, and using libraries. The instructors can show students how
to detect di�erent semantic errors in the Reversi application with the help of the
debugger of Netbeans or Visual Studio. Students can also learn how to use a CASE
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tool, for example, to create the Java code from a UML class diagram and thus
shorten the coding time. As you can see, there are quite a few possibilities to
experiment with our project throughout this course. Example assignments for this
subject include the following:

� Create a statically/dynamically linked library from the AI part of the Reversi
application so that it can be used later with other applications as well.

• Programming Technologies: The lectures of this subject deal with di�erent pro-
gramming methodologies, reuse-oriented development, the role of abstraction, pro-
gramming idioms, design patterns, good programming styles, refactoring, testing,
validation and veri�cation, software metrics, and software quality assurance. In the
laboratories, students learn about UML, advanced exception handling, using C#
delegates, multithreading, re�ection, working with metadata (annotations in Java
or attributes in C#), using the Java API or the .NET framework, creating graphi-
cal user interfaces (e.g., using Swing), JavaBeans, database connectivity from Java
and C#, network handling, processing XML �les, internationalization (i18n), and
using regular expressions. It can be seen from this enumeration that this subject
covers a very wide area of software development. Because of this, instructors can
show students a lot of exciting aspects of programming. Example assignments for
this subject include the following:

� Create a GUI for your application using some visual form designer.

� Make the program multilingual using i18n.

� Extend the application with the capability of loading games from and saving
games to XML �les or a database (e.g., with JDBC).

• Computer Network Architectures and Protocols: The lectures of this subject cover
the theory of networking based on the ISO OSI model and the most popular pro-
tocols of each layer. Laboratories are used, among others, to create and implement
new application layer protocols. Example assignments for this subject include the
following:

� Create a client/server version of your application. This means that the server
side runs on some host, and clients connect to it through TCP/IP and a new
application layer protocol, which controls the game �ow. As a bonus, you may
write the server side using multithreading so that each client connection starts
a new thread, which is responsible for the communication with that client.

• Technology of System Development : The lectures are about the process of software
development, process models, functional and nonfunctional requirements, system
models, requirement analysis, design, standards (UML, MDA), service-oriented ar-
chitecture, and agile software development. In the laboratories, students create
di�erent UML diagrams and ISO documents. They also learn how to use a version
control system and developing in teamwork. Example assignments for this subject
include the following:
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� Create di�erent kinds of UML diagrams (e.g., a class diagram, use case dia-
grams, or state diagrams) concerning our project.

5.3.2 Project #2: Creating a Library Information System

This project di�ers from the Reversi project in that it does not require arti�cial intel-
ligence but requires much deeper database knowledge. Of course, we can again replace
the word �library� by any other institution (e.g., a hospital, a shop, a school, etc.); the
point is that we need to keep track of a big amount of data and be able to execute
(possibly complicated) queries via a user-friendly web-based interface or a thick client
program.

Most of the depicted connections between each subject and the Reversi project
apply to this project too. The di�erences are the following:

• Data Structures and Algorithms: For this project, instructors may show students
how to create abstract record data structures for storing the books' data, the pa-
trons' data, etc., and how to implement them using the struct type in C. The other
thing students may learn is the di�erent abstract �le formats (serial, sequential,
direct, indexed, etc.) with which these records can be stored.

• Programming Languages 1 : The �rst version of the application can work with �les
instead of databases so we can end up with a C program that can read and write data
from and to text �les or binary �les. This way, students will see the big di�erence
between �le management and database management during the Database Systems
course.

• Programming Languages 2 : This project probably needs a little more complicated
class hierarchy than the Reversi project so students can better practice inheritance,
polymorphism, or interfaces. On the other hand, they can also realize that �le
management is somewhat more convenient in Java or C# than in C.

• Database Systems: The Reversi application did not use databases (unless we added
the capability of loading and saving games). However, database management is a
crucial building stone in the Library project. In the lectures of this subject, students
learn about the basic concepts of database systems as well as the relational, ER,
EER, and ODMG data models, with special emphasis on the relational model. In
the laboratories, students use Oracle SQL to acquire the usage of SQL DML, DDL,
and DCL. This course is very important for our project. Students have to practice
complex SELECT statements in our Library database to be able to build arbitrary
queries into our application.

• Database Administration: This is a lecture-only subject about the role of the
database administrator, creating a database environment, handling metadata, stor-
age management, distributed databases, database security, archiving and recovery,
preparing for catastrophes, database performance, and change management. Al-
though this subject lacks laboratories, the lecturer can show examples of the above
topics concerning our Library database. Examples from a well-known system always
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helps better understand the underlying knowledge than examples from di�erent, in-
dependent, unknown systems (or even from one single but unknown system).

5.3.3 Further Subjects and Projects

Subjects in Table 5.1 not mentioned so far are less important from a programmer's point
of view, or at least the knowledge behind them is less used in real-world applications.
There are two more subjects with laboratories during which students write programs.
One is Introduction to Computer Graphics where they create programs, among others,
for drawing simple graphic shapes like lines or circles, or for drawing three-dimensional
shapes using parallel or central projection. Students can make use of the knowledge
acquired during this subject in projects like creating a computer game with advanced
graphics. If a student wants to work in this area, then this subject is an essential base
for them, which must be followed by other, advanced subjects dealing with computer
graphics like those in the Computer Graphics block.

The other core subject where students have to write programs is Numerical Methods.
In this subject, they learn about function approximation, numerical di�erentiation,
numerical quadrature, various methods for solving linear and nonlinear equations and
equation systems, matrix factorization and inversion, computing determinants, and
approximation of the eigenvectors and eigenvalues of matrices. They also learn to
use software like MATLAB or the LINDO API. Some of the methods mentioned in
the lectures are coded in the laboratories, while others are homework assignments.
The knowledge provided by this subject along with other mathematical subjects like
Discrete Mathematics 1/2, Calculus 1/2, or Probability Theory and Statistics can be
applied in projects with some mathematical background. As an example, an application
for various kinds of statistical analyses may be such a project. To further narrow it,
someone may want to write a program that provides di�erent statistical data from the
electronic administration system used by the institution. This example also has to
do with data mining or even data warehouses, which are areas covered in one of our
graduate programs.

There is some sort of programming in the laboratories of Computer Architectures
too. This subject overlaps with Introduction to Informatics because both deal with data
representation, but Computer Architectures is more about the abstract architecture and
operation of a computer. To help students better understand how computers work at
lower levels, they learn some assembly programming during the laboratories. Students
majoring Engineering Information Technology could make more use of this knowledge,
although, interestingly enough, they do not have a laboratory course for this subject.
Nevertheless, assembly programming comes in handy in projects requiring low-level
programming such as writing drivers for di�erent hardware components.

Subjects like Automata and Formal Languages, Algorithm Design and Analysis, and
Internet Tools and Services have rather theoretical signi�cance from a programming
aspect. For example, if someone wants to write a compiler or just a parser for some
language, then they can use the knowledge acquired during the courses of Automata
and Formal Languages. However, automata can also be used in everyday programming,
e.g., when coding an event loop using state machines.
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Last but not least, subjects Operating Systems 1/2 are about the architecture and
functions of operating systems. In the laboratories, students learn to use and a little to
administer Windows and Linux, today's two most popular operating systems. These
are more practical subjects, but they have only little to do with programming. However,
students learn during these subjects how to write scripts using batch �les in Windows
or shell scripts in Linux. They can also bene�t from this knowledge when programming
in other script languages like JavaScript.

5.4 Conclusion

I believe that learning all the aforementioned knowledge can be much more entertain-
ing for the students by developing one or two larger-scale applications throughout their
studies (even if in teamwork) than just writing small sample programs for every dif-
ferent area of software development. With one complex project or with two or three
medium-sized applications, we can cover nearly every aspect of the development pro-
cess and give students a comprehensive example of software engineering. If our faculty
introduced this �learning via projects� approach of teaching, students would be a little
more motivated and would more likely see the coherence between the topics of the
wide range of subjects. On the other hand, this approach requires some extra work on
the instructors' part: they need to �nd appropriate real-world applications that could
become the projects, cooperate with one another on distributing the di�erent parts of
the projects among the various courses, and a lead instructor should be designated as
the person in charge of these tasks, who has an oversight on all subjects in the study
plan.

Of course, we cannot expect a radical improvement in students' performance just
because of such a minor change in our teaching methodology. Decreasing the number
of students or redesigning the program's study plan would have a much bigger e�ect on
it. Although the faculty has little or no in�uence on the number of enrolled students,
we could still initiate the supervision of the program requirements of the Software
Information Technology BSc major.



CHAPTER 6

Supporting Programming Contests
with the ProgCont Application

The role of educational contests for students is to lead them into a deeper acquain-
tance with a speci�c �eld of their studies. Contests give students personal objectives
that stimulate them to work on their own. Apart from being stimulating, contests
have a positive e�ect on students' educational results�participating in a remarkable
contest or �nishing in a good position a couple of times may contribute to their pro-
fessional experience. Additionally, educational contests may help nurture professional
relationships.

Students of the University of Debrecen have been participating in the Central Eu-
ropean regional rounds of ACM International Collegiate Programming Contest since
1995 (although the university did not enter for the contest between 1998 and 2000).
As a student in the second year of my studies, I was lucky enough to be a member of
the team that advanced from the local round to the regional in 1995. Since 2001, I
have been acting as an organizer and a member of the judge of local rounds of ACM
ICPC as well as other programming contests.

Every year, two teams of three members represent our university at the ACM
Central European Regional Contest. Before the regional, there are two preliminary
rounds for selecting the advancing teams: a local and a national round. The local
rounds are organized by my colleague Kósa Márk and myself as well as Kádek Tamás,
who joined us two years ago. The national round is usually organized by the Budapest
University of Technology and Economics and Eötvös Loránd University.

In earlier times, organizing the local university rounds was encumbered by the fact
that we had to check the solutions submitted by the contestants �by hand,� which,
beyond inconvenience, hindered the e�cient work of the judge and involved a number
of possibilities of making mistakes. To �nd a solution to these problems, we decided
to create an application that can process a large amount of submissions both in real
time and o�-line. Together with Kósa Márk and an agile student, Gunda Lénárd, we
made an e-mail-based console application called Programming Contest Result Manager
(PCRM) in 2004, which helped us evaluating submissions not only from contestants
during a contest but also from students submitting solutions to homework assignments
of a particular course, such as Introduction to Arti�cial Intelligence. You can read
more about PCRM in [14, 12].
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We used PCRM for a couple of years, but later, it failed to comply with our newer
and newer expectations. For example, we wanted to have a user-friendly graphical
interface for the application, and would have preferred a web interface for both the
contestants and the judge. Another drawback was that it used POP3 protocol for
retrieving the submitted solutions, which made it di�cult to manage and use. We
decided not to rework our existing application but to test some third-party programs
(by that time, we could �nd a couple of programs on the Internet that seemed to meet
our needs) and at the same time, get some talented students to develop a brand-new
web application as a thesis work. As a result, an ASP.NET-based web application
was born in 2009, created by a student, which was quite usable but contained some
bugs, and after the student left our institution, no one could maintain it anymore. The
best third-party program found and tested was PC2 (Programming Contest Control
System) developed by the California State University, but it too lacked some needed
features.

When Kádek Tamás joined the Faculty of Informatics as an assistant lecturer, he
undertook to implement a web application that suits our needs. With more than 10
years of experience behind our back, we could precisely describe the requirements of
the application. This is how ProgCont came to life in 2011. It is by far the most
usable and most robust utility for supporting programming contests we have ever met.
The application is continuously under development�last time we had to extend it to
support a new kind of contest, the Regional Team Contest of the Faculty of Informatics,
organized for the �rst time in November 2012 for high schools and colleges of �ve nearby
counties, which used a di�erent evaluation system from ACM-like contests.

6.1 About Programming Contests

Before presenting the ProgCont application, I describe what kinds of programming
contest we would like to manage with it, and how these contests are regulated. The
primary goal of the application is to manage ACM-like contests, in which contestants
(teams or individuals) have to solve problems from a problem set common to all partic-
ipants in a prede�ned time interval (typically 5 hours). A problem set usually consists
of 8�12 problems (in a 5-hour contest) from the following areas (you can �nd a lot of
examples in our book with Juhász István and Kósa Márk [10]):

• combinatorics

• number theory (e.g., prime numbers)

• arithmetic and algebra (e.g., modular arithmetic, big integers)

• computational geometry

• backtracking

• graph theory (traversal, single-pair/single-source/all-pairs shortest path, minimum
spanning tree, articulation point, �ood �ll, network �ow, maximum bipartite match-
ing, etc.)
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• sorting

• string processing (e.g., pattern matching)

• greedy algorithms

• dynamic programming

• divide-and-conquer algorithms

• advanced data structures (e.g., Fibonacci heap, dictionary, binary indexed tree)

For solving the problems, contestants (even teams) may use one computer and arbitrary
paper-based resource materials. They can compile, test, and submit their solutions on
this computer. Solutions are always in the form of source code created in some pro-
gramming language. Currently, the following languages are supported: ANSI C, C++,
C#, Java, and Free Pascal, but this may vary from contest to contest, and even from
problem to problem in a contest. The executable program generated from the source
code by the respective compiler reads some input and produces some output. Input is
usually the standard input, and output is usually the standard output. Occasionally
however, input is read from a �le, and output is written to another �le.

When the judge receives a solution to a problem from a contestant, they compile
it with the appropriate compiler, and run the executable for di�erent test cases. Each
problem is assigned at least one �le containing the test cases. The submitted solutions
must process these �les and produce the correct output for each of them. (Very rarely
but once in a while a problem may have no input data. These situations may be
considered as if the program had to process an empty �le.) The output is correct
either if it is equal to a pregenerated �le, or if it is correct according to an external
evaluator program. The correctness of a solution may also depend on some prede�ned
limitations regarding certain resources, such as the size of the source code, execution
time, the size of memory used, or the use of prohibited library functions. Knowing the
correctness of the output, the judge evaluates the submitted source code, typically by
giving a score to the solution, and replies with one of the following messages regarding
the solution:

• accepted

• compile error

• runtime error

• time limit exceeded

• memory limit exceeded

• wrong answer

• contest rules violation
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It is also the judge's responsibility to provide the contestants and observers with the
�nal ranking after the contest has ended.

In ACM contests, a problem is considered to be solved only if the program submitted
by the contestant gives a correct result for each of the test cases. However, a contestant
may retry to solve the problem any number of times after an unsuccessful attempt.
Without this possibility, if there were too many di�cult problems and tricky test cases
in a contest, then it might end with too few accepted solutions, making it hard to
determine the ranklist, not to mention that contestants (and the judge) would have
no sense of achievement after the contest. This situation is similar to reality: if a
program is unable to solve the problem in question (i.e., it does not meet the client's
requirements), there is a possibility to re�ne the solution.

The order of contestants in the ranklist is determined mainly based on the number
of correctly solved problems. If two or more contestants solve the same number of
problems, then they are ranked based on their scores. The score is the sum of two
components: the time elapsed from the beginning of the contest till the submission
of the �rst accepted solution of each correctly solved problem and the penalty scores
given for each incorrect solution of the correctly solved problems submitted before the
�rst accepted solution of those problems. Both components are measured in minutes.
Of course, the smaller this score, the better position the contestant will have in the
ranklist among contestants with the same number of correctly solved problems.

During the preparation to the �rst Regional Team Contest of the Faculty of Infor-
matics, we found that it would be better to use a di�erent ranking algorithm and take
into account the partially solved problems too. We introduced a new reply message
from the judge: partially solved. A problem is considered to be partially solved if the
submitted solution produces a correct output for at least 60% of the test cases but
results in some kind of error in the rest of the cases. ProgCont was designed so that
the percentage of test cases for which the program should produce a correct output for
the problem to be considered partially solved can be parameterized for each problem
in each contest.

The ranking algorithm was modi�ed the following way: If two or more contestants
have the same number of accepted problems, then they are ranked based on the number
of partially solved problems. If these numbers are the same too, then the ranking is
determined by the score of the contestants. The score is computed the same way as
in ACM contests. This way, contestants may decide whether they are satis�ed with a
partially solved problem or continue to work on the same problem until it is accepted.

6.2 The Architecture and Operation of ProgCont

The ProgCont system consists of four key components: problem catalog, contest
database, controller web application, and solution evaluator clients (see Figure 6.1).

The problem catalog contains all resources related to each problem, such as the
problem description (sometimes in multiple languages), the �gures in it, further (pos-
sibly downloadable) content, and the test cases used to evaluate solutions. Test cases
are stored in one or more �les. The way of testing the correctness of solutions can be
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Figure 6.1. The architecture of the application.

con�gured to one of the following options: the program can either check if the output
produced by the submitted solution is completely equal to a pregenerated output �le,
or call an external tool that analyzes the output and returns whether it can be con-
sidered correct. Time limits associated with the execution of the submitted program
can be set for each test case separately. The problem catalog can be formed using
the directory and �le structure of the operating system. Each problem has a distinct
folder, in which an XML �le contains the problem description and a ZIP �le contains
the test cases, the pregenerated output �les, and the testing parameters. Additionally,
all other �les referred to in the problem description are in this folder.

The contest database describes the relationship between the contest, the problems,
the solutions, and the solution evaluations. Each contest comprises some problems
selected from the problem catalog, in case of team contests, the members constituting
the teams, and technical data regarding the �ow of the contest, such as the start
time and end time of the contest, or the allowed programming languages for each
problem. The database stores the solutions submitted by the contestants and the
result of each evaluation, which comes from one of the solution evaluator clients. All
of this information is stored in a PostgreSQL database.

The �ow of the contests is controlled by the controller web application. Contestants
can browse the problems, submit the solutions, and learn about the results of eval-
uations and the current ranking using the web application. Observers (e.g., coaches
of the contestants or guests) may also follow the current ranklist. The judge can set
certain parameters of the contest via this web interface too. These parameters include
the supported programming languages for each problem, the number of points each
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problem is worth, or the amount of penalty time used when computing the score of the
contestants. In addition, the web application is responsible for scheduling the evalu-
ation of the submitted solutions, i.e., distributing them among the solution evaluator
clients currently connected to the system. This distribution is based mainly on the
information sent by the clients about the programming languages they support. For
running the controller web application, Apache Tomcat web application server is used.
Communication between the web application and the users (contestants and the judge)
is secured by the SSL (HTTPS) protocol. The web application uses JDBC for accessing
the contest database.

Solution evaluator clients are separate applications which periodically (every 5 sec-
onds) check whether there is an available solution waiting for evaluation that they can
handle. If so, they �rst try to compile the program code passed on to them by the
controller web application using a preset compiler with preset options. If the compila-
tion succeeds, the program is run for each test case using a preset runtime environment
with preset options. The current test cases are downloaded from the problem catalog
via the web application whenever the ZIP �le containing them changes (and of course,
the very �rst time they are used). During the execution of the program, the solution
evaluator client takes into consideration the time limit set for the given test case. If
the program stops within the time limit, its output is analyzed depending on the preset
method of testing its correctness: it is either compared to the downloaded output �le,
or passed on to the external evaluator tool. Finally, the cumulative result is sent to
the controller web application.

As di�erent programming languages suit di�erent operating systems, the solution
evaluator clients were implemented as platform-independent Java applications. This
way, they can (and should) be run on distinct (possibly virtual) computer(s) from that
of the controller web application and the other evaluator clients, thus not endangering
their operation, should a harmful code disrupt the runtime environment of a particular
client. For example, a Windows-based client will compile and run C# code, while
for C, C++, Java, or Pascal, a Linux-based client may be used. The more solution
evaluator clients are used, the more evaluations can be performed at the same time.

During the design of the system's components, it was a primary objective that
all communication between the external and internal elements of the system should
be conducted over the standard HTTP protocol. The contest database can only be
accessed through the controller web application, i.e., indirectly over HTTP protocol
too. The evaluator clients use HTTP requests secured by HTTP digest authentication
when communicating with the web application. This way, there is no network setup
necessary for the users and the solution evaluator clients other than providing them
with Internet access. However, in case of some contests, it may be important to restrict
contestants' Internet access only to the controller web application.

In the ProgCont system, contests can be parameterized by numerous aspects:

• We can set the languages in which problem descriptions may be browsed. If a
contestant selects a language, only the sections marked with the given language
and sections not marked with any languages will be displayed from the XML �le
containing the problem description.
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• In case of team contests, contestants may be organized into teams, and any team
member may submit solutions to the problems in the name of the team. The results
of submission evaluations associated with di�erent members of the same team will
be accumulated.

• The duration of the contest can be set arbitrarily; ProgCont is capable of controlling
contests lasting from a few hours to weeks or even months.

• A contest can be set to remain visible after the contest session has expired. In this
case, contestants may submit solutions even after the end of the contest. These
submissions will be evaluated but will not count in the contestant's score or in the
result of the contest.

• For each problem, we can set the number of points it is worth in case of an accepted
solution, the rate of test cases for the problem to be considered partially solved, and
the penalty time in seconds that will be given to the contestants for each incorrect
solution after the problem has been correctly solved.

6.3 Our Experience with the Application and Possi-
bilities for Future Development

We organized the �rst contest controlled by the ProgCont application on October 2,
2011. With respect to our original goal, it was the local round of ACM ICPC of that
year. Making use of the ability to parameterize the contests, a short-term individual
contest took place on February 6, 2012, among students of the course Problems in
Programming Contests. In the same semester, we could help students deepen their
knowledge in three di�erent courses using contests lasting for more than a month:
Problems in Programming Contests, Programming Languages 1, and Introduction to
Arti�cial Intelligence. After that, we organized an ACM-like contest on May 6, 2012
(which was the preliminary round of ECN International Programming Contest in Târgu
Mure³, Romania), another local ACM contest on October 7, 2012, and last but not
least, the Regional Team Contest of the Faculty of Informatics on November 25, 2012.
You can see the list of all the contests managed by ProgCont so far in Figure 6.2.

In the future, we would like to extend the functionality of the ProgCont system
with the following features:

• We could introduce new functionality to the system that would assist the work of
the organizers and participants both before and after the contest session. The most
important activity before a contest is to recruit participants and to inform them
about the details of the event. Information regarding the teams and their members
are required during the contest too, so it is already a part of the database. (User
names and passwords are assigned to team members, but the results of evaluations
are assigned to the team.) Collecting and registering this information, i.e., the
process of registration, might also be supported by the web application. In other
words, an on-line registration interface would allow contestants to register for the
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contest and to form a team. Registration and team composition must be approved
by the judge, which may be another feature on the administrators' side. Based
on the data collected during on-line registration, an interface could provide the
organizers with such information as how many computers and how many computer
labs will be required for the contest, or how many copies of the problem set will be
necessary.

• After the contest has ended, information regarding the results remains in the
database. Based on this information, the application might create an on-line �table
of honor� containing the contestants (or teams) along with their accumulated results
from their previous contests. This cumulative ranklist could motivate contestants
for further participation. This table might show, for example, who has been the
most successful contestant so far, what is the maximum number of problems that
were solved in a contest, or which contestant was the fastest to solve a problem.
It might be a source of information for contestants too, showing in which types of
problems they have to improve their skills compared to others, and which types of
problems they are good at.

• During the contest session, the application might perform further tests regarding the
submitted solutions, such as searching for prohibited language elements or library
functions in the source code, or enforcing the adherence to the resource limitations
(like the amount of memory used or the number of parallel processes run). It would
also be an interesting feature to �nd plagiarism in the submitted source code �les.

• PC2 has a good feature for providing communication between the contestants and
the judge. If a contestant has a question about a speci�c problem or a question in
general, they can send a clari�cation request to the judge, who will then receive a
noti�cation about this request, and can answer the question either to the contestant
who asked it or to all of the contestants. The judge can also send a clari�cation
without a question. Although ProgCont provides the ability of communication
between the contestants and the judge, it lacks the feature of noti�cation and the
organization of messages and replies.

And �nally, some screenshots of the web interface can be seen in the following
�gures.
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Figure 6.2. Contests managed by ProgCont.
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Figure 6.3. Problem set of a contest.
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Figure 6.4. Contest settings.
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Figure 6.5. Submission of a solution.
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Figure 6.6. Part of the �nal ranklist of a contest.



CHAPTER 7

Summary

To summarize my results, I hope I managed to create some aids and tools that can
make students' life easier during their studies. One such aid can be to assign them
long-term projects, which they can work on from as early as the �rst semester. A
real-world application is always more exciting than small program snippets, so a long
software development process may improve students' motivation for learning and pro-
gramming. They can create the relevant parts of the application in each course related
to the project under the instructors' supervision. Another bene�cial e�ect of this ap-
proach is that students will better see the coherence between the knowledge acquired
in the various courses. I presented two such long-term projects with some possible
assignments in each related subject.

I created a course guide for Introduction to Arti�cial Intelligence or other AI-related
courses. It is made up of various C# and F# implementations of search algorithms
for single-agent problems and for two-player games. The di�erence between these
implementations lies in the amount of functional programming constructs used. I
also created some C# and F# implementations of some speci�c problems and games.
Students and instructors may select the version best suited for them, depending on
their way of thinking and their knowledge of programming. This way, students may
better understand the operation of search algorithms presented in the lectures.

In my opinion, it is not worth insisting on one or the other paradigm if we can use
more of them within one program. Functional code is sometimes more abstract, more
readable, or just shorter than its object-oriented counterpart. On the other hand, OO
code is usually more e�cient and sometimes more reusable than its functional counter-
part. This is why I think multiparadigm languages like F# can be more advantageous
mainly in large-scale applications but also in smaller programs. Students are di�erent,
so some of them may better understand the algorithms based on a more functional ap-
proach than on a pure object-oriented code. For example, the Seq.fold function using
a lambda expression with an accumulator parameter may better describe how minimum
or maximum selection is performed for students who think recursively (functionally).

Programming contests can also be a great motivating factor for students. We have
been organizing ACM-like contests for more than ten years now, and I can say there
are quite a few students who would never miss an opportunity to try a fall with others
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in a competition. Not just for their sake, but we needed an application for managing
ACM-like and possibly other kinds of programming contests as well. As we could not
�nd a contest management software satisfying all our needs, two of my colleagues and
I have decided to develop a brand-new web application for managing programming
contests. ProgCont is designed to have a modular architecture and be parameterizable
and easily extensible with new supported programming languages.

We organized the �rst contest controlled by the ProgCont application on October
2, 2011. With respect to our original goal, it was the local round of ACM ICPC of that
year. Making use of the ability to parameterize the contests, a short-term individual
contest took place on February 6, 2012, among students of the course Problems in
Programming Contests. In the same semester, we could help students deepen their
knowledge in three di�erent courses using contests lasting for more than a month:
Problems in Programming Contests, Programming Languages 1, and Introduction to
Arti�cial Intelligence. After that, we organized an ACM-like contest on May 6, 2012
(which was the preliminary round of ECN International Programming Contest in Târgu
Mure³, Romania), another local ACM contest on October 7, 2012, and last but not
least, the Regional Team Contest of the Faculty of Informatics on November 25, 2012.



8. FEJEZET

Összefoglalás

Összefoglalva az eredményeimet, remélem, sikerült elkészítenem néhány olyan eszközt,
amelyek megkönnyíthetik a hallgatók életét a tanulmányaik során. Az egyik ilyen
eszköz az lehet, hogy olyan hosszú távú projekteket jelölünk ki számukra, amelyeken
már az els® félévt®l kezdve dolgozhatnak. Egy valós világbeli alkalmazás mindig iz-
galmasabb, mint a kis programrészletek, egy hosszú szoftverfejlesztési folyamat tehát
növelheti a hallgatók tanulási és programozási hajlandóságát. Az alkalmazás megfelel®
részeit a projekthez kötöd® kurzusok keretein belül, az oktató irányítása mellett készít-
hetik el. A másik el®nyös hatása ennek a megközelítésnek az, hogy a hallgatók jobban
átlátják az összefüggéseket a különböz® kurzusokon elsajátított ismeretek között. Két
ilyen hosszú távú projektet ismertettem, a kapcsolódó tantárgyakhoz köt®d® néhány
lehetséges feladattal együtt.

Módszertani útmutatást adtam A mesterséges intelligencia alapjai cím¶ vagy egyéb,
a mesterséges intelligenciához kapcsolódó tantárgy oktatásához. Ez egyszerepl®s prob-
lémák és kétszemélyes játékok esetén alkalmazható keres® algoritmusok különböz® C#
és F# nyelv¶ implementációiból áll, amelyek között a különbség abban rejlik, hogy
mennyi funkcionális programozási elemet tartalmaznak. Elkészítettem néhány konk-
rét probléma és játék C# és pár F# implementációját is. A hallgatók és az oktatók
kiválaszthatják közülük azt a változatot, amelyik a leginkább illik hozzájuk a gondol-
kodási módjuk és a programozási ismereteik alapján. Ezáltal a hallgatók könnyebben
megérthetik az el®adásokon ismertetett keres® algoritmusok m¶ködését. Az elkészült
implementációk összehasonlításából azt a következtetést vontam le, hogy a multipara-
digmás programozási nyelvek használata a mesterséges intelligencia oktatásában mind
az oktatók, mind a hallgatók számára hasznos lehet.

A programozó versenyek is er®s motivációs tényez®t jelenthetnek a hallgatók szá-
mára. Már több mint tíz éve szervezünk ACM jelleg¶ versenyeket, és elmondhatom,
hogy van jónéhány olyan hallgató, akik egyetlen alkalmat sem szalasztanának el, hogy
megmérettessék magukat másokkal egy-egy versenyen. Nemcsak az ® kedvükért, de
szükségünk volt egy olyan alkalmazásra, amely ACM jelleg¶ és esetleg más típusú
programozó versenyek támogatására is képes. Mivel nem találtunk olyan versenykeze-
l® szoftvert, amely minden igényünket kielégítette volna, két kollégámmal közösen úgy
határoztunk, hogy kifejlesztünk egy vadonatúj webalkalmazást a programozó versenyek
vezérlésére. A ProgCont rendszert úgy terveztük, hogy moduláris felépítés¶ és paramé-
terezhet® legyen, valamint hogy könnyen b®víthet® legyen új támogatott programozási
nyelvekkel.

Az alábbiakban röviden ismertetem az elért eredményeket.
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8.1. Új módszertan az informatikaoktatásban

Kutatásaim egyik f® területe az volt, hogy megpróbáltam választ találni az alábbi
kérdésre: �Miért okoz problémát a legtöbb programtervez® informatikus BSc szakos
hallgatónknak a legtöbb haladó tantárgy követelményeinek a teljesítése?� A Debreceni
Egyetemen szerzett tízéves oktatási tapasztalatom szerint hallgatóinknak számos ne-
hézséggel kell szembenézniük tanulmányaik során. Ez részben a hallgatók nagy száma
miatt van. Egyrészt sok kurzust kell indítanunk az egyes tárgyak gyakorlataiból, ame-
lyeken így is túl sok a hallgató. Emiatt sok gyakorlatvezet®re (akár demonstrátorra)
van szükség, akiknek sok hallgatóval kell foglalkozniuk, ezért sokkal kevesebb id® jut
arra, hogy egyénenként foglalkozzanak velük. Másrészt sok hallgató nem az informatika
iránti elkötelezettsége miatt jelentkezik az egyetemünkre, hanem más okokból (például
szül®i nyomás, az IT szakma népszer¶sége, a jó elhelyezkedési lehet®ségek vagy egysze-
r¶en a szak céljainak félreértése miatt), és ebb®l fakadóan gyakran alulmotiváltak.

A tömegképzés azonban nem az egyetlen oka a �tömeges bukásnak� és a rossz tel-
jesítménynek. Úgy vélem, hogy nekünk, az oktatóknak is van némi befolyásunk az
oktatás eredményességére. A kulcs az, hogy találnunk kell egy módszert a hallgatók
érdekl®désének a felkeltésére. Ennek egyik módja, hogy olyan feladatokat t¶zünk ki
számukra, amely érdekli ®ket. Ilyen feladat lehet például egy gra�kus felülettel ellátott
kétszemélyes játék elkészítése versenyképes mesterséges intelligenciával, egy könyvtári
információs rendszer megírása, amely nyilvántartja a könyvek, olvasók és kölcsönzések
adatait, vagy egy webalapú hálózatelemz® segédprogram készítése, amely különböz®
statisztikai adatokat számít ki a hálózati forgalomról. Példaként olvashatunk a Reversi
játék oktatási eszközként való felhasználásáról a [27] cikkben, az alapvet® programozá-
si fogalmak kétdimenziós játékok fejlesztésén kesztül történ® oktatásáról a [15] tanul-
mányban, vagy az informatika alapfogalmainak és a problémamegoldó stratégiáknak a
diszkrét játékok �zikai és virtuális modelljeinek segítségével történ® oktatásáról az [1]
cikkben. Konkrétan a logikai kifejezések és a rekurzió fogalmának a tanításához két
számítógépes játékot fejlesztett a szerz® a [7] dolgozatban. Még a matematikai logika
absztrakt tételeit is be lehet mutatni játékos feladatokon keresztül [25]. Manapság szin-
te lehetetlen olyan neves, informatikaoktatással foglalkozó folyóiratot vagy konferenciát
találni, amely ne tartalmazna legalább egy, valós világból vett projekteken keresztül
történ® oktatásról szóló közleményt. Példaként említhetjük a Computers & Education
(impakt faktor: 2,621, kiadó: Elsevier) vagy a Journal of Computer Assisted Learning
(impakt faktor: 1,464, kiadó: Wiley) folyóiratokat, illetve az olyan konferenciákat, mint
a 3rd Annual International Conference on Computer Science Education: Innovation
and Technology (amely 2012. november 19�20-án került megrendezésre Szingapúrban)
vagy a Consortium for Computing Sciences in Colleges � Northeastern Region (amely-
re 2013. április 12�13-án került sor a New York állambeli Albanyban).

Bármir®l szóljon is a feladat, a lényeg, hogy egy nagyobb projekt legyen, azaz több
olyan tárgyat lefedjen, amellyel a hallgató találkozik a tanulmányai során (de lefedhe-
ti akár a legtöbb kötelez® tárgyat is). A projektmunka során alkalmazásra kerülnek
a projekthez köt®d® tárgyak keretein belül tárgyalásra kerül® ismeretek. A hallga-
tók megismerik a tárgyalt témakörök alkalmazhatóságát, hasznosságát, valamint az
alkalmazás során felmerül® problémákat. Azt gondolom, hogy ha megfelel® feladato-
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kat tudunk találni, akkor jobb teljesítményt érhetünk el nemcsak a kiadott feladatok
megoldásában, hanem a kurzusok vizsgái során is.

Ha vetünk egy pillantást a Debreceni Egyetem programtervez® informatikus BSc
szakának kötelez® tantárgyainak listájára [5], hamar észrevehetjük, hogy még egy kö-
zepes méret¶ szoftverfejlesztési projekthez is szükség van legalább az alábbi három
kötelez® tárgyon tanult ismeretekre: Bevezetés az informatikába, Adatszerkezetek és
algoritmusok és Magas szint¶ programozási nyelvek 1. Egy hosszú távú projektben
azonban a legtöbb kötelez® tárgy érintett lehet. Könnyen találhatunk olyan izgal-
mas, valamely valós világbeli alkalmazáshoz hasonló feladatokat, amelyek hosszú távú
projektként szolgálhatnak. Ha már meghatároztuk a projekt célját, nincs más hátra,
mint olyan feladatokat találni, amelyeket felhasználhatunk a kapcsolódó tantárgyak
oktatásában. Véleményem szerint ha a hallgatók olyan összetett projekten dolgoznak,
amelynek a fejlesztési folyamata felöleli a tanulmányaik csaknem teljes id®tartamát,
akkor motiváltabbak lesznek, és jobban fogják látni az egyes kurzusokon megtanult
ismeretek közötti kapcsolatot.

Valós világbeli alkalmazások fejlesztéséhez köt®d® feladatok kit¶zése a következ®
el®nyökkel jár:

• Az érdel®dést felkelt® példák növelik a hallgatók motiváltságát.

• Egy összetett projekten keresztül a hallgatók az informatika számos területét gya-
korolhatják.

• Ha több kurzuson is ugyanazzal az egy nagyobb projekttel találkoznak, az segít a
hallgatóknak jobban megérteni a különböz® kurzusok mögött rejl® ismeretek közötti
összefüggéseket.

• A projektek gyakorlatorientáltabbá teszik az informatikaoktatást.

• A projektek hitelessé teszik az el®adások során elsajátított ismereteket, és választ
adnak arra a kérdésre is, hogy hogyan alkalmazzuk ezt a tudást.

Szeretném hangsúlyozni, hogy a projektorientált oktatás ötletét a magyar egyete-
mek legtöbb informatikai mesterképzésén már alkalmazzák. A jelenleg hatályos fel-
s®oktatási törvény szerint még az alapképzéseknek is kell tartalmazniuk valamennyi
projektmunkát. Kit¶n® példája ennek az Eötvös Loránd Tudományegyetem Informa-
tikai Kara, ahol a hallgatók részt vehetnek egy úgynevezett kooperatív képzésben 16
kreditért [3]. A kooperatív képzés célja, hogy a hallgatóknak lehet®séget biztosítson
arra, hogy közelebbr®l is megismerkedhessenek az informatikus szakma gyakorlati ol-
dalával valós informatikai cégek gyakorlott szakembereinek az irányításával. Egy másik
példa az Önálló laboratórium cím¶ tárgy a Budapesti M¶szaki és Gazdaságtudomá-
nyi Egyetem Villamosmérnöki és Informatikai Karán [21], illetve a Debreceni Egyetem
Informatikai Karán, amelynek keretében a hallgatók elmélyíthetik ismereteiket és ta-
pasztalatokat szerezhetnek az informatika egy bizonyos területén. Külföldi intézmények
is alkalmazzák a projektalapú oktatást; a Paderborni Egyetemen például háromf®s cso-
portoknak kell operációs rendszert fejleszteniük az egyik BSc-s kurzus keretében.

Van azonban néhány fontos különbség a javasolt projektalapú megközelítés és a fent
említett példák között:
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• Mind a kooperatív képzés, mind az Önálló laboratórium tárgyak függetlenek az
alapképzések kötelez® tárgyaitól abban az értelemben, hogy különálló oktatási egy-
ségnek számítanak. A javaslatom szerint a projektek a legtöbb kötelez® tárgy ok-
tatási anyagának szerves részét képeznék, így a hallgatók a már meglév® tárgyak
kurzusain dolgozhatnak a projekteken, nincs szükség tehát újabb tárgyakra vagy
képzésekre.

• Míg a kooperatív képzés és az Önálló laboratórium tárgyak az informatikának csak
egy-két területére koncentrálnak, addig a javasolt megközelítés a legtöbb kötelez®
tárgy tematikáját felöleli.

• Mind a kooperatív képzésnek, mind az Önálló laboratórium tárgyaknak szigorú el®-
feltételei vannak, azaz a korábbi tanulmányok alatt elsajátított ismeretekre épülnek.
A javasolt megközelítés használatával azonban a hallgatók már az els® félév folya-
mán elkezdenek projekteken dolgozni. Ez azt is jelenti, hogy az oktatóknak sokkal
több hallgatóval kell foglalkozniuk, akik korábban még nem vettek részt projekt-
munkában. Másrészt az oktatók sem rendelkeznek feltétlenül nagy tapasztalatokkal
a projektmenedzsment területén, és együtt kell m¶ködniük egymással a jobb ered-
mény elérése érdekében.

• Bár a kooperatív képzés az oktatás részét képezi, az intézmény elveszíti a jogát a
képzés és a számonkérések teljes kör¶ kézben tartására. További hátránya, hogy a
f®városon kívül nem olyan egyszer¶ a szükséges számban olyan céget találni, amely
megfelel® projektekkel tud szolgálni.

8.2. Multiparadigmás programozási nyelvek használa-
ta a mesterséges intelligencia oktatásában

Kutatásaim során megvizsgáltam az F# mint egy új multiparadigmás programozási
nyelv használatának lehet®ségét a mesterséges intelligencia (MI) területén használt kü-
lönféle algoritmusok kódolására. Három f® okból választottam ezt a területet. Egyrészt
korábban oktatója voltam A mesterséges intelligencia alapjai cím¶ tárgy gyakorlatai-
nak a Debreceni Egyetemen [28]. Másrészt az MI, azon belül konkrétan a keres® algo-
ritmusok olyan számítási területet képviselnek, amely esetén jól alkalmazható a funkci-
onális programozás, mivel ezeknek az algoritmusoknak bizonyos részei (mint például az
operátoralkalmazási el®feltételek ellen®rzése) alapvet®en funkcionálisak. Harmadrészt
rendelkezésemre állt a kérdéses algoritmusok néhány imperatív és objektumorientált
implementációja, amelyek jó kiindulópontnak bizonyultak az F# verzió elkészítéséhez
[13, 12].

Nem nehéz belátni, hogy az MI problémák megoldására a funkcionális programo-
zás el®nyösebb, mint az imperatív programozás. Ahogy a [20] cikkemben bemutattam,
még az egyszer¶ 8 királyn® problémának is sokkal tömörebb megoldását tudjuk megad-
ni F#-ban (kizárólag funkcionális programozási elemek felhasználásával), mint C-ben
vagy C#-ban. Ha azonban a hatékonyság vagy az újrafelhasználhatóság is szerepet
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játszik, nem biztos, hogy a tisztán funkcionális kód lesz a legjobb megoldás bizonyos
problémák esetén.

Egy-egy objektumorientált C# implementáción kívül elkészítettem három F# imp-
lementációt is az egyszerepl®s problémák keres® algoritmusaihoz, illetve kett®t a kétsze-
mélyes játékok lépésajánló algoritmusaihoz. A célom az volt a különböz® implementáci-
ók elkészítésével, hogy több megközelítést biztosítsunk a hallgatók számára ugyanazon
pszeudokódok megértéséhez. Bár azt nem tudom, hogy funkcionálisan gondolkodva
könnyebben megértik-e az algoritmusok m¶ködését, egynél több implementáció megis-
merése biztosan nem árthat. Íme egy különböz® szempontokon alpuló, részben szubjek-
tív összehasonlítása az egyszerepl®s problémák esetén használatos keres® algoritmusok
négyféle implementációjának:

• Forráskód metrikák : Annak ellenére, hogy funkcionális nyelvek esetén nem alkal-
mazhatók ugyanazok a metrikák, mint imperatív nyelvek esetén, most három olyan
metrikát fogok használni, amelyek mind C#-ban, mind F#-ban relevánsak lehetnek:
a sorok száma, az osztályok száma és a függvények száma (beleértve a metódusokat
is). Az 8.1. táblázat összefoglalja ezeknek a metrikáknak az értékeit a különböz®
implementációk esetén.

C# F# v1 F# v2 F# v3

Sorok száma 842 537 536 417

Osztályok száma 15 13 6 4

Függvények száma 49 43 43 34

8.1. táblázat. Néhány forráskód metrika.

A sorok száma metrika az összes forrásállományban szerepl® kódsorok számát adja
meg, beleértve az üres sorokat is, nem beleértve viszont a konkrét problémákhoz
tartozó forráskódokat. Az osztályok száma a forráskódban de�niált osztályokra
vonatkozik, kivéve a kivétel osztályokat, a felsorolásos típusokat és az IComparer

osztályokat. A függvények száma tartalmazza az összes függvényt és konkrét metó-
dusimplementációt, beleértve a konstruktorokat, nem beleértve viszont a lambda-
kifejezéseket.

Ahogy látható, a harmadik F# implementáció feleakkora méret¶, mint a C# imp-
lementáció. Ez a különbség persze f®leg az F# nyelv kompakt szintaxisából követ-
kezik. A másik oka annak, hogy az F# implementációk rövidebbek, az az, hogy
hiányzik bel®lük két osztály a C# kódból, amelyek 57 sort tesznek ki.

Az osztályok számának csökkenése az egyre �funkcionálisabb� kód eredménye. Az
els® F# implementáció � ahogy fent említettem � két osztállyal kevesebbet tartal-
maz, mint a C# verzió. A második változatban a hét konkrét algoritmus osztályt
hét függvénnyel helyettesítettük. A harmadik változatban a két absztrakt keres®
osztályt is függvénnyé konvertáltuk. Ha tisztán funkcionális kódot szeretnénk, a
maradék osztályoktól is meg kellene szabadulnunk, de az nem eredményezne rövi-
debb vagy olvashatóbb kódot. Az osztályok használatával könny¶ újrafelhasználható
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kódot írni például az operátoralkalmazásra: csupán meg kell hívnunk az absztrakt
State osztály Apply metódusát, anélkül hogy tudnánk, hogyan is implementálta
azt valamely konkrét probléma állapotait reprezentáló konkrét osztály. A két Node
osztály konstruktorai pedig pontosan ezt csinálják. A két Node osztályt valójában
lecserélhetnénk rekord típusokra, mivel bel®lük nem származnak más osztályok,
de így sem kapnánk olvashatóbb kódot, ráadásul nem tudnánk használni az olyan
.NET metódusokat, mint például a Contains.

A függvények száma nagyon hasonló az egyes implementációkban. Ez azért van,
mert az osztályok metódusai egy-egy függvénynek felelnek meg az osztálymentes
implementációkban; még a konstruktoroknak is függvényeket feleltetünk meg. A
harmadik F# implementáció azonban valamivel kevesebb függvényt tartalmaz, mint
a másik három. Ennek az az oka, hogy hiányzik bel®le a ToString metódusnak a
konkrét algoritmus osztályokban (illetve objektumokban) megtalálható hét imple-
mentációja. Ezeket mindössze egyetlen függvény, a printSearchInfo helyettesíti.
Ugyanez érvényes a gráfkeres® algoritmusok Expand és Search metódusaira. A há-
rom metódusnak megfelel® függvények mindegyike match kifejezéseket tartalmaz,
amelyeknek az alapja a kereséshez használt algoritmus. Ez jól mutatja a különbsé-
get annak a problémának az objektumorientált és funkcionális megközelítése között,
hogy hogyan tudunk egy alaposztályhoz új alosztályt, illetve az alosztályokhoz új
funkcionalitást bevezetni. Ha új alosztályt szeretnénk bevezetni, akkor az OO meg-
közelítés jobb, mert nem kell hozzányúlnunk a már meglév® alosztályokhoz, csak
meg kell írnunk az új osztályt az alaposztályból örökölt összes funkcionalitással.
Funkcionális megközelítés esetén ezzel szemben az összes match kifejezéshez egy-
egy új ágat kell hozzávennünk. Ha viszont új funkcionalitással szeretnénk b®víteni
a már meglév® alosztályainkat, akkor a funkcionális módszer a jobb, hiszen csak
egy új függvényt kell írnunk a meglév®khöz hasonló match kifejezéssel. OO megkö-
zelítést használva az alaposztályt ki kell egészítenünk egy új metódussal, valamint
az összes alosztályt az új metódus egy-egy implementációjával.

• A felhasznált módosítható adatszerkezetek : Ebben a tekintetben nincs különbség az
implementációk között. Bár a tisztán funkcionális programok egyáltalán nem alkal-
maznak módosítható adatokat, mindegyik implementációban használtam néhány
módosítható adatszerkezetet. Ha szeretnénk, ezen adatkollekciók bármelyikének a
típusát lecserélhetnénk az F# nem módosítható list vagy seq adattípusára. Az
így kapott kód ugyanolyan méret¶ lenne, viszont kevésbé hatékony, mivel a List és
Seq modulok rekurzív függvényei lassabbak, mint a megfelel® .NET metódusok. Ez
különösen akkor igaz, amikor elemeket adunk hozzá ezekhez a kollekciókhoz, vagy
amikor elemeket törlünk bel®lük: egy nem módosítható adatszerkezet esetén le kell
másolnunk az eredeti kollekciót, egy apró módosítást végrehajtva az elemein. Ez az
oka annak, hogy .NET kollekciókat használtam az F# nem módosítható adattípusai
helyett a kérdéses adatszerkezetek tárolására.

• A felhasznált funkcionális nyelvi eszközök : A C# implementáció egyetlen funkci-
onális elemet sem tartalmaz, tisztán objektumorientált. Az els® F# implementá-
ció farokrekurzív függvényekkel és szekvenciam¶veletekkel helyettesíti a ciklusokat.
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Bár az objektumkifejezések nem funkcionális nyelvi eszközök, a második F# imp-
lementáció sokat tartalmaz bel®lük az alosztályok kiváltására. A harmadik F#
implementáció tartalmazza a legtöbb funkcionális elemet: diszkriminált uniót hasz-
nálunk az algoritmus típusának tárolására, match kifejezéseket a kezelésére, néhány
függvényt els® osztályú értékként használunk, és van benne egy magasabb rend¶
függvény is.

• Hatékonyság : Mivel a funkcionális nyelvek absztraktabbak, mint az objektumori-
entált nyelvek, összetettebb futtató rendszerre van szükségük. Ez a f® oka annak,
hogy a funkcionális programok kevésbé hatékonyak, még akkor is, ha lefordítjuk,
nem pedig interpretáljuk ®ket. Lefuttattam az összes implementáció bemutatott
f®programjait ugyanazon a számítógépen, egy Gigabyte T1018X TouchNote net-
bookon Intel Atom N280 processzorral 1,33 GHz-en és 1 GB memóriával, az összes
programot Microsoft Visual Studio 2010-ben fordítva: a C# program kevesebb,
mint fél másodperc alatt végzett, míg az F# programok mindegyike nagyjából 7
másodpercig futott. Ahogy írtam, ennél is rosszabb eredményt kaptunk volna, ha
az F# nem módosítható adattípusait használtuk volna.

Az egyszerepl®s problémák esetén alkalmazott algoritmusok különböz® implemen-
tációira vonatkozó meg�gyelések a kétszemélyes játékok lépésajánló algoritmusaira is
érvényesek, bár a különbség az utóbbi esetben kisebb. Ugyanez mondható el a konkrét
problémák és játékok implementációival kapcsolatban is.

Végs® konklúzióként az a véleményem, hogy nem érdemes az egyik vagy a másik
paradigmához ragaszkodni, ha többet is használhatunk egy programon belül. A funk-
cionális kód néha absztraktabb, olvashatóbb vagy egyszer¶en csak rövidebb, mint az
objektumorientált megfelel®je. Másrészr®l az OO kód általában hatékonyabb és né-
ha újrafelhasználhatóbb, mint a funkcionális megfelel®je. Ezért azt gondolom, hogy a
multiparadigmás nyelvek, mint amilyen az F#, el®nyösebbek lehetnek f®leg nagyobb
szabású alkalmazások esetén, de akár kisebb programokban is. A hallgatók külön-
böz®ek, így néhányuk jobban megértheti az algoritmusokat egy funkcionálisabb meg-
közelítésre, mint egy tisztán objektumorientált kódra alapozva. Például a Seq.fold

függvény egy akkumulátor paraméterrel ellátott lambda-kifejezéssel jobban leírhatja
egy minimum- vagy maximumkiválasztás m¶ködését az olyan hallgatók számára, akik
rekurzívan (funkcionálisan) gondolkodnak.

8.3. Programozó versenyek lebonyolítása a ProgCont
alkalmazással

A programozó versenyek er®s motivációs tényez®t jelenthetnek. Több mint tíz éve
rendezünk félévenként legalább egy házi versenyt, és elmondhatom, hogy legalább né-
hány hallgató érdekl®dését felkeltik ezek a versenyek. A tíz év alatt két alkalmazást
is kifejlesztettünk a versenyz®k által beküldött megoldások on-line kiértékelésére. Az
els® neve Programming Contest Result Manager (PCRM), és egy e-mail-alapú konzolos
alkalmazás, a másodikat pedig ProgCont-nak hívják, amely egy kliens/szerver archi-
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tektúrájú webalkalmazás. A PCRM-et részletesen tárgyalják a [14, 12] tanulmányok,
most a ProgContot mutatom be a vele szerzett tapasztalatainkkal együtt.

A ProgCont rendszer négy, egymástól jól elkülöníthet® összetev®b®l épül fel: prob-
lémakatalógus, versenyadatbázis, vezérl® webalkalmazás és megoldáskiértékel® kliensek
(lásd az 8.1. ábrát).

Vezérl® web-
alkalmzás

Webes interfész

Alkalmazás-
logika

Verseny-
adat-
bázis

Probléma-
katalógus

Megoldás-
kiértékel®k

Linux

(C, C++,
Java)

Windows

(C#)

Versenyz®k Zs¶ri Meg�gyel®k

8.1. ábra. A ProgCont rendszer felépítése.

A problémakatalógus tartalmazza a kés®bb összeállított versenyekre szánt anyagot,
a problémák � esetenként többnyelv¶ � leírását a hozzá tartozó ábrákkal és további
(akár letölthet®) segédanyagokkal együtt, valamint szintén itt találhatók a megoldá-
sok ellen®rzéséhez szükséges tesztesetek is. Egy-egy problémához több teszteseteket
tartalmazó állomány is készíthet®. A megoldások helyességének ellen®rzése az alábbi
módokon történhet: a program ellen®rizheti, hogy a beküldött megoldás által el®állított
kimenet karakterenként megegyezik-e egy el®re generált kimenettel, illetve a kimenet
helyessége vizsgálható küls® programmal. Tesztesetenként határozható meg a kimenet
el®állításának id®korlátja is. A problémakatalógus az operációs rendszer könyvtár- és
fájlszerkezetének segítségével alakítható ki. Minden probléma külön könyvtárban kap
helyet. A probléma szövege egy XML fájlban, a hozzá tartozó tesztesetek, az el®re
generált kimeneti állományok és a tesztelési paraméterek pedig egy tömörített (ZIP)
fájlban tárolódnak. A szöveges leírásban hivatkozott további dokumentumok szintén
ugyanebben a könyvtárban kapnak helyet.

A versenyadatbázis írja le a versenyek, a feladatok, a versenyz®k, a megoldások és
a kiértékelések kapcsolatát. Egy-egy verseny a problémakatalógusból válogatott fel-
adatok, csapatverseny esetében a csapatokat alkotó versenyz®k, valamint a verseny
lebonyolítására vonatkozó technikai adatok (például a verseny kezdetének és befejezé-
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sének az ideje vagy az egyes feladatok esetében engedélyezett programozási nyelvek)
összessége. Az adatbázis tárolja a versenyz®k által beküldött megoldásokat, majd a
megoldások értékelésének az eredményét, amelyeket egy-egy megoldáskiértékel® kliens
szolgáltat. Mindezeket a ProgCont alkalmazásban egy PostgreSQL adatbázisban tá-
roljuk.

Egy-egy verseny lebonyolítását a vezérl® webalkalmazás irányítja. A versenyz®k a
webalkalmazás segítségével böngészhetik a feladatokat, tölthetik fel az egyes feladatok
megoldásait, és értesülhetnek a megoldáskiértékelések eredményér®l és a verseny állásá-
ról. A meg�gyel®k (például a versenyz®k felkészít®i vagy a vendégek) szintén követhetik
az aktuális eredménylistát. A zs¶ri a webes felületen tudja beállítani a verseny bizo-
nyos paramétereit, például azt, hogy az egyes feladatokra milyen programozási nyelven
várja a megoldásokat, hogy hány pontot érnek az egyes feladatok, vagy hogy mennyi
büntet®id® jár egy-egy rossz megoldásért. A webalkalmazás ütemezi a beküldött meg-
oldások kiértékelésének sorrendjét is, ami azt jelenti, hogy ® osztja ki azokat az egyes,
a rendszerhez éppen csatlakozó megoldáskiértékel® kliensek számára. A programkódok
kiosztása a kliensek által küldött azon információ alapján történik, hogy milyen prog-
ramnyelv¶ kódok kezelésére alkalmasak. A vezérl® webalkalmazás futtatására Apache
Tomcat webalkalmazás-szervert használunk. A webalkalmazás és a felhasználók (a
versenyz®k és a zs¶ri) közötti kommunikáció biztonságát az SSL (HTTPS) protokoll
szavatolja. A webalkalmazás JDBC-n keresztül éri el a versenyadatbázist.

A megoldáskiértékel® kliensek olyan önálló alkalmazások, amelyek periodikusan (5
másodpercenként) ellen®rzik, hogy van-e olyan kiértékelésre várakozó megoldás, ame-
lyet kezelni tudnak. Ha van, a kliens els® lépésben megpróbálja lefordítani a vezérl®
webalkalmazás által neki kiosztott programkódot. Amennyiben a fordítás sikeres, le-
futtatja a programot minden tesztesetre egy el®re beállított futtatási környezetben.
Az aktuális teszteseteket a problémakatalógusból tölti le a webalkalmazáson keresztül,
valahányszor megváltozik az ®ket tartalmazó ZIP állomány (és persze az els® alkalom-
mal, amikor szükség van rájuk). A tesztesetek kiértékelésekor a megoldáskiértékel®
kliens �gyelembe veszi a tesztesetre beállított maximális futási id®t. Ha a program
id®ben megáll, a kliens ellen®rzi a kimenetét az el®re beállított módszernek megfel®en:
vagy összehasonlítja a letöltött kimeneti állománnyal, vagy továbbítja a küls® kiérté-
kel® programnak. Az összesített eredményt végül továbbítja a vezérl® webalkalmazás
felé.

Mivel az egyes programozási nyelvekhez különböz® operációs rendszerek passzol-
nak inkább, a megoldáskiértékel® klienseket platformfüggetlen Java implementációval
készítettük. Így lehet®ség van arra, hogy a vezérl® webalkalmazástól és a többi kiér-
tékel® klienst®l különböz® (lehet®leg virtuális) számítógépeken fussanak, ezáltal nem
vesztélyeztetve azok m¶ködését, amennyiben egy kártékony kód tönkretenné egy konk-
rét kliens futtatási környezetét. A C# kódokat például fordíthatja és futtathatja egy
Windows-alapú kliens, míg a C, C++, Java és Pascal kódokhoz egy másik, Linux-alapú
klienst használhatunk. Minél több megoldáskiértékel® klienst használunk, annál több
kiértékelést hajthatunk végre egyid®ben.

2011. október 2-án rendeztük az els® olyan versenyt, amelyet a ProgCont alkalma-
zással vezéreltünk. Az eredeti célunknak megfelel®en ez az adott év ACM versenyének
helyi fordulója volt. Kihasználva a versenyek paraméterezhet®ségének a lehet®ségét,
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2012. február 6-án egy rövid egyéni versenyre került sor az Informatikai versenyfelada-
tok cím¶ kurzus hallgatói között. Ugyanabban a félévben három különböz® tantárgy
ismereteinek az elmélyítésében is tudtunk segíteni a hallgatóknak olyan versenyekkel,
amelyek több mint egy hónapig tartottak: Informatikai versenyfeladatok, Magas szint¶
programozási nyelvek 1 és A mesterséges intelligencia alapjai. Ezután egy ACM jelle-
g¶ versenyt szerveztünk 2012. május 6-án (amely a marosvásárhelyi ECN Nemzetközi
Programozó Verseny selejtez®je volt), egy újabb helyi ACM versenyt 2012. október
7-én, végül, de nem utolsósorban pedig az Informatikai Kar Regionális Programozó
Csapatversenyét 2012. november 25-én.
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