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Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében
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Chapter 1

Introduction

1.1 Historical background

The present dissertation is based on two more or less independent topics,
dealing with generalized number systems and cryptographically secure elec-
tronic elections. In the first part we investigate canonical number systems
in quartic algebraic number fields, then we characterize three-dimensional
symmetric shift radix systems. In the second part of the dissertation two
secure election schemes are described, one of them is based on blind sig-
natures the other one uses homomorphic encryptions. Both schemes are
secure and designed to be implemented in a practical environment, hence
they do not employ an untappable channel or voting booth.

Canonical number systems can be viewed as natural generalizations
of radix representations of ordinary integers (Grünwald [34]) to algebraic
integers. An example of a canonical number system was first studied by
Knuth [50],[51]. They showed that the complex number b = −1+

√
−1 can

be used as a base for a number system which admits finite representations
for each Gaussian integer. This means that each nonzero γ ∈ Z[

√
−1] has

a unique representation of the shape

γ = c0 + c1b+ · · ·+ chb
h

1



2 INTRODUCTION

with ci ∈ {0, 1} (0 ≤ i ≤ h), ch = 1 and h ∈ N.

This observation has been generalized and studied extensively in the last
decades. Gilbert, Kátai, Kovács and Szabó ([30], [43], [44], [45]) extended
Knuth’s notion to arbitrary quadratic number fields. For each quadratic
number field K with maximal order ZK they have characterized all the
elements b ∈ ZK which can serve as a base of a number system in ZK . Let
α be an algebraic integer then b is called a base for Z[α] if each non-zero
γ ∈ Z[α] admits a unique representation of the shape

γ = c0 + c1b+ · · ·+ chb
h

with ci ∈ {0, 1, . . . , |N(b) − 1|} and ch 6= 0 (N(·) is the norm of b over Q).

Later, Kovács and Pethő [49] (see also [47]) extended this notion to ar-
bitrary number fields and gave some partial results on the characterization
of the bases.

Various variants of canonical number systems have been studied in
the literature. Kovács [48] studied number systems with integer digits
in rings. Pethő [66] considered simultaneous representation of several el-
ements. Scheicher and Thuswaldner [77] investigated number systems in
polynomial rings over finite field (cf. also [49]).

CNS have connections to the theories of finite automata (see e.g. K.
Scheicher [75], J. M. Thuswaldner [86]) and fractal tilings (see e.g. S.
Akiyama and J. M. Thuswaldner [10]). S. Akiyama et al. [2] put canonical
number systems (CNS) into a more general framework thereby opening
links to other areas, e.g. to a long-standing problem on Salem numbers.

In [2] a dynamical system called shift radix system (SRS) has been
introduced. SRS are related to number systems as β-expansions (cf. for
instance [27, 62, 70]) or canonical number systems. Indeed they form a
unification and generalization of these notions of number systems. More
details about SRS and their relation to β-expansions and CNS can be found
in [2], [3], [83].

CNS bases in quadratic and cubic fields were characterized by several
authors (see [43],[44],[30],[33],[86],[8],[49],[5]). Pethő described CNS bases
in a class of biquadratic number fields in [67]. In this dissertation CNS



1.1. HISTORICAL BACKGROUND 3

bases in quartic number fields are characterized, including cyclotomic and
simplest quartic fields. We deal with an important variant of SRS, the
so-called symmetric shift radix systems (SSRS), which was introduced in
[9]. SSRS analogously to SRS are related to symmetric β-expansions and
symmetric canonical number systems. In [9] two dimensional SSRS were
studied, we extend investigations to the three dimensional case.

Cryptographic protocols, for example secure voting schemes, are as
strongly related to number theory as generalized number systems. Se-
curity of constructions of cryptographic primitives are based on problems
from number theory which seem to be computationally intractable. The
most well-known of these problems are calculating discrete logarithms and
factoring composite integers.

The research on electronic voting is a very important topic for the
progress of democracy. If a secure and convenient electronic voting sys-
tem is provided, it will be used more frequently to collect people’s opin-
ion for many kinds of political and social decisions through cyber space.
Traditional paper-based voting can be time consuming and inconvenient.
Electronic voting not only accelerates the whole process, but makes it less
expensive and more comfortable for the voters and the authorities as well.
It also reduces the chances of errors.

Electronic election schemes according to the applied cryptographic tech-
niques can be categorized into three main models.

The mix-net model. Chaum [18] introduces the concept of a mix-net that
is built up from several linked servers called mixes. Each mix randomizes
input messages and outputs the permutation of them, such that the input
and output messages are not linkable to each other. Several schemes based
on mix-nets are proposed in the literature ([61],[74],[42]).

The blind signatures model. The concept of blind signatures was in-
troduced by Chaum [19]. During the Authorizing stage a voting authority
authenticates a token, (usually an encrypted vote) without knowing the con-
tents. This way of authentication is achieved by applying blind signatures.
Even if later the (un-blinded) signature is made public, it is impossible to
connect the signature to the signing process, i.e. to the voter. Schemes
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based on blind signatures usually use anonymous channel, during the Vot-
ing stage voters send the un-blinded signature and the encryption of the
ballot to a voting authority, assuring the anonymity of the sender. Tallying
stage consists of two phases, opening and counting phases. During opening
phase encrypted ballots are decrypted and in the counting phase only valid
votes are collected. The result of the election is made public. For further
schemes see [28], [38], [58], [59], [69].

The homomorphic encryption model. Schemes based on homomorphic
encryptions employ s authorities in order to manage Voting and Tallying
stages. These schemes use secret sharing scheme either to share the decryp-
tion key, or to share the vote itself. The following two alternatives appear
in the literature:

• A voter creates vi, i = 1, . . . , s shares of his secret vote, and sends
encrypted share E(vi) to Ai. Ai collects all ith encrypted shares, in
Tallying stage decrypts the sum of the received shares. At the end
authorities together calculate the result of the election.

• Decryption key, used at the end of the whole procedure in order to
decrypt the sum of the votes, is shared among the s authorities.

For secret sharing Shamir’s secret sharing system can be applied, where
there are at most t < s malicious authorities, meaning, that at least t+ 1
authorities are necessary to generate the secret information.

Since the election result is computed by decrypting the product of en-
crypted votes, the encrypted vote itself is never decrypted. It is essential to
prove that the encrypted vote is formed properly, that the encrypted value
is really the encryption of one of the candidates. This is proved with a use
of zero-knowledge proof, so without obtaining any knowledge about the
vote itself. An encrypted vote is valid if the corresponding zero-knowledge
proof runs correctly.

Models based on homomorphic encryption are [22], [52] and [36]. Most
of the voting systems use ElGamal encryptions, alternative homomorphic
encryption is Pallier cryptosystem [60], schemes based on it are proposed
cf. [11], [25].
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The concept of receipt-freeness and uncoercibility were introduced by
Benaloh and Tuinstra [12]. Roughly speaking, receipt-freeness is the in-
ability of a voter to prove an adversary that he voted in a particular man-
ner, even if the voter wishes to do so. For formal definition we refer to
[59]. Several receipt-free and uncoercible voting schemes are designed with
applying untappable channels or voting booths, that are unpractical [59].
Another solution in order to achieve receipt-freeness is that the scheme em-
ploys an extra tamper-resistant hardware [54]. The two secure electronic
election schemes presented here can be implemented in practice, they do
not require untappable channels and voting booths. Extra hardware is not
employed, either.

In the next section we give a detailed presentation overview of our re-
sults.

1.2 Presentation overview and our results

The present work consists of two main topics, these topics lead into two
more or less independent directions. Chapter one and two deal with general-
ized number systems, chapter three and four are contain cryptographically
secure electronic elections. The appendix (Chapter 6) details the Proof
of Lemma 2.4.9. More precisely, this dissertation consists of the following
parts.

The introduction (first chapter) contains the historical background, the
presentation overview and our main results.

In the second chapter we deal with Canonical Number Systems. Our
main result is the characterization of CNS bases in algebraic number fields
including quartic cyclotomic fields, simplest quartic fields and two families
of orders in quartic number fields. By a theorem of B. Kovács [47] there
exists CNS in an order if and only if there exists power integral bases. For
finding CNS bases a modified version of the algorithm given by B. Kovács
and A. Pethő [49] is applied. This algorithm assumes existence of a set, that
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contains representatives of the equivalence classes of generators of power
integral bases of the given order.

Chapter three is devoted to three-dimensional Symmetric Shift Radix
Systems. Let us denote

D0
d :=

{

r ∈ Rd |τr is an SSRS
}

Dd :=
{

r ∈ Rd |τr is eventually periodic
}

.

As a new result we prove that D0
3 is an union of four polyhedra and a poly-

gon, by employing the algorithm that is established for SSRS in [9]. This
algorithm constructs a finite directed graph and finds all nonzero primitive
cycles in it. Roughly speaking these cycles give periods which generate
cutout polyhedra and we get D0

3 by subtracting the generated cutout poly-
hedra from D3.

Chapter four presents the building blocks of our election protocols and
all communication channels usually employed in voting are enumerated.

In chapter five after describing requirements and participants of vot-
ing schemes two new secure election protocols are detailed. Both of them
possess all basic requirements and can be implemented in practice.

In section 5.3 the scheme is based on blind signatures, requires only
two authorities (Registry and Voting Authority) and does not employ com-
plex primitives like zero-knowledge proofs or threshold cryptosystems. Our
election scheme satisfies eligibility, privacy, unreusability, fairness, robust-
ness, individual and universal verifiability and coercion-resistance. It can
be implemented in practice, since it does not apply impractical untappable
channels or voting booths. It consists of three distinctive stages: Autho-
rizing, Voting and Tallying. During the Voting stage voters create their
ballots. Ballots contain the selected candidate and blind signature is ap-
plied to hide it from the Voting Authority. This scheme is offered to be
employed in an environment, where authorities participating do not collude
and the Voting Authority does not collaborate with adversaries.
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In 5.4 our protocol is based on homomorphic encryptions, it assumes
existence of several authorities and it uses distributed ElGamal encryption
[63]. This scheme is based on [22] that is not possessing the property of
receipt-freeness or uncoercibility. There are two models based on [22] that
are designed to be receipt-free in the literature: [52] and [36]. First one
applies an honest verifier, the second one uses an untappable channel. Our
scheme does not employ voting booths or untappable channels, it requires
an anonymous return channel, hence it can be implemented in practice. We
do not have an honest verifier, either. The only assumption is that among
the Voting Authorities participating in distributed key generation and de-
cryption there is at least one authority that is honest. The scheme sat-
isfies eligibility, privacy, unreusability, fairness, robustness, individual and
universal verifiability, receipt-freeness, uncoercibility and protects against
randomization and forced-abstention attacks.

Chapter six contains the Proof of Lemma 2.4.9. It is quite complicated,
therefore it can be found in the appendix.

1.3 Credits

Results of Canonical Number Systems are based on

H. Brunotte, A. Huszti, A. Pethő, Bases of canonical number
systems in quartic algebraic number fields, Journal de Théorie
des Nombres de Bordeaux, 18 (2006), 537 – 559.

Results of Symmetric Shift Radix Systems are based on

A. Huszti, K. Scheicher, P. Surer, J. M. Thuswaldner, Three-
dimensional symmetric shift radix systems, Acta Arithmetica,
129 (2007), 147 – 166.

Results of A Coercion-Resistant Voting Scheme Based on Blind Signatures
are based on
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A. Huszti, A Secure Electronic Voting Scheme, Periodica Poly-
technica Electrical Engineering, 51/3-4 (2007), 1 – 6.

Results of A Receipt-Free Homomorphic Election Scheme are based on

A. Huszti, A Homomorphic Encryption-Based Secure Elec-
tronic Voting Scheme, submitted for publication.



Chapter 2

Canonical Number Systems

In this chapter after we define canonical number systems, shift radix sys-
tems and give their basic properties, we present a slightly modified version
of the algorithm established by B. Kovács and A. Pethő [49] for the determi-
nation of CNS bases of orders of algebraic number fields. (See also [67] for
a comprehensive description of the original algorithm and its background.)
CNS bases are explicitly known for some quadratic, cubic and quartic fields
([43],[44],[30],[33],[86],[8], [49], [5], [67]). The list of CNS bases of simplest
cubic fields given in [5] is also extended here. The modified algorithm is
exploited for some families of number fields of low degrees; our main appli-
cations are cyclotomic and simple fields of degree four.

The results of this chapter are contained in our paper [17]. This paper
is a joint work with Horst Brunotte and Attila Pethő.

2.1 CNS bases of algebraic number fields

The investigation of the question wether an algebraic number field is mono-
genic is a classical problem in algebraic number theory (cf. [29]). According
to B. Kovács [47] the existence of a power integral basis in an algebraic num-
ber field is equivalent to the existence of a canonical number system for its
maximal order. Moreover, using a deep result of K. Győry [35] on gener-

9
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ators of orders of algebraic number fields B. Kovács [47] proved that up
to translation by integers there exist only finitely many canonical number
systems in the maximal order of an algebraic number field.

In the sequel we denote by Q the field of rational numbers, by Z the
set of integers and by N the set of nonnegative integers. For an algebraic
integer γ we let µγ ∈ Z[X] be its minimal polynomial and Cγ the set of all
CNS bases for Z[γ].

2.1.1 Definition. Let

P (X) = Xd + pd−1X
d−1 + · · ·+ p1X + p0 ∈ Z[X], N = {0, 1, . . . , |p0| − 1}

and R := Z[X]/P (X)Z[X] and denote the image of X under the canonical
epimorphism from Z[X] to R by x. If every non-zero element A(x) ∈ R
can be written uniquely in the form

A(x) = a0 + a1x+ · · ·+ alx
l

with a0, . . . , al ∈ N, al 6= 0, we call (P,N) a canonical number system (CNS
for short). P (X) is called CNS polynomial, toN we refer as the set of digits.

We denote by C the set of CNS polynomials; for the general definition
of CNS polynomials we refer the reader to A. Pethő [65], however, for our
purposes it suffices to keep in mind that α is a CNS basis for Z[α] if and
only if µα is a CNS polynomial. It can algorithmically be decided whether
a given integral polynomial is a CNS polynomial or not (see [1]).

B. Kovács [47] introduced the following set of polynomials

K = {pdX
d + pd−1X

d−1 + · · · + p0 ∈ Z[X] |
d ≥ 1, 1 = pd ≤ pd−1 ≤ . . . ≤ p1 ≤ p0 ≥ 2}

which plays a decisive role in the theory of CNS polynomials (see [1], The-
orem 2.3).
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2.1.2 Lemma. ( B. Kovács – A. Pethő) For every nonzero algebraic inte-
ger α the following constants can be computed effectively:

kα = min{k ∈ Z |µα(X + n) ∈ K for all n ∈ Z with n ≥ k},

cα = min{k ∈ Z |µα(X + k) ∈ C}.

Proof See [49], Section 5. 2

Note that cα ≤ kα by ([47], Lemma 2) and that if β is a conjugate of α
then kβ = kα and cβ = cα.

2.1.3 Corollary. If α is a CNS basis for an order R then cα ≤ 0, α − cα
is a CNS basis for R, but α− cα + 1 is not a CNS basis for R.

Proof This is clear by the definitions. 2

To a polynomial P (X) = pdX
d + pd−1X

d−1 + · · · + p0 ∈ Z[X], pd = 1
we associate the mapping τ̃P = τ̃ : Zd → Zd defined by

τ̃P (a) =

(

a2, . . . , ad,−
⌊

p1ad + · · ·+ pda1

p0

⌋)

,

where a = (a1, . . . , ad) ∈ Zd. This turned out very useful to prove P (X) ∈
C. Indeed Brunotte [15] proved the following theorem, that gives an efficient
algorithm for testing if a polynomial is CNS or not.

2.1.4 Theorem. Assume that E ⊆ Zd has the following properties:

(i) (1, 0, . . . , 0) ∈ E,

(ii) −E ⊆ E,

(iii) τ̃(E) ⊆ E,

(iv) for every e ∈ E there exist some l > 0 with τ̃ l(e) = 0.

Then P (X) ∈ C.
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2.1.5 Definition. (cf. [2]) Let d ≥ 1 be an integer, r ∈ Rd, and let

τ̃r : Zd → Zd, a = (a1, . . . , ad) 7→ (a2, . . . , ad,−⌊ra⌋),

where ra = r1a1 + r2a2 + · · · + rdad, i.e., the inner product of the vectors
r and a. Then τ̃r is called a shift radix system (for short SRS), if

∀a ∈ Zd ∃n ∈ N : τ̃n
r
(a) = 0.

Let

D̃d :=
{

r ∈ Rd
∣

∣

∣
∀a ∈ Zd ∃n, l ∈ N : τ̃k

r
(a) = τ̃k+l

r
(a) ∀k ≥ n

}

and

D̃0
d :=

{

r ∈ Rd |τ̃r is an SRS
}

,

2.1.6 Theorem. (S. Akiyama et al. [2]) Let P (X) = Xd + pd−1X
d−1 +

· · · + p1X + p0 ∈ Z[X]. Then P (X) ∈ C if and only if r =
(

1
p0
,

pd−1

p0
, . . . , p1

p0

)

∈ D̃0
d.

2.1.7 Theorem. (S. Akiyama et al. [2]) Let r1, . . . , rk be points of D̃d and
denote by H the convex hull of r1, . . . , rk. We assume that H is contained
in the interior of D̃d and is sufficiently small in diameter. For z ∈ Zd

take M(z) = max1≤i≤k{−⌊riz⌋}. Then there exist an algorithm to create
a finite directed graph (V,E) with vertices V ⊂ Zd and edges E ∈ V × V
which satisfy

1. each d-dimensional standard unit vector (0, . . . , 0,±1, 0, . . . , 0) ∈ V

2. for each z = (z1, . . . .zd) ∈ V and

j ∈ [−M(−z),M(z)] ∩ Z

we have (z2, . . . , zd, j) ∈ V and a directed edge (z1, . . . , zd) −→
(z2, . . . , zd, j) in E.

3. H ∩ D0
d = H\ ∪π P (π), where π are taken over all nonzero primi-

tive cycles of (V,E); here P (π) denotes a certain convex polyhedron
defined by π.
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The following notion seems to be convenient for the intentions of the
present note.

2.1.8 Definition. The algebraic integer α is called a fundamental CNS
basis for R if it satisfies the following properties:

(1) α− n is a CNS basis for R for all n ∈ N.

(2) α+ 1 is a not CNS basis for R.

2.1.9 Theorem. Let γ be an algebraic integer. Then there exist finite ef-
fectively computable disjoint subsets F0(γ),F1(γ) ⊂ Cγ with the properties:

(i) For every α ∈ Cγ there exists some n ∈ N with α+n ∈ F0(γ)∪F1(γ).

(ii) F1(γ) consists of fundamental CNS bases for Z[γ].

Proof By ([49], Theorem 5) there exist finitely many effectively computable

α1, . . . , αt ∈ Z[γ], n1, . . . , nt ∈ Z, N1, . . . , Nt ⊂ Z

such that for every α ∈ Z[γ] we have

α ∈ Cγ ⇐⇒ α = αi − h, (2.1.1)

for i ∈ {1, . . . , t}, h ∈ Z and h ≥ ni or h ∈ Ni.

Therefore the set

F := {αi − ni | i = 1, . . . , t} ∪
t
⋃

i=1

{αi − h |h ∈ Ni}

is a finite effectively computable subset of Cγ .

For every α ∈ F let

Mα = {m ∈ Z |m ≤ kα, α− k ∈ Cγ for all k = m, . . . , kα}.
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Observing m ≥ cα for all m ∈ Mα we see using Lemma 1. that Mα is a
nonempty finite effectively computable set. Let

mα = minMα

and

F0(γ) = {α− cα |α ∈ F,mα > cα}, F1(γ) = {α− cα |α ∈ F,mα = cα}.

We show that F1(γ) consists of fundamental CNS bases for Z[γ]. Let
ϕ ∈ F1(γ), hence ϕ = α− cα with some α ∈ F . By Corollary 2.1.3 we have
ϕ ∈ Cγ , ϕ+ 1 /∈ Cγ . For n ∈ N we find

ϕ− n = α− (mα + n) ∈ Cγ ,

because for mα + n ≤ kα this is clear by the definition of mα, and for
mα + n > kα we have µϕ−n = µα(X + (mα + n)) ∈ K and therefore
ϕ− n ∈ Cγ by ([47], Lemma 2).

Finally, let β ∈ Cγ . By (2.1.1) there are i ∈ {1, . . . , t} and h ∈ Z with

β = αi − h and h ≥ ni or h ∈ Ni.

If h ∈ Ni then β ∈ F and β − cβ ∈ F0(γ) ∪ F1(γ) by Corollary 2.1.3. If
h ≥ ni then α = αi − ni ∈ F, h− ni − cα ∈ N and

β + (h− ni − cα) = α− cα ∈ F0(γ) ∪ F1(γ).

2

2.1.10 Remark. Note that ϕ ∈ F0(γ) implies ϕ − n ∈ F1(γ) for some
n ∈ N \ {0}. Therefore the theorem of B. Kovács ([47], Lemma 2) can be
rephrased in the following form: An algebraic number field is monogenic if
and only if there exists a fundamental CNS basis for its maximal order.

Slightly modifying the algorithm of B. Kovács and A. Pethő [49] we now
present the algorithm for finding the above mentioned sets F0(γ) and F1(γ).
The (finite) set T is introduced to keep track of the calculations performed;
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(CNS basis computation)

[Input] A nonzero algebraic integer γ and a (finite) set B of representatives of the equiv-
alence classes of generators of power integral bases of Z[γ].

[Output] The sets F0(γ) and F1(γ).

(1.) [Initialize] Set {β1, . . . , βt} = B ∪ (−B), F0 = F1 = T = ∅ and i = 1.

(2.) [Compute minimal polynomial] Compute P = µβi
.

(3.) [Element of F0 ∪ F1 found?] If there exist k ∈ Z, δ ∈ {0, 1} with (P, k, δ) ∈ T insert
βi − k into Fδ and go to step 11.

(4.) [Determine upper and lower bounds] Calculate kβi
and cβi

.

(5.) [Insert element into F1?] If kβi
− cβi

≤ 1 insert βi − cβi
into F1, (P, cβi

, 1) into T

and go to step 11, else perform step 6 for l = cβi
+ 1, . . . , kβi

− 1, put pkβi
= 1, k = cβi

and go to step 8.

(6.) [Check CNS property] If P (X + l) ∈ C set pl = 1, otherwise set pl = 0.

(7.) [Check CNS basis condition] If pk = 0 then go to step 9.

(8.) [Insert element into F0 ∪ F1] If pk+1 = · · · = pkβi
= 1 insert βi − k into F1, (P, k, 1)

into T and go to step 11, else insert βi − k into F0 and (P, k, 0) into T .

(9.) [Next value of k] Set k← k + 1.

(10.) [CNS basis check finished?] If k ≤ kβi
− 1 then go to step 7.

(11.) [Next generator] Set i← i + 1.

(12.) [Finish?] If i ≤ t then go to step 2.

(13.) [Terminate] Output F0(γ) = F0 and F1(γ) = F1 and terminate the algorithm.
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in some cases (see e.g. Theorem 2.2.1) the amount of computations can
thereby be reduced. Recall that algebraic integers α, β are called equivalent
if there is some z ∈ Z such that β = z ± α (see e.g. [29]).

We verify that the algorithm delivers all CNS bases of a given order
Z[γ].

2.1.11 Theorem. Let γ be a nonzero algebraic integer and B a set of rep-
resentatives of the equivalence classes of generators of power integral bases
of Z[γ]. Then algorithm computes the sets F0(γ),F1(γ) with properties (i)
and (ii) of Theorem 1..

Proof It is easy to see that F0(γ) ∪ F1(γ) ⊂ Cγ and that F1(γ) consists of
fundamental CNS bases for Z[γ]. Let α ∈ Cγ , hence α = n + β with some
n ∈ Z, β ∈ B ∪ (−B). Clearly, −n ≥ cβ . By construction there is some
integer k ∈ [cβ , kβ ] with β − k ∈ F0(γ) ∪ F1(γ). Let l1, . . . , ls ∈ [cβ, kβ ] be
exactly those indices with plσ = 0 (σ = 1, . . . , s) and cβ < p1 < . . . < ps <
kβ . If −n ≥ ls +1 then ϕ = β−(ls +1) ∈ F1(γ) and α = ϕ−(−n−(ls +1)).
Finally, let −n < ls + 1, and observe that −n /∈ {l1, . . . , ls}. Then −n < l1
or lσ < −n < lσ+1 for some σ ∈ {1, . . . , s− 1} imply α ∈ F0(γ). 2

The following example illustrates the application of algorithm . For
polynomials outside the set K the CNS property was checked by the algo-
rithm described in [15] (an improved version of this algorithm was imple-
mented by T. Borbély [13]).

2.1.12 Remark. Note that if cβ < kβ and µβ(X + k) ∈ C for all k ∈
{cβ + 1, . . . , kβ − 1} then −cβ + β ∈ F1(γ).

2.1.13 Lemma. Let k ∈ Z.

(i) For fk = f(X + k) with f = X3 −X + 3 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 3

and

fk ∈ C ⇐⇒ k = 0 or k ≥ 2.
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(ii) For fk = f(X + k) with f = X3 −X − 3 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 4

and
fk ∈ C ⇐⇒ k ≥ 3.

(iii) For fk = f(X + k) with f = X3 − 2X2 − 69X − 369 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 13 ⇐⇒ fk ∈ C.

(iv) For fk = f(X + k) with f = X3 + 2X2 − 69X + 369 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 5

and
fk ∈ C ⇐⇒ k ≥ 4.

Proof (i) The first statement is clear because fk = X3 + 3kX2 + (3k2 −
1)X + k3 − k+ 3. Using this, Gilbert’s theorem (see [5], Theorem 3.1) and
([5], Proposition 3.12) the second statement follows.
(ii) The first statement is clear because fk = X3 + 3kX2 + (3k2 − 1)X +
k3 − k − 3. Using this and Gilbert’s theorem (see [5], Theorem 3.1) and
checking f3 ∈ C the second statement follows.
(iii) Clearly, k < 13 implies fk = X3 + (3k − 2)X2 + (3k2 − 4k − 69)X +
k3 − 2k2 − 69k − 369 /∈ K ∪ C.
(iv) Observing fk = X3+(3k+2)X2−(3k2+4k−69)X+k3+2k2−69k+369
and checking f4 ∈ C these statements can be proved analogously. 2

For a monogenic algebraic number field K we write Fδ(K) instead of
Fδ(γ) where γ is some generator of a power integral basis of K (δ ∈ {0, 1}).

2.1.14 Example. Let ϑ be a root of the polynomial X3 −X + 3 ∈ Z[X].
By ([29], Section 11.1) up to equivalence all generators of power integral
bases of Z[ϑ] are given by ϑ and −5ϑ + 3ϑ2. By Lemma 2.1.13 we have
cϑ = 0, kϑ = 3, and therefore by algorithm

ϑ ∈ F0(Q(ϑ)),−2 + ϑ ∈ F1(Q(ϑ)).
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Analogously, we have µ−ϑ = X3 −X − 3, c−ϑ = 3, k−ϑ = 4, and then

−3 + ϑ ∈ F1(Q(ϑ)).

Similarly, we have µ−5ϑ+ϑ2 = X3− 2X2− 69X− 369, c−5ϑ+ϑ2 = k−5ϑ+ϑ2 =
13, and

−13− 5ϑ + ϑ2 ∈ F1(Q(ϑ)),

and finally µ5ϑ−ϑ2 = X3 + 2X2 − 69X + 369, c5ϑ−ϑ2 = 4, k5ϑ−ϑ2 = 5, and

−4 + 5ϑ − ϑ2 ∈ F1(Q(ϑ)).

Collecting our results we find F0(Q(ϑ)) = {ϑ} and

F1(Q(ϑ)) = {−2 + ϑ,−3− ϑ,−13− 5ϑ+ ϑ2,−4 + 5ϑ− ϑ2}.

In some cases the determination of CNS bases is considerably easier if
γ is an algebraic integer with at least one real conjugate. We then denote
by M(γ) (m(γ)) the integer part of the maximum (minimum) of the real
conjugates of γ.

2.1.15 Proposition. Let γ be a nonzero algebraic integer with at least one
real conjugate and B a set of representatives of the equivalence classes of
generators of power integral bases of Z[γ].

(i) For α ∈ Z[γ] \ {0} we have cα ≥M(α) + 2 and c−α ≥ −m(α) + 1.

(ii) Let β ∈ B. Then β − M(β) − 2 ∈ F1(γ) if µβ−M(β)−2 ∈ K, and
−β +m(β)− 1 ∈ F1(γ) if µ−β+m(β)−1 ∈ K.

(iii) If µβ−M(β)−2, µ−β+m(β)−1 ∈ K for all β ∈ B then we have F0(γ) = ∅
and

F1(γ) =
{

β −M(β)− 2,−β +m(β)− 1 |β ∈ B
}

.

Proof (0) For every α ∈ Z[γ] we have real embeddings τ̃α, ρα of Q(γ) with

M(α) ≤ τ̃α(α), ρα(α) < m(α) + 1.
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(i) Assume cα = M(α)+ 2− k for some k ∈ N \ {0}. Then µα(X +M(α)+
2− k) ∈ C, thus by ([1], Theorem 2.1)

τ̃α(α) − (M(α) + 2− k) < −1

which by (0) yields the contradiction

M(α) < M(α)− k + 1.

The other inequality is proved analogously.
(ii) It is enough to show that (β−M(β)− 2) + 1, (−β +m(β)− 1) + 1 /∈ C.
In view of ([1], Theorem 2.1) this is clear because by (0)

τ̃β(β −M(β)− 1) = τ̃β(β)−M(β) − 1 ≥M(β)−M(β) − 1 = −1,

ρβ(−β +m(β)) > −m(β)− 1 +m(β) = −1.

(iii) Denoting by F =
{

β −M(β)− 2,−β +m(β)− 1 |β ∈ B
}

it suffices to
show that

Cγ ⊂
{

ϕ− n |ϕ ∈ F, n ∈ N
}

.

Let α ∈ Cγ , β ∈ B, n ∈ Z with α = n ± β. In case α = n + β we have
−M(β)− 2− n ∈ N by (0) and

α+ (−M(β) − 2− n) = β −M(β)− 2 ∈ F,
and in case α = n− β we analogously find m(β)− 1− n ∈ N and

α+ (m(β)− 1− n) = −β +m(β)− 1 ∈ F.
2

2.2 CNS bases in quadratic and cubic number

fields

We conclude our observations by computing F0 and F1 of several quadratic,
cubic and quartic number fields. For the sake of completeness we start with
the formulation of some well-known results in our language.

CNS bases of quadratic number fields were studied by several authors
(see [43],[44],[30],[33],[86],[8] and others).



20 CANONICAL NUMBER SYSTEMS

2.2.1 Theorem. (I. Kátai – B. Kovács, W. J. Gilbert) Let D 6= 0, 1
be a square-free rational integer and ϑ =

√
D. Then F0(Q(ϑ)) = ∅ and

F1(Q(ϑ)) =














































{

−
⌊

1+
√

D
2

⌋

+ −3+ϑ
2 ,

⌊

1−
√

D
2

⌋

− 3+ϑ
2

}

, if D > 0,D ≡ 1 (mod 4),
{

−2−
⌊√

D
⌋

+ ϑ,−2−
⌊√

D
⌋

− ϑ
}

, if D > 0,D 6≡ 1 (mod 4),
{−3+ϑ

2 ,−3+ϑ
2

}

, if D = −3,
{

1+ϑ
2 , 1−ϑ

2

}

, if D < 0,D 6= −3,D ≡ 1 (mod 4)
{

−1 + ϑ,−1− ϑ
}

, if D = −1,
{

ϑ,−ϑ
}

, if D < 0,D 6= −1,D 6≡ 1 (mod 4).

Proof A representative of the generators of power integral bases of Q(ϑ)
is given by β = 1+ϑ

2 if D ≡ 1 (mod 4) (β = ϑ if D 6≡ 1 (mod 4)). If

D > 0 we have m(β) =
⌊

1−
√

D
2

⌋

,M(β) =
⌊

1+
√

D
2

⌋

for D ≡ 1 (mod 4)

(m(β) =
⌊

−
√
D
⌋

,M(β) =
⌊√

D
⌋

for D 6≡ 1 (mod 4)) and our assertions

follow from Proposition 2.1.15 and ([30], Theorem 1). For D < 0 algorithm
and ([30], Theorem 1) yield the assertions. 2

Using a theorem of S. Körmendi [46] S. Akiyama et al. ([5], Theorem
4.5) described all CNS in a family of pure cubic number fields.

2.2.2 Theorem. (S. Körmendi – S. Akiyama et al.) Let m ∈ N \ {0}
be not divisible by 3 and m3 + 1 squarefree. For ϑ = 3

√
m3 + 1 we have

F0(Q(ϑ)) = ∅ and

F1(Q(ϑ)) = {−ϑ,−m− 2 + ϑ,−2m2 − 2 +mϑ+ ϑ2,−m2 − 2−mϑ− ϑ2}.
Further, S. Akiyama et al. ([5], Theorem 4.4) determined all CNS in a

family of simplest cubic number fields (for details see D. Shanks [81]). We
state and slightly extend their result in our context.

2.2.3 Theorem. (S. Akiyama et al.) Let t ∈ Z, t ≥ −1 and ϑ denote a
root of the polynomial

X3 − tX2 − (t+ 3)X − 1.
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Then we have F0(Q(ϑ)) = ∅ and

F1(Q(ϑ)) = {−3−ϑ,−t−5− tϑ+ϑ2,−1+(t+1)ϑ−ϑ2}∪G ∪G−1∪G0∪G2

where

G =

{

{−t− 3 + ϑ,−1 + tϑ− ϑ2,−t− 5− (t+ 1)ϑ + ϑ2}, if t ≥ 0,

∅ otherwise,

G−1 =































{−3 + ϑ,−2− ϑ− ϑ2,−5 + ϑ2,−19 + 9ϑ+ 4ϑ2,−5− 9ϑ− 4ϑ2,

−22 + 5ϑ + 9ϑ2,−2− 5ϑ − 9ϑ2,−25− 4ϑ + 5ϑ2, 1 + 4ϑ − 5ϑ2,

−7− ϑ+ ϑ2,−1 + ϑ− ϑ2,−6 + 2ϑ+ ϑ2,−2− 2ϑ− ϑ2,

−6 + ϑ+ 2ϑ2,−2− ϑ− ϑ2}, if t = −1,

∅ otherwise,

G0 =











{−9 + 2ϑ + ϑ2,−2− 2ϑ− ϑ2,−11− 3ϑ + 2ϑ2,−1 + 3ϑ− 2ϑ2,

−10− ϑ+ 3ϑ2,−1 + ϑ− 3ϑ2}, if t = 0,

∅ otherwise,

G2 =











{−37 + 3ϑ+ 2ϑ2,−2− 3ϑ− 2ϑ2,−42− 20ϑ + 9ϑ2, 3 + 20ϑ − 9ϑ2,

−43− 23ϑ + 7ϑ2,−4 + 23ϑ− 7ϑ2}, if t = 2,

∅ otherwise.

Proof We proceed similarly as in Example 2.1.14, but leave the verifica-
tions of computational details to the reader. By [29] up to equivalence all
generators of power integral bases of Z[ϑ] are the following:

• for arbitrary t: ϑ,−tϑ+ ϑ2, (t+ 1)ϑ − ϑ2;

• for t = −1 additionally: 9ϑ+ 4ϑ2, 5ϑ+ 9ϑ2,−4ϑ+ 5ϑ2,−ϑ+ϑ2, 2ϑ+
ϑ2, ϑ + 2ϑ2;

• for t = 0 additionally: 2ϑ+ ϑ2,−3ϑ + 2ϑ2,−ϑ + 3ϑ2;

• for t = 2 additionally: 3ϑ+ 2ϑ2,−20ϑ + 9ϑ2,−23ϑ + 7ϑ2.
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The proof is now accomplished by Proposition 2.1.15 and Table 1 below
where we use the following notation: β is a generator of a power integral
basis of Q(ϑ). The minimal polynomial µβ = X3 + a1X

2 + a2X + a3 of β
is given by (a1, a2, a3). Lower bounds for the constants cβ, kβ are given by
Proposition 2.1.15. For their determination ([5], Theorem 3.1) and ([16],
Theorem 5.1) are used. Observe that in all cases considered here Remark
2.1.12 applies if cβ ≤ kβ − 2 or c−β ≤ k−β − 2. 2

β t µβ m(β) M(β) cβ kβ c−β k−β

ϑ ≥ 5 (−t,−t − 3,−1) −2 t+1 t+3 t+3 3 3
ϑ 0, . . . , 4 (−t,−t − 3,−1) −2 t+1 t+3 t+3 3 4
ϑ −1 (1,−2,−1) −2 1 3 4 3 4

−tϑ + ϑ2 ≥ 5 (−2t−6, t2 +7t+9, 0 t+3 t+5 t+5 1 1
−t2 − 3t − 1)

−tϑ + ϑ2 2, 3, 4 (−2t−6, t2 +7t+9, 0 t+3 t+5 t+6 1 1
−t2 − 3t − 1)

−ϑ + ϑ2 1 (−8, 17,−5) 0 4 6 7 1 2
ϑ2 0 (−6, 9,−1) 0 3 5 6 1 2
ϑ + ϑ2 −1 (−4, 3, 1) −1 2 4 5 2 3
(t + 1)ϑ −
ϑ2 ≥ 3 (t+6, 3t+9, 2t+3)

−t−
4

−1 1 2 t+5 t+5

(t + 1)ϑ −
ϑ2 0, 1, 2 (t+6, 3t+9, 2t+3)

−t−
4

−1 1 2 t+5 t+6

−ϑ2 −1 (5, 6, 1) −4 −1 1 3 5 6

3ϑ + 2ϑ2 2 (−34,−39,−11) −1 35 37 37 2 3

−20ϑ +
9ϑ2 2 (−86, 2041,−8029) 4 40 42 43 −3 −3

−23ϑ +
7ϑ2 2 (−52, 477,−1217) 5 41 43 43 −4 −3

9ϑ + 4ϑ2 −1 (−11,−102,−181) −4 17 19 19 5 6
5ϑ + 9ϑ2 −1 (−40, 391, 181) −1 20 22 23 2 2

−4ϑ + 5ϑ2 −1 (−29, 138,−181) 2 23 25 25 −1 0

−ϑ + ϑ2 −1 (−6, 5,−1) 0 5 7 7 1 2

2ϑ + ϑ2 0 (−6,−9,−3) −1 7 9 9 2 3
2ϑ + ϑ2 −1 (−3,−4,−1) −1 4 6 6 2 3
−3ϑ + 2ϑ2 0 (−12, 27,−17) 1 9 11 11 0 1
−ϑ + 3ϑ2 0 (−18, 87,−53) 0 8 10 11 1 1

ϑ + 2ϑ2 −1 (−9, 20, 1) −1 4 6 7 2 2

Table 1
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2.3 CNS bases in quartic cyclotomic fields

In this section we treat the cyclotomic fields of degree 4.

2.3.1 Theorem. Let ζ be a primitive eighth root of unity. Then we have
F0(Q(ζ)) = ∅ and

F1(Q(ζ)) = {−3± ζk | k = 1, 3, 5, 7}.
Proof By R. Robertson [73] up to equivalence all generators of power integral
bases of Q(ζ) are given by ζk, k ∈ Z, k odd. Observing µζ = X4 + 1
one immediately finds kζ = 4. The algorithm described in [15] and ([8],
Theorem 5.4) yield cζ = 3, and a straightforward application of algorithm
concludes the proof. 2

2.3.2 Theorem. Let ζ be a primitive twelfth root of unity. Then we have
F0(Q(ζ)) = ∅ and

F1(Q(ζ)) = {−3+ζ,−3−ζ,−3+ζ−1,−3−ζ−1,−1−ζ2+ζ−1,−2+ζ2−ζ−1}.

Proof The proof works analogously as that of Theorem 2.. 2

2.3.3 Theorem. Let ζ be a primitive fifth root of unity. Then we have
F0(Q(ζ)) = ∅ and

F1(Q(ζ)) = {−2 + ζ,−3− ζ,−2 + ζ + ζ3,−3− ζ − ζ3}.
Proof By [72] up to equivalence all generators of power integral bases of
Z[ζ] are ζ and 1

1+ζ . One immediately checks that

fk(X) = µζ(X + k) ∈ K ⇐⇒ k ≥ 4,

hence kζ = 4. By ([8], Theorem 5.4) one finds k ≥ −5 for fk ∈ C. Trivially,
f0, f−1 /∈ C, and an application of the algorithm described in [15] yields
fk /∈ C for k = −5,−4,−3,−2, 1, but f2, f3 ∈ C. Thus we have shown that

fk ∈ C ⇐⇒ k ≥ 2,

hence cζ = 2 and fk ∈ C for all k ∈ {cζ , . . . , kζ}.
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β µβ cβ kβ c−β k−β

ζ (1, 1, 1, 1) 2 4 3 5

−ζ − ζ3 (−2, 4,−3, 1) 3 5 2 4

Table 2

Therefore by algorithm we find −2+ζ ∈ F1(Q(ζ)). Similarly, the other
cases are dealt with. The main data are listed in Table 2 below where we
use the following notation: β is a generator of a power integral basis of
Q(ζ), the minimal polynomial µβ = X4 + a1X

3 + a2X
2 + a3X + a4 of β is

given by (a1, a2, a3, a4). 2

2.4 CNS bases in quartic number fields

For the convenience of the reader we rephrase a result of A. Pethő ([67],
Theorem 15) in our settings.

2.4.1 Theorem. (A. Pethő) Let f ∈ N, f ≥ 3, f odd, m = f2 + 2 and
n = f2 − 2. Then we have F0(Q(

√
m,
√
n)) = ∅ and

F1(Q(
√
m,
√
n)) = {−f−1+ϑ1,−f−1−ϑ1,−1−3f3 + f

2
+ϑ2,−2−f

3 − f
2
−ϑ2}

where

ϑ1 =

√
m+

√
n

2
, ϑ2 = f

1 +
√
mn

2
+
√
n+ (f2 − 1)

√
m+

√
n

2
.

For t ∈ Z \ {0,±3} let

Pt(X) = X4 − tX3 − 6X2 + tX + 1.

Let ϑ = ϑt be a root of Pt(X), then the infinite parametric family of
number fields Kt = K = Q(ϑt) is called simplest quartic fields. P. Olajos
[57] proved that Kt admits a power integral bases if and only if t = 2 and
t = 4, moreover he found all generators of power integral bases in these
fields. Using his result we are able to compute all CNS bases in such fields.
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2.4.2 Theorem. We have F0(Q(ϑ)) = ∅ and F1(Q(ϑ2)) = G2 and
F1(Q(ϑ4)) = G4 where

G2 = {−1

2
ϑ3 + ϑ2 +

7

2
ϑ− 4,

1

2
ϑ3 − ϑ2 − 7

2
ϑ− 2, 2ϑ3 − 9

2
ϑ2 − 11ϑ − 9

2
,

−2ϑ3 +
9

2
ϑ2 + 11ϑ − 19

2
,
1

2
ϑ3 − 2ϑ− 13

2
,−1

2
ϑ3 + 2ϑ− 5

2
,

1

2
ϑ2 + ϑ− 23

2
,−1

2
ϑ2 − ϑ− 5

2
, ϑ3 − 3

2
ϑ2 − 7ϑ− 9

2
,

−ϑ3 +
3

2
ϑ2 + 7ϑ− 11

2
,
3

2
ϑ3 − 2ϑ2 − 21

2
ϑ− 6,

−3

2
ϑ3 + 2ϑ2 +

21

2
ϑ− 8,

1

2
ϑ3 − 2ϑ2 +

1

2
ϑ− 1,−1

2
ϑ3 + 2ϑ2 − 1

2
ϑ− 11,

−ϑ3 +
5

2
ϑ2 + 5ϑ− 13

2
ϑ3 − 5

2
ϑ2 − 5ϑ− 5

2
,
1

2
ϑ2 − ϑ− 9

2
,

−1

2
ϑ2 + ϑ− 3

2
,
1

2
ϑ2 − 15

2
,−1

2
ϑ2 − 3

2
}

G4 =

{

−1

4
ϑ3 +

3

4
ϑ2 +

11

4
ϑ− 13

4
,
1

4
ϑ3 − 3

4
ϑ2 − 11

4
ϑ− 11

4
,

1

4
ϑ3 − 3

4
ϑ2 − 7

4
ϑ− 23

4
,−1

4
ϑ3 +

3

4
ϑ2 +

7

4
ϑ− 13

4
,

−3

4
ϑ3 +

13

4
ϑ2 +

13

4
ϑ− 27

4
,
3

4
ϑ3 − 13

4
ϑ2 − 13

4
ϑ− 9

4
,

3

4
ϑ3 − 11

4
ϑ2 − 21

4
ϑ− 11

4
,−3

4
ϑ3 +

11

4
ϑ2 +

21

4
ϑ− 25

4
,

−1

4
ϑ3 +

5

4
ϑ2 − 1

4
ϑ− 23

4
,
1

4
ϑ3 − 5

4
ϑ2 +

1

4
ϑ− 13

4
,

−1

4
ϑ3 +

5

4
ϑ2 +

3

4
ϑ− 19

4
,
1

4
ϑ3 − 5

4
ϑ2 − 3

4
ϑ− 5

4
}.

Proof Let γ be a generator of power integral basis in ZK . P. Olajos [57]
showed that only the following cases can occur:

• t = 2, γ = x · ϑ+ y · 1+ϑ2

2 + z · ϑ+ϑ3

2 where
(x, y, z) = (4, 2,−1), (−13,−9, 4), (−2, 1, 0), (1, 1, 0), (−8,−3, 2),
(−12,−4, 3), (0,−4, 1), (6, 5,−2), (−1, 1, 0), (0, 1, 0).
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• t = 4, γ = x · ϑ+ y · 1+ϑ2

2 + z · 1+ϑ+ϑ2+ϑ3

4 where
(x, y, z) = (3, 2,−1), (−2,−2, 1), (4, 8,−3), (−6,−7, 3), (0, 3,−1), (1, 3,−1).

From here on we proceed as in the proof of Theorem 4.. The details
of the computation are given in Table 3 below where we use the following
notation: (x, y, z) denote the coordinates of γ as in the table above, the
minimal polynomial µγ = X4 + a1X

3 + a2X
2 + a3X + a4 of γ is given by

(a1, a2, a3, a4).

(x, y, z) γ µγ cγ kγ c−γ k−γ

(4, 2,−1) − 1

2
ϑ3 + ϑ2 + 7

2
ϑ + 1 (−8, 19,−12, 1) 5 7 1 3

(−13,−9, 4) 2ϑ3 − 9

2
ϑ2 − 11ϑ − 9

2
(36, 451, 2176, 2641) 0 0 14 15

(−2, 1, 0) 1

2
ϑ3 − 2ϑ + 1

2
(−6, 1, 4, 1) 7 8 2 4

(1, 1, 0) 1

2
ϑ2 + ϑ + 1

2
(−12, 19,−8, 1) 12 12 2, 3

(−8,−3, 2) ϑ3 − 3

2
ϑ2 − 7ϑ − 3

2
(6, 1,−4, 1) 2 4 7 8

(−12,−4, 3) 3

2
ϑ3 − 2ϑ2 − 21

2
ϑ − 2 (4,−29, 44,−19) 4 5 10 10

(0,−4, 1) 1

2
ϑ3 − 2ϑ2 + 1

2
ϑ − 2 (20, 115, 260, 205) 0 1 14 14

(6, 5,−2) −ϑ3 + 5

2
ϑ2 + 5ϑ + 5

2
(−22, 169,−508, 421) 9 11 0 1

(−1, 1, 0) 1

2
ϑ2 − ϑ + 1

2
(−8, 19,−12, 1) 5 7 1 3

(0, 1, 0) 1

2
ϑ2 + 1

2
(−10, 25,−20, 5) 8 9 1 3

(3, 2,−1) − 1

4
ϑ3 + 3

4
ϑ2 + 11

4
ϑ + 3

4
(−4, 2, 4,−1) 4 6 2 4

(−2,−2, 1) 1

4
ϑ3 − 3

4
ϑ2 − 7

4
ϑ − 3

4
(0,−8,−8,−2) 5 6 4 5

(4, 8,−3) − 3

4
ϑ3 + 13

4
ϑ2 + 13

4
ϑ + 13

4
(−24, 208,−760, 958) 10 11 −1 0

(−6,−7, 3) 3

4
ϑ3 − 11

4
ϑ2 − 21

4
ϑ − 11

4
(16, 88, 200, 158) 0 1 9 10

(0, 3,−1) − 1

4
ϑ3 + 5

4
ϑ2 − 1

4
ϑ + 5

4
(−8, 16,−8,−2) 7 8 2 3

(1, 3,−1) − 1

4
ϑ3 + 5

4
ϑ2 + 3

4
ϑ + 5

4
(−12, 50,−84, 47) 6 8 0 2

Table 3

2

Power integral bases in the polynomial order Z[α] of Kt were described
by G. Lettl and A. Pethő [53].

2.4.3 Theorem. Let t ∈ N \ {0, 3} and ϑ denote a root of the polynomial

X4 − tX3 − 6X2 + tX + 1.
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Then we have F0(Q(ϑ)) = ∅ and F1(Q(ϑ)) = G ∪ G1 ∪ G2 ∪ G4 where

G =











{−3− ϑ,−t− 2 + ϑ,−2− 6ϑ − tϑ2 + ϑ3,

−t− 3 + 6ϑ+ tϑ2 − ϑ3}, if t ≥ 5,

∅ otherwise,

G1 =























{−4 + ϑ,−4− ϑ,−5 + 6ϑ + ϑ2 − ϑ3,−3− 6ϑ− ϑ2 + ϑ3,

−23 + 3ϑ2 − ϑ3, −1− 3ϑ2 + ϑ3,−14 + 25ϑ + 2ϑ2 − 4ϑ3,

−10− 25ϑ− 2ϑ2 + 4ϑ3}, if t = 1,

∅ otherwise,

G2 =

{

{−5 + ϑ,−3− ϑ,−5 + 6ϑ+ 2ϑ2 − ϑ3,−3− 6ϑ− 2ϑ2 + ϑ3}, if t = 2,

∅ otherwise,

G4 =























{−6 + ϑ,−3− ϑ, 1 + 9ϑ− 22ϑ2 + 4ϑ3,−78− 9ϑ + 22ϑ2 − 4ϑ3,

−7 + 6ϑ+ 4ϑ2 − ϑ3,−3− 6ϑ− 4ϑ2 + ϑ3,−62 + 74ϑ + 30ϑ2 − 9ϑ3,

−15− 74ϑ − 30ϑ2 + 9ϑ3}, if t = 4,

∅ otherwise.

Before embarking on the proof of Theorem 4. we need some preparation.
For checking the CNS property of some polynomials we exploit a technical
lemma which we state in a more general form without any extra amount of
effort. For the notation the reader is referred to [2].

2.4.4 Lemma. The vector r = (r1, . . . , r4) ∈ R4 with the properties

(i) r2 ≥ 2r1 > 0

(ii) r4 ≥ 1 + r1

(iii) r1 + 2r3 − r4 ≤ 0

(iv) 2r2 − r3 + 2r4 < 2

belongs to D0
4.
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Proof Let

E = {(e1, . . . , e4) ∈ Z4 | |ei| ≤ 2 (i = 1, . . . , 4), (e3, e4) 6= (0,±2),

eiei+1 ≤ 0 (i = 1, 2, 3), |ei| = 2 =⇒ ei+1 6= 0 (i = 1, 2, 3)}
and τ̃r(a) = (a2, a3, a4,−⌊r1a1 + · · · + r4a4⌋) be a mapping on Z4. Clearly,
property (i) of ([2], Theorem 5.1) is satisfied. We show (ii) and (iii) of ([2],
Theorem 5.1) in several steps thereby using the notation of ([66], Lemma

1): a
(S)−→ indicates that τ̃r(a) falls into step(s) S considered before.

(1) e1 ≥ 0, τ̃r(e1, 0, 0, 0) = 0

(2) e1 ≤ 0, (e1, 1, 0, 0)
(1)−→

(3) (e1,−1, 1, 0)
(2)−→

(4) e2 ∈ {0, 1}, (e1, e2,−1, 1)
(3)−→

(5) (e1,−1, 1,−1)
(4)−→

(6) (e1, 2,−1, 1)
(3,5)−→

(7) (e1, 0, 1,−1)
(4)−→

(8) e2 ∈ {0, 1}, (e1, e2, 0, 1)
(7)−→

(9) (e1, e2, 0, 0)
(1,8)−→

(10) (e1, 0, 1, 0)
(9)−→

(11) (e1,−1, 0, 1)
(7,10)−→

(12) (e1, 2,−1, 0)
(11)−→

(13) (e1,−1, 2,−1)
(6,12)−→

(14) (e1, 1,−1, 2)
(13)−→

(15) (e1, e2, 1,−1)
(4,5,7,14)−→

(16) e1 ≤ −1, (e1, e2, 2,−1)
(6,12)−→

(17) (e1, 0,−1, 2)
(16)−→

(18) (e1, 1, 0,−1)
(4,17)−→

(19) (e1, e2, 1, 0)
(9)−→
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(20) (e1, e2,−1, 0)
(11)−→

(21) (e1, e2, e3, 0)
(9,19,20)−→

(22) e4 ≥ 1, (e1, e2, e3, e4)
(13,15,21)−→

(23) (e1, 2,−1, 1)
(21)−→

(24) (e1, e2, e3,−1)
(4,6,17)−→

(25) (e1, e2, e3, e4)
(21,22,24)−→

This concludes the proof. 2

We shall make use of the following consequence of this lemma.

2.4.5 Corollary. The polynomial X4 + p3X
3 + p2X

2 + p1X + p0 ∈ Z[X]
with the properties

(i) p0 ≥ 2

(ii) p1 ≥ p0 + 1

(iii) p3 ≥ 2

(iv) p1 ≥ 2p3 + 1

(v) 2p1 − p2 + 2p3 ≤ 2p0 − 1

is a CNS polynomial.

Proof This is clear by Lemma 2.4.4 and ([2], Theorem 3.1). 2

We are now in a position to verify Theorem 4..
Proof of Theorem 4.. By [29] up to equivalence all generators of power

integral bases of Z[ϑ] are the following:

• for t ∈ N \ {0, 3}: ϑ, 6ϑ+ tϑ2 − ϑ3,

• for t = 1 additionally: 3ϑ2 − ϑ3, 25ϑ + 2ϑ2 − 4ϑ3,

• for t = 4 additionally: 9ϑ− 22ϑ2 + 4ϑ3,−74ϑ − 30ϑ2 + 9ϑ3.

We proceed analogously as in the proof of Theorem 2.2.3 by using Proposi-
tion 2.1.15 and Table 4 below with the following notation: β is a generator of
a power integral basis of Q(ϑ). The minimal polynomial µβ = X4 +a1X

3 +
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a2X
2 + a3X + a4 of β is listed in the form (a1, a2, a3, a4). Lower bounds

for the constants cβ , kβ are given by Proposition 2.1.15. For their determi-
nation ([5], Theorem 3.1) and Corollary 2.4.5 are used in a straightforward
way. Similarly as in the proof of Theorem 2.2.3 Remark 2.1.12 is used.
2

β t µβ m(β) M(β) cβ kβ c−β k−β

ϑ 6= 1, 2 (−t,−6, t, 1) −2 t t+2 t+2 3 4

ϑ 1 (−1,−6, 1, 1) −3 2 4 6 4 5

ϑ 2 (−2,−6, 2, 1) −2 3 5 6 3 5

6ϑ + tϑ2 −
ϑ3

6=
1, 2, 4

(−3t, 3t2 − 6, −1 t+1 t+3 t+4 2 2

−t3 + 11t,−5t2 +
1)

6ϑ+ϑ2−ϑ3 1 (−1,−6, 1, 1) −3 2 4 6 4 5

6ϑ + 2ϑ2 −
ϑ3 2 (−6,−6, 14,−19) −2 3 5 7 3 4

6ϑ + 4ϑ2 −
ϑ3 4 (−12, 42,−20,−79) −2 5 7 8 3 3

3ϑ2 − ϑ3 1 (−23, 39,−22, 4) 0 21 23 23 1 3

25ϑ+2ϑ2−
4ϑ3 1 (13,−96, −9 12 14 14 10 12

−1993,−7241)

9ϑ−22ϑ2+
4ϑ3 4 (84, 618, 1580, 1361) −77 −3 −1 1 78 78

−74ϑ −
30ϑ2 + 9ϑ3 4 (20,−1878, −61 13 15 17 62 62

29932,−144239)

Table 4

Finally we consider another family of orders in a parametrized family of
quartic number fields, where all power integral bases are known. Let t ∈ Z,
t ≥ 0, and P (X) = X4 − tX3 −X2 + tX + 1. Denote by α one of the zeros
of P (X). In the following we deal with the order O = Z[α] of Q(α).

M. Mignotte, A. Pethő and R. Roth [55] gave the following result:

2.4.6 Theorem. (M. Mignotte, A. Pethő, R. Roth ) Let t ≥ 4. Then
every element γ ∈ O such that Z[γ] = O is equivalent to some element
γ = xα+ yα2 + zα3 with

(x, y, z) ∈ {(1, 0, 0), (1, t,−1), (t, t − 1,−1), (t,−t − 1, 1), (1, 0,−1),

(1,−t(t2 + 1), t2)}
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except when t = 4, in which case additionally (x, y, z) ∈ {(209, 140,−49),
(209,−312, 64)}. 1

2.4.7 Theorem. Let t ≥ 4. We have F0(Q(α)) = ∅ and F1(Q(α)) =
G4 ∪ Gt where

G4 =
{

209α + 140α2 − 49α3 + 350, 209α − 312α2 + 64α3 − 71
}

Gt =
{

α+ t+ 1, α+ tα2 − α3 + t+ 2, tα+ (t− 1)α2 − α3 + 8,

tα− (t+ 1)α2 + α3 + 2, α− α3 + 2, α − t(t2 + 1)α2 + t2α3 − t+ 1
}

.

To prove this Theorem we need the some Lemmata.

2.4.8 Lemma. If p0 = p1 − p2 + p3 and p3 < p0 < p2 < p1 and p0 ≤
p2 − p3 < 2p0 and p2 − 2p3 + 2 < p0, then X4 + p3X

3 + p2X
2 + p1X + p0

is not a CNS polynomial.

Proof Considering (1, 0,−1, 2) and applying mapping τ̃ we get

(0,−1, 2,−2), since −⌊2+ p2−2p3+1
p0

⌋ = −2. Calculating in a similar way we

get the following sequence:

(1, 0,−1, 2), (0,−1, 2,−2), (−1, 2,−2, 2), (2,−2, 2,−1), (−2, 2,−1, 0),

(2,−1, 0, 1), (−1, 0, 1,−1), (0, 1,−1, 1), (1,−1, 1,−1),

(−1, 1,−1, 1), (1,−1, 1, 0), (−1, 1, 0,−1), (1, 0,−1, 2).

This sequence contains a cycle starting with (1, 0,−1, 2), hence polynomials
with the properties above are not CNS. 2

2.4.9 Lemma. The P (X) = X4 +(8+ t)X3 +(23+6t)X2 +(28+11t)X+
13 + 6t is a CNS polynomial for every t ≥ 4.

The proof of this lemma is quite complicated, therefore it can be found
in Appendix.

Proof of Theorem 5.. We follow the same line as in the proof of Theorem
4.. First we compute the data necessary to apply algorithm . For the zeroes

1In Theorem 4 of [55] the last vector reads (209,−352, 64), but its correct value is
(209,−312, 64).
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of the polynomial P (X) we use the following estimates:

α1 = t− 1/t3 − 1/t5 − 4/t7 − 9/t9, α2 = −1/t− 1/t5 − 1/t7 − 5/t9,

α3 = 1 + 1/2t+ 1/8t2 + 1/2t3, α4 = −1 + 1/2t − 1/8t2.

In a straightforward way we obtain M(γ) for any possible value of γ. Know-
ing M(γ) it is easy to establish kγ . Because of the special form of P (X)
we do not need k−γ . Indeed denote by σ the automorphism of Q(α), which

maps α to − 1
α . Then an easy computation shows that

σ(−α) = α+ tα2 − α3 − t
σ(−(tα+ (t− 1)α2 − α3)) = tα− (t− 1)α2 + α3 + 1

σ(−(α− α3)) = α− t(t2 + 1)α2 + t2α3 + t3

and if t = 4 then

σ(−(209α + 140α2 − 49α3)) = 209α − 312α2 + 64α3 + 116.

The details of the computation are given in Table 5 below where we use the
following notation: (x, y, z) denote the coordinates of γ = xα+yα2+zα3 as
in Theorem 2.4.6, the minimal polynomial µγ = X4+a1X

3+a2X
2+a3X+a4

of γ is given by (a1, a2, a3, a4). We gave cγ as well, although its computation
is detailed after the table.

γ µγ m(γ) M(γ) cγ kγ

α (−t,−1, t, 1) -1 t − 1 t + 1
t + 3, if t = 4
t + 2, if t > 4

α + tα2 − α3 (−3t, 3t2 − 1, t − t3, 1) 0 t t + 2 t + 4
tα+(t−1)α2 −
α3

(2 − 2t,−3t + 5,−t +
4, 1)

-1
6

2t − 1
8

2t + 1
8, if t = 4

2t + 1, if t > 4
tα−(t+1)α2 +
α3 (2t + 2, 3t + 5, t + 4, 1) −2t − 1 -2 2 3

α − α3 (t3 − t, 3t2 − 1, 3t, 1) −t3 + t -1 2 3

α−t(t2+1)α2+
t2α3

(3t3 + t,
3t6 + 3t4 + 3t2 − 1,
t9 + 3t7 + 6t5 − 2t3 − 3t,
t10 + 3t8 − t6 − 3t4 + 1)

−t3 − 1 −t−1 −t+1 −t + 1

209α+140α2 −
49α3 (-4,2,4,-1) -43 348 350 350

209α−312α2 +
64α3 (0,-8,-8,-2) -465 -74 -71 -70

Table 5
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As all zeroes of P (X) are real, by Proposition 2.1.15 it is enough to test
the polynomials µγ(X + n) for M(γ) + 2 ≤ n < kγ .

Case(1) γ = α. Then

µγ(X + t+ 1) = X4 + (4 + 3t)X3 + (5 + 9t+ 3t2)X2 +

+(2 + 8t+ 6t2 + t3)X + 1 + 2t+ 3t2 + t3,

which belongs to C. To show this put

E = {e = (−a+ ε1 − ε2 + ε3, a− ε1 + ε2,−a+ ε1, a) |
ε1, ε2, ε3 ∈ {−1, 0, 1}, |a| ≤ 3t2 + 9t+ 7}.

Then we prove that it is a set of witnesses for µγ(X + t+ 1). Indeed (i)
and (ii) of Theorem 2.1.4 obviously hold. We have

a(2 + 8t + 6t2 + t3) − (a − ε1)(5 + 9t + 3t2) + (a − ε1 + ε2)(4 + 3t) − a + ε1 − ε2 + ε3

1 + 2t + 3t2 + t3
= a+R,

where

R =
ε1(3t

2 + 6t+ 2) + 3ε2(t+ 1) + ε3 − a
1 + 2t+ 3t2 + t3

.

If t > 6 then |R| < 1. Thus, if a ≥ 0, then −τ̃(e)4 ≤ e4. If a < 0, then
τ̃(e)4 ≤ −e4 +1 and if a < −(3t2 +9t+6) then τ̃(e)4 ≤ −e4, i.e. E satisfies
(iii) too, as t = 4, 5 can be directly checked.

If a < 0 then τ̃(e)4 ≥ 0. If a > 0 then applying τ̃ some times we get
0 ≤ τ̃(e)k4 < a. This shows that (iv) holds too, i.e. µγ(X + t+ 1) ∈ C.

Case(2) γ = α+ tα2 − α3. We have

µγ(X + t+ 3) = X4 + (12 + t)X3 + (53 + 9t)X2 + (102 + 26t)X + 73 + 24t,

which is a CNS polynomial by Corollary 2.4.5, provided t ≥ 10. For t < 10
we prove the same directly. Further we have

µγ(X + t+ 2) = X4 + (t+ 8)X3 + (6t+ 23)X2 + (28 + 11t)X + 13 + 6t,

which belongs to C by Lemma 2.4.9.
Case (3) γ = tα+ (t− 1)α2 − α3 is obvious by Proposition 2.1.15.
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Case (4) γ = tα− (t+ 1)α2 + α3. We have

µγ(X + 1) = X4 + (2t+ 6)X3 + (9t+ 17)X2 + (13t+ 24)X + 6t+ 13,

which is not a CNS polynomial by Lemma 2.4.8. The minimal polynomial
of γ − 2 is

µγ(X + 2) = X4 + (2t+ 10)X3 + (15t+ 41)X2 + (37t + 80)X + 61 + 30t

which is a CNS polynomial. We can prove it with Theorem 2.1.7
and entry vectors: r1 = [−1

20 ,
1
60 ,

9
20 ,

71
60 ], r2 = [ 1

60 ,
1
60 ,

9
20 ,

71
60 ], r3 =

[−1
20 ,

1
12 ,

9
20 ,

71
60 ], r4 = [−1

20 ,
1
60 ,

31
60 ,

71
60 ], r5 = [−1

20 ,
1
60 ,

9
20 ,

5
4 ].

Case(5) γ = α− α3. We have

µγ(X + 1) = X4 + (t3 − t+ 4)X3 + (3t3 + 3t2 − 3t+ 5)X2 +

(3t3 + 6t2 + 2)X + t3 + 3t2 + 2t+ 1,

which is not a CNS polynomial by Lemma 2.4.8. The minimal polynomial
of γ − 2 is

µγ(X + 2) = X4 + (t3 − t+ 8)X3 + (6t3 + 3t2 − 6t+ 23)X2 +

+(12t3 + 12t2 − 9t+ 28)X + 8t3 + 12t2 − 2t+ 13,

for which we can apply Theorem 2.1.7 with entry vectors:

r1 = [−1
48 ,

5
48 ,

35
48 ,

71
48 ], r2 = [ 1

16 ,
5
48 ,

35
48 ,

71
48 ], r3 = [−1

48 ,
3
16 ,

35
48 ,

71
48 ],

r4 = [−1
48 ,

5
48 ,

13
16 ,

71
48 ], r5 = [−1

48 ,
5
48 ,

35
48 ,

25
16 ].

Hence the polynomial is a CNS polynomial.
Case(6) γ = α− t(t2 + 1)α2 + t2α3. As kγ = M(γ) + 2, thus the proof

is obvious by Proposition 2.1.15.
Cases (7) and (8) can be verified by direct computation. 2



Chapter 3

Symmetric Shift Radix

Systems

In this chapter first we define symmetric shift radix systems and some re-
lated number systems (symmetric β-expansions, symmetric canonical num-
ber systems). Then we list basic properties and the algorithm ([9]) applied
to characterize symmetric shift radix systems. Two dimensional SSRS is
treated in [9] by Akiyama and Scheicher, in the second and third sections
we will show that D0

3 is the union of four polyhedra and a polygon.

The results of this chapter are based on [40], that is a joint work with
Klaus Scheicher, Paul Surer and Jörg M. Thuswaldner.

We recall the definition of SRS: Let d ≥ 1 be an integer, r ∈ Rd, and
let

τ̃r : Zd → Zd, a = (a1, . . . , ad) 7→ (a2, . . . , ad,−⌊ra⌋),
where ra = r1a1 + r2a2 + · · · + rdad, i.e., the inner product of the vectors
r and a. Then τ̃r is called a shift radix system (for short SRS), if

∀a ∈ Zd ∃n ∈ N : τ̃n
r (a) = 0.

We will deal with a variant of SRS, the so-called symmetric shift radix
system.

35
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3.0.10 Definition. (cf. [9]) Let d ≥ 1 be an integer, r ∈ Rd, and let

τr : Zd → Zd, a = (a1, . . . , ad) 7→
(

a2, . . . , ad,−
⌊

ra +
1

2

⌋)

. (3.0.1)

Then τr is called a symmetric shift radix system (SSRS for short), if

∀a ∈ Zd ∃n ∈ N : τn
r (a) = 0.

Observe that the only difference between the two definitions is just the
additional summand “+1

2” inside the floor function in (6.0.1).
SSRS have been already treated by Akiyama and Scheicher [9]. It was

proved there that, analogously to the classical SRS, we have a strong rela-
tionship to certain notions of number systems. In particular SSRS form a
common generalization of symmetric β-expansions and symmetric canon-
ical number systems (SCNS). For the sake of completeness we recall the
definition of these number systems and summarize the results on their re-
lation to SSRS.

3.0.11 Definition. (cf. [9]) Let β > 1 be a real non-integral number.
The unique representation of a positive γ ∈ R of the form

γ = dmβ
m + dm−1β

m−1 + dm−2β
m−2 + · · ·

for some m ∈ Z with dk ∈ (−β+1
2 , . . . , β+1

2 ) ∩ Z, k ≤ m, such that the
condition

−β
k+1

2
≤
∑

i≤k

diβ
i <

βk+1

2

is satisfied for any k ≤ m, is called the symmetric β-expansion of γ. We
say that β has property (SF) if all γ ∈ Z[β−1] admit a finite symmetric
β-expansion.

In the same way as for property (F) of ordinary β-expansions (see [27]) it
can be shown that a number β with property (SF) is necessarily a Pisot
number.

3.0.12 Theorem. A Pisot number β with minimal polynomial (x −
β)(xd−1 + rd−1x

d−2 + · · · + r2x + r1) has Property (SF) if and only if
τ(r1,...,rd−1) is an SSRS.
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There is a similar statement for SCNS whose definition we want to recall
now.

3.0.13 Definition. (cf. [9]) Let P (X) = Xd + pd−1X
d−1 + · · · + p1X +

p0 ∈ Z[X], |p0| ≥ 2, R := Z[X]/P (x)Z[X], x ∈ R the image of X under

the canonical epimorphism from Z[X] to R and N :=
[

− |p0|
2 , |p0|

2

)

∩ Z.

(P (X),N ) is called a symmetric canonical number system (SCNS) if each
R ∈ R can be represented as

R =

l
∑

i=0

aix
i, ai ∈ N .

3.0.14 Theorem. (P (X),N ) with P (X) = Xd + pd−1X
d−1 + · · ·+ p1X +

p0 ∈ Z[X] and N :=
[

− |p0|
2 , |p0|

2

)

∩ Z is an SCNS if and only if τr is an

SSRS, where r =
(

1
p0
,

pd−1

p0
, . . . , p1

p0

)

.

3.1 Basic properties and algorithms for Symmet-

ric Shift Radix Systems

Now, in order to show the differences between SSRS and SRS, we define
the sets of Dd, D0

d related to the behavior of the periods of τr. Let

Dd :=
{

r ∈ Rd
∣

∣

∣∀a ∈ Zd ∃n, l ∈ N : τk
r (a) = τk+l

r (a) ∀k ≥ n
}

and

D0
d :=

{

r ∈ Rd |τr is an SSRS
}

.

We recall that

D̃d =
{

r ∈ Rd
∣

∣

∣
∀a ∈ Zd ∃n, l ∈ N : τ̃k

r
(a) = τ̃k+l

r
(a) ∀k ≥ n

}

and

D̃0
d =

{

r ∈ Rd |τ̃r is an SRS
}

,
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For r = (r1, . . . , rd) ∈ Rd, let

R(r) =

















0 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . . 1 0

0 0 · · · 0 1
−r1 −r2 · · · −rd−1 −rd

















.

For M ∈ Rd×d, denote by ̺(M) the spectral radius ofM , i.e., the maximum
absolute value of the eigenvalues of M . For simplicity, we write ̺(r) :=
̺(R(r)). Let

Ed(ε) = {r ∈ Rd : ̺(r) < ε}.
It is known that the Ed(ε) is a regular set, i.e., the set coincides with the
closure of its interior.

We start with the comparison of the sets Dd and D̃d. Firstly, it can
easily be seen that their interiors are the same since from [2] we know

Ed(1) ⊂ D̃d ⊂ Ed(1) while in [9] it has been shown that

Ed(1) ⊂ Dd ⊂ Ed(1). (3.1.1)

We will dwell upon the set Dd in Section 3.2. However, the sets D0
d and D̃0

d

have different behavior. Properties of the set D̃0
d have been developed in

[2, 3, 4]. In [3, 83] special attention was paid to the two dimensional case

D̃0
2. It turns out that the structure of D̃0

2 is very complicated and although
large parts of the set could be characterized, a full characterization is still
outstanding. An approximation of D̃0

2 is shown in Figure 3.1.

The sets D̃0
d for d ≥ 3 are not yet investigated in detail, however, com-

puter experiments indicate that D̃0
3 is hard to describe.

For the case of SSRS the situation becomes more pleasant at least for
low dimensions. Akiyama and Scheicher [9] presented that D0

2 has a simple
characterization (see Figure 3.2). They found out that

D0
2 =

{

(x, y) ∈ R2

∣

∣

∣

∣

x ≤ 1

2
,−x− 1

2
< y ≤ x+

1

2

}

\
{

(
1

2
, y) ∈ R2

∣

∣

∣

∣

1

2
< y < 1

}

,
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Figure 3.1: An approximation of D̃0
2

i.e., D0
2 is an isosceles triangle together with some parts of its boundary.

We are interested in the shape of the set D0
3.

Let us consider the set Dd. By (6.0.4) apart from the boundary, the
set Dd coincides with the set Ed(1) and their closures are equal. As the
minimal polynomial of R(r) is given by

xd + rdx
d−1 + · · · + r2x+ r1 (3.1.2)

the problem of characterizing Ed(ε) is equivalent to the problem of finding
polynomials of the form (3.1.2) whose roots lie inside the ε multiple of
the unit ball. This problem was already settled in [78, 84]. From these
references we easily get the following lemma.

3.1.1 Lemma. A vector r = (r1, ..., rd) is contained in Ed(ε) if and only if
the Hermitian form

Hd(x0, . . . , xd−1) :=

d−1
∑

i=0

∣

∣

∣

∣

∣

∣

d−1
∑

j=i

εd+i−jrd+i−j+1xj

∣

∣

∣

∣

∣

∣

2

−
d−1
∑

i=0

∣

∣

∣

∣

∣

∣

d−1
∑

j=i

εj−irj−i+1xj

∣

∣

∣

∣

∣

∣

2

with rd+1 = 1 is positive definite.
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Figure 3.2: The shape of D0
2

Now we turn to the study of D0
d. The set D0

d can be constructed from
the set Dd by cutting out convex polyhedra. For r = (r1, . . . , rd) ∈ Dd,
an element a = (a1, . . . , ad) ∈ Zd \ {0} is a non-zero periodic point of τr
of period L, if a = τL

r (a). From the definition of D0
d it follows that the

existence of such a periodic point is necessary and sufficient for r 6∈ D0
d.

Suppose that the period defined by a runs through the orbit

τ j
r
(a) = (a1+j , . . . , ad+j) (0 ≤ j ≤ L− 1),

where aL+1 = a1, ..., aL+d−1 = ad−1. We denote such a period by

(a1, . . . , ad); ad+1, . . . , aL

and say that it is a period of τr or just a period of Dd.
Let a non-zero period π := (a1, . . . , ad); ad+1, . . . , aL be given. We may

ask for the set P (π) of all r ∈ Dd for that π occurs as a period of τr. By the
definition of τr, an element r ∈ P (π) has to satisfy the system of L double
inequalities

−1

2
≤ r1a1+i + r2a2+i + · · ·+ rdad+i + ad+1+i <

1

2
. (3.1.3)

Here i runs from 0 to L − 1 and aL+1 = a1, . . . , aL+d = ad. Such a sys-
tem characterizes a convex polyhedron, which is possibly degenerated or
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equal to the empty set. Therefore we will call P (π) a cutout polyhedron.
Example 3.2.1 shows how P (π) could look like for a given period in the
three dimensional case. Since each point r ∈ P (π) has π as a period of the
associated mapping τr the set P (π) has empty intersection with D0

d. Thus
we get the representation

D0
d = Dd \

⋃

π 6=0

P (π),

where the union is extended over all non-zero periods π. Since the set
of periods is infinite, this expression is not suitable for calculations. The
following theorem shows how to reduce the set of possible periods to a finite
set and gives an efficient algorithm for a closed subset H of intDd = Ed(1)
to determine H∩D0

d. It was presented for the first time for CNS in [15] and
further improved and adapted to SRS in [2, 3, 83]. In [9] the algorithm was
established for SSRS. Basically we will use this version. Let ei be the i-th
canonical unit vector. For an r = (r1, . . . , rd) ∈ intDd, denote by V(r) ⊂ Zd

the smallest set with the properties

1. ±ei ∈ V(r), i = 1, . . . , d,

2. (a1, . . . , ad) ∈ V(r)⇒ (a2, . . . , ad+1) ∈ V(r) where ad+1 satisfies

−1 < r1a1 + r2a2 + · · · + rdad + ad+1 < 1.

V(r) ⊂ Zd is called a set of witnesses for r. Additionally define G(V(r)) =
V × E to be the graph with set of vertices V = V(r) and set of edges
E ⊂ V × V such that

∀a ∈ V : (a, τr(a)) ∈ E.
The set of vertices is exactly the same as in [2]. The edges are defined in a
different way. There exists only one outgoing edge for each vertex. We are
interested in the cyclic structure of such graphs. A cycle a1 → a2 → · · · →
aL → a1 induces a periodic point of period L in an obvious way.

3.1.2 Theorem. (cf. [9]) Let r1, . . . , rk ∈ Dd and let H := �(r1, . . . , rk)
be the convex hull of r1, . . . , rk. Assume that H ⊂ intDd and sufficiently
small in diameter. Then there exists an algorithm to construct a finite
directed graph G(H) = V × E with vertices V ⊂ Zd and edges E ⊂ V × V
which satisfies
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1. ±ei ∈ V for all i = 1, . . . , d,

2. G(V(x)) is a subgraph of G(H) for all x ∈ H,

3. H ∩ D0
d = H \⋃π P (π), where π runs through all periods induced by

the nonzero primitive cycles of G.

Observe that the theorem can be extended to any convex set H ⊂ intDd

analogously to [83]. In our context the version presented in Theorem 6.
suffices. In practice, the graph in Theorem 6. is constructed by successively
adding new vertices. Note that the restriction “sufficiently small” is not
superfluous. It turns out that the size of the set of vertices in the graph in
Theorem 6. can grow to infinity if H is chosen too big. For more detailed
information on this topic, see [9, 83]. For us it is only important to choose
H in a way that everything stays finite. This can be realized by a suitable
subdivision of a given set. We will turn to this problem in Section 3.3.

Theorem 6. proved to be a powerful tool for characterizing D0
d. If it

is used properly, D0
d ∩H can be characterized for any closed H ⊂ intDd.

Thus, whenever there exists such an H with D0
d ⊂ H there is a chance to

characterize D0
d completely. That was the case for d = 2 and we will see

that this is valid for d = 3, too. For classical SRS, there does not exist such
a set H for d ≥ 2.

3.2 Construction of D0
3 from D3

Our aim is to characterize D0
3. We already know that

E3(1) ⊂ D3 ⊂ E3(1).

From Lemma 3.1.1 we calculate

E3(1) =
{

(x, y, z) ∈ R3
∣

∣ |x| < 1, |y − xz| < 1− x2, |x+ z| < |y + 1|
}

.

The following example shows how a given period cuts out a polyhedron
from E3(1).
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3.2.1 Example. Consider the period π := (1, 1,−1);−1, 0. It induces a
system of inequalities (6.0.5) which describes the polyhedron P (π). In our
case we get

P (π) =
{

(x, y, z)
∣

∣

∣
− 1

2
≤ x+ y − z − 1 <

1

2
∧ −1

2
≤ x− y − z < 1

2

∧ −1

2
≤ −x− y + 1 <

1

2
∧ −1

2
≤ −x+ z + 1 <

1

2

∧ −1

2
≤ y + z − 1 <

1

2

}

.

By removing redundant inequalities, this reduces to

P (π) =
{

(x, y, z)
∣

∣

∣
x+ y − z − 1 <

1

2
∧ x− y − z < 1

2
∧ −1

2
≤ −x− y + 1

∧ −x+ z + 1 <
1

2
∧ −1

2
≤ y + z − 1

}

yielding a polyhedron with five faces. P (π) only contains r ∈ Dd with
τ5
r ((1, 1,−1)) = (1, 1,−1) and, hence, P (π) has empty intersection with
D0

3. Figure 3.3 shows the position of P (π) in E3(1). It is easy to see that
P (π) really cuts out something.

In the sequel we will need E3(1) and there some problems occur. Suppose
the set which is obtained by changing all the strict inequalities (“<”) of

E3(1) to non strict inequalities (“≤”). One may think that it equals E3(1),
but this is not the case. It can be easily seen that this set contains the
unbounded lines (1, λ, λ), λ ∈ R and (−1, µ,−µ), µ ∈ R which cannot be

true for E3(1). Hence, E3(1) is only a subset of this set. We will solve the
problem by adding some suitable inequalities. Let

E ′3 :=
{

(x, y, z) ∈ R3
∣

∣ |x| ≤ 1 ∧ |y − xz| ≤ 1− x2

∧ |x+ z| ≤ |y + 1| ∧ |y − 1| ≤ 2 ∧ |z| ≤ 3
}

and consider the intersection of E ′3 with the hyperplane

Ac :=
{

(x, y, z) ∈ R3 | x− c = 0
}

for constant c.
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Figure 3.3: The position of P (π) in E3(1)

3.2.2 Lemma. For any |c| < 1 the intersection of E ′3 with the plane Ac

yields the closed triangle △(A
(1)
c , A

(2)
c , A

(3)
c ) with A

(1)
c = (c,−1,−c), A(2)

c =

(c, 1 − 2c, c − 2), A
(3)
c = (c, 2c + 1, c + 2).

Proof We have

E ′3 ∩Ac =
{

(c, y, z) ∈ R3
∣

∣ |y − cz| ≤ 1− c2 ∧ |c+ z| ≤ |y + 1|
∧ |y − 1| ≤ 2 ∧ |z| ≤ 3

}

.

As all inequalities are linear, this is a convex set. It is quickly verified that

A
(1)
c , A

(2)
c , A

(3)
c ∈ E ′3 ∩Ac. Thus △(A

(1)
c , A

(2)
c , A

(3)
c ) ⊂ E ′3 ∩Ac. On the other

hand consider the closed convex set

Bc :=
{

(c, y, z)
∣

∣ y − cz ≤ 1− c2 ∧ c+ z ≤ y + 1 ∧ −y − 1 ≤ c+ z
}

.

Observe that for its definition we used only inequalities that occurred in the
definition of E ′3∩Ac and hence we have E ′3∩Ac ⊂ Bc. Pairwise intersection of

the three boundary lines of Bc yields exactly the three points A
(1)
c , A

(2)
c , A

(3)
c

and therefore △(A
(1)
c , A

(2)
c , A

(3)
c ) = Bc ⊃ E ′3 ∩Ac. 2
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3.2.3 Theorem. E3(1) = E ′3.
Proof Obviously E ′3 is a closed set while E3(1) is open. We state that

int E ′3 = E3(1). From Lemma 2. we know

E ′3 ∩Ac = {(c, y, z) | y − cz ≤ 1− c2 ∧ c+ z ≤ y + 1 ∧−y − 1 ≤ c+ z}

and as every point of E3(1) is inside E ′3 ∩Ac for some |c| < 1 we have

E ′3 =
⋃

|c|≤1

(E ′3 ∩Ac) ⊃ E3(1)

and therefore
int E ′3 ⊃ int E3(1) = E3(1).

On the other hand denote by int Ac(E ′3 ∩Ac) the interior of the set E ′3 ∩
Ac(subspace topology) for |c| < 1, i.e., the open triangle defined in Lem-
ma 2., and observe that

int E ′3 =
⋃

|c|<1

int Ac(E ′3 ∩Ac)

as we can find a neighborhood around each point of int Ac(E ′3 ∩Ac), |c| < 1
which is contained in E ′3. Further each point of int Ac(E ′3 ∩Ac) satisfies the
conditions of E3(1) whenever |c| < 1. Hence

int E ′3 =
⋃

|c|<1

int (E ′3 ∩Ac) ⊂ E3(1).

Thus we have shown that int E ′3 = E3(1).
To prove the theorem we show E ′3 = int E ′3. We already have that

int E ′3 =
⋃

|c|<1 int Ac(E ′3 ∩Ac). Hence we look at the convergent sequences

of points contained in
⋃

|c|<1 int (E ′3 ∩Ac). Such a sequence converges either

to some point within
⋃

|c|<1(E ′3∩Ac) or to some point within one of the sets

limc→±1(E ′3 ∩Ac). From Lemma 2. we already have

E ′3 ∩Ac = △((c,−1,−c)(c, 1 − 2c, c − 2), (c, 2c + 1, c+ 2))
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and we see that

lim
c→1

(E ′3 ∩Ac) = {(1, λ, λ) | −1 ≤ λ ≤ 3},

lim
c→−1

(E ′3 ∩Ac) = {(−1, λ,−λ) | −1 ≤ λ ≤ 3}

which exactly correspond to the sets (E ′3 ∩A±1). Thus

E3(1) = int E ′3 =
⋃

|c|≤1

(E ′3 ∩Ac) = E ′3

and we are done. 2

Finally we have a representation of the closure of E3(1). In the proof of
Lemma 2. we already recognized that the number of inequalities to describe
E ′3 can be reduced. Indeed, by using an algorithm (Algorithm 3) which we
will present in Section 3.3, we gain

E3(1) =
{

(x, y, z)
∣

∣|x+ z| ≤ 1 + y ∧ y − xz ≤ 1− x2 ∧ |z| ≤ 3
}

.

3.3 Characterization of D0
3

In this section we give a complete description of D0
3. For this reason we

define the sets

S1 := {(x, y, z) | 2x− 2z ≥ 1 ∧ 2x+ 2y + 2z > −1 ∧ 2x+ 2y ≤ 1

∧ 2x ≤ 1 ∧ 2x− 2y + 2z ≤ 1},
S2 := {(x, y, z) | x− z ≤ −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x+ 2y ≤ 1

∧ 2x > −1},
S3 := {(x, y, z) | x− z > −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x+ 2y < 1, 2x > −1

∧ 2x− 2z < −1 ∧ 2x+ 2y + 2z > −1},
S4 := {(x, y, z) | 2x− 2y + 2z ≤ 1 ∧ −2x+ 2y ≤ 1 ∧ 2x− 2z = −1

∧ 2x+ 2y + 2z > −1},
S5 := {(x, y, z) | − 1 < 2x ≤ 1 ∧−1 < 2x− 2z ≤ 1 ∧ 2x+ 2y + 2z > −1

∧ 2x− 2y + 2z ≤ 1 ∧ 2x+ 4y − 2z < 3, 2y ≤ 1}
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and denote their union by

S :=
⋃

i∈{1,...,5}
Si.

Note that S1, S2, S3, S5 are polyhedra while S4 is a polygon. The following
theorem states the main result.

3.3.1 Theorem. D0
3 = S

Two views of the set D0
3 are depicted in Figure 5.1 and Figure 3.5.

For rotating 3D-pictures of D0
3 we refer the reader to the authors’ home

pages [82].
In subsection 3.3 we will prove this theorem. Here we want to give an

outline of the proof. In a first step we will use Theorem 6. in order to show
that

S ⊆ D0
3 . (3.3.1)

For showing the opposite inclusion we need a set of nonzero periods Π such
that for P :=

⋃

π∈Π P (π) we have

S ∪ P ⊇ D3.

From (6.0.7) we can deduce S ∩ P = ∅. Thus,

S ⊇ D3 \ P ⊇ D0
3.

Since D3 ⊂ E3(1) we are done if we can cover E3(1) with P ∪ S, i.e., if we
can show that

P ∪ S ⊇ E3(1).
Proof of the main result
We will prove our result in two parts according to the outline given in

the previous section. First of all, we set up some notation.

3.3.2 Notation For a logical system J of inequalities, which are combined
by ∧ and ∨, denote by X(J ) the set of all points that satisfy J . Let P
a set of inequalities. Then

∧

P and
∨

P denote the systems
∧

I∈P I and
∨

I∈P I, respectively.
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Figure 3.4: A view of D0
3
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Figure 3.5: A view of D0
3
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Algorithm 2 is recursive. For the rest of the section denote by Ti the set
of inequalities that define the set Si for i ∈ {1, . . . , 5}. These sets are
assembled only of single inequalities. We have

T1 := {2x− 2z ≥ 1, 2x + 2y + 2z > −1, 2x+ 2y ≤ 1, 2x ≤ 1,

2x− 2y + 2z ≤ 1},
T2 := {x− z ≤ −1, 2x − 2y + 2z ≤ 1,−2x+ 2y ≤ 1, 2x > −1},
T3 := {x− z > −1, 2x − 2y + 2z ≤ 1,−2x+ 2y < 1, 2x > −1,

2x− 2z < −1, 2x + 2y + 2z > −1},
T4 := {2x− 2y + 2z ≤ 1,−2x+ 2y ≤ 1, 2x − 2z ≤ −1, 2x− 2z ≥ −1,

2x+ 2y + 2z > −1},
T5 := { − 1 < 2x, 2x ≤ 1,−1 < 2x− 2z, 2x − 2z ≤ 1, 2x + 2y + 2z > −1,

2x− 2y + 2z ≤ 1, 2x + 4y − 2z < 3, 2y ≤ 1},
hence the equality of S4 and the two double inequalities of S5 are split into
inequalities. Thus, Si = X(

∧

Ti) for i = 1, . . . , 5. Denote by T̄i the set Ti

with all the strict inequalities changed to not strict ones. Since all occurring
inequalities are linear it can easily be checked that Si = X(

∧

T̄i).
Table 3.1 shows 43 different periods with corresponding period length L,

we denote the corresponding polyhedron by P (πj), where j ∈ {1, . . . , 43}.
Now for each i ∈ {1, . . . , 43} define Qi as the set of single inequalities

such that P (πi) = X(
∧

Qi). For instance, the set Q19 can be defined by

Q19 :=
{

− 1

2
≤ x+ y − z − 1, x+ y − z − 1 <

1

2
,−1

2
≤ x− y − z,

x− y − z < 1

2
,−1

2
≤ −x− y + 1,−x− y + 1 <

1

2
,

− 1

2
≤ −x+ z + 1,−x+ z + 1 <

1

2
,−1

2
≤ y + z − 1,

y + z − 1 <
1

2

}

(see also Example 3.2.1). Finally we set

P :=
43
⋃

j=1

P (πj).
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L Periods

π1=(−1,−1,−1) π2=(−1,−1, 0) π3=(−1, 0, 1)
3

π4=(0,−1, 0) π5=(0,−1, 1)

4 π6=(0,−1, 0);−1 π7=(0,−1, 0); 1 π8=(1,−1, 1);−1

π9=(−2, 1,−1);−1, 1 π10=(−2, 1, 0);−1, 2
π11=(−1,−1, 1); 1, 0 π12=(0,−2,−1); 1, 2

π13=(0,−1, 1);−1, 0 π14=(0, 1,−1); 1, 0
5

π15=(0, 1, 0);−1,−1 π16=(0, 1, 0);−1, 0
π17=(0, 2, 1);−1,−2 π18=(1,−1, 1);−1, 0
π19=(1, 1,−1);−1, 0 π20=(2,−1, 0); 1,−2

6 π21=(0,−1, 0); 0, 1, 0 π22=(1, 1, 0);−1,−1, 0

7 π23=(0, 1,−1);−1, 1, 0,−1 π24=(1, 1, 0);−1,−1,−1, 0

π25=(−1,−1, 1); 1, 2, 0, 0,−2 π26=(−1, 0, 0); 1, 0, 0,−1,−1
8 π27=(−1, 1, 0);−1, 1,−1, 0, 1 π28=(0, 0, 2); 1, 1,−1,−1,−2

π29=(1, 1, 1); 0,−1,−1,−1, 0 π30=(2, 1,−1);−2,−2,−1, 1, 2

π31=(−1, 0, 0); 1, 1, 1, 0,−1,−1
9

π32=(0, 1, 1); 1, 0,−1,−2,−2,−1

π33=(−1,−1, 1); 0,−1, 1, 1,−1, 0, 1
π34=(0,−2, 1); 1,−2, 0, 2,−1,−1, 2

10 π35=(0,−1,−1);−1, 0, 0, 1, 1, 1, 0
π36=(1, 2, 1); 1,−1,−1,−2,−1,−1, 1
π37=(1, 2, 2); 1, 0,−1,−2,−2,−1, 0

π38=(−2, 0, 1);−2, 1, 0,−2, 2,−1,−1, 2
11

π39=(0, 1, 2); 2, 1, 0,−1,−2,−2,−2,−1

π40=(−2, 2,−1); 0, 1,−2, 2,−2, 1, 0,−1, 2
12

π41=(0, 1, 2); 2, 2, 1, 0,−1,−2,−2,−2,−1

13 π42=(0, 1,−2); 2,−1,−1, 2,−2, 1, 0,−1, 1,−1

π43=(0, 2, 2); 1,−1,−2,−2, 0, 1, 2, 1, 0,
22 −2,−2,−1, 1, 2, 2, 0,−1,−2,−1

Table 3.1: The 43 periods needed to cut out D0
3
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3.3.3 Remark. We note that the construction of the set S as well as the
exhibition of the 43 periods corresponding to relevant cutout polyhedra has
been achieved by extensive computer experiments. Up to now we do not
know an easy way that would lead to a list of all the cutouts needed to
get the set D0

3. To find an algorithmic way to construct all these cutouts
is desirable since it could lead to characterizations of D0

d even for higher
dimensions d.

Observe that no element of the 43 periods given above contains elements
having modulus greater than 2. Up to now, we do not know the reason for
this fact. In order to characterize D̃0

2 we need periods with elements that
are arbitrarily large (cf. [2, Sections 6 and 7]).

Using the algorithm of section 3.2. Theorem 6. shows the existence
of an algorithm for the construction of a graph G(H) = V × E which can
be used for finding all periods within the convex body H. Following [9],
the graph is constructed recursively. Define H = �(r1, ..., rk) ⊂ intD3 to
be the convex hull of some points r1, . . . , rk. For a z ∈ Zd, let m(z) =
mini∈{1,...,k}(−⌊riz⌋) and M(z) = maxi∈{1,...,k}(−⌊riz⌋). Set

V0 := {±ei | i = 1, . . . , d}

and then successively calculate V1, V2, . . . by the rule

Vi+1 := Vi ∪ {(z2, . . . , zd, j) | z = (z1, . . . , zd) ∈ Vi,−M(−z) ≤ j ≤M(z)} .

For sets H having a sufficiently small diameter the iteration stabilizes yield-
ing V := Vn = Vn+1 for some n ∈ N. The set of edges is constructed by

E := {(x, (z2, . . . , zd, j)) | x = (z1, . . . , zd) ∈ V,m(z) ≤ j ≤M(z)} .

Let Q be a system of linear, non-strict inequalities linked with ∧. Then
X(Q) forms a convex polyhedron that can be regarded as the convex hull
of finitely many points r1, ..., rk. Suppose that X(Q) ⊂ E3(1). We want to
set up an algorithm that calculates the set of all periods π whose associated
polyhedron P (π) has non-empty intersection with X(Q). Theorem 6. en-
sures the existence of such an algorithm only if X(Q) has sufficiently small
diameter. If the set X(Q) is too big, the graph G(X(Q)) is infinite. We
solve this problem in the following way. Suppose that, during the calcula-
tion of |V |, we obtain a set Vi whose number of elements |Vi| exceeds an
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appropriate bound p. In this case we stop the calculation of V and divide
the set X(Q) into two parts for which we calculate the set V again. By
recursively doing this splitting procedure we eventually end up with sets
whose diameter is small enough (provided that p is chosen reasonably).

Suppose that the set X(Q) is the convex hull of its k vertices r1, . . . , rk.
We do not know these vertices explicitly. What we need is just m(z) and
M(z) for certain fixed values of z ∈ Zd. However, as Q is given as a system
of linear inequalities, we easily see that

m(z) = min
r∈X(Q)

(−⌊rz⌋),

M(z) = max
r∈X(Q)

(−⌊rz⌋).

The extremal values on the left hand side can now easily be calculated by
standard linear optimization.

The algorithm consists of two parts. The first part is Algorithm 1, which
constructs the set of vertices V of the graph G(X(Q)) for a given convex
body X(Q). Whenever during the calculation the size of this set exceeds
a given bound p, Algorithm 1 stops returning an overflow. Otherwise it
terminates by returning V . Denote the application of Algorithm 1 with
parameter Q and bound p by VG(Q, p) (VG = vertices of the graph).

Algorithm 2 is recursive. As input we have Q and we write FP(Q) for its
application on Q (FP= find all periods). Algorithm 2 evokes Algorithm 1
to calculate the set of vertices of G(X(Q)). If an overflow occurs, the set
X(Q) is split with respect to some hyperplane G(X1, . . . ,Xd) = 0. Then
Algorithm 2 is applied on Q1 := (Q ∧G(X1, . . . ,Xd) ≤ 0) and Q2 := (Q ∧
G(X1, . . . ,Xd) ≥ 0) separately. If there is no overflow and V is returned,
the set of edges E is calculated and all the cycles are extracted. These
cycles induce the periods, we are searching for. Note that the subsets Q1

and Q2 are again defined by finitely many non-strict inequalities so that
they can be treated by Algorithm 1 in the same way as Q.

In our setting we need to apply Algorithm 2 to the sets defined by the
inequalities T̄i (i ∈ {1, . . . , 5}). All we need to specify is the subdividing
strategy and the bound p for |V |. As for the subdividing strategy we
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Algorithm 1 Calculation of the set of vertices of G(X(Q)): VG

Require: Q, p
Ensure: set of vertices V
1: V ← {±ej|j = 1, . . . , d}
2: M ← ∅
3: while V 6= M do
4: if #V > p then
5: return(Overflow)
6: stop calculation
7: end if
8: N ← V \M
9: M ← V

10: for all (x1, . . . , xd) ∈ N do
11: i← min(r1,...,rd)∈X(Q)(⌊−

∑d
k=1 xkrk⌋)

12: j ← max(r1,...,rd)∈X(Q)(−⌊
∑d

k=1 xkrk⌋)
13: V ← V ∪ {(x2, . . . , xd, k)|k ∈ {i, . . . , j}}
14: end for
15: end while
16: return(V )
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Algorithm 2 Search for all periods within an area X(Q) (recursively): FP

Require: Q
Ensure: Π list of cycles
1: p← suitable bound
2: V ← VG(Q, p)
3: if ¬(overflow) then
4: E ← set of edges of G(X(Q))
5: Π← periods induced by the cycles of G(X(Q))
6: else
7: construct Q1, Q2

8: Π← FP(Q1)
9: Π← Π ∪ FP(Q2)

10: end if
11: return(Π)

subdivide a given set in two parts as follows. Let

mi := min
(x1,x2,x3)∈X(Q)

xi, i = 1, 2, 3,

Mi := max
(x1,x2,x3)∈X(Q)

xi, i = 1, 2, 3,

and j ∈ {1, 2, 3} be the smallest index for which Mj − mj = max(M1 −
m1,M2 −m2,M3 −m3). The dividing hyperplane is now defined by

G(X1,X2,X3) = 0 with G(X1,X2,X3) := Xj −
Mj +mj

2
.

For the upper bound of the number of vertices it turns out that a choice
depending on the quantities Mj−mj is convenient. In particular, we choose
p = 20

Mj−mj
. Then we get the following result

3.3.4 Lemma. FP(
∧

Ti) terminates for each i ∈ {1, . . . , 5}.
Proof We implemented the algorithms for Ti with the above mentioned

subdivision strategy and bounds in MathematicaR©. The program is avail-
able on the authors’ homepages [82]. 2
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3.3.5 Theorem. Si ⊂ D0
3 holds for all i ∈ {1, . . . , 5}.

Proof For each i ∈ {1, . . . , 5} we have that X(
∧

T̄i) is a convex hull of
finitely many points. Moreover, X(

∧

T̄i) = Si. Denote by Πi the set of
periods computed by the application of Algorithm 2 on

∧

T̄i. Hence Πi

includes all periods associated to polyhedra having non-empty intersection
with X(

∧

T̄i). Now, according to (6.0.5), each of these periods π ∈ Πi

induces a system of inequalities P(π). It turns out that for each π ∈ Πi we
have

X(P(π) ∧
∧

Ti) = ∅ holds for each i ∈ {1, . . . , 5}
(an easy way for checking this is to apply the cylindrical algebraic decom-
position algorithm). Thus there is no period that yields a nonempty cutout
intersecting with Si and therefore Si ⊂ D0

3. 2

Covering the set D3 \D0
3 by cutout polyhedra. Fix Q1, . . . , Q43 to

be the sets of inequalities of the 43 polyhedra induced by the periods given
in Table 3.1, where Qj denotes just the reduced set of inequalities such
that X(

∧

Qj) yields the corresponding polyhedron for any j ∈ {1, . . . , 43}.
“Reduced” means that all the redundant inequalities are removed.

3.3.6 Remark. It is not really necessary to work with the reduced systems
but the main algorithm works much faster and the reduction is not too
difficult to realize.

Algorithm 3 Reducing a list of inequalities: RL

Require: P set of inequalities
Ensure: P reduced set of inequalities
1: for all inequalities I ∈ P do
2: P ← P \ I
3: if X(

∧

P ∧ ¬I) 6= ∅ then
4: P ← P ∪ I
5: end if
6: end for
7: return(P )

The algorithm simply uses the fact that an inequality I is redundant for
a system S ∧ I if X(S ∧ I) = X(S) or, equivalently, X(S ∧¬I) = ∅. Denote
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the application of Algorithm 3 with parameter P by RL(P ) (RL=reduce
list of inequalities).

At the end of Section 3.2 we found a parametrization of E3(1). We saw

that E3(1) = X(
∧

D) for

D := {x+ z ≤ 1 + y,−1− y ≤ x+ z, y − xz ≤ 1− x2, z ≤ 3, z ≥ −3}.

Let P be a list of sets of inequalities and G to be a set of inequalities.
We want to verify if

⋃

P∈P X(
∧

P ) covers X(
∧

G). This is equivalent to

X

(

∧

G ∧ ¬
∨

P∈P

∧

P

)

= ∅. (3.3.2)

In principle we could do this verification directly. For computational reasons
we are a little more restricted. (In fact the direct verification of (3.3.2)
overcharges MathematicaR©). A verification of a claim of the shape (3.3.2)
can be done in a reasonable amount of time if #P ≤ 3. We give an
algorithm that solves this problem for general P and G by a subdivision
process. The idea is to split the set X(

∧

G) into suitable subsets and hope
that each of these subsets is covered by a smaller number of sets. First
we state Algorithm 4 which removes those sets from P that do not affect
G, hence a set P is removed when X(

∧

G) ∩ X(
∧

P ) = ∅. Denote the
application of this algorithm by RS(G,P) (RS=remove inequalities with
respect to a set).

Algorithm 4 Removing those lists of inequalities that do not affect a given
set G: RS
Require: G, P
Ensure: P reduced list of inequalities
1: for all sets P ∈ P do
2: if X(

∧

G ∧∧P ) = ∅ then
3: P ← P \ P
4: end if
5: end for
6: return(P)
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The main algorithm (Algorithm 5) is recursive. As an input we have
again P and G of the usual shape, where P is reduced by Algorithm 4.
Whenever the algorithm recognizes that a subset of X(

∧

G) is not fully
covered by the sets described in P, it returns this subset. Denote the
application by VC(G,P) (VC=verify covering). At first Algorithm 5 checks
whether #P ≤ 3. If this is the case we can verify whether (3.3.2) holds,
otherwise we choose an arbitrary inequality I ∈ ⋃P∈P P such that X(

∧

G∧
I) 6= X(

∧

G). There are two possibilities:

• There is such an inequality I. Then X(
∧

G) is split by adding I and
¬I, respectively, to G and Algorithm 5 is applied (recursively) on
both of these subsets. Algorithm 4 is used to possibly reduce P for
each of the subsets. These reduced sets form the second parameter.

• There is no such I. But this would mean that all the points of
X(
∧

G) suffice all inequalities of
⋃

P∈P P . This is equivalent to
X(
∧

G) ⊂ X(P ) for any P ∈ P and this implies that G and P
suffice the condition (3.3.2).

Now, whenever (3.3.2) is not fulfilled, the set X(
∧

G) is not covered
by X(

∨

P∈P
∧

P ) and the algorithm returns the set X(
∧

G). The applica-
tion of Algorithm 5 terminates without any output if X(

∨

P∈P
∧

P ) covers
X(
∧

G).
We can now state the main theorem of this subsection.

3.3.7 Theorem. The algorithm VC(D,P) terminates without yielding any
output for

P = {Q1, . . . , Q43, T1, . . . , T5}.
Proof We implemented the algorithms in MathematicaR©. The program

is available on the authors’ homepages [82]. 2

Theorem 3.3.7 shows all the periods together with our set to re-
ally cover all of E3(1) and thus cover D3. Thus, the cutout polyhedra

P (π1), . . . , P (π43) cover the whole set E3(1) \ S. Hence, in view of Theo-
rem 3.3.5 we get that

E3(1) \ S ⊂
⋃

1≤i≤43

P (πi).

Together with Theorem 3.3.5 this yields Theorem 8. and we are done.
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Algorithm 5 Checks if a set is covered by the union of others (recursively):
VC
Require: G, P
Ensure: subsets of X(

∧

G) that are not fully covered by X(
∨

P∈P
∧

P )
1: if #P ≤ 3 then
2: if X(G ∧ ¬∨P∈P

∧

P ) 6= ∅ then
3: return(X(

∧

G) is not fully covered)
4: end if
5: else
6: if ∃I ∈ ⋃P∈P P : X(

∧

G ∧ I) 6= ∅ then
7: VC(RL(G ∩ {I}),RS(G ∩ {I},P)
8: VC(RL(G ∩ {¬I}),RS(G ∩ {¬I},P)
9: end if

10: end if
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Chapter 4

Cryptographic Protocol

Building Blocks

This chapter details all the cryptographic primitives that are applied as
building blocks of our election schemes presented in sections 5.3 and 5.4.
Among these primitives one can find encryption schemes, ordinary and
blind signature schemes and several zero-knowledge proofs. At the end of
this chapter communication channels usually employed by voting schemes
are described.

4.1 Encryption Schemes

The concept of public-key cryptography was invented by Whitfield Diffie
and Martin Hellman in 1976 [24]. Since 1976, numerous public-key cryp-
tography algorithms have been proposed.

4.1.1 Definition. A cryptosystem is a five-tuple (PS, CS,KS, EF ,DF),
where the following conditions are satisfied:

• PS is a finite set of possible plaintexts

• CS is a finite set of possible ciphertexts

• KS, the keyspace, is a finite set of possible keys

61
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• EF = {EK |K ∈ KS} is a family of functions EK : PS 7→ CS. Its
elements are called encryption functions.

• DF = {DK |K ∈ KS} is a family of functions DK : CS 7→ PS. Its
elements are called decryption functions.

• For each K ∈ KS, there is an encryption rule EK ∈ EF and a cor-
responding decryption rule DK ∈ DF such that DK(EK(x)) = x for
every plaintext x ∈ PS.

4.1.1 RSA cryptosystem

RSA [71] is one of the most popular algorithm that works for encryption.

Let N = P ·Q, where P and Q are large primes. Let PS = CS = ZN , and
define

KS = {(N,P,Q, e, d) | N = P ·Q, (e, φ(N)) = 1, e · d ≡ 1 (mod φ(N)),

1 < e < φ(N), 1 < d < φ(N)}.

For K = (N,P,Q, e, d), define

EK(x) ≡ xe (mod N)

and
DK(y) ≡ yd (mod N)

(x, y ∈ ZN ). The values N and e are public, and the values P,Q, d are
secret.

The security of RSA depends wholly on the problem of factoring large
numbers.

4.1.2 ElGamal cryptosystem

The ElGamal scheme [26] encryption scheme works in a finite cyclic group,
where the discrete logarithm problem is computationally infeasible.
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Let P and Q be large primes so that Q|(P − 1). GQ denotes Z∗
P ’s unique

multiplicative subgroup of order Q, and let g an arbitrary element such
that g ∈ GQ. Let PS = GQ, CS = GQ ×GQ, and define

KS = {(P, g, α, h ) : h ≡ gα (mod P ), h ∈ GQ, α ∈ ZQ}.

The values P, g and h are public, and α is secret. For K = (P, g, α, h), and
for a secret random number k ∈ ZQ, define

EK(x, k) = (y1, y2),

where
y1 ≡ gk (mod P )

and
y2 ≡ x · hk (mod P ).

For y1, y2 ∈ GQ, define

DK(y1, y2) = y2 · (yα
1 )−1 (mod P ).

ElGamal cryptosystem is non-deterministic, for the same plaintext there
are several ciphertexts. The ciphertext depends on the plaintext and the
random value k.

4.1.2 Definition. Let PS be the plaintext space and CS the ciphertext
space such that PS is a group under the operation ⊕ and CS is a group
under the operation ⊗. Let Er(m) denote encryption of the message m
using random parameter r. An encryption scheme is (⊗,⊕)-homomorphic,
if for given Er1

(m1) and Er2
(m2), there exists an r such that

Er1
(m1)⊗ Er2

(m2) = Er(m1 ⊕m2).

Regarding ElGamal cryptosystem, the operation ⊕ is a multiplication
modulo P and the operation ⊗ defined on cyphertexts is a multiplication
modulo P per components.

Ek1
(m1) ≡ (y1, y2),

Ek2
(m2) ≡ (z1, z2),
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where

y1 ≡ gk1 (mod P ),

y2 ≡ hk1 ·m1 (mod P ),

z1 ≡ gk2 (mod P ),

z2 ≡ hk2 ·m2 (mod P ),

and Ek1
(m1) ·Ek2

(m2) = Ek(m1 ·m2), where k = k1 + k2.

Distributed ElGamal Key Generation

ElGamal cryptosystem can be easily modified into a non-threshold, dis-
tributed scheme [63] for n participants, that is the n participants together
compute ElGamal public key without revealing the proper secure key or
its shares to each other and they decrypt together the encrypted message.
Underlying zero-knowledge proofs will be presented in section 4.4.

Input: P,Q, g, where P,Q are large primes such that Q|P − 1 and GQ

denotes Z∗
P ’s unique multiplicative subgroup of order Q, and let g an

arbitrary element such that g ∈ GQ

Output: Public key: h (mod P ), public key shares hi (mod P ), private
key shares: αi (mod Q)

1. FOR i = 1 TO n DO

2. Each participant chooses αi ∈ ZQ additive shares at random and
computes hi ≡ gαi (mod P ) multiplicative shares

3. Each participant publishes hi (mod P ) and zero-knowledge proof of
knowing αi (mod Q) on BB

4. ENDFOR

5. α =
∑n

i=1 αi is the private key

6. h ≡∏n
i=1 hi (mod P ) is the public key
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Distributed ElGamal Decryption

Input: encrypted message: (y1 (mod P ), y2 (mod P )), where y1 ≡ gk

(mod P ) and y2 ≡ x · hk (mod P ), public key shares: hi (mod P ), private
key shares: αi (mod Q)
Output: message: x

1. FOR i = 1 TO n DO

2. Each participant publishes ci ≡ yαi

1 (mod P ) decryption share

3. Each participant publishes zero-knowledge proof of equality of hi’s
and ci’s discrete logarithm

4. ENDFOR

5. C ≡∏n
i=1 ci (mod P )

6. x ≡ y2

C (mod P )

4.2 Signature Schemes

A signature scheme consists of three algorithm a key generation, a signing
and a verification algorithm. During key generation the corresponding se-
cret and public keys are defined, during the signing algorithm a message
is signed by the secret key, and anybody with the knowledge of public key
can run verification algorithm and decide whether the signature is valid or
not.

4.2.1 Definition. A signature scheme is a five-tuple (PS,AS,KS,SF ,VF),
where the following conditions are satisfied:

• PS is a finite set of possible messages.

• AS is a finite set of possible signatures.

• KS, the keyspace, is a finite set of possible keys.

• SF = {sigK |K ∈ KS} is a family of functions sigK : PS 7→ AS. Its
elements are called signing algorithms.
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• VF = {verK |K ∈ KS} is a family of functions verK : PS × AS 7→
{true, false}. Its elements are called verification algorithms.

• For each K ∈ KS, there is a signing algorithm sigK ∈ SF and a cor-
responding verification algorithm verK ∈ VF such that the following
equation is satisfied for every message x ∈ PS and for every signature
y ∈ AS:

ver(x, y) =

{

true, if y = sig(x);
false, if y 6= sig(x).

}

.

4.2.1 RSA signature scheme

RSA public-key cryptosystem can be used to provide digital signatures [71].

Let N = P · Q, where P and Q are large primes. Let PS = AS = ZN ,
M : ZN 7→ ZN a hash function, and define

KS = {(N,P,Q, e, d) | N = P ·Q, where P,Q prime, (e, φ(N)) = 1,

e · d ≡ 1 (mod φ(N)), 1 < e < φ(N), 1 < d < φ(N)}.
The values N and e are public, and the values P,Q, d are secret. For
K = (N,P,Q, e, d), and x ∈ ZN message define

sigK(x) ≡M(x)d (mod N)

and
verK(x, y) = true⇔M(x) ≡ ye (mod N)

(x, y ∈ ZN ).

4.2.2 ElGamal Signature Scheme

We now describe ElGamal Signature scheme [26].

Let P and Q large primes such that Q|P − 1 and let denote GQ as Z∗
P ’s

unique multiplicative subgroup of order Q, and choose g an arbitrary ele-
ment such that g ∈ GQ. Let PS = GQ, AS = GQ × ZQ, and define

KS = {(P,Q, g, α, h ) : h ≡ gα (mod P ), h ∈ GQ, α ∈ ZQ}.
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The values P,Q, g and h are public, and α is secret. For K = (P,Q, g, α, h),
x ∈ GQ message, and for a secret random number k ∈ ZQ, define

sigK(x, k) = (γ, δ),

where
γ ≡ gk (mod P )

and
δ = (x− α · γ) · k−1 (mod Q).

For x, γ ∈ GQ and δ ∈ ZQ, define

verK(x, γ, δ) = true⇔ hγ · γδ ≡ gx (mod P ).

Several digital signature schemes are developed based on discrete log-
arithm problem. Along with thousands of other signature schemes, they
are part of the same family. In [37] all these approaches are integrated in
a Meta-ElGamal signature scheme. One of the generalization is as follows.

Generalization of ElGamal Signature Scheme
Let P and Q large primes such that Q|P − 1 and let denote GQ as Z∗

P ’s
unique multiplicative subgroup of order Q, and choose g an arbitrary ele-
ment such that g ∈ GQ. Let PS = GQ, AS = GQ × ZQ, and define

KS = {(P,Q, g, α, h ) : h ≡ gα (mod P ), h ∈ GQ, α ∈ ZQ}.
The values P,Q, g and h are public, and α is secret. For K = (P,Q, g, α, h),
x ∈ GQ message, and for a secret random number k ∈ ZQ, define

sigK(x, k) = (γ, δ),

where
γ ≡ gk (mod P )

and δ derives from the following congruence:

A ≡ α · B + k · C (mod Q),

where we choose A,B,C as a permutation of the parameters (x, γ, δ).
For x, γ ∈ GQ and δ ∈ ZQ, define

verK(x, γ, δ) = true⇔ hB · γC ≡ gA (mod P ),
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By this method we get six possible signatures schemes, denoted by
No 1, 2, 3, 4, 5, 6. The following table lists all variants and the correspond-
ing signature and verification congruences.

No A B C signature verification

1 x γ δ x ≡ α · γ + k · δ (mod Q) gx ≡ hγ · γδ (mod P )

2 x δ γ x ≡ α · δ + k · γ (mod Q) gx ≡ hδ · γγ (mod P )

3 δ γ x δ ≡ α · γ + k · x (mod Q) gδ ≡ hγ · γx (mod P )

4 δ x γ δ ≡ α · x+ k · δ (mod Q) gδ ≡ hx · γγ (mod P )

5 γ δ x γ ≡ α · δ + k · γ (mod Q) gγ ≡ hδ · γx (mod P )

6 γ x δ γ ≡ α · x+ k · δ (mod Q) gγ ≡ hx · γδ (mod P )

Table 1: Generalized ElGamal Signature Scheme

4.2.3 Schnorr Signature Scheme

Schnorr signature scheme [80] gets its security also from the difficulty of
calculating discrete logarithms.

Let P be a 512-bit prime such that the discrete logarithm problem in ZP is
intractable, and let Q be a 160-bit prime divides P − 1. Let denote GQ as
Z∗

P ’s unique multiplicative subgroup of order Q, and choose g an arbitrary
element such that g ∈ GQ. Let M : GQ × GQ 7→ ZQ hash function. Let
PS = GQ, AS = GQ × ZQ, and define

KS = {(P,Q, g, α, h ) : h ≡ gα (mod P ), h ∈ GQ, α ∈ ZQ}.
The values P,Q, g and h are public, and α is secret. For K = (P,Q, g, α, h),
x ∈ GQ message, and for a secret random number k ∈ ZQ, define

sigK(x, k) = (γ, δ),

γ ≡ gk (mod P ),

δ ≡ k − α · c (mod Q),

where c = M(x, γ). For x, γ ∈ GQ and δ ∈ ZQ and

verK(x, γ, δ) = true⇔ γ ≡ gδ · hc (mod P ),
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The signing algorithm of Schnorr signature scheme can be transformed
into a three round interactive protocol between the signer and a user in the
following way:

1. The signer picks k ∈ ZQ randomly, and sends γ ≡ gk (mod P ) along
with the message x ∈ GQ to the user.

2. The user calculates c = M(x, γ) challenge and transmits it to the
signer.

3. The signer replies δ ≡ k − α · c (mod Q).

4.3 Blind Signature Schemes

The concept of blind signature schemes was introduced by Chaum in 1982
[19]. These schemes can be applied in payment systems and for electronic
voting schemes. In a blind signature scheme an owner wishes to get a dig-
ital signature on his message from a notary, but the notary does not have
information about the message itself. After receiving the signed message
the notary will not find relationship between the blinded and unblinded
signature. Usually the key-generation, the signature generation and the
verification algorithms are the same as in the corresponding non-blind sig-
nature schemes, but the blind signing algorithm is always an interactive
protocol between the user and the signer.

4.3.1 RSA Blind Signature Scheme

This signature scheme is presented in [68].
Let N = P · Q, where P and Q are large primes. Let PS = AS = ZN ,
M : ZN 7→ ZN a hash function, and define

KS = {(N,P,Q, e, d) | N = P ·Q, (e, φ(N)) = 1, e · d ≡ 1 (mod φ(N)),

1 < e < φ(N), 1 < d < φ(N)},

The values N and e are public, and the values P,Q, d are secret. For
K = (N,P,Q, e, d), x ∈ ZN message,
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1. the user chooses a random value k ∈ Z, and sends x̃ ≡ ke · M(x)
(mod N) to the signer.

2. The signer replies with sigK(x̃) ≡ (x̃)d (mod N),

3. the user generates signature sigK(x) ≡ sigK(x̃) · k−1 (mod N).

The verification algorithm is verK(x, y) = true ⇔ M(x) ≡ ye (mod N)
(x, y ∈ ZN ).

4.3.2 ElGamal Blind Signature Scheme

Let us consider the generalized ElGamal signature scheme. The generalized
blind signature scheme in [37] is as follows.

Let P and Q large primes such that Q|P − 1 and let denote GQ as
Z∗

P ’s unique multiplicative subgroup of order Q, and choose g an arbitrary
element such that g ∈ GQ. Let PS = GQ, AS = GQ × ZQ, and define

KS = {(P,Q, g, α, h ) : h ≡ gα (mod P ), h ∈ GQ, α ∈ ZQ}.

The values P,Q, g and h are public, and α is secret. For K = (P,Q, g, α, h),
x ∈ GQ message, sigK(x) = (γ, δ) signature is generated in the following
way:

1. The notary chooses a random number k̃ ∈ ZQ and computes γ̃ ≡ gk̃

(mod P ) and sends it to the user.

2. The user chooses a, b ∈ ZQ random numbers and calculates γ ≡ γ̃a ·gb

(mod P ).

3. The user computes x̃ ≡ ψ(a, b, x, γ, γ̃) and transfers it to the notary.

4. The notary signs x̃ with congruence of Ã ≡ α · B̃ + k̃ · C̃ (mod Q),

where Ã, B̃, C̃ is a permutation of values of δ̃, x̃, γ̃ and replies δ̃ back.

5. The user retrieves δ ≡ θ(a, b, x, γ, x̃, γ̃, δ̃).
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The verification congruence of the signature is αA ≡ hB · γC (mod P ),
where A,B,C is a permutation of x, δ, γ.

Table 2 shows the method of calculating ψ and θ functions for the possible
cases of Table 1. Note that considering Table 1 for those cases, where δ
appears in C we cannot get blind signature schemes, because δ and δ̃ are
not allowed as arguments of function ψ.

No ψ θ

2 x ≡ a · γ̃−1 · x̃ · γ + b · γ (mod Q) δ ≡ a · γ̃−1 · δ̃ · γ (mod Q)

3 γ ≡ a · x̃−1 · γ̃ · x (mod Q) δ ≡ a · x̃−1 · δ̃ · x+ b · x (mod Q)

4 x ≡ a · γ̃−1 · x̃ · γ (mod Q) δ ≡ a · γ̃−1 · δ̃ · γ + b · γ (mod Q)

5 γ ≡ a · x̃−1 · γ̃ · x+ b · x (mod Q) δ ≡ a · x̃−1 · δ̃ · x (mod Q)

Table 2: Generalized ElGamal Blind Signature Scheme

4.3.3 Schnorr Blind Signature Scheme

This signature scheme is described in [68].
Let P,Q two large prime number, such that Q|P − 1. They are published
together an element g ∈ Z∗

P of order Q. Let denote GQ the cyclic group
generated by g and M : GQ × GQ 7→ ZQ a hash function. Let PS = GQ,
AS = GQ × ZQ, and define

KS = {(P,Q, g, α, h ) : h ≡ gα (mod P ), h ∈ GQ, α ∈ ZQ}.
The values P,Q, g and h are public, and α is secret. For K = (P,Q, g, α, h),
x ∈ GQ message, sigK(x) = (c, δ, γ) signature is generated in the following
way:

1. The signer chooses a random number k̃ ∈ ZQ and sends commitment

γ̃ ≡ gk̃ (mod P ) to the user.

2. The user chooses random elements a, b ∈ ZQ and γ ≡ γ̃ · ga · h−b

(mod P ) and computes c = M(x, γ) and sends challenge c̃ ≡ c + b
(mod Q) to the signer.
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3. The signer returns value δ̃, such that δ̃ ≡ k̃ − c̃ · α (mod Q).

4. The user calculates δ ≡ δ̃ − a (mod Q) and c ≡ c̃ − b (mod Q) and
outputs (c, δ, γ).

The verification algorithm is

verK(c, δ, γ) = true⇔ γ ≡ gδ · hc (mod P ).

4.4 Zero-knowledge Proofs

Let P and Q large primes such that Q|P − 1 and let denote GQ as Z∗
P ’s

unique multiplicative subgroup of order Q, and choose g an arbitrary ele-
ment such that g ∈ GQ.

4.4.1 Proof of knowledge of a discrete logarithm

Let h ≡ gα (mod P ) and h, g are public parameters and α is known only
by a prover A. A wants to show to a verifier B that he knows discrete
logarithm α. The classic protocol in [80] is the following:

1. A chooses a random number k ∈ ZQ and sends a ≡ gk (mod P ) to
B.

2. B chooses a challenge c ∈ ZQ at random and transmits it to A.

3. A sends l ≡ k + c · α (mod Q) to B.

4. B verifies whether gl ≡ a · hc (mod P ).

4.4.2 Proof of equality of two discrete logarithm

A participant A wants to prove a possession of a common discrete logarithm
α ∈ ZQ satisfying a ≡ gα (mod P ) and b ≡ hα (mod P ). An efficient
protocol is described in [20].

1. A chooses k ∈ ZQ at random and sends u ≡ gk (mod P ) and v ≡ hk

(mod P ) to verifier B.
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2. B chooses a challenge c ∈ ZQ randomly and transmits it to A.

3. A sends l ≡ k + c · α (mod Q) to B.

4. B checks whether gl ≡ u · ac (mod P ) and hl ≡ v · bc (mod P ).

4.4.3 Proof of encrypted value is 1 out of n values

User A wants to give a proof that an encrypted value (G,H · Ci), where
G ≡ gα (mod P ) and H ≡ hα · Ci (mod P ) is an ElGamal encryption of
the ith element of the given C1, ·, Cn values. This zero-knowledge proof is
described in [52].

1. Prover A chooses w ∈ ZQ at random and calculates ai ≡ gw (mod P )
and bi ≡ hw (mod P ).

2. FOR j = 1 TO n DO

3. IF j 6= i DO

4. A chooses dj , rj ∈ ZQ at random and calculates aj ≡ grj · Gdj

(mod P ) and bj ≡ hrj · (H·Ci

Cj
)dj (mod P ).

5. ENDIF

6. ENDFOR

7. A computes (A,B) = (a1, b1), (a2, b2), · · · , (an, bn) and sends
(A,B), (G,H · Ci) to the verifier B.

8. B chooses random challenge c ∈ ZQ and sends it back to A.

9. A computes di ≡ c−
∑n

j=1,j 6=i dj (mod Q) and ri ≡ w−α·di (mod Q)

and sends (D,R) = (d1, r1), (d2, r2), · · · , (dn, rn) to B.

10. B verifies whether c ≡∑n
j=1 dj (mod Q).

11. B checks whether
FOR j = 1 TO n DO
aj ≡ grj ·Gdj (mod P ) and

bj ≡ hrj · (H·Ci

Cj
)dj (mod P )

ENDFOR
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This zero-knowledge proof can be modified into non-interactive with

c = M(a1|| · · · ||an||b1|| · · · ||bn||G||H · Ci||g||h),

where M() is a one-way hash function.

4.5 Communication Channels

During a cryptographic protocol parties involved exchange information
through various types of communication channels. Electronic voting
schemes besides the well-known public, and secure channels apply spe-
cial ones like untappable, anonymous channels, voting booths and bulletin
boards.

Public channel. Public channels transmit all information without
applying cryptographic algorithm. Attackers are able to tap the message,
and the identity of the sender can be traced back. In election schemes all
the messages to the bulletin board are sent through public channels.

Secure channel. In order to realize a secure channel between two
parties, first the participants run a key-exchange protocol to obtain a ses-
sion key. The sender encrypts the message and concatenates it with a tag
computed by applying a message authentication function to the ciphertext.
Encryption and authentication are done via keys derived from the session
key. Verification and decryption are done analogously.

Bulletin board. Bulletin board (BB) is publicly readable. Voters,
authorities can write into their section and nobody can modify the content
of it.

Anonymous channel. This channel guarantees the anonymity of the
sender. Receiver of the message that has been sent through an anonymous
channel does not have any information about the identity of the sender.
Especially, anonymous return channels allow two parties even to have a
complete conversation, the receiver may reply to the sender. Realization of
this channel is described in [32] based on a mix-net approach.

Untappable channel. This channel is a one-way physical appara-
tus providing perfect secrecy in an information-theoretic sense. Realizing
an untappable channel in practice is considerably problematic. It might
be achieved either by being physically untappable or by implementing
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information-theoretic encryption. One well-known realization of perfect
secrecy is the Vernam One-time Pad. The major problem is the key must
be random, equal to the length of the message and can never be used again.
Besides the problem of key distribution and storage, the perfect synchro-
nization of the sender and receiver should be assured.

Voting booth. Voting-booths are the two-way version of the untap-
pable channels. Besides supplying perfect secrecy they allow a voter inter-
actively communicate with an authority.

Public, secure, anonymous channels and bulletin boards can be imple-
mented in practice. Several authors in the literature have pointed out the
difficulty of the implementation of untappable channels and voting booths
[54].
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Chapter 5

Cryptographically Secure

Electronic Elections

This chapter starts with characterization of electronic voting requirements,
then specification of the participants can be found. The last two sections
deal with our main results, a coercion-resistant voting scheme based on
blind signatures and a receipt-free homomorphic election scheme.

The results of this chapter are based on [38] and [39].

There are several election protocols using blind signatures that pos-
sess all basic requirements including verifiability, eligibility, unreusability,
privacy etc., but not receipt-freeness. ([28],[58]) Most of the receipt-free
schemes in literature make some basic assumptions about the communica-
tion channel between the voter and the election authorities. They apply un-
tappable channels or voting booths ([59]). These communication channels
are not practical. The other solution in order to achieve receipt-freeness
is to employ tamper-resistant hardware ([54]). Our protocol in 5.3 does
not require untappable channels or voting booths, voters use anonymous
channels [61] that can be realized in practice using mix-nets. It does not
rely on tamper-resistant hardware either and it does not apply any com-
plex cryptographic primitives like zero-knowledge protocols, secret sharing
or threshold cryptosystems like [21],[22],[41],[42] etc. do. It satisfies eligi-
bility, privacy, unreusability, fairness, robustness, individual and universal
verifiability and coercion-resistance.

77
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The scheme in 5.4 is a homomorphic encryption model based on [22] that
is not possessing the property of receipt-freeness or uncoercibility. Lee and
Kim in [52] gave a solution for receipt-freeness applying an honest verifier.
Hirt and Sako in [36] use an untappable channel to achieve it. This scheme
does not employ voting booths or untappable channels, it requires an anony-
mous return channel [32], which is based on a mix-net approach, hence it
can be implemented in practice. This channel has acceptable performance,
four times the computational cost of a basic re-encryption mix-net. We do
not suppose the existence of an honest verifier, either. Our scheme sat-
isfies eligibility, privacy, unreusability, fairness, robustness, individual and
universal verifiability, receipt-freeness, uncoercibility and protects against
randomization and forced-abstention attacks.

Electronic voting schemes usually consist of three main stages: Autho-
rizing, Voting and Tallying stages. During the Authorizing stage all system
parameters, secret and public keys are generated and the voter roll is cre-
ated with the list candidates. In the Voting stage the voter forms his ballot
containing the vote and sends it to a voting authority through the channel
he can use. After the deadline, during the Tallying stage authorities use
their public and secret information and count the votes and publish the
result.

In traditional elections, a voting booth not only allow voters to keep
their vote secret, but it prevents vote-buying and coercion. The notions
of receipt-freeness and uncoercibility were introduced by Benaloh and Tu-
instra [12]. The property of receipt-freeness ensures that an attacker is
not able to trace back voter’s exact behavior, therefore a vote-buyer (co-
ercer) does not obtain a reasonable proof. Hirt and Sako [36] showed that
[12] does not possess receipt-freeness and introduced a receipt-free voting
based on homomorphic encryption. Okamoto [58] proposed a voting scheme
which he himself later showed to lack the postulated receipt-freeness, a re-
paired version using blind signatures appears in [59]. Lee and Kim [52]
proposed a receipt-free version of [22] keeping optimal performance, pri-
vacy, robustness and universal verifiability. Sako and Kilien [74] proposed
a multi-authority receipt-free scheme applying a mix network and also ho-
momorphic encryption for tallying. Mix-net is used for tallying in [42] and
at some point during the voting process voters post ballot to the bulletin
board via anonymous channel. In [42] property of coercion-resistance is
introduced. A coercion-resistant scheme gives a possibility for the voter to
cheat an adversary who instructs him to vote in a given manner, but the
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adversary cannot determine whether the voter behaved as instructed, even
if the adversary asks the voter to divulge his private keying material or to
abstain from voting.

5.1 Requirements

In order to be functional in practice, an electronic voting scheme has to
satisfy not only all the standard features of the conventional paper-based
voting methods, but also should provide more efficient voting services. E-
voting comparing to the traditional elections allows adversaries to intrude
the voting process in an easier way, even if there is a small security gap in
the design. Thus the scheme should be protected against these techniques,
the requirements are as follows:

Eligibility. Only eligible voters are allowed to cast votes.

Privacy. All votes remain secret, no one is able to link a vote to the
voter, who has casted it. No considerably large coalition of participants not
containing the voter himself can gain any information about a voter’s vote.

Unreusability. Every eligible voter can cast at most one vote. No one
can vote for anyone else.

Fairness. No participants can gain any knowledge about the partial
tally during the voting stage, since knowledge of any intermediate result
about the election can influence the voters.

Robustness. No participant can disrupt the election. Once a voter
cast a vote, no alternation to this vote is permitted. Moreover all valid
votes will be counted, whereas all invalid ones will be detected and not
counted in the final tally.

Individual verifiability. Each eligible voter is able to verify that his
vote was committed as intended and made into the final tally as cast.

Universal verifiability. Any participant or passive observer can check
that the election is fair, the final result is exactly the sum of the valid votes.

Receipt-freeness, Uncoercibility. Before the election an adversary
may bribe the voter with a demand of casting his favorite vote. This sce-
nario is called vote-buying. Receipt-freeness avoids vote-buying. An adver-
sary can also force the voter to cast a particular vote by threatening him.
Uncoercibility means coercers cannot menace voters. These requirements
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should be achieved in a way, that during the election a coercer can observe
all public information and communication between the voter and the au-
thorities and can even order the voter how he should behave during the
voting process, even supplying him the random bits.

The exact definition of receipt-freeness is quoted from [59]:
Given published information X (public parameters and information on

the bulletin board), adversary C interactively communicates with a voter V
in order to force V to cast C’s favorite vote c∗ to an authority A, and finally
C decides whether to accept V iew(X : V ) or not, and A decides whether
to accept c∗ or not. The coercer gets any message from the bulletin board
immediately after it is put on the board. V iew(X : V ) means published
information X , c∗ and messages that C receives and sends communicating
with V including random bits employed during the voting process.

5.1.1 Definition. A voting system is receipt-free, if there exists a voter
V , such that for any adversary C, voter V can cast c (c 6= c∗) which
is accepted by the authority A under the condition that V iew(X : V ) is
accepted by C.

We suppose that a coercer knows public parameters appearing on the
bulletin board, vote c∗, random bits predefined by him and encrypted
messages sent by the voter on public channels. Receipt-freeness means
V iew(X : V ) should be prepared in a way that, if a coercer makes all
calculations with all the data that he possesses, then no inaccurate count
should turn up. A coercer is not able to monitor each communication chan-
nel being used during the voting process, hence encrypted data sent through
an anonymous channel is not revealed to him. At the same time a ballot is
accepted by an authority, if it has confirmed all necessary information and
validity of ballots.

There are several real-word attacks in [42] enumerated below:

Randomization attack. An attacker coerces a voter to submit ran-
domly formed ballot. In this attack it is not possible to learn what candidate
the voter casts a ballot for. The effect of this attack is to cancel the voter’s
vote with large probability.

Forced-abstention attack. An attacker forces a voter to abstain from
voting. This attack happens if an adversary is able to follow who is eligible
for voting and who has already voted. Being aware of this knowledge he
threatens voters and effectively excludes them from the voting process.
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Simulation attack. In this attack an adversary coerces or bribes the
voter to reveal his private keying material and then pretends to be the voter
and casts his own favorite vote.

5.1.2 Definition. A scheme is called coercion-resistant if it offers not only
receipt-freeness, but also defense against randomization, forced-abstention
and simulation attacks.

5.2 Participants

Several participants contribute in an election system. If we had one abso-
lutely reliable authority we would need no more authorities, and the voting
process would be very simple. Since the situation is different in practice,
the responsibility should be shared among several authorities. It is crucial
to consider how much a participant can be trusted.

Voters. Let denote voters by V = {V1, V2, . . . , Vm}. A voter wants to
have the guarantee that his vote is counted in the final tally and if a fraud
is suspected there should be a possibility to make his claim. Authorities
do not trust voters at all. We assume that the voter is not observed while
casting his vote. Attacks, where a coercer is present or the voter is being
recorded by a camera (e.g. cell phone camera) in the moment of voting is
not considered.

Registry. Registry denoted by R is responsible for managing the au-
thorizing stage. It checks voters’ eligibility in person, supervising private
and public key-generation for voting authorities participating in the elec-
tion. Besides Registry supervises key-generation, reveals public keys to
participants, also sets the necessary parameters for the whole election.

Voting Authorities. Several authorities denoted by A =
{A1, A2, . . . , As} are involved in carrying out the voting process. They
have large computing power and possibility of storing large amount of data.
Employees of the authorities may act as voters, too.

Adversaries. Any participant or group of them might be malicious
and try to distract the elections or to achieve a favorable voting result even
in an illegal way. Voters or even members of the voting authorities may
become attackers. An attacker can also be an observer who would threaten
or even pay participants to vote in a way he demands it.
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5.3 A Coercion-Resistant Voting Scheme Based

on Blind Signatures

In the following election scheme besides voters a Voting Authority and a
Registry participate. The Registry manages the Authorizing stage and the
Tallying stage, too.
Assumptions

1. The security of the proposed scheme relies on the correctly generated
public and secret key pairs for the voters (PKV , SKV ) and for the
Voting Authority (PKA, SKA), too. It is also assumed that the Reg-
istry gives private key information only to the proper participants.

2. Since the responsibility of the security is shared, we suppose that the
Registry and the Voting Authority do not collude. They both follow
the steps of the protocol, not providing more information to each
other that they are supposed to.

3. An adversary may coerce a voter to cast his vote in a prescribed
manner. He can request voter’s credential (VID, SKV ) right after the
registration phase and dictates all random parameters (x, a) for the
voter.

4. We suppose that voters ‘personally’ participate in the election. The
adversary may not continuously watch over the shoulder of the voter,
monitor his hard-drive, etc. During the voting there is a moment
when the voter is alone and not being watched. A coercer is able
to communicate with a voter right after the registration phase, and
before and after the election.

5. The Voting Authority is honest in a sense that it does not collaborate
with an adversary, does not give any information about the election
and it does not generate spurious votes.

5.3.1 Protocol description

The proposed election procedure consists of three distinctive stages: Au-
thorizing, Voting and Tallying.



5.3. A COERCION-RESISTANT VOTING SCHEME BASED ON BLIND

SIGNATURES 83

During the Authorizing stage the voter authenticates himself and re-
ceives his credentials, the Voting Authority gets the voter roll containing
the corresponding public keys and all system parameters are generated.

During the Voting stage voters create their ballots. Voting Authority
checks eligibility of the voters and if they have already voted before. Voters
receive their encrypted ballots signed by the Voting Authority, if a fraud is
detected the voter makes a claim. At the end voters pass the correspond-
ing decrypting keys of the encrypted ballots to the Registry. Ballots and
bulletin board information are passed through an anonymous channel.

During the Tallying stage the Voting Authority sends encrypted ballots
to the Registry. The ballots are being decrypted and the final results with
the votes are listed on the bulletin board. Voters confirm that their ballots
are on the bulletin board. If his ballot is not listed correctly, he makes a
claim.

During the voting process public and anonymous channels are used and
encrypted messages are sent. For the communication between the voters
and the Voting Authority instead of higher degree residue encryption the
more efficient discrete logarithm encryption is recommended. Let denote
an encryption with public key PK by EPK .

Let define a candidate slate to be an ordered set of n distinct identifiers
{C1, C2, . . . , Cn}, each of which corresponds to a voter choice, typically a
candidate or party name.

Functions
Several functions are applied in the proposed election scheme. Let de-

note P,Q large primes, where Q|(P −1) and g ∈ Z∗
P of order Q. The details

of these functions are as follows:

Voting. Function vote(VID, SKV , x, a, Ci) ֌ ballot takes the voter’s iden-
tification number VID, secret key SKV , two randomly chosen param-
eter x, a and Ci as input and outputs the ballot. The form of the
ballot is (VID||r||y, VID||v), where

r = ESKV
(g)

y ≡ g−x (mod P )

v ≡ ya · Ci (mod P )
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and || is the notation of concatenation. This function generates the
ballot itself being processed by the Voting Authority.

Eligibility. Function ifeligible(PKV , r) ֌ {0, 1} takes the voter’s public
key PKV and the received element r as input. It returns 1 if

DPKV
(r) = g

and 0 if the congruence above is not satisfied. This function checks
if a voter is eligible for voting or not, i.e. if he possesses the proper
private keying material VID, SKV .

Verification. The function verify(PKV , z, s, y) ֌ {0, 1} calculates if

PKz
V ≡ gs · y (mod P )

congruence holds. It outputs 1 if it is correct and 0 otherwise. This
function verifies if s sent by the voter is calculated well and by the
same voter who previously voted with value y and public key PKV ,
where element z is randomly generated by the Voting Authority.

In the following we discuss each step in more details. Figure 5.1 shows
the steps of the voting protocol.

Authorizing stage

R −→ V : (VID, SKV , PKA)

R −→ A : (VID, PKV )

Before the voting process the voter must register with Registry verifying
his identity. Registry issues a credential to each eligible voter and prepares a
list of registered voters. A credential consists of voter’s ElGamal secret key
SKV , an identification number VID, public key of the Voting Authority
PKA. The voter roll contains key pairs (VID, PKV ), where PKV is the
ElGamal public key of the corresponding voter. This list is delivered to the
Voting Authority. In this stage all public system parameters are generated
and published, such as P,Q large primes, where Q|(P − 1) and g ∈ Z∗

P of
order Q.
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Figure 5.1: The voting scheme
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Voting stage

V −→ A : EPKA
(VID||r||y)

V −→ A : EPKA
(VID||v)

A −→ V : EPKV
(z)

V −→ A : EPKA
(s||VID)

A −→ V : Sig(s||v)
V −→ R : EPKR

(s||a||Sig(s||v))
The voter chooses random integers a, x and candidate Ci, calculates his

ballot with function vote, encrypts it with the public key of the Voting
Authority and sends it. The voter passes EPKA

(VID||v) through an anony-
mous channel. When the Voting Authority receives the message, decrypts
it, according to VID extracts PKV from the voter roll. Giving PKV and
r to function ifeligible as an input verifies eligibility of the voter. If the
voter is eligible for voting it stores all the information, thus the authority
can also find out if the voter cast his vote before or not. If the voter is not
eligible or has already cast his vote, the Voting Authority bars the voter
out of the election.

Voting Authority generates a random integer z, encrypts it with the
voter’s public key and sends it. After calculating

s ≡ x+ z · SKV (mod Q)

the voter concatenates it with VID and sends it to the Voting Authority
using anonymous channel.

After receiving all the information the Voting Authority looks up
PKV , z, y associated to VID and runs function verify. If it returns 0,
then the voter is disclosed from the election otherwise the pair (s, v) is
signed and sent back to the voter. After confirming the received signature
the voter sends it with the decrypting key a and s to the Registry. If a
fraud is detected, then he sends EPKA

(VID||r||y) through a public channel,
EPKA

(s||v||z||VID) through an anonymous channel to the Voting Authority.
Voting Authority makes sure of the existence of random parameter z and
corresponding values and after applying functions ifeligible and verify
sends back Sig(s||v).



5.3. A COERCION-RESISTANT VOTING SCHEME BASED ON BLIND

SIGNATURES 87

Tallying stage

A −→ R : EPKR
(s||v)

R −→ BB : (s||Ci)

After the voting phase is finished the Registry receives (s||v) pairs from
the Voting Authority, checks validity of the signature received from the
voter, computes Ci from v, publishes the pair of (s,Ci) and the relevant
voting statistics on BB. In this stage the voter confirms if his vote is
correctly listed on BB. If the pair (s,Ci) calculated by the voter is not on
BB, then he sends EPKR

(s||v||a||Sig(s||v)) through an anonymous channel.

5.3.2 Security analysis

5.3.1 Theorem. The proposed e-voting scheme is secure, i.e. it satisfies
eligibility, privacy, unreusability, fairness, robustness, individual and uni-
versal verifiability and coercion-resistance.

Proof
Eligibility. During the Authorizing stage a voter is registered only

after identifying himself. Only eligible voters receive credential material.
Voting Authority ensures eligibility before accepting the ballot by running
function ifeligible. The Voting Authority cannot impersonate an eligible
voter without the official credential issued by the Registry. Therefore, the
proposed scheme satisfies eligibility.

Privacy. The vote is encrypted during the process, only in the Tallying
stage it is decrypted by the secret key of the Registry. After revealing the
votes on BB and assuming that the Registry and the Voting Authority do
not collude, nobody can trace back the identity of the voter.

Unreusability. Each voter possesses different secret key and VID. If
a voter tries to vote with the same credential again the Voting Authority
detects it since all the necessary values are stored. Since he cannot generate
any other voter’s credential, every eligible voter can cast a vote only once.

Fairness. Only in the Tallying stage votes are decrypted, and final
results are posted, thus during the voting phase no one has information
about any intermediate results.
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Robustness. Invalid votes cast by malicious voters are detected in the
Tallying stage, after decrypting ballots. These (s,Ci) pairs are marked as
invalid by the Registry, or any party can notice them and ask to do it. No
coalition of voters can disrupt the election.

Individual verifiability. In the Tallying stage if a voter cannot find
the proper (s,Ci) pair on BB makes a claim. Since the BB is publicly
readable voters can make sure of their own ballots. A voter makes a claim
in a way that he shows the signature received and checked in the Voting
stage.

Universal verifiability. The final tally and all the votes are listed on
BB. Anyone can check the correctness of the results, since BB is readable
by everyone and not erasable or changeable by anyone.

Receipt-freeness, Uncoercibility. The coerced voter V wants to
cast vote C, while the adversary C forces the voter to cast his favorite vote
C∗. Voter V calculates the necessary values and functions with value C,
follows the steps of the protocol, thus A accepts v and sends (s, v) to R.
At the same time V states to C, he casts vote C∗.

In our scheme

V iew(X : V ) : {VID, SKV , x, a, C
∗, z∗, s∗}.

We assume C generates random integers x, a to V and right after the Autho-
rization stage communicating with V coercer C is aware of VID, SKV . Using
anonymous channels C cannot trace back the message was passed by V to
A or R, in other words even if C calculates EPKA

(VID||v), EPKA
(s||VID)

and EPKR
(s||a||Sig(s||v)) is not able to control if V sent the same mes-

sages or not. After the election V chooses an (s′, C ′) pair from BB, where
C ′ = C∗ and let s∗ = s′. It is assumed that the moment when V receives
z and calculates s the voter is alone and not being watched, hence V can
calculate and state to C z∗, where

s∗ ≡ x+ z∗ · SKV (mod Q).

Since after verifying all the calculations C accepts V iew(X : V ), therefore
the proposed scheme is receipt-free and uncoercible.

Randomization attack. The randomization attack is prevented, since
adversary cannot coerce a voter to cast a different, randomly formed, in-
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valid vote. The adversary cannot verify if the coerced voter has cast the
prescribed vote or not.

Forced-abstention attack. Even if an adversary can see the voter
roll, i.e. the list of registered voters, still he is not able to verify if a certain
voter has cast a vote or not. Assuming the Voting Authority does not
collude with the coercer, the only information he has is on BB. It is not
possible to find out the voter from the listed pairs of (s,Ci).

Simulation attack. Even if a voter provides his private keying ma-
terial (VID, SKV ) after the Authorizing stage and before the Voting stage,
he cannot be coerced by an adversary. An attacker is not able to verify the
correctness of the received private keying material.

The proposed scheme satisfies receipt-freeness and protects against
randomization, forced-abstention and simulation attack, therefore it is
coercion-resistant. 2

5.4 A Receipt-Free Homomorphic Election

Scheme

5.4.1 The CGS scheme

This scheme was proposed at Eurocrypt’97 by Cramer, Gennaro, and
Schoenmarkers [22]. There are s Voting Authorities and m voters par-
ticipate in the election protocol. The basic CGS protocol offers a choice
between two options, that is the following:

• During the set-up procedure all system parameters for robust dis-
tributed ElGamal cryptosystem are generated, as described in 4.1.2.
Authorities execute key generation protocol due to Pedersen [63], as
described in 4.1.2. The result: GQ subgroup of Z∗

P with order Q and
P,Q, g, h, where h ≡ gα (mod P ).

• A ballot is an ElGamal encryption of the form (x, y) = (gk, hk · Gb),
where G is a fixed generator of GQ and b ∈ 1,−1.

• Voter Vi posts ballot (xi, yi) to BB with non-interactive zero knowl-
edge proof of validity.
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• After the deadline authorities calculate the product

(X,Y ) = (

m
∏

i=1

xi,

m
∏

i=1

yi).

5.4.2 Our scheme

The participants of the protocol are m voters, a Registry R, an authority
called Verifier Authority (VA) and s Voting Authorities. R is responsible
for managing the Authorizing stage. We do not suppose that R is honest,
R might collude with adversaries and divulge any information. Verifier
Authority (VA) manages zero-knowledge proofs of the ballots. VA is not
expected to be honest, either. After the voting session has completed, s
Voting Authorities tally valid votes. Employees of the authorities may also
participate as voters. We suppose, all authorities do not collude, there is at
least one authority that is honest concerning key generation and message
decryption.
Protocol description

The proposed election procedure consists of three distinctive stages:
Authorizing, Voting and Tallying.

During the Authorizing stage voters authenticate themselves in person
and receive their credentials. All system parameters, sufficient private and
public keys are generated. The voter gets his credential in a way that he
generates his random reference number, and R signs it blindly, hence R
cannot connect the credential to the voter. During key-generation R does
not learn anything about private keys either.

During the Voting stage voters create their ballots. Verifier Authority
checks eligibility of the voters and if they have already voted before, follow-
ing it is verified through a non-interactive zero-knowledge proof whether the
encrypted ballots sent by the voters are valid or not. This non-interactive
zero-knowledge proof is run for a randomized ballot, hence VA does not
have any information about the form of the encrypted ballot. Voters send
their ballots and randomized components authorized by the Verifier Au-
thority to the Bulletin Board. If the ballot appearing on BB is different or
missing, then the voter makes a claim and he can cast his vote again.

During the Tallying stage Voting Authorities calculate the multiplica-
tion of valid, encrypted ballots on the bulletin board and divide it with the
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product of randomized components. The final results are decrypted and
listed.

Building Blocks

The proposed election scheme uses RSA and distributed ElGamal
public-key cryptosystems.

At the end of Vote Validation Phase VA authorizes the valid ballots using
Meta-ElGamal signature scheme [37] with running SigGenEG algorithm.
Vk verifies with SigVerEG whether the received signature is valid.

SigGenEG
Let P and Q be large primes so that Q|(P − 1). GQ denotes Z∗

P ’s unique
multiplicative subgroup of order Q, and let g an arbitrary element such
that g ∈ GQ. Let denote ESKVA Verifier Authority’s ElGamal secure key.
Input: message: m ∈ GQ

Output: signature: sm ∈ ZQ, R ∈ ZQ

1. Verifier Authority chooses random number: k̃ ∈ ZQ

2. R ≡ gk̃ (mod P )

3. R′ ≡ (R (mod P )) (mod Q)

4. m′ ≡ (m (mod P )) (mod Q)

5. sm ≡ ESK−1
VA (m′ − k̃ ·R′) (mod Q)

SigVerEG
Let P and Q be large primes so that Q|(P − 1). GQ denotes Z∗

P ’s unique
multiplicative subgroup of order Q, and let g an arbitrary element such
that g ∈ GQ. Let denote EPKVA Verifier Authority’s ElGamal public key.
Input: signature: sm ∈ ZQ, R ∈ ZQ, message: m
Output: true, false

1. R′ ≡ (R (mod P )) (mod Q)

2. m′ ≡ (m (mod P )) (mod Q)
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3. Verifies: EPKsm

VA · RR′ ≡ gm′

(mod P )

During Vote Validation Phase VA authorizes a randomized ballot, this
way VA cannot connect the ballots being processed during Tallying Stage to
ballots that he authorized. Voter Vk generates a proof with ProofGenEG
for his ’pure’ ballots from the randomized ballot signatures sent by VA.
During Vote Cast Phase Vk sends this proof with his ballots to BB and
anyone is able to verify validity of the ballots with ProofVerEG algorithm.
VA does not learn anything from the values sent to BB: (sm, Rm, R).

ProofGenEG
Let P and Q be large primes so that Q|(P − 1). GQ denotes Z∗

P ’s unique
multiplicative subgroup of order Q, and let g an arbitrary element such
that g ∈ GQ.

Input: signature: sm ∈ ZQ, R ∈ ZQ, l̃ ∈ ZQ

Output: sm ∈ ZQ, R ∈ ZP , T ∈ ZQ

1. The voter chooses random number: ṽ ∈ ZQ

2. R′ ≡ (R (mod P )) (mod Q)

3. sm ≡ sm

l̃
(mod Q)

4. R ≡ R
ṽ

l̃ (mod P )

5. T ≡ R′

ṽ (mod Q)

ProofVerEG
Let P and Q be large primes so that Q|(P − 1). GQ denotes Z∗

P ’s unique
multiplicative subgroup of order Q, and let g an arbitrary element such
that g ∈ GQ. Let denote EPKVA Verifier Authority’s ElGamal public key.

Input: m ∈ ZP , sm ∈ ZQ, R ∈ ZP , T ∈ ZQ

Output: true, false

1. m′ ≡ (m (mod P )) (mod Q)

2. Verifies: EPKsm

VA · R
T ≡ gm′

(mod P )
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In the following we discuss each step in more details.

Authorizing stage

1. Let P and Q be large primes so that Q|(P − 1). GQ denotes Z∗
P ’s

unique multiplicative subgroup of order Q, and let g an arbitrary
element such that g ∈ GQ.

2. Voting Authorities generate jointly the public and private keys using
distributed ElGamal key generation method (section 4.1.2) in a way,
that the private key is not divulged, and the public key is output on
BB. Public keys are g and h ≡ gK (mod P ), where K ∈ ZQ is the
corresponding private key.

3. Registry randomly chooses vi ∈ Z∗
Q, i = 1, . . . , n elements

Ci ≡ gvi (mod P )

where Ci represents candidate i from the voter roll and a one-way
hash function M() is chosen, vi, Ci and M() are made public.

4. Let NR = PR · QR, where PR and QR are large primes chosen
by the Registry. Let (RPKR, NR) the RSA public key, such that
(RPKR, φ(NR)) = 1 and (RSKR, PR, QR) the private key, such that
RPKR · RSKR ≡ 1 (mod φ)(NR). Registry sends its RSA public
key to BB.

5. Let NVA = PVA · QVA, where PVA and QVA are large primes cho-
sen by Verifier Authority. Let (RPKVA, NVA) the RSA public key
and (RSKVA, PVA, QVA) the private key, where (RPKVA, φ(NVA)) =
1, RPKVA · RSKVA ≡ 1 (mod φ)(NVA). Verifier Authority generates
RSA private and public keys that are being authorized by the Reg-
istry, sends the public key to BB.

6. Verifier Authority calculates ElGamal public and private keys,
chooses a random ESKVA ∈ ZQ and

EPKVA ≡ gESKVA (mod P ).

The private key is ESKVA and the corresponding public key is
(EPKVA, P, g).
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7. Voters show their identification material to the Registry in person,
so the adversary cannot simulate the voter during registration. If a
voter has the right to vote, a reference number denoted by idRk for the
voter Vk is generated by Vk and R as a join random value, in a way
that R gives only the seed for the pseudorandom number and does
not know idRk . Voter Vk and R signs blindly in order to authorize
Vk’s identification number.

By the end of authorizing stage Vk possesses idRk and (M(idRk ))RSKR

(mod NR). All public keys and parameters are on BB:

P,Q, g, h,M(), vi , Ci, RPKVA, NVA, EPKVA, RPKR, NR.

However the adversary may observe the signing process or collude with R,
still cannot learn anything about Vk’s reference number or secret key.

Voting stage
The voting stage consists of Vote Validation and Vote Cast phases. Vote
Validation phase is a non-interactive zero-knowledge proof based on the
idea applied in [22] and [52]. During Vote Validation phase the form of

the ballot is proved, i.e. the ballot consists of gϑ and hϑ · C(k)
i , where

C
(k)
i represents candidate i elected by Vk. During the Vote Cast phase the

encrypted ballot and the randomized component are sent.

Vote Validation phase

1. The voter Vk first sends

idRk (mod NR) || (M(idRk ))RSKR (mod NR)

to VA. Since during the authorizing stage, due to the randomiza-
tion, idRk and (M(idRk ))RSKR (mod NR) values are not divulged, no

one can connect idRk to voter Vk. The Verifier Authority checks if
the received credential is authorized by the Registry with R’s pub-
lic key and whether Vk has voted before. If Vk is eligible for voting
VA and Vk generates a random value, similarly to the Authorizing
stage, idVA

k (mod NVA) that is an identification value used only in
vote validation phase, in order to follow if a voter has already run the
zero-knowledge proof. Voter Vk initiates a blind signature algorithm
in order to get his identification number authorized and possesses idVA

k

(mod NVA)||(M(idVA
k ))RSKVA (mod NVA).
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2. Vk sends idVA
k (mod NVA)||(M(idVA

k ))RSKVA (mod NVA) through an
anonymous return channel to VA. VA verifies the signature and if
the corresponding voter has not been processed before, sends zk back
through the same channel, where zk ∈ ZQ random. Since idVA

k signed
blindly and anonymous return channel is used, VA cannot learn the
sender.

3. Vk chooses a candidate i and the corresponding C
(k)
i from BB. In

order to create his ballot randomly chooses αk, βk, γk ∈ ZQ and com-

putes (Gk,Hk · C(k)
i ) and Yk where

Gk ≡ gαk+βk (mod P )

Hk ≡ hαk+βk (mod P )

Yk ≡ gzk ·γk (mod P ).

By randomizing the ballot with βk, an adversary cannot learn any-
thing from it even if he colludes with VA. Yk plays important role in
achieving receipt-freeness.

4. Following Vk runs a non-interactive zero-knowledge proof to prove
that he has constructed the ballot correctly, such that he has chosen

the value C
(k)
i from the voter roll listed on BB. He chooses rj, dj , wk ∈

ZQ random numbers, where 1 ≤ j ≤ n and j 6= i, then calculates

(A,B) = (a1, b1), (a2, b2), · · · , (an, bn),

where
ai ≡ gwk (mod P ),

bi ≡ hwk (mod P ),

for the elected candidate i and

aj ≡ grj ·Gdj

k (mod P ),

bj ≡ hrj ·
(

Hk · C(k)
i

C
(k)
j

)dj

(mod P )

for all candidates j 6= i.
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5. Further, the voter calculates

ck = M(a1||..||an||b1||..||bn||Gk||Hk ·C(k)
i ||g||h||idVA

k ||(M(idVA
k ))RSKVA)

challenge and

(D,R) = (d1, r1), (d2, r2), . . . , (dn, rn)

where for candidate i

di ≡ ck −
n
∑

j=1,i6=j

dj (mod Q)

ri ≡ wk − (αk + βk) · di (mod Q).

6. After calculating all the necessary parameters, Vk chooses a random
r̃ ∈ ZP and computes

r̃ · Yk (mod P ).

Vk hides Yk from VA and the adversary.

7. Vk sends the following encrypted randomized ballot and parameters
to VA through an anonymous return channel:

(A,B)||Gk||Hk · C(k)
i ||ck||(D,R)||idVA

k ||(M(idVA
k ))RSKVA ||r̃ · Yk.

Since an anonymous return channel is used, VA does not know the
identity of the sender, i.e. VA cannot connect the data received
through the channel to Vk.

8. After receiving all necessary information VA checks whether the voter
with idVA

k has already run the zero-knowledge proof, whether idVA
k is

signed correctly and calculates the following congruences.

ck ≡
n
∑

j=1

dj (mod Q),

aj ≡ grj ·Gdj

k (mod P ), j = 1, . . . , n

bj ≡ hrj ·
(

Hk · C(k)
i

C
(k)
j

)dj

(mod P ), j = 1, . . . , n
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If idVA
k is correctly signed and not applied before, then the corre-

sponding voter is eligible for voting and this is his first time to run
zero-knowledge proof. If a voter was able to run the zero-knowledge
proof several times, then he or she would possess more authorized
ballots.

9. If the verification congruences hold, then VA signs all the randomized
components applying SigGenEG. VA calculates and sends

SigGenEG(Gk) = (sm1
, R1)

SigGenEG(Hk · C(k)
i · Yk · r̃) = (sm2

, R2)

SigGenEG(Yk · r̃) = (sm3
, R3)

back to the sender through the anonymous return channel.

10. Voter after verifies the three signatures of VA with

SigV erEG(sm1
, R1, Gk)

SigV erEG(sm2
, R2,Hk · C(k)

i · Yk · r̃)
SigV erEG(sm3

, R3, Yk · r̃)
runs ProofGenEG algorithms in order to get authorization of the
actual ballots being processed during the Tallying Stage. Vk chooses
l̃1, l̃2, l̃3 in the following way:

l̃1 ≡ (gβk (mod P )) (mod Q)

l̃2 ≡ (hβk · r̃ (mod P )) (mod Q)

l̃3 ≡ (r̃ (mod P )) (mod Q)

and computes

ProofGenEG(sm1
, R1, l̃1) = (sm1

, R1, T1)

ProofGenEG(sm2
, R2, l̃2) = (sm2

, R2, T2)

ProofGenEG(sm3
, R3, l̃3) = (sm3

, R3, T3)
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Values (smi
, Ri, Ti), where i = 1, . . . , 3 possess a proof of ballot’s validity

(that is verified by applying ProofVerEG), since they are generated from
ElGamal signatures (smi

, Ri) and property of blindness, i.e. these values do
not give any information about the ElGamal signature or the ballot itself.

Vote Cast phase

1. Voters send the following information to BB
idRk ||gαk ||(sm1

, R1, T1)||hαk · C(k)
i · Yk||(sm2

, R2, T2)

through a public channel and

Yk||(sm3
, R3, T3)

to VA through anonymous channel. The form of the ballot is the

ElGamal encryption of C
(k)
i · Yk ≡ gvi+zk·γk (mod P ), where zk ∈ ZQ

is sent by VA through an anonymous channel, hence zk is not known
by the adversary.

2. Voters might check whether their ballots appear on BB. If their ballot
is missing or not correct, they can make a claim.

Tallying stage
After the voting stage is over the following computations are made:

1. Verifier Authority runs ProofVerEG algorithm for each Yk and calcu-
lates

Y ≡
m
∏

k=1

Yk (mod P ),

where only valid randomized components are considered and sends Y
to BB.

2. After verifying validity of encrypted ballots with ProofVerEG

Γ ≡
m
∏

k=1

gαk (mod P )

Λ ≡
m
∏

k=1

hαk · C(k)
i · Yk (mod P )
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appear on BB, where only valid ballots are considered.

3. After dividing Λ by Y we get the ElGamal encrypted voting result
on BB.

4. Voting Authorities A1, A2, . . . , As together calculate the result Ct1
1 ·

Ct2
2 · · ·Ctn

n with distributed ElGamal decryption method.

5. Shanks baby step giant step or Pollard rho method might be applied
for calculating ti, i = 1, . . . , n, which gives the election result for
candidate i.

Calculation of t1, . . . , tn is considered as a computationally hard prob-
lem, it requires O(m(n−1)/2) time to get the result.([52]) This scheme can
be used for large scale election, if the authorities divide the total value of
(Γ,Λ) into parts of reasonable size (e.g. election areas).

5.4.3 Security analysis

5.4.1 Theorem. The proposed e-voting scheme is secure, i.e. it satis-
fies eligibility, privacy, unreusability, fairness, robustness, individual and
universal verifiability, receipt-freeness, uncoercibility and protects against
randomization and forced-abstention attacks.

Proof
Eligibility. Verifier Authority checks validity of voters’ credentials

idRk ||(M(idRk ))RSKR with the corresponding RPKR. If the credential is

valid, his idRk had been authorized, then the voter’s identity material showed
in person to Registry was accepted.

Privacy. For encrypting the votes randomized, homomorphic ElGa-
mal public-key cryptosystem is employed, that can be decrypted only, if
all authorities collaborate. According to the scheme the voter’s vote itself
is never decrypted. With the assumption that there is at least one reli-
able authority, votes remain secret. The vote Ci cannot be derived without
knowledge of Yk. Since during Vote Validation phase all ballots are ran-
domized and cannot be connected to a voter, Verifier Authority does not
know how a voter has voted even if VA has all information from BB and
zero knowledge proof.
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Unreusability. Verifier Authority follows according to the given idRk
if a voter has casted his valid vote before or not.

Fairness. Determining the tally of the election starts after all the
eligible voters have casted their ballots and the votes have been checked if
they are valid or not. During the voting stage only the number of eligible
voters can be found out.

Robustness. It is detected during the voting phase, if a voter’s vote
is not valid and only valid votes are considered during the Tallying phase,
hence invalid votes cannot distract the elections and it can be also checked
if all valid votes are counted. Since all votes are encrypted and they are
on BB, authorities or any participant except the voter himself cannot alter
votes.

Universal verifiability. After the valid randomized ballots are autho-
rized voters send their encrypted votes on the Bulletin Board. All calcula-
tions made on BB, any participant or passive observer can check whether
these calculations are correct.

Individual verifiability. The voter himself can check on BB, if his
vote has been processed or not. If all public calculations are correct, the
result of elections is valid and a voter’s vote was made into the final tally
as he cast.

Receipt-freeness, Uncoercibility. The proof of receipt-freeness and
uncoercibility is based on the fact that there is no enough proof for an
adversary how a voter has really voted. An adversary might know a voter’s
idRk , (M(idRk ))RSKR (mod NR) and set αk, γk and Ci, vi, too. During the
voting process a voter receives a value zk and an encrypted ballot

Encαk
(vi) = (gαk (mod P ), hαk · C(k)

i · Yk (mod P )),

where C
(k)
i · Yk = gvi+zk·γk . Let suppose a coercer has a demand of vote

v∗i 6= vi and coercer does not know zk, then the voter is able to cast his
vote vi in a way, that the coercer will accept encrypted ballot on BB. The
voter can say the value received form VA is

z∗k ≡
(vi + zk · γk)− v∗i

γk
(mod Q).
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Value Yk never appears on BB and it is sent during the voting stage through
an anonymous channel to VA without any identification number or value.
VA can check its validity, but cannot connect it to a voter. During the Vote
Validation phase all data is transported encrypted through an anonymous
return channel and no information put on BB.

Randomization attack. If a voter generates randomly formed ballot,
it won’t be authorized by VA during the Vote Validation phase. Only
authorized ballots will be considered during the Tallying stage.

Forced-abstention attack. Even Registry does not possess a list of
idRk , since identification numbers are generated by voters and Registry, then
they are blindly signed by R, hence an adversary is not able to follow if an
eligible voter has voted or not. 2
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Chapter 6

Appendix

Proof of Lemma 2.4.9.
Let E = (E11 \E12) ∪ (E21 \E22) ∪ E33 where t ≥ 4 and

E11 = {(−a+ε1−ε2 +ε3, a−ε1 +ε2,−a+ε1, a) ∈ Z4 | |a| ≤ 4t+10, where

(ε1, ε2, ε3) ∈ {(−2, 2, ε3), (2,−2, ε3), (−2, 1, ε3), (2,−1, ε3), (−2, 0, 2), (2, 0,−2)},
ε3 ∈ {−3, ..., 3}} or
ε1 ∈ {−1, 0, 1}, ε2 ∈ {−2, ..., 2}, ε3 ∈ {−3, ..., 3}},

E12 = {(−a+ ε1 − ε2 + ε3, a− ε1 + ε2,−a+ ε1, a) ∈ Z4 |
ε1 = −1, ε2 ∈ {−2,−1, 0}, ε3 ∈ {−3, . . . , 3}, a = −4t− 10, or
ε1 = −1, ε2 = 1, ε3 ∈ {−3,−2,−1}, a = −4t− 10, or
ε1 = 2, ε2 = 0, ε3 = −2, a = 4t+ 10, or
ε1 = −2, ε2 = 0, ε3 = 2, a ≤ −4t− 9, or
ε1 = −2, ε2 = 1, ε3 ∈ {−3, . . . , 3}, a ≤ −4t− 9},

E21 = {(−a+ε1−ε2+ε3, a−ε1+ε2,−a+ε1, a) ∈ Z4 | |a| ≤ 4t+10, where

(ε1, ε2) ∈ {(3,−2), (−3, 2), (3,−3), (−3, 3), (−2, 3), (2,−3), (−1, 3), (1,−3)},
ε3 ∈ {−3, ..., 3}},

E22 = {(−a+ ε1 − ε2 + ε3, a− ε1 + ε2,−a+ ε1, a) ∈ Z4 |
ε1 = 3, ε2 ∈ {−2,−3}, ε3 ∈ {−3, . . . , 3}, a = 4t+ 10, or

103



104 APPENDIX

ε1 = −3, ε2 ∈ {2, 3}, ε3 ∈ {−3, . . . , 3}, a ≤ −4t− 9, or
ε1 = −2, ε2 = 3, ε3 ∈ {−3, . . . , 3}, a = −4t− 10},

E33 = {(−4t − 6, 4t + 8,−4t − 10, 4t + 11), (4t + 6,−4t − 8, 4t + 10,−4t −
11), (−4t − 8, 4t + 10,−4t − 11, 4t + 11), (4t + 8,−4t − 10, 4t + 11,−4t −
11), (−4t − 10, 4t+ 11,−4t− 11, 4t+ 11), (−4t− 11, 4t+ 11,−4t− 11, 4t+
11), (4t+11,−4t−11, 4t+11,−4t−11), (4t+10,−4t−11, 4t+11,−4t−11)}.

We shall show that the set E satisfies the prerequisites of Theorem 2.1.4
which implies that P (X) ∈ C.

Let us suppose a = 0, ε1 = ε2 = 0, ε3 = 1, then (1, 0, 0, 0) is an element of
E. It is clear that −E ⊆ E.

Notice that for

e = (−a+ ε1 − ε2 + ε3, a− ε1 + ε2,−a+ ε1, a)

we have

τ̃(e)4 = −a− ε1 −
⌊

s

p0

⌋

,

where
s = t(ε2 − ε1) + 3ε1 + 7ε2 + ε3 − a.

Considering, that |ε2 − ε1| ≤ 6 and |a| ≤ 4t+ 10 we can see that applying
τ̃ to e ∈ E we get the following cases for the fourth component of τ̃(e):

a) −a− ε1 − 1 if 6t+ 13 ≤ s < 12t+ 26,

b) −a− ε1 if 0 ≤ s < 6t+ 13,

c) −a− ε1 + 1 if −6t− 13 ≤ s < 0,

d) −a− ε1 + 2 if −12t− 26 ≤ s < −6t− 13.

From here on we prove that τ̃(E) ⊆ E by considering several cases.
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Case 1: e ∈ E11 \ E12

We will prove that τ̃(e)4 ≤ 4t+ 10 and ε1, ε2, ε3 are from the sets given in
E11. Notice that |τ̃(e)4 + τ̃(e)3| ≤ 3 and |τ̃(e)3 + τ̃(e)2| ≤ 2.

If ε1 = 1 and t > 16 then τ̃(e) ∈ E11, ∀e ∈ E11, because s = t(ε2− 1) + 3 +
7ε2 + ε3 − a ≤ 6t+ 13, thus only b), c), d) cases should be considered. It
is easy to see that |τ̃ (e)4 + τ̃(e)3| ≤ 1. |τ̃(e)4| > 4t+ 10 if

1. a = 4t+ 10 and s ≥ 0

2. a = −4t− 10 and s < −6t− 13

None of the cases occurs since if a = 4t+ 10 then s ≤ −3t+ 7 + ε3, and if
a = −4t− 10 then s ≥ t− 1 + ε3.

If ε1 = 0 and t > 13 and ε2 > −2 then s > −6t− 13, thus a), b), c) cases
are taken into account, |τ̃(e)4 + τ̃(e)3| ≤ 1, hence τ̃(e) ∈ E11. If ε2 = −2,
then s = −2t− 14 + ε3 − a, and

τ̃(e) =











(a− 2,−a, a,−a) a ≤ −2t− 14 + ε3,

(a− 2,−a, a,−a + 1) −2t− 14 + ε3 < a ≤ 4t− 1 + ε3,

(a− 2,−a, a,−a + 2) otherwise.

Easy to see that all are elements of E11. For the first two cases: |τ̃(e)4 +
τ̃(e)3| ≤ 1. Considering the last case τ̃(e)4 + τ̃(e)3 = 2, τ̃(e)3 + τ̃(e)2 = 0
and τ̃(e)2 + τ̃(e)1 = −2.
|τ̃(e)4| > 4t+ 10 if

1. a = 4t+ 10 and s ≥ 6t+ 13

2. a = −4t− 10 and s < 0

3. a ≤ −4t− 9 and s < −6t− 13

Considering s = ε2t+ 7ε2 + ε3 − a if a = 4t+ 10 then s ≤ −2t+ 4 + ε3, if
a = −4t− 10 then s ≥ 2t− 4 + ε3 and if a = −4t− 9 then s ≥ 2t− 5 + ε3.
Hence |τ̃(e)4| ≤ 4t+ 10.
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In the following cases we will not detail the value of τ̃(e)i+1 + τ̃(e)i, for
i ∈ {1, . . . , 3}. They can be easily calculated like in the cases before.

If ε1 = −1, then s > −6t − 13 for t > 17. In case of a), b) τ̃(e) ∈ E11. If
−6t− 13 ≤ s < 0, then τ̃(e) = (a+ 1 + ε2,−a− 1, a,−a+ 2) ∈ E11.
|τ̃ (e)4| > 4t+ 10 if

1. a = −4t− 10 and 0 ≤ s < 6t+ 13

2. a ≤ −4t− 9 and −6t− 13 ≤ s < 0

Considering s = t(ε2 +1)−3+7ε2 + ε3−a, it is easy to see that the second
case cannot occur since if a ≤ −4t− 9 then s ≥ 3t− 7+ ε3. If a = −4t− 10
and ε2 = 2 or ε2 = 1 with ε3 ≥ −1 then s ≥ 6t+ 13, otherwise e ∈ E12.

If ε1 = −2 and ε2 = 2 and ε3 = {−3, .., 3}, then s = 4t+ 8 + ε3 − a and

τ̃(e) =











(a+ 4,−a− 2, a,−a+ 3) ∈ E21 a > 4t+ 8 + ε3,

(a+ 4,−a− 2, a,−a+ 2) ∈ E11 −2t− 5 + ε3 < a ≤ 4t+ 8 + ε3,

(a+ 4,−a− 2, a,−a+ 1) ∈ E11 otherwise.

|τ̃ (e)4| > 4t+ 10 if

1. a = −4t− 10 and 6t+ 13 ≤ s
2. a ≤ −4t− 9 and 0 ≤ s < 6t+ 13

3. a ≤ −4t− 8 and −6t− 13 ≤ s < 0

Substituting a ≤ −4t−8 we get s ≥ 8t+16+ε3, hence |τ̃(e)4| > 4t+10 only
if the element e = (4t+6+ε3,−4t−6, 4t+8,−4t−10). Calculating with the
element we get the elements of E33, such that τ̃(e) = (−4t−6, 4t+8,−4t−
10, 4t+11), τ̃2(e) = (4t+8,−4t−10, 4t+11,−4t−10) ∈ E11. Studying−ewe
get τ̃(−e) = (4t+6,−4t−8, 4t+10,−4t−10) ∈ E11. The negative elements
of the path above are also in E33, τ̃(4t + 6,−4t − 8, 4t + 10,−4t − 11) =
(−4t− 8, 4t+ 10,−4t− 11, 4t + 11),
τ̃(−4t−8, 4t+10,−4t−11, 4t+11) = (4t+10,−4t−11, 4t+11,−4t−10) ∈
E11,
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τ̃(4t+8,−4t−10, 4t+11,−4t−11) = (−4t−10, 4t+11,−4t−11, 4t+11),
τ̃(−4t−10, 4t+11,−4t−11, 4t+11) = (4t+11,−4t−11, 4t+11,−4t−10) ∈
E11,
τ̃(4t+10,−4t−11, 4t+11,−4t−11) = (−4t−11, 4t+11,−4t−11, 4t+11),
τ̃(−4t−11, 4t+11,−4t−11, 4t+11) = (4t+11,−4t−11, 4t+11,−4t−10) ∈
E11,
τ̃(4t+11,−4t−11, 4t+11,−4t−11) = (−4t−11, 4t+11,−4t−11, 4t+11).

If ε1 = 2 and ε2 = −2 and ε3 = {−3, .., 3}, then s = −4t− 8 + ε3 − a and

τ̃(e) =











(a− 4,−a+ 2, a,−a− 2) ∈ E11 a ≤ −4t− 8 + ε3,

(a− 4,−a+ 2, a,−a− 1) ∈ E11 −4t− 8 + ε3 < a ≤ 2t+ 5 + ε3,

(a− 4,−a+ 2, a,−a) ∈ E11 otherwise.

|τ̃(e)4| > 4t+ 10 if

1. a ≥ 4t+ 9 and 0 ≤ s ≤ 6t+ 13

2. a = 4t+ 10 and −6t− 13 ≤ s ≤ 0

Substituting a ≥ 4t+ 9 we get s ≤ −8t− 17 + ε3, hence none of the cases
occurs.

If ε1 = 2 and ε2 = 0 and ε3 = −2, then s = −2t+ 4− a and

τ̃(e) =

{

(a− 2,−a+ 2, a,−a− 2) ∈ E11 a ≤ −2t+ 4,

(a− 2,−a+ 2, a,−a− 1) ∈ E11 otherwise.

|τ̃(e)4| > 4t+ 10 if

1. a ≥ 4t+ 9 and 0 ≤ s

2. a = 4t+ 10 and −6t− 13 ≤ s < 0

Substituting a ≥ 4t+9 we get s ≤ −6t− 5, but the element (−4t− 10, 4t+
8,−4t− 8, 4t+ 10) is in E12.
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If ε1 = −2 and ε2 = 0 and ε3 = 2, then s = 2t− 4− a and

τ̃(e) =

{

(a+ 2− a− 2, a,−a+ 2) ∈ E11 a ≤ 2t− 4,

(a+ 2− a− 2, a,−a+ 3) ∈ E21 otherwise.

|τ̃ (e)4| > 4t+ 10 if

1. a ≤ −4t− 9 and 0 ≤ s
2. a ≤ −4t− 8 and −6t− 13 ≤ s < 0

Substituting a ≤ −4t − 8 we get s ≥ 6t + 4, but the elements (−a, a +
2,−a− 2, a) where a ≤ −4t− 9 are in E12.

If ε1 = 2 and ε2 = −1 and ε3 = {−3, .., 3}, then s = −3t− 1 + ε3 − a and

τ̃(e) =











(a− 3,−a+ 2, a,−a− 2) ∈ E11 a ≤ −3t− 1 + ε3,

(a− 3,−a+ 2, a,−a− 1) ∈ E11 −3t− 1 + ε3 < a ≤ 3t+ 12 + ε3,

(a− 3,−a+ 2, a,−a) ∈ E11 otherwise.

|τ̃ (e)4| > 4t+ 10 if

1. a ≥ 4t+ 9 and 0 ≤ s
2. a = 4t+ 10 and −6t− 13 ≤ s < 0

Substituting a ≥ 4t+ 9 we get s ≤ −7t− 10 + ε3.

If ε1 = −2 and ε2 = 1 and ε3 = {−3, .., 3}, then s = 3t+ 1 + ε3 − a and

τ̃(e) =











(a+ 3,−a− 2, a,−a+ 1) ∈ E11 a ≤ −3t− 12 + ε3,

(a+ 3,−a− 2, a,−a+ 2) ∈ E11 −3t− 12 + ε3 < a ≤ 3t+ 1 + ε3,

(a+ 3,−a− 2, a,−a+ 3) ∈ E21 otherwise.

|τ̃ (e)4| > 4t+ 10 if

1. a = −4t− 10 and 6t+ 13 ≤ s
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2. a ≤ −4t− 9 and 0 ≤ s < 6t+ 13

3. a ≤ −4t− 8 and −6t− 13 ≤ s < 0

Substituting a ≤ −4t− 8 we get s ≥ 7t+ 9 + ε3, but the element (4t+ 7 +
ε3,−4t− 7, 4t+ 8,−4t− 10) is in E22.

Case 2 e ∈ E21 \E22

If ε1 = −1 and ε2 = 3 and ε3 = {−3, .., 3}, then s = 4t+ 18 + ε3 − a and

τ̃(e) =

{

(a+ 5− a− 2, a,−a) ∈ E11 a ≤ −2t+ 5 + ε3,

(a+ 5− a− 2, a,−a+ 1) ∈ E11 otherwise.

|τ̃(e)4| > 4t+ 10 if a = −4t− 10 and s < 6t+ 13, but s = 8t+ 28 + ε3.

If ε1 = 1 and ε2 = −3 and ε3 = {−3, .., 3}, then s = −4t− 18 + ε3 − a and

τ̃(e) =

{

(a− 4,−a+ 1, a,−a) ∈ E11 a ≤ 2t− 5 + ε3,

(a− 4,−a+ 1, a,−a+ 1) ∈ E11 otherwise.

|τ̃(e)4| > 4t+ 10 if a = −4t− 10 and s < −6t− 13, but s = −8 + ε3.

If ε1 = 3 and ε2 = −2 and ε3 = {−3, .., 3}, then s = −5t− 5 + ε3 − a and

τ̃(e) =

{

(a− 5,−a+ 3, a,−a− 2) ∈ E21 a ≤ t+ 8 + ε3,

(a− 5,−a+ 3, a,−a− 1) ∈ E21 otherwise.

|τ̃(e)4| > 4t+ 10 if

1. a ≥ 4t+ 9 and −6t− 13 ≤ s ≤ 0

2. a = 4t+ 10 and s < −6t− 13



110 APPENDIX

Substituting a ≥ 4t+9 we get s < −9t−14+ε3, hence we should take only
the second case into account, but then the element is (−4t − 5 + ε3, 4t +
5,−4t− 7, 4t + 10) that is in E22.

If ε1 = −3 and ε2 = 2 and ε3 = {−3, .., 3}, then s = 5t+ 5 + ε3 − a and

τ̃(e) =

{

(a+ 5,−a− 3, a,−a+ 3) ∈ E21 a > −t− 8 + ε3,

(a+ 5,−a− 3, a,−a+ 2) ∈ E21 otherwise.

|τ̃ (e)4| > 4t+ 10 if

1. a ≤ −4t− 9 and 6t+ 13 ≤ s
2. a ≤ −4t− 8 and 0 ≤ s < 6t+ 13

Substituting a ≤ −4t− 8 we get s ≥ 9t+ 13 + ε3, but the elements (−a−
5 + ε3, a+ 5,−a− 3, a) where a ≤ −4t− 9 are in E22.

If ε1 = −3 and ε2 = 3 and ε3 = {−3, .., 3}, then s = 6t+ 12 + ε3 − a and

τ̃(e) =

{

(a+ 6,−a− 3, a,−a + 2, ) ∈ E21 a ≤ −1 + ε3,

(a+ 6,−a− 3, a,−a + 3) ∈ E21 otherwise.

|τ̃ (e)4| > 4t+ 10 if

1. a ≤ −4t− 9 and 6t+ 13 ≤ s
2. a ≤ −4t− 8 and 0 ≤ s < 6t+ 13

Substituting a ≤ −4t − 8 we get s ≥ 10t + 20 + ε3, but the elements
(−a− 6 + ε3, a+ 6,−a− 3, a) where a ≤ −4t− 9 are in E22.

If ε1 = 3 and ε2 = −3 and ε3 = {−3, .., 3}, then s = −6t− 12 + ε3 − a and

τ̃(e) =

{

(a− 6,−a+ 3, a,−a− 2) ∈ E21 a ≤ 1 + ε3,

(a− 6,−a+ 3, a,−a− 1) ∈ E21 otherwise.

|τ̃ (e)4| > 4t+ 10 if
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1. a ≥ 4t+ 9 and −6t− 13 ≤ s ≤ 0

2. a = 4t+ 10 and s < −6t− 13

Substituting a ≥ 4t+ 9 we get s ≤ −10t− 21 + ε3, but the element (−4t−
4 + ε3, 4t+ 4,−4t− 7, 4t+ 10, ) is in E22.

If ε1 = −2 and ε2 = 3 and ε3 = {−3, .., 3}, then s = 5t+ 15 + ε3 − a and

τ̃ (e) =

{

(a+ 5,−a− 2, a,−a + 1) ∈ E11 a ≤ −t+ 2 + ε3,

(a+ 5,−a− 2, a,−a + 2) ∈ E11 otherwise.

|τ̃(e)4| > 4t+ 10 if

1. a = −4t− 10 and 6t+ 13 ≤ s

2. a ≤ −4t− 9 and 0 ≤ s < 6t+ 13

Substituting a ≤ −4t−9 we get s ≥ 9t+24+ε3, but the (4t+5+ε3,−4t−
5, 4t+ 8,−4t− 10) element is in E22.

If ε1 = 2 and ε2 = −3 and ε3 = {−3, .., 3}, then s = −5t− 15 + ε3 − a and

τ̃(e) =

{

(a− 5,−a+ 2, a,−a− 1) ∈ E11 a ≤ t− 2 + ε3,

(a− 5,−a+ 2, a,−a) ∈ E11 otherwise.

|τ̃(e)4| > 4t + 10 only if a = 4t + 10 and s ≥ −6t − 13. Substituting
a = 4t+ 10 we get s ≤ −9t− 25 + ε3.

Case 3 There are no images of other elements of E in E12
⋃

E22

(−a−ε2+ε3, a+ε2,−a−1, a) where ε2 ∈ {−1, 0, 1} and ε3 ∈ {−3, ..., 3}
and a = −4t− 10.

(−a−ε2+ε3, a+ε2,−a−1, a) =

{

τ̃(a+ ε2 − ε3 + ε4,−a− ε2 + ε3, a+ ε2,−a− 1)

−(a+ ε2 − ε3,−a− ε2, a+ 1,−a).
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In the first case s = t(ε3 − ε2) + 3ε2 + 7ε3 + ε4 − 3t− 12

τ̃(a+ε2−ε3+ε4,−a−ε2+ε3, a+ε2,−a−1)4 =











a+ 2− ε2 0 ≤ s,
a+ 3− ε2 −6t− 13 ≤ s < 0,

a+ 4− ε2 s < −6t− 13.

Since ε2 < 3 the only case we can get a as a first coordinate, if ε2 = 2, but
then s ≤ 0.

In the second case s = t(ε2 − ε3)− 3ε2 − 7ε3 − ε4 + 3t+ 12

τ̃(−a−ε2+ε3−ε4, a+ε2−ε3,−a−ε2, a+1)4 =











−a− 3 + ε2 6t+ 13 ≤ s,
−a− 2 + ε2 0 ≤ s < 6t+ 13,

−a− 1 + ε2 s < 0.

Since ε2 < 3 we can get −a as a fourth coordinate, if ε2 = 1, but then s > 0
or ε2 = 2 if ε3 ≥ 0.

(−a + 3 − ε2 + ε3, a − 3 + ε2,−a + 3, a) where ε2 ∈ {−2,−3} and
ε3 ∈ {−3, ..., 3} and a = 4t+ 10.
(−a+ 3− ε2 + ε3, a− 3 + ε2,−a+ 3, a) =

{

τ̃(a− 3 + ε2 − ε3 + ε4,−a+ 3− ε2 + ε3, a− 3 + ε2,−a+ 3)

−(a− 3 + ε2 − ε3,−a+ 3− ε2, a− 3,−a).

Hence s = t(ε3−ε2)+3ε2+7ε3+ε4+4t+7 and 3t−20+ε4 ≤ s ≤ 10t+19+ε4
τ̃(a− 3 + ε2 − ε3 + ε4,−a+ 3− ε2 + ε3, a− 3 + ε2,−a+ 3)4 =

{

a− 3− ε2 − 1 6t+ 13 ≤ s ≤ 12t+ 26,

a− 3− ε2 0 ≤ s < 6t+ 13.

Since ε2 6= 4, and even if ε2 = −3, then ε3 ∈ {−1,−2,−3} should happen,
but there are no elements with these properties in E.

In the second case s = t(−ε3 + ε2)− 3ε2− 7ε3− ε4− 4t− 7, τ̃(−a+ 3−
ε2 + ε3 − ε4, a− 3 + ε2 − ε3,−a+ 3− ε2, a− 3)4 =

{

−a+ 3 + ε2 + 1 −6t− 13 ≤ s ≤ 0,

−a+ 3 + ε2 + 2 −12t− 26 ≤ s < −6t− 13.
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Since ε2 > −4, none of the cases can occur.

(a,−a−3, a+3+ε2 ,−a+3−ε2+ε3) where ε2 ∈ {2, 3} and ε3 ∈ {−3, ..., 3}
and a ≤ −4t− 9.
(−a− 3− ε2 + ε3, a+ 3 + ε2,−a− 3, a) =

{

τ̃(a+ 3 + ε2 − ε3 + ε4,−a− 3− ε2 + ε3, a+ 3 + ε2,−a− 3)

−(a+ 3 + ε2 − ε3,−a− 3− ε2, a+ 3,−a).
Since s = t(ε3 − ε2) + 3ε2 + 7ε3 + ε4 + a + 3 and −10t − 19 + ε4 ≤ s ≤
−3t+ 21 + ε4 τ̃(a+ 3 + ε2− ε3 + ε4,−a− 3− ε2 + ε3, a+ 3 + ε2,−a− 3)4 =

{

a+ 3− ε2 + 1 −6t− 13 ≤ s < 0,

a+ 3− ε2 + 2 −12t− 26 ≤ s < 6t+ 13.

Since ε2 < 4, none of the cases can occur.
In the second case s = t(−ε3 + ε2)− 3ε2 − 7ε3 + ε4 − a− 3, τ̃(−a− 3−

ε2 + ε3 − ε4, a+ 3 + ε2 − ε3,−a− 3− ε2, a+ 3)4 =
{

−a− 3 + ε2 − 1 6t+ 13 ≤ s ≤ 12t+ 26,

−a− 3 + ε2 0 ≤ s < 6t+ 13.

Since ε2 6= 4, and even if ε2 = 3, then ε3 ∈ {1, 2, 3} should happen, but
there are no elements with these properties in E.

(a,−a − 2, a + 2 + ε2,−a − 2 − ε2 + ε3) where ε2 ∈ {0, 1, 3} and ε3 ∈
{−3, ..., 3} and a ≤ −4t− 9.
(−a− 2− ε2 + ε3, a+ 2 + ε2,−a− 2, a) =

{

τ̃(a+ 2 + ε2 − ε3 + ε4,−a− 2− ε2 + ε3, a+ 2 + ε2,−a− 2)

−(a+ 2 + ε2 − ε3,−a− 2− ε2, a+ 2,−a).
Since s = t(ε3−ε2)+3ε2+7ε3+ε4+a+2 and−10t−20+ε4 ≤ s ≤ −t+14+ε4
τ̃(a+ 2 + ε2 − ε3 + ε,−a− 2− ε2 + ε3, a+ 2 + ε2,−a− 2)4 =











a+ 2− ε2, t = 17 0 ≤ s < 6t+ 13,

a+ 2− ε2 + 1 −6t− 13 ≤ s < 0,

a+ 2− ε2 + 2 −12t− 26 ≤ s < 6t+ 13.
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Since ε2 6= 4 and ε2 6= 2, and if ε2 = 3, then ε3 ∈ {1, 2, 3} should be true,
but there are no elements with these properties in E.

In the second case s = t(−ε3 + ε2)− 3ε2 − 7ε3 + ε4 − a− 2, τ̃(−a− 2−
ε2 + ε3 − ε4, a+ 2 + ε2 − ε3,−a− 2− ε2, a+ 2)4 =

{

−a− 2 + ε2 − 1 6t+ 13 ≤ s ≤ 12t+ 26,

−a− 2 + ε2 0 ≤ s < 6t+ 13.

Since ε2 6= 2, and even if ε2 = 3, then ε3 ∈ {0,−1,−2,−3} should happen,
but there are no elements with these properties in E.

(−a, a− 2,−a+ 2, a) where a = 4t+ 10.

(−a, a− 2,−a+ 2, a) =

{

τ̃(a+ ε3,−a, a− 2,−a+ 2)

−(a,−a+ 2, a− 2,−a).
In the first case s = 2t− 6 + ε3 and τ̃(a+ ε3,−a, a− 2,−a+ 2)4 = a− 2, in
the second case s = −2t+6+ ε3 and τ̃(−a+ ε3, a,−a+2, a−2)4 = −a+3.

To prove that for every e ∈ E there exists some l > 0 with τ̃ l(e) = 0
we show that applying the mapping τ̃ to any element e = (−a+ ε1 − ε2 +
ε3, a − ε1 + ε2,−a + ε1, a), where |a| ≤ 4t + 10 we get a spiral. A spiral
is a τ̃ sequence of elements where the εi, i = 1, 2, 3 of the first and the
last elements are the same and the first coordinate of the last element is
smaller in absolute value then the one of first one. We will denote a spiral
by (a1, a2, a3, a4); a5, . . . , an. There is a spiral for any a ∈ [−4t−10, 4t+10]
and εi. It means that once a sequence arrives at a spiral then it will follow
it and it will be decreasing in the first coordinate in absolute value until it
arrives to zero or it turns into another spiral.

There are 14 spirals:

• (−a− 5, a+ 4,−a− 2, a);−a+ 3, a− 5,−a+ 7, a− 8,−a+ 10, a− 12

• (−a+ 6, a− 4,−a+ 2, a);−a − 1, a+ 3,−a− 5, a+ 7

• (−a+ 6, a− 4,−a+ 2, a);−a − 1, a+ 2,−a− 3, a+ 5,−a− 7, a+ 9

• (−a+ 4, a− 2,−a+ 1, a);−a − 1, a+ 3,−a− 4, a+ 5
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• (−a+ 3, a− 2,−a+ 1, a);−a, a + 1,−a− 2, a+ 3

• (−a, a,−a, a);−a + 1, a− 2,−a+ 2, a− 2,−a+ 2

• (−a, a,−a, a);−a + 1, a− 1,−a+ 1, a− 1

• (−a+ 3, a− 2,−a+ 1, a);−a − 1, a+ 2, where a < 0

• (−a− 2, a+ 1,−a, a);−a, a + 1,−a− 2, a+ 3,−a− 3

• (−a+ 1, a,−a, a);−a + 1, a − 1,−a+ 1

• (−a− 2, a+ 2,−a− 1, a);−a + 2, a− 3,−a+ 3, a− 2,−a+ 1

• (−a− 2, a+ 1,−a, a);−a, a,−a + 1, a− 2,−a+ 3, a− 3

• (−a+3, a−2,−a+1, a);−a−1, a+3,−a−4, a+5,−a−5, a+6,−a−
7, a+ 8

• (−a+ 4, a− 2,−a+ 1, a);−a, a,−a + 1, a− 2,−a+ 4, a− 5,−a+ 6

If ε1 = 1, then e = (−a+ 1− ε2 + ε3, a− 1 + ε2,−a+ 1, a).

τ̃(e) =











(a− 1 + ε2,−a+ 1, a,−a− 1), 0 ≤ s < 6t+ 13,

(a− 1 + ε2,−a+ 1, a,−a), −6t− 13 ≤ s < 0

(a− 1 + ε2,−a+ 1, a,−a+ 1), −12t− 26 ≤ s < −6t− 13

In the first case a ≤ t(ε2 − 1) + 3 + 7ε2 + ε3, so a ≤ t+ 17 + ε3.

τ̃2(e) =

{

(−a+ 1, a,−a− 1, a+ 2), 0 ≤ 2t+ 5 + ε2 + a < 6t+ 13,

(−a+ 1, a,−a− 1, a+ 3), −6t− 13 ≤ 2t+ 5 + ε2 + a < 0

Considering the first case again, since −2t− 5− ε2 ≤ a ≤ t+ 17 + ε3

τ̃3(e) =

{

(a,−a− 1, a+ 2,−a− 3), 0 ≤ −2t− 5− a < 6t+ 13,

(a,−a− 1, a+ 2,−a− 2), −6t− 13 ≤ −2t− 5− a < 0
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In the first case s = 2t+6+a, so −1 ≤ s ≤ 3t+23+ε3. If a = −2t−7, then
τ̃4(e) = (−a−1, a+2,−a−3, a+5), otherwise (−a−1, a+2,−a−3, a+4),
εi = (1,−1, 1). There is a spiral starting with (−a + 1, a,−a − 1, a + 2),
where εi = (1,−1, 1).

In a similar way we can find spirals for all other cases.2



Summary

The present dissertation consists of two more or less independent topics.
First part of this work deals with generalized number systems, especially
Canonical Number Systems and Symmetric Shift Radix Systems. The sec-
ond part belongs to cryptographically secure electronic elections. Two new
voting schemes are presented: a coercion-resistant voting scheme based on
blind signatures and a receipt-free homomorphic election scheme.

Generalized Number Systems

First chapter contains the historical background, the presentation
overview and our main results. In the second chapter we deal with
Canonical Number Systems. CNS bases are explicitly known for some
quadratic, cubic and quartic fields ([43],[44],[30],[33],[86],[8],[49],[5],[67]).
Our main result is the characterization of CNS bases in algebraic num-
ber fields including quartic cyclotomic fields, simplest quartic fields and
two families of orders in quartic number fields. The results of this chapter
are contained in our paper [17]. This paper is a joint work with Horst
Brunotte and Attila Pethő.
In the sequel we denote by Q the field of rational numbers, by Z the set of
integers and by N the set of nonnegative integers. For an algebraic integer
γ we let µγ ∈ Z[X] be its minimal polynomial and Cγ the set of all CNS
bases for Z[γ].

6.0.2 Definition. Let P (X) = Xd + pd−1X
d−1 + · · · + p1X + p0 ∈

Z[X], N = {0, 1, . . . , |p0| − 1} and R := Z[X]/P (X)Z[X] and denote the
image of X under the canonical epimorphism from Z[X] to R by x. If
every non-zero element A(x) ∈ R can be written uniquely in the form
A(x) = a0 + a1x + · · · + alx

l with a0, . . . , al ∈ N, al 6= 0, we call (P,N) a

117
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canonical number system (CNS for short). P (X) is called CNS polynomial,
to N we refer as the set of digits.

We denote by C the set of CNS polynomials, and α is a CNS basis for Z[α]
if and only if µα is a CNS polynomial.

6.0.3 Theorem. Let γ be an algebraic integer. Then there exist finite ef-
fectively computable disjoint subsets F0(γ),F1(γ) ⊂ Cγ with the properties:

(i) For every α ∈ Cγ there exists some n ∈ N with α+n ∈ F0(γ)∪F1(γ).

(ii) F1(γ) consists of fundamental CNS bases for Z[γ].

For finding CNS bases a modified version of the algorithm given by B.
Kovács and A. Pethő [49] is applied. This algorithm assumes existence of
a set, that contains representatives of the equivalence classes of generators
of power integral bases of the given order and finds sets F0(γ) and F1(γ).

Now we will treat the cyclotomic fields of degree 4.

6.0.4 Theorem. Let ζ5, ζ8, ζ12 be a primitive fifth, eighth and twelfth root
of unity respectively. Then we have F0(Q(ζi)) = ∅ for i ∈ {5, 8, 12} and
F1(Q(ζ5)) = {−2 + ζ5,−3− ζ5,−2 + ζ5 + ζ3

5 ,−3− ζ5 − ζ3
5}.

F1(Q(ζ8)) = {−3± ζk
8 | k = 1, 3, 5, 7}.

F1(Q(ζ12)) = {−3 + ζ12,−3− ζ12,−3 + ζ−1
12 ,−3− ζ−1

12 ,−1− ζ2
12 + ζ−1

12 ,−2 +

ζ2
12 − ζ−1

12 }.

For t ∈ Z \ {0,±3} let Pt(X) = X4 − tX3 − 6X2 + tX + 1. Let ϑ = ϑt

be a root of Pt(X), then the infinite parametric family of number fields
Kt = K = Q(ϑt) is called simplest quartic fields. P. Olajos [57] proved that
Kt admits a power integral bases if and only if t = 2 and t = 4, moreover
he found all generators of power integral bases in these fields. Using his
result we are able to compute all CNS bases in such fields.

6.0.5 Theorem. We have F0(Q(ϑ)) = ∅ and F1(Q(ϑ2)) = G2 and
F1(Q(ϑ4)) = G4 where G2 and G4 are explicitly given.

6.0.6 Remark. For detailed description of sets G2 and G4 we refer to sec-
tion 2.4.
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Power integral bases in the polynomial order Z[α] of Kt were described by
G. Lettl and A. Pethő [53].

6.0.7 Theorem. Let t ∈ N \ {0, 3} and ϑ denote a root of the polynomial
X4 − tX3 − 6X2 + tX + 1. Then we have F0(Q(ϑ)) = ∅ and F1(Q(ϑ)) =
G ∪ G1 ∪ G2 ∪ G4 where G, G1, G2 and G4 are explicitly given.

6.0.8 Remark. For detailed description of sets G, G1, G2 and G4 we refer
to section 2.4.

Finally we consider a family of orders in a parameterized family of quartic
number fields, where all power integral bases are known. Let t ∈ Z, t ≥ 0,
and P (X) = X4 − tX3 − X2 + tX + 1. Denote by α one of the zeros of
P (X). In the following we deal with the order O = Z[α] of Q(α). Based
on paper of M. Mignotte, A. Pethő and R. Roth [55] we give the following
result.

6.0.9 Theorem. Let t ≥ 4. We have F0(Q(α)) = ∅ and F1(Q(α)) =
G4 ∪ Gt where

G4 =
{

209α + 140α2 − 49α3 + 350, 209α − 312α2 + 64α3 − 71
}

Gt =
{

α+ t+ 1, α+ tα2 − α3 + t+ 2, tα+ (t− 1)α2 − α3 + 8,

tα− (t+ 1)α2 + α3 + 2, α− α3 + 2, α − t(t2 + 1)α2 + t2α3 − t+ 1
}

.

Chapter three is devoted to Symmetric Shift Radix Systems. Two
dimensional SSRS is treated in [9] by Akiyama and Scheicher, we will deal
with three-dimensional SSRS.

The results of this chapter are based on [40], that is a joint work with Klaus
Scheicher, Paul Surer and Jörg M. Thuswaldner.

6.0.10 Definition. (cf. [9]) Let d ≥ 1 be an integer, r ∈ Rd, and let

τr : Zd → Zd, a = (a1, . . . , ad) 7→
(

a2, . . . , ad,−
⌊

ra +
1

2

⌋)

. (6.0.1)

Then τr is called a symmetric shift radix system (SSRS for short), if
∀a ∈ Zd ∃n ∈ N : τn

r (a) = 0.



120 SUMMARY

Let

Dd :=
{

r ∈ Rd
∣

∣

∣∀a ∈ Zd ∃n, l ∈ N : τk
r (a) = τk+l

r (a) ∀k ≥ n
}

and

D0
d :=

{

r ∈ Rd |τr is an SSRS
}

.

As a new result we prove that D0
3 is an union of four polyhedra and a

polygon, by employing the algorithm that is established for SSRS in [9].

In [9] it has been shown that Ed(1) ⊂ Dd ⊂ Ed(1). Let a non-zero period
π := (a1, . . . , ad); ad+1, . . . , aL be given. We may ask for the set P (π) of
all r ∈ Dd for that π occurs as a period of τr. By the definition of τr, an
element r ∈ P (π) has to satisfy the system of L double inequalities

−1

2
≤ r1a1+i + r2a2+i + · · ·+ rdad+i + ad+1+i <

1

2
. (6.0.2)

Here i runs from 0 to L− 1 and aL+1 = a1, . . . , aL+d = ad. Such a system
characterizes a convex polyhedron, which is possibly degenerated or equal
to the empty set. Therefore we will call P (π) a cutout polyhedron. Since
each point r ∈ P (π) has π as a period of the associated mapping τr the set
P (π) has empty intersection with D0

d. Thus we get the representation

D0
d = Dd \

⋃

π 6=0

P (π),

where the union is extended over all non-zero periods π. Since the set
of periods is infinite, this expression is not suitable for calculations. The
following theorem shows how to reduce the set of possible periods to a finite
set and gives an efficient algorithm for a closed subset H of intDd = Ed(1)
to determine H ∩ D0

d.

6.0.11 Theorem. (cf. [9]) Let r1, . . . , rk ∈ Dd and let H := �(r1, . . . , rk)
be the convex hull of r1, . . . , rk. Assume that H ⊂ intDd and sufficiently
small in diameter. Then there exists an algorithm to construct a finite di-
rected graph G(H) = V × E with vertices V ⊂ Zd and edges E ⊂ V × V
which satisfies

1. ±ei ∈ V for all i = 1, . . . , d,
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2. G(V(x)) is a subgraph of G(H) for all x ∈ H,

3. H ∩ D0
d = H \⋃π P (π), where π runs through all periods induced by

the nonzero primitive cycles of G.

Our aim is to characterize D0
3. From [78, 84] we calculate

E3(1) =
{

(x, y, z) ∈ R3
∣

∣ |x| < 1, |y − xz| < 1− x2, |x+ z| < |y + 1|
}

. Let

E ′3 :=
{

(x, y, z) ∈ R3
∣

∣ |x| ≤ 1 ∧ |y − xz| ≤ 1 − x2 ∧ |x + z| ≤ |y + 1| ∧ |y −
1| ≤ 2 ∧ |z| ≤ 3

}

and consider the intersection of E ′3 with the hyperplane

Ac :=
{

(x, y, z) ∈ R3 | x− c = 0
}

for constant c.

6.0.12 Lemma. For any |c| < 1 the intersection of E ′3 with the plane Ac

yields the closed triangle △(A
(1)
c , A

(2)
c , A

(3)
c ) with A

(1)
c = (c,−1,−c), A(2)

c =

(c, 1 − 2c, c − 2), A
(3)
c = (c, 2c + 1, c+ 2).

6.0.13 Theorem. E3(1) = E ′3.
The number of inequalities can be reduced, we gain

E3(1) =
{

(x, y, z)
∣

∣|x+ z| ≤ 1 + y ∧ y − xz ≤ 1− x2 ∧ |z| ≤ 3
}

.

For giving the complete description of D0
3 we define the sets

S1 := {(x, y, z) | 2x− 2z ≥ 1 ∧ 2x+ 2y + 2z > −1 ∧ 2x+ 2y ≤ 1

∧ 2x ≤ 1 ∧ 2x− 2y + 2z ≤ 1},
S2 := {(x, y, z) | x− z ≤ −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x+ 2y ≤ 1

∧ 2x > −1},
S3 := {(x, y, z) | x− z > −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x+ 2y < 1, 2x > −1

∧ 2x− 2z < −1 ∧ 2x+ 2y + 2z > −1},
S4 := {(x, y, z) | 2x− 2y + 2z ≤ 1 ∧−2x+ 2y ≤ 1 ∧ 2x− 2z = −1

∧ 2x+ 2y + 2z > −1},
S5 := {(x, y, z) | − 1 < 2x ≤ 1 ∧ −1 < 2x− 2z ≤ 1 ∧ 2x+ 2y + 2z > −1

∧ 2x− 2y + 2z ≤ 1 ∧ 2x+ 4y − 2z < 3, 2y ≤ 1}
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and denote their union by

S :=
⋃

i∈{1,...,5}
Si.

Note that S1, S2, S3, S5 are polyhedra while S4 is a polygon.

6.0.14 Theorem. D0
3 = S

We give an outline of the proof. In a first step we will use Theorem 6.
in order to show that

S ⊆ D0
3. (6.0.3)

For showing the opposite inclusion we need a set of nonzero periods Π such
that for P :=

⋃

π∈Π P (π) we have

S ∪ P ⊇ D3.

From (6.0.7) we can deduce S ∩ P = ∅. Thus,

S ⊇ D3 \ P ⊇ D0
3.

Since D3 ⊂ E3(1) we are done if we can cover E3(1) with P ∪ S, i.e., if we
can show that

P ∪ S ⊇ E3(1).
There are 43 different periods, we denote the corresponding polyhedron

by P (πj), where j ∈ {1, . . . , 43}.

Cryptographically Secure Electronic Elections

In chapter four we detail all the protocol building blocks that we ap-
plied in our election schemes. In chapter five after describing requirements
and participants of voting schemes two new secure election protocols are de-
tailed. Both of them possess all basic requirements and can be implemented
in practice.
Results of this chapter are based on [38] and [39].
Requirements we intend to fulfill in an electronic voting scheme are as fol-
lows: eligibility, privacy, unreusability, fairness, robustness, individual and
universal verifiability, receipt-freeness, uncoercibility and protects against
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randomization, forced-abstention and simulation attacks. A scheme is
called coercion-resistant if it offers not only receipt-freeness, but also de-
fense against randomization, forced-abstention and simulation attacks.

A Coercion-Resistant Voting Scheme Based on Blind Signatures

There are several election protocols using blind signatures that pos-
sess all basic requirements including verifiability, eligibility, unreusability,
privacy etc., but not receipt-freeness ([28],[58]). Most of the receipt-free
schemes in literature apply untappable channels or voting booths([59]),
that are not practical. Our scheme satisfies besides eligibility, privacy,
unreusability, fairness, robustness, individual and universal verifiability,
coercion-resistance as well. The voting scheme based on blind signatures,
requires only two authorities, practical and does not employ complex prim-
itives like zero-knowledge proofs or threshold cryptosystems. It is offered
to be employed in an environment, where authorities participating do not
collude and the Voting Authority does not collaborate with adversaries.

Let denote P,Q large primes, where Q|(P − 1) and g ∈ Z∗
P of order Q. Let

us define the candidate list as C1, C2, . . . , Cn. The three functions applied
in the scheme: vote, ifeligible and verify are as follows.

1. vote(VID, SKV , x, a, Ci) ֌ ballot, where VID is the voter’s identifi-
cation number, SKV is the voter’s secret key, x, a are random pa-
rameters and Ci is the selected candidate. The form of the ballot
is (VID||r||y, VID||v), where r = ESKV

(g), y ≡ g−x (mod P ) and
v ≡ ya · Ci (mod P ) and || is the notation of concatenation.

2. ifeligible(PKV , r) ֌ {0, 1}, where PKV is the voter’s public key, r is
a received value. It returns 1 if DPKV

(r) = g and 0 if this congruence
is not satisfied.

3. verify(PKV , z, s, y) ֌ {0, 1} calculates if PKz
V ≡ gs · y (mod P )

congruence holds. It outputs 1 if it is correct and 0 otherwise. This
function verifies if s sent by the voter is calculated well and by the
same voter who previously voted with value y and public key PKV ,
where element z is randomly generated by the Voting Authority.

It consists of three distinctive stages: Authorizing, Voting and Tallying.
Participants besides voters are Registry that is manages the Authorizing
stage and the Tallying stage, as well, and Voting Authority that is re-
sponsible for the Voting stage. During the Authorizing stage the voter
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authenticates himself and receives his credentials(SKV ,VID) and the ElGa-
mal public key of the Voting Authority(PKA). Voting Authority gets the
voter roll containing the corresponding ElGamal public keys(VID, PKV )
and all system parameters are generated(P ,Q,g). During the Voting stage
voters create their ballots with function vote. Ballots contain the selected
candidate and blind signature is applied to hide it from the Voting Au-
thority (construction of value v). Voting Authority checks eligibility of the
voters with function ifeligible and if they have already voted before. Vot-
ing Authority sends an encrypted random number(z) to the voter. Voters
send encrypted values s and VID, where s ≡ x + z · SKV (mod Q), then
Voting Authority runs function verify. Voters receive their encrypted bal-
lots signed by the Voting Authority(Sig(v, s)), if a fraud is detected the
voter makes a claim. At the end voters pass the corresponding decrypting
keys of the encrypted ballots (a,s) to the Registry. Ballots and bulletin
board information are passed through an anonymous channel. During the
Tallying stage the Voting Authority sends encrypted ballots (s,v) to the
Registry. The ballots are being decrypted and the final results with the
votes are listed on the bulletin board (s,Ci). Voters confirm that their
ballots are on the bulletin board. If his ballot is not listed correctly, he
makes a claim. During the voting process public and anonymous channels
are employed and ElGamal encrypted messages are sent, hence it can be
implemented in practice.

A Receipt-Free Homomorphic Election Scheme

Our protocol is based on homomorphic encryptions, it assumes existence
of several authorities and it uses distributed ElGamal encryption [63]. This
scheme is based on [22] that is not possessing the property of receipt-freeness
or uncoercibility. There are two models based on [22] that are designed to
be receipt-free in the literature: [52] and [36]. First one applies an honest
verifier, the second one uses an untappable channel. Our scheme does not
employ voting booths or untappable channels, it requires an anonymous
return channel, hence it can be implemented in practice. We do not have
an honest verifier, either. The only assumption is that among the Vot-
ing Authorities participating in distributed key generation and decryption
there is at least one authority that is honest. The scheme satisfies eligi-
bility, privacy, unreusability, fairness, robustness, individual and universal
verifiability, receipt-freeness, uncoercibility and protects against random-
ization and forced-abstention attacks. The participants of the protocol are
m voters, a Registry R, an authority called Verifier Authority (VA) and
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s Voting Authorities. Before describing our election scheme let us detail

ProofGenEG generator and ProofV erEG verifier algorithms:
ProofGenEG
Input: signature: sm ∈ ZQ, R ∈ ZQ, l̃ ∈ ZQ

Output: sm ∈ ZQ, R ∈ ZP , T ∈ ZQ

1. The voter chooses random number: ṽ ∈ ZQ

2. R′ ≡ (R (mod P )) (mod Q)
3. sm ≡ sm

l̃
(mod Q)

4. R ≡ R
ṽ

l̃ (mod P )

5. T ≡ R′

ṽ (mod Q)
ProofVerEG
Let denote EPKVA Verifier Authority’s ElGamal public key.
Input: m ∈ ZP , sm ∈ ZQ, R ∈ ZP , T ∈ ZQ

Output: true, false
1. m′ ≡ (m (mod P )) (mod Q)

2. Verifies: EPKsm

VA ·R
T ≡ gm′

(mod P )

During the Authorizing stage voters authenticate themselves in per-
son and receive their credentials. All system parameters, sufficient pri-
vate and public keys are generated. Let P and Q be large primes so
that Q|(P − 1). GQ denotes Z∗

P ’s unique multiplicative subgroup of or-
der Q, and let g an arbitrary element such that g ∈ GQ. Voting Au-

thorities generate jointly the public (g, h ≡ gK (mod P )) and private
(K ∈ ZQ) keys using distributed ElGamal key generation method [63].
R randomly chooses vi ∈ Z∗

Q, i = 1, . . . , n elements Ci ≡ gvi (mod P )
where Ci represents candidate i from the voter roll and a one-way hash
function M() is chosen. All private and public keys are generated RSA
keys of R (private: RSKR, PR, QR, public: RPKR, NR) and VA (pri-
vate: RSKVA, PVA, QVA, public: RPKVA, NVA), ElGamal keys of VA (pri-
vate: ESKVA, public: (EPKVA, P, g)). The voter gets his credential in a
way that he generates his random reference number (idRk ), and R signs
it blindly, hence R cannot connect the credential to the voter. During
key-generation R does not learn anything about private keys either.

During the Voting stage voters create their ballots. VA checks eligibility
of the voters and if they have already voted before by verifying signature
of R on idRk (mod NR) || (M(idRk ))RSKR (mod NR) . Voter receives an
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identification value used only in vote validation phase, in order to follow
if a voter has already run the zero-knowledge proof. Voter Vk initiates a
blind signature algorithm in order to get his identification number autho-
rized and possesses idVA

k (mod NVA)||(M(idVA
k ))RSKVA (mod NVA). Then

Vk sends idVA
k (mod NVA)||(M(idVA

k ))RSKVA (mod NVA) through an anony-
mous return channel to VA. VA verifies the signature and if the correspond-
ing voter has not been processed before, sends zk back through the same
channel, where zk ∈ ZQ random. Since idVA

k signed blindly and anonymous
return channel is used, VA cannot learn the sender. Vk chooses a candi-

date i and the corresponding C
(k)
i from BB. In order to create his ballot

randomly chooses αk, βk, γk ∈ ZQ and computes Gk ≡ gαk+βk (mod P ),

Hk ≡ hαk+βk (mod P ) and Yk ≡ gzk·γk (mod P ). Following Vk runs a
non-interactive zero-knowledge proof to prove that he has constructed the

ballot correctly, such that he has chosen the value C
(k)
i from the voter roll

listed on BB.
He chooses rj, dj , wk ∈ ZQ random numbers, where 1 ≤ j ≤ n and j 6=
i, then calculates (A,B) = (a1, b1), (a2, b2), · · · , (an, bn), where ai ≡ gwk

(mod P ), bi ≡ hwk (mod P ), for the elected candidate i and

aj ≡ grj ·Gdj

k (mod P ), bj ≡ hrj ·
(

Hk · C(k)
i

C
(k)
j

)dj

(mod P )

for all candidates j 6= i. Further, the voter calculates

ck = M(a1||..||an||b1||..||bn||Gk||Hk ·C(k)
i ||g||h||idVA

k ||(M(idVA
k ))RSKVA) chal-

lenge and (D,R) = (d1, r1), (d2, r2), . . . , (dn, rn) where for candidate i

di ≡ ck −
n
∑

j=1,i6=j

dj (mod Q), ri ≡ wk − (αk + βk) · di (mod Q).

Vk sends the following encrypted randomized ballot and parameters to VA
through an anonymous return channel:

(A,B)||Gk||Hk · C(k)
i ||ck||(D,R)||idVA

k ||(M(idVA
k ))RSKVA ||r̃ · Yk,

where r̃ ∈ ZP is random. After receiving all necessary information VA
checks whether the voter with idVA

k has already run the zero-knowledge
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proof, whether idVA
k is signed correctly and calculates the following congru-

ences.

ck ≡
n
∑

j=1

dj (mod Q),

aj ≡ grj ·Gdj

k (mod P ), j = 1, . . . , n

bj ≡ hrj ·
(

Hk · C(k)
i

C
(k)
j

)dj

(mod P ), j = 1, . . . , n

If the verification congruences hold, then VA signs all the randomized com-
ponents applying SigGenEG that is a Meta-ElGamal signature scheme [37].

VA calculates and sends SigGenEG(Gk) = (sm1
, R1), SigGenEG(Hk ·C(k)

i ·
Yk ·r̃) = (sm2

, R2) SigGenEG(Yk ·r̃) = (sm3
, R3) back to the sender through

the anonymous return channel. After the voter verifies the three signatures,
gets authorization of the ballots being processed during the Tallying Stage.

l̃1 ≡ (gβk (mod P )) (mod Q)

l̃2 ≡ (hβk · r̃ (mod P )) (mod Q)

l̃3 ≡ (r̃ (mod P )) (mod Q)

and computes

ProofGenEG(sm1
, R1, l̃1) = (sm1

, R1, T1)

ProofGenEG(sm2
, R2, l̃2) = (sm2

, R2, T2)

ProofGenEG(sm3
, R3, l̃3) = (sm3

, R3, T3),

where ProofGenEG for generating a proof of his ’pure’ ballots from the ran-
domized ballot signatures sent by VA. Voters send idRk ||gαk ||(sm1

, R1, T1)||hαk ·
C

(k)
i ·Yk||(sm2

, R2, T2) to BB through a public channel and Yk||(sm3
, R3, T3)

to VA through anonymous channel. The form of the ballot is the ElGamal

encryption of C
(k)
i · Yk ≡ gvi+zk·γk (mod P ), where zk ∈ ZQ is sent by VA

through an anonymous channel, hence zk is not known by the adversary. If
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the ballot appearing on BB is different or missing, then the voter makes a
claim and he can cast his vote again.

During the Tallying stage the following computations are made: Ver-
ifier Authority runs ProofVerEG algorithm for each Yk and calculates
Y ≡∏m

k=1 Yk (mod P ), where only valid randomized components are con-
sidered and sends Y to BB. After verifying validity of encrypted ballots
with ProofVerEG

Γ ≡
m
∏

k=1

gαk (mod P )

Λ ≡
m
∏

k=1

hαk · C(k)
i · Yk (mod P )

appear on BB, where only valid ballots are considered. After dividing Λ by
Y we get the ElGamal encrypted voting result on BB. Voting Authorities
A1, A2, . . . , As together calculate the result Ct1

1 ·Ct2
2 · · ·Ctn

n with distributed
ElGamal decryption method. Shanks baby step giant step or Pollard rho
method might be applied for calculating ti, i = 1, . . . , n, which gives the
election result for candidate i.

Calculation of t1, . . . , tn is considered as a computationally hard prob-
lem, it requires O(m(n−1)/2) time to get the result.([52]) This scheme can
be used for large scale election, if the authorities divide the total value of
(Γ,Λ) into parts of reasonable size (e.g. election areas).



Összefoglaló

Ez a disszertáció két, többé-kevésbé független témakörön alapszik,
az általánośıtott számrendszerek, illetve a biztonságos elektronikus
választások témakörén. Az első részben kanonikus számrendszereket (CNS)
vizsgálunk negyedfokú algebrai számtestekben, majd a háromdimenziós sz-
immetrikus shift radix rendszereket karakterizáljuk. A disszertáció második
felében két biztonságos választási protokollt mutatunk be, az egyik vak
alá́ırási technikán, a másik homomorf kriptorendszeren alapszik.

Általánośıtott számrendszerek

A második fejezet témája a kanonikus számrendszerek (CNS) karak-
terizálása. A CNS bázisokat explicite ismerjük néhány másodfokú, har-
madfokú és negyedfokú testben (lásd a [43],[44],[30],[33],[86],[8],[49],[5],[67]
dolgozatokat). Fő eredményként több algebrai számtestben, a negyed-
fokú körosztási, a legegyszerűbb negyedfokú testekben és a negyedfokú
számtestek rendjeinek két családjában, meghatároztuk a CNS bázisokat.
Ebben a fejezetben szereplő, Horst Brunotte-val és Pethővel Attilával közös
eredményeink a [17] cikkünkben találhatók meg.

Továbbiakban Q jelöli a racionális számok testét, Z az egész számok hal-
mazát és N a nemnegat́ıv egészek halmazát. Jelölje µγ ∈ Z[X] a γ algebrai
egész minimálpolinomját és Cγ a Z[γ] összes CNS bázisának halmazát.

1. Defińıció Jelölje P (X) = Xd+pd−1X
d−1+ · · ·+p1X+p0 ∈ Z[X], N =

{0, 1, . . . , |p0| − 1} és R := Z[X]/P (X)Z[X]. A Z[X] -ből R-be képező
kanonikus epimorfizmus X -et vigye át x-be. Ha bármely nem-nulla
A(x) ∈ R egyértelműen feĺırható A(x) = a0 + a1x + · · · + alx

l alakban,
ahol a0, . . . , al ∈ N, al 6= 0, akkor (P,N) kanonikus számrendszer (CNS).
P (X)-et CNS polinomnak, N -et számjegyek halmazának nevezzük.

129
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Jelölje C a CNS polinomok halmazát. Belátható, hogy α akkor és csak
akkor CNS bázis Z[α]-ban, ha µα CNS polinom. Hogy egy adott polinom
CNS-e vagy sem, az algoritmus seǵıtségével könnyen eldönthető.

B. Kovács [47] egyik tétele alapján egy rendben akkor és csak akkor
létezik CNS, ha létezik hatvány egész bázis. CNS bázisok meghatározására
B. Kovács és A. Pethő [49] algoritmusának egy módośıtott változatát al-
kalmazzuk. Az algoritmus ismertetéséhez, szükségünk van a következő
álĺıtásokra és defińıcióra.

1. Lemma ( B. Kovács – A. Pethő) Bármely nem-nulla α algebrai egész
esetén a következő konstansok effekt́ıve kiszámı́thatóak:

kα = min{k ∈ Z |µα(X + n) ∈ K bármely n ∈ Z, ahol n ≥ k},

cα = min{k ∈ Z |µα(X + k) ∈ C}.

2. Defińıció Az α algebrai egész R alap CNS bázisa, ha teljesül a
következő két tulajdonság:

(1) α− n R CNS bázisa bármely n ∈ N esetén.

(2) α+ 1 nem CNS bázis R-ben.

1. Tétel Legyen γ egy algebrai egész. Akkor léteznek F0(γ),F1(γ) ⊂ Cγ
véges, effekt́ıve kiszámolható, diszjunkt halmazok, melyekre:

(i) Bármely α ∈ Cγ esetén létezik olyan n ∈ N, ahol α+n ∈ F0(γ)∪F1(γ).

(ii) F1(γ) elemei Z[γ] alap CNS bázisai.

Az algoritmus az 1. tételbeli (i) és (ii) tulajdonságokkal rendelkező
F0(γ) és F1(γ) halmazokat adja meg.

Az algoritmus a következő:

Input: A γ nem-nulla algebrai egész és B (véges) halmaz, amely a Z[γ]
hatvány egész bázisai ekvivalencia osztályainak reprezentásaiból áll.
Output: Az F0(γ) és F1(γ) halmazok.

1. [Inicializálás] Legyen {β1, . . . , βt} = B∪(−B), F0 = F1 = T = ∅ és i = 1.
2. [Minimál polinom kiszámı́tása] Legyen P = µβi

.
3. [Van eleme az F0 ∪ F1 halmaznak?] Ha létezik k ∈ Z, δ ∈ {0, 1}, hogy
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(P, k, δ) ∈ T , akkor tegye a βi−k értéket az Fδ halmazba és menjen a 11-es
lépésre.
4. [Az alsó és felső határ meghatározása] Számı́tsa ki kβi

és cβi
értékeket.

5. [Elem beszúrása az F1 halmazba] Ha kβi
− cβi

≤ 1, akkor szúrja be a
βi − cβi

értéket az F1 halmazba, a (P, cβi
, 1)-t a T -be és menjen a 11-es

lépésre, egyébként menjen a 6-os lépésre az l = cβi
+1, . . . , kβi

− 1 értékkel,
legyen pkβi

= 1, k = cβi
és lépjen a 8-as lépésre.

6. [CNS tulajdonság ellenőrzése] Ha P (X + l) ∈ C, akkor legyen pl = 1,
egyébként pl = 0.
7. [CNS bázis feltétel ellenőrzése] Ha pk = 0, akkor lépjen a 9-es pontra.
8. [Elem F0∪F1 halmazba való beszúrása] Ha pk+1 = · · · = pkβi

= 1, akkor

szúrja be βi − k értéket az F1 halmazba, (P, k, 1)-t T -be és lépjen a 11-es
pontra, egyébként szúrja be βi − k-t az F0 halmazba és (P, k, 0)-t T -be.
9. [A k következő értéke] Legyen k ← k + 1.
10. [Befejeződött a CNS bázis ellenőrzése?] Ha k ≤ kβi

− 1, akkor menjen
7-re.
11. [Következő generátor] Legyen i← i+ 1.
12. [Vége?] Ha i ≤ t, akkor menjen 2-re.
13. [Megáll] Az F0(γ) = F0 és F1(γ) = F1 halmazok listázása és az algo-
ritmus befejeződése.

Térjünk át a 4-edfokú körosztási testekre.

2. Tétel Legyen ζ5, ζ8, ζ12 ötödik, nyolcadik és tizenkettedik primit́ıv egy-
séggyök. Ekkor F0(Q(ζi)) = ∅, ahol i ∈ {5, 8, 12}, továbbá
F1(Q(ζ5)) = {−2 + ζ5,−3− ζ5,−2 + ζ5 + ζ3

5 ,−3− ζ5 − ζ3
5},

F1(Q(ζ8)) = {−3± ζk
8 | k = 1, 3, 5, 7},

F1(Q(ζ12)) = {−3 + ζ12,−3− ζ12,−3 + ζ−1
12 ,−3− ζ−1

12 ,−1− ζ2
12 + ζ−1

12 ,−2 +

ζ2
12 − ζ−1

12 }.

Adott t ∈ Z \ {0,±3} esetén jelölje Pt(X) az X4 − tX3 − 6X2 + tX + 1
polinomot. Legyen ϑ = ϑt a Pt(X) polinom egyik gyöke, ekkor a Kt = K =
Q(ϑt) számtestek végtelen parametrikus családját a legegyszerűbb negyed-
fokú számtesteknek nevezzük. P. Olajos [57] bebizonýıtotta, hogy Kt akkor
és csak akkor rendelkezik hatvány egész bázissal, ha t = 2 és t = 4, továbbá
ezen testek hatvány egész bázisainak az összes generátorát meghatározta.
Használva ezt az eredményt az összes CNS bázist ezekben a testekben.
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3. Tétel F0(Q(ϑ)) = ∅, F1(Q(ϑ2)) = G2 és F1(Q(ϑ4)) = G4, ahol G2 egy
19, mı́g G4 egy 12 elemű az értekezésben expliciten megadott halmaz.

Kt-beli Z[α] polinomrend hatvány egész bázisait G. Lettl és A. Pethő
[53] vizsgálta. Ezt alkalmazva bizonýıtjuk be a következő tételt.

4. Tétel Legyen t ∈ N \ {0, 3} és jelölje ϑ az X4 − tX3 − 6X2 + tX + 1
polinom egyik gyökét. Ekkor F0(Q(ϑ)) = ∅ és F1(Q(ϑ)) = G ∪G1∪G2∪G4,
ahol

G =











{−3− ϑ,−t− 2 + ϑ,−2− 6ϑ− tϑ2 + ϑ3,

−t− 3 + 6ϑ + tϑ2 − ϑ3}, ha t ≥ 5,

∅ egyébként,

G1 =































{−4 + ϑ,−4− ϑ,−5 + 6ϑ+ ϑ2 − ϑ3,

−3− 6ϑ − ϑ2 + ϑ3,−23 + 3ϑ2 − ϑ3,−1− 3ϑ2 + ϑ3,

−14 + 25ϑ + 2ϑ2 − 4ϑ3,−10− 25ϑ − 2ϑ2 + 4ϑ3},
ha t = 1,

∅ egyébként,

G2 =











{−5 + ϑ,−3− ϑ,−5 + 6ϑ+ 2ϑ2 − ϑ3,

−3− 6ϑ − 2ϑ2 + ϑ3}, ha t = 2,

∅ egyébként,

G4 =































{−6 + ϑ,−3− ϑ, 1 + 9ϑ− 22ϑ2 + 4ϑ3,

−78− 9ϑ+ 22ϑ2 − 4ϑ3,−7 + 6ϑ+ 4ϑ2 − ϑ3,

−3− 6ϑ − 4ϑ2 + ϑ3,−62 + 74ϑ + 30ϑ2 − 9ϑ3,

−15− 74ϑ − 30ϑ2 + 9ϑ3}, ha t = 4,

∅ egyébként.

Tekintsük a paraméterezett negyedfokú számtestek rendjeinek egy
családját, ahol az összes hatvány egész bázis ismert. Legyen t ∈ Z, t ≥ 0, és
P (X) = X4− tX3 −X2 + tX + 1. Jelölje α a P (X) polinom egyik gyökét.
A következőkben O = Z[α], Q(α)-beli rendet vizsgáljuk. M. Mignotte, A.
Pethő és R. Roth [55] munkája alapján a következő eredményt kapjuk.
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5. Tétel Legyen t ≥ 4. Ekkor F0(Q(α)) = ∅ és F1(Q(α)) = G4 ∪ Gt, ahol

G4 =
{

209α + 140α2 − 49α3 + 350, 209α − 312α2 + 64α3 − 71
}

Gt =
{

α+ t+ 1, α + tα2 − α3 + t+ 2, tα + (t− 1)α2 − α3 + 8,

tα− (t+ 1)α2 + α3 + 2, α − α3 + 2,

α− t(t2 + 1)α2 + t2α3 − t+ 1
}

.

A harmadik fejezet témája a szimmetrikus shift radix rendszerek.
Akiyama and Scheicher foglalkozott a kétdimenziós SSRS [9] rendszerekkel,
mi a háromdimenziós SSRS esetet vizsgáljuk. Ez a fejezet a Claus Scheicher,
Paul Surer és Jörg M. Thuswaldnerrel közös cikk [40] eredményeit taglalja.

3. Defińıció ([9]) Legyen d ≥ 1 egész, r ∈ Rd, és jelölje τr : Zd → Zd, azt
a leképezést, mely során az a = (a1, . . . , ad) képe

(

a2, . . . , ad,−
⌊

ra + 1
2

⌋)

.
Ekkor τr-et szimmetrikus shift radix rendszernek (SSRS) h́ıvjuk, ha
∀a ∈ Zd ∃n ∈ N : τn

r (a) = 0.

Legyen

Dd :=
{

r ∈ Rd
∣

∣

∣
∀a ∈ Zd ∃n, l ∈ N : τk

r
(a) = τk+l

r
(a) ∀k ≥ n

}

és

D0
d :=

{

r ∈ Rd |τr SSRS
}

.

A [9] cikkben szereplő algoritmus alapján bebizonýıtjuk, hogy D0
3 négy

test és egy sokszög egyeśıtése.

A [9] cikkben megmutatták, hogy

Ed(1) ⊂ Dd ⊂ Ed(1). (6.0.4)

Egy adott r = (r1, . . . , rd) ∈ Dd esetén, az a = (a1, . . . , ad) ∈ Zd \ {0} elem
az L periódushoz tartozó τr egy nem-nulla periódikus pontja, ha a = τL

r (a).
D0

d defińıciójából következik, hogy egy ilyen periódikus pont létezésének
szükséges és elégséges feltétele, hogy r 6∈ D0

d. Tegyük fel, hogy az a által
definiált periódus átfut a

τ j
r (a) = (a1+j , . . . , ad+j) (0 ≤ j ≤ L− 1)
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ı́ven, ahol aL+1 = a1, ..., aL+d−1 = ad−1. Jelöljön

(a1, . . . , ad); ad+1, . . . , aL

egy ilyen periódust, és ezt τr periódusának, vagy egyszerűen Dd

periódusának nevezzük.
Legyen π := (a1, . . . , ad); ad+1, . . . , aL egy nem-nulla periódikus pont.

Keressük azon r ∈ Dd pontok P (π) halmazát, amelyeknél π a τr egy
periódusaként áll elő. A τr defińıciója alapján, az r ∈ P (π) elem kieléǵıti a
következő kétoldali egyenlőtlenség rendszert:

−1

2
≤ r1a1+i + r2a2+i + · · ·+ rdad+i + ad+1+i <

1

2
, (6.0.5)

ahol i 0-tól L− 1-ig megy és aL+1 = a1, . . . , aL+d = ad. Az ilyen rendszer
egy konvex testet határoz meg, mely esetleg elfajuló, sőt üres is lehet. Ezért
P (π)-t kivágó testnek nevezzük. Mivel az összes r ∈ P (π) pont rendelkezik
a megfelelő τr leképezés π periódusával a P (π) halmaz és a D0

d halmaz

metszete üres. Így

D0
d = Dd \

⋃

π 6=0

P (π),

ahol az unió az összes nem-nulla π periódusra vonatkozik. Mivel a
periódusok halmaza végtelen, ez a kifejezés nem alkalmas kalkulációkra. A
következő tétel megmutatja, hogyan lehet lecsökkenteni az összes lehetséges
periódusok halmazát véges halmazra, és megad egy hatékony algoritmust
a H ∩ D0

d kiszámı́tására, ahol H egy zárt részhalmaza intDd = Ed(1)-nek.
Legyen ei az i-dik kanonikus egységvektor. Az r = (r1, . . . , rd) ∈ intDd

esetén, jelölje V(r) ⊂ Zd a legkisebb halmazt, mely a következő tulaj-
donságokkal rendelkezik:

1. ±ei ∈ V(r), i = 1, . . . , d,

2. (a1, . . . , ad) ∈ V(r)⇒ (a2, . . . , ad+1) ∈ V(r) ahol ad+1 kieléǵıti a

−1 < r1a1 + r2a2 + · · ·+ rdad + ad+1 < 1.

V(r) ⊂ Zd az r tanúhalmazának nevezzük. Ezen ḱıvül G(V(r)) = V ×
E jelöljön egy gráfot, melynek csúcsainak halmaza V = V(r) és éleinek
halmaza pedig E ⊂ V × V úgy, hogy

∀a ∈ V : (a, τr(a)) ∈ E.
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6. Tétel ([9]) Legyen r1, . . . , rk ∈ Dd és legyen H := �(r1, . . . , rk) az
r1, . . . , rk pontok konvex burka. Tegyük fel, hogy H ⊂ intDd és mérete
megfelelően kicsi. Akkor létezik egy olyan algoritmus, mely megad egy
véges, iránýıtott, G(H) = V ×E gráfot, ahol a csúcsok halmaza V ⊂ Zd és
az élek halmaza E ⊂ V × V , melyekre teljesül

1. ±ei ∈ V , bármely i = 1, . . . , d,

2. G(V(x)) részgráfja G(H)-nek, bármely x ∈ H,

3. H ∩ D0
d = H \⋃π P (π), ahol π végigfut a G gráf nem-nulla egyszerű

körei által indukált periódusokon.

Célunk a D0
3 karakterizálása. Már tudjuk, hogy

E3(1) ⊂ D3 ⊂ E3(1),

továbbá a [78, 84] dolgozatok alapján

E3(1) = {(x, y, z) ∈ R3| |x| < 1, |y − xz| < 1− x2, |x+ z| < |y + 1|}.

adódik. Szükségünk van a E3(1) halmazra. Könnyen látható, hogy ha
a szigorú egyenlőtlenségeket kicseréljük megengedőekre, még nem kapunk
zárt halmazt. Meg kell adni még további egyenlőtlenségeket. Legyen

E ′3 :=
{

(x, y, z) ∈ R3
∣

∣ |x| ≤ 1 ∧ |y − xz| ≤ 1− x2

∧ |x+ z| ≤ |y + 1| ∧ |y − 1| ≤ 2 ∧ |z| ≤ 3
} (6.0.6)

és tekintsük az E ′3 és az

Ac :=
{

(x, y, z) ∈ R3 | x− c = 0
}

śık metszetét egy adott c konstans esetén. A következő lemma megmutatja,
hogy E ′3 zárt.

2. Lemma Bármely |c| < 1 esetén az E ′3 és az Ac śık metszete egy

△(A
(1)
c , A

(2)
c , A

(3)
c ) zárt háromszög, ahol A

(1)
c = (c,−1,−c), A(2)

c = (c, 1 −
2c, c − 2), A

(3)
c = (c, 2c + 1, c + 2).
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7. Tétel E3(1) = E ′3.
Az E ′3 halmazt definiáló egyenlőtlenségek száma lecsökkenthető, a
következőket kapjuk eredményül:

E3(1) =
{

(x, y, z)
∣

∣|x+ z| ≤ 1 + y ∧ y − xz ≤ 1− x2 ∧ |z| ≤ 3
}

.

Ahhoz, hogy megadjuk D0
3 teljes karakterizációját, definiáljuk a

következő halmazokat:

S1 := {(x, y, z) | 2x− 2z ≥ 1 ∧ 2x+ 2y + 2z > −1 ∧ 2x+ 2y ≤ 1

∧ 2x ≤ 1 ∧ 2x− 2y + 2z ≤ 1},
S2 := {(x, y, z) | x− z ≤ −1 ∧ 2x− 2y + 2z ≤ 1 ∧−2x+ 2y ≤ 1

∧ 2x > −1},
S3 := {(x, y, z) | x− z > −1 ∧ 2x− 2y + 2z ≤ 1 ∧−2x+ 2y < 1

∧ 2x > −1 ∧ 2x− 2z < −1 ∧ 2x+ 2y + 2z > −1},
S4 := {(x, y, z) | 2x− 2y + 2z ≤ 1 ∧ −2x+ 2y ≤ 1

∧ 2x− 2z = −1,∧2x+ 2y + 2z > −1},
S5 := {(x, y, z) | − 1 < 2x ≤ 1 ∧ −1 < 2x− 2z ≤ 1

∧ 2x+ 2y + 2z > −1 ∧ 2x− 2y + 2z ≤ 1

∧ 2x+ 4y − 2z < 3 ∧ 2y ≤ 1}

és jelölje

S :=
⋃

i∈{1,...,5}
Si.

az egyeśıtésüket. Megjegyezzük, hogy S1, S2, S3, S5 testek, mı́g S4 sokszög.
A fenti jelölésekkel adódik a következő

8. Tétel D0
3 = S.

A bizonýıtás váza a következő. Első lépésként a 6. Tétel alapján
belátjuk, hogy

S ⊆ D0
3. (6.0.7)
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Ahhoz, hogy a másik irányú tartalmazást belássuk, szükségünk van a nem-
nulla periódusok Π halmazára. Legyen P :=

⋃

π∈Π P (π), továbbá be kell
látnunk, hogy

S ∪ P ⊇ D3.

A (6.0.7) reláció alapján S ∩ P = ∅. Ebből következik, hogy

S ⊇ D3 \ P ⊇ D0
3,

azaz D0
3 ⊆ S. Mivel D3 ⊂ E3(1), készen vagyunk, ha le tudjuk fedni E3(1)-t

a P ∪ S halmazzal. Számı́tásokkal ez könnyen megmutatható.

Biztonságos elektronikus választások

A negyedik fejezet a választási protokollokban alkalmazott kriptográfiai
primit́ıveket mutatja be. Az ötödik fejezetben, miután felsoroltuk a
választási sémákkal szembeni elvárásokat, illetve a résztvevőket, két új,
biztonságos szavazó protokollt ismertetünk. Mindkét protokoll rendelkezik
a szükséges alapvető elvárásokkal és a gyakorlatban is implementálható.
Ennek a fejezetnek az eredményei megtalálhatóak a [38] és [39] cikkekben.

Az elektronikus szavazó sémák elvárásai a következőek: jogosultság,
titkosság, egyszer-szavazhatóság, szabályosság, teljesség, individuális és
univerzális ellenőrizhetőség, visszaigazolás-mentesség. Ha egy protokoll
viszszaigazolás-mentes, akkor a szavazó nem vesztegethető, illetve nem fe-
nyegethető meg.

Egy protokoll ellenálló, ha visszaigazolás-mentes, és biztośıtott a
véletlen-érték támadás, a kényszeŕıtett-hiányzás és a szimulációs támadá-
sokkal szemben.

A fejezet első felében egy vak alá́ıráson alapuló, ellenálló szavazó
sémát ismertetünk. Több olyan vak alá́ırási technikát alkalmazó választási
protokoll is ismert, mely rendelkezik az alapvető elvárásokkal, mint például
az ellenőrizhetőség, jogosultság, egyszer-szavazhatóság, titkosság stb., de
nem visszaigazolás-mentes (lásd pl. a [28] és [58] dolgozatokat). Az iro-
dalomban a legtöbb visszaigazolás-mentes séma lehallgathatatlan csatornát
vagy szavazó fülke csatornát használ, ami nem gyakorlatias. A mi sémánk
megfelel a jogosultság, titkosság, egyszer-szavazhatóság, szabályosság, tel-
jesség, individuális és univerzális ellenőrizhetőség elvárásoknak, és ellenálló
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is. A vak alá́ırási technikán alapuló sémánk két szervezet részvételét tételezi
fel, gyakorlatias és nem tartalmaz bonyolult primit́ıveket, mint például
nulla-ismeretű bizonýıtásokat vagy osztott kriptorendszereket. Ajánlott
olyan környezetben implementálni, ahol a résztvevő szervezetek nem fognak
össze és a Szavazó Bizottság nem működik együtt a támadókkal.

Jelöljön P,Q két nagy pŕımet, ahol Q|(P − 1) és legyen g ∈ Z∗
P , melynek

rendje Q. A jelöltek listája legyen C1, C2, . . . , Cn. Három függvényt alkal-
mazunk: vote, ifeligible és verify.

1. vote(VID, SKV , x, a, Ci) ֌ ballot, ahol VID a szavazó azonośıtó
száma, SKV a szavazó titkos kucsa, x, a véletlen paraméterek és Ci

a javasolt jelölt. A ballot formátuma: (VID||r||y, VID||v), ahol

r = ESKV
(g)

y ≡ g−x (mod P )

v ≡ ya · Ci (mod P )

és || a konkatenáció jele.

2. ifeligible(PKV , r) ֌ {0, 1}, ahol PKV a szavazó nyilvános kulcsa, r
input érték. A függvény 1-et ad vissza, ha DPKV

(r) = g és 0-t, ha a
kongruencia nem teljesül.

3. verify(PKV , z, s, y) ֌ {0, 1} kiszámolja, hogy a PKz
V ≡ gs · y

(mod P ) kongruencia teljesül-e. Ha teljesül 1-et ad vissza, ha nem,
akkor 0-t. Ez a függvény azt ellenőrzi, hogy s-et szabályosan
számı́tották-e ki illetve, hogy ugyanaz a személy küldte-e az s értéket,
aki megelőzően szavazott az y értékkel és a PKV publikus kulccsal, a
z a Szavazó Bizottság által generált véletlen szám.

A protokoll három jól elhatárolható fázisból áll: Regisztáció, Szavazás és
Összeszámlálás. A szavazókon ḱıvül résztvevők még a Hiteleśıtő Szervezet,
mely a regisztrációt és az összeszámlálást vezényli, valamint a Szavazó Bi-
zottság, mely a szavazó fázisért felelős.

A regisztráció során megtörténik a szavazó azonośıtása, megkapja e-
lektronikus azonośıtóját (SKV ,VID), valamint a Szavazó Bizottság ElGa-
mal nyilvános kulcsát (PKA). A Szavazó Bizottság megkapja a szavazó
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listát, mely tartalmazza a szavazásra jogosultak azonośıtóját és nyil-
vános kulcsát (VID, PKV ), valamint megtörténik a szükséges rendszer-
paraméterek meghatározása (P ,Q,g).

A szavazó fázis során a szavazók elkésźıtik az elektronikus szavazócé-
dulájukat (ballot) a vote függvény seǵıtségével. A szavazat tartalmazza
a javasolt jelölt azonośıtóját, vak alá́ırási technikával a Szavazó Bizottság
hiteleśıti azt (v konstrukciója). A Szavazó Bizottság ellenőrzi a szavazó jo-
gosultságát az ifeligible függvény seǵıtségével és megnézi szavazott-e már.
A Szavazó Bizottság elküld egy titkośıtott z véletlen számot a szavazónak.
A szavazó visszaküldi az s és VID értékeket, ahol s ≡ x+z ·SKV (mod Q),
majd a Szavazó Bizottság lefuttatja a verify függvényt. A szavazásra
jogosultak megkapják a hiteleśıtett Sig(v, s) elektronikus szavazatukat a
Szavazó Bizottságtól, ha nem érvényes a szavazat, akkor a szavazó reklamál.
A szavazó fázis lezárása után a szavazók elküldik a megfelelő a,s dekódoló
kulcsot a Hiteleśıtő Szervezetnek. A szavazatok, illetve a hirdető táblára
küldött információk anonim csatornán tovább́ıtódnak.

Az összeszámlálás során a Szavazó Bizottság a titkośıtott s,v szavaza-
tokat elküldi a Hiteleśıtő Szervezetnek. A szavazatokat dekódolják és a
végleges eredménnyel együtt nyilvánosságra hozzák a hirdető táblán (s,Ci).
A szavazók ellenőrzik, hogy a szavazatuk a táblán van-e. Ha a szavazatuk
nem szerepel, vagy hibásan szerepel, akkor reklamálnak. Az egész szavazó
eljárás alatt nyilvános és anonim csatornát alkalmazunk, valamint ElGa-
mallal titkośıtott üzenetet tovább́ıtottunk, ı́gy a rendszer gyakorlatias.

A fejezet második felében egy visszaigazolás-mentes homomorf
választási sémát mutatunk be. A protokollunk homomorf titkośıtáson
alapszik, több szervezet közreműködésével osztott ElGamal kriptorend-
szert használ (lásd [63]). Ennek a sémának az alapja a [22] dolgozat-
ban szereplő protokoll, ami nem visszaigazolás-mentes. Két visszaigazolás-
mentes változatot is találunk az irodalomban, a [52] és a [36] cikkekben
levő sémák. Az első egy teljesen megb́ızható ellenőrző szervezet részvételét
tételezi fel, a másik lehallgathatatlan csatornát használ. A mi változatunk
nem a szavazó fülke vagy lehallgathatatlan csatornát, hanem a gyakorlatias,
anonim válasz csatornát alkalmazza. Nem tételezzük fel egyik szervezetről
sem, hogy teljesen megb́ızható, az egyetlen feltételezés az, hogy a Szavazó
Bizottságok között az osztott kulcsgenerálás és dekódolás során legalább
egy megb́ızható. A séma megfelel az alapvető elvárásoknak: jogosultság,
titkosság, egyszer-szavazhatóság, szabályosság, teljesség, individuális és
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univerzális ellenőrizhetőség, visszaigazolás-mentesség és ellenáll a véletlen-
érték és kényszeŕıtett-hiányzás támadásoknak. A protokoll résztvevői az
m szavazón ḱıvül, az R Hiteleśıtő Szervezet, egy speciális szervezet, az
Ellenőrző Szervezet (VA) és s Szavazó Bizottság.

Mielőtt rátérnénk a séma részletezésére megadjuk a ProofGenEG
generátor és ProofV erEG ellenőrző algoritmust:

ProofGenEG
Input: alá́ırás: sm ∈ ZQ, R ∈ ZQ, l̃ ∈ ZQ

Output: sm ∈ ZQ, R ∈ ZP , T ∈ ZQ

1. A szavazó választ egy véletlen számot: ṽ ∈ ZQ

2. R′ ≡ (R (mod P )) (mod Q)
3. sm ≡ sm

l̃
(mod Q)

4. R ≡ R
ṽ

l̃ (mod P )

5. T ≡ R′

ṽ (mod Q)

ProofVerEG
Jelölje EPKVA az Ellenőrző Szervezet ElGamal nyilvános kulcsát.
Input: m ∈ ZP , sm ∈ ZQ, R ∈ ZP , T ∈ ZQ

Output: igaz, hamis
1. m′ ≡ (m (mod P )) (mod Q)

2. Ellenőrzés: EPKsm

VA ·R
T ≡ gm′

(mod P )

A regisztrációs fázisban a szavazók személyesen igazolják személy-
azonosságukat és megkapják elektronikus azonośıtójukat. A szükséges
rendszer-paraméterek, titkos és nyilvános kulcsok legenerálódnak. Legyen
P és Q két nagy pŕım, ahol Q|(P − 1). GQ jelölje Z∗

P multiplikat́ıv
részcsoportját, melynek rendje Q, és legyen g ∈ GQ egy tetszőleges elem.
A Szavazó Bizottságok együttesen legenerálják a szükséges nyilvános (g,
h ≡ gK (mod P )) és titkos (K ∈ ZQ) kulcsokat osztott ElGamal kulc-
sgeneráló módszerrel [63]. R véletlenül választ vi ∈ Z∗

Q, i = 1, . . . , n

elemeket, Ci ≡ gvi (mod P ), ahol Ci jelöli az i-edik jelöltet és egy M()
egyirányú hash függvényt. Az összes titkos és nyilvános kulcsot leg-
enerálják: R RSA kulcsa (titkos: RSKR, PR, QR, nyilvános: RPKR, NR)
és VA RSA kulcsa (titkos: RSKVA, PVA, QVA, nyilvános: RPKVA, NVA), VA
ElGamal kulcsa (titkos: ESKVA, nyilvános: (EPKVA, P, g)). A szavazó úgy
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kapja meg azonośıtóit, hogy generál egy véletlen idRk referencia számot, és
R vakon alá́ırja, ı́gy R nem tudja az azonośıtót hozzárendelni magához a
szavazóhoz. Természetesen a kulcsgenerálás során R-nek nincs semmilyen
információja a titkos kulcsokról sem.

A szavazó fázis során a szavazók elkésźıtik az elektronikus szavazatukat.
VA ellenőrzi a szavazók jogosultságát, és hogy szavaztak-e már úgy, hogy
ellenőrzik R alá́ırásának érvényességét, megvizsgálva az idRk (mod NR) és

az (M(idRk ))RSKR (mod NR) értékeket. A szavazó kap egy azonośıtót,
mely csak a szavazat-ellenőrző fázisban szükséges, abból a célból,
hogy ellenőrizzük, hogy a nulla-ismeretű bizonýıtást lefuttatta-e. A
Vk szavazó vak alá́ırást kezdeményez, hogy az azonośıtóit hiteleśıtsék:
idVA

k (mod NVA)||(M(idVA
k ))RSKVA (mod NVA). Majd Vk elküldi az idVA

k

(mod NVA) és (M(idVA
k ))RSKVA (mod NVA) üzeneteket egy anonim-válasz

csatornán VA-nak. VA ellenőzi az alá́ırást, és ha a szavazóval még nem
találkozott korábban, visszaküldi a zk ∈ ZQ véletlen értéket ugyanazon

a csatornán. Mivel az idVA
k -t vakon ı́rták alá és anonim-válasz csatornát

használnak, VA nem tudja a szavazó személyét. Vk kiválasztja az i-ik jelöltet

és a megfelelő C
(k)
i értéket a BB-ről. Ahhoz, hogy elkésźıtse az elektroni-

kus szavazatát választ αk, βk, γk ∈ ZQ véletlen számokat és kiszámolja a

Gk ≡ gαk+βk (mod P ), Hk ≡ hαk+βk (mod P ) és Yk ≡ gzk·γk (mod P )
értékeket. Vk lefuttat egy nem-interakt́ıv nulla-ismeretű bizonýıtást, hogy

bebizonýıtsa az elektronikus szavazat szabályosságát, azaz, hogy a C
(k)
i

érték tényleg a jelöltek listájából vett. A szavazó választ rj , dj , wk ∈ ZQ

véletlen számokat, ahol 1 ≤ j ≤ n és j 6= i, majd kiszámolja az
(A,B) = (a1, b1), (a2, b2), · · · , (an, bn) párokat, ahol

ai ≡ gwk (mod P ),

bi ≡ hwk (mod P ),

teljesül a kiválasztott i-edik jelöltre és

aj ≡ grj ·Gdj

k (mod P ),

bj ≡ hrj ·
(

Hk · C(k)
i

C
(k)
j

)dj

(mod P )

az összes többi j-edik jelöltre, j 6= i. Továbbá, a szavazó kiszámolja a

ck = M(a1||..||an||b1||..||bn||Gk||Hk · C(k)
i ||g||h||idVA

k ||(M(idVA
k ))RSKVA)
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kih́ıvást és a (D,R) = (d1, r1), (d2, r2), . . . , (dn, rn) párokat
ahol az i-ik jelöltre

di ≡ ck −
n
∑

j=1,i6=j

dj (mod Q)

ri ≡ wk − (αk + βk) · di (mod Q)

teljesül. Vk elküldi a következő titkośıtott randomizált szavazatot és
paramétereket VA-nak anonim-válasz csatornát használva:

(A,B)||Gk||Hk · C(k)
i ||ck||(D,R)||idVA

k ||(M(idVA
k ))RSKVA ||r̃ · Yk,

ahol r̃ ∈ ZP véletlen szám. Miután megkapta az összes szükséges ada-
tot, VA ellenőrzi, hogy a szavazó az idVA

k azonośıtóval lefuttatta-e már a

nulla-ismeretű bizonýıtást, hogy idVA
k alá́ırása érvényes-e, és kiszámolja a

következő kongruenciákat:

ck ≡
n
∑

j=1

dj (mod Q),

aj ≡ grj ·Gdj

k (mod P ), j = 1, . . . , n

bj ≡ hrj ·
(

Hk · C(k)
i

C
(k)
j

)dj

(mod P ), j = 1, . . . , n.

Ha az ellenőrző kongruenciák teljesülnek, akkor VA alá́ırja az összes
randomizált komponenst SigGenEG seǵıtségével, ami egy Meta-ElGamal
alá́ırási séma (lásd a [37] dolgozatot). VA kiszámolja és visszaküldi anonim-
válasz csatornán a következő mennyiségeket a küldőnek:

SigGenEG(Gk) = (sm1
, R1)

SigGenEG(Hk · C(k)
i · Yk · r̃) = (sm2

, R2)

SigGenEG(Yk · r̃) = (sm3
, R3)

Miután a szavazó ellenőrzi mindhárom alá́ırást, generálja a hiteleśıtett
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szavazatokat:

l̃1 ≡ (gβk (mod P )) (mod Q)

l̃2 ≡ (hβk · r̃ (mod P )) (mod Q)

l̃3 ≡ (r̃ (mod P )) (mod Q)

és kiszámolja

ProofGenEG(sm1
, R1, l̃1) = (sm1

, R1, T1)

ProofGenEG(sm2
, R2, l̃2) = (sm2

, R2, T2)

ProofGenEG(sm3
, R3, l̃3) = (sm3

, R3, T3),

ahol ProofGenEG generál egy bizonýıtékot, mely biztośıtja a ’tényleges’
szavazatok érvényességét. A szavazó elküldi nyilvános csatornán BB-re

az idRk ||gαk ||(sm1
, R1, T1)||hαk · C(k)

i · Yk||(sm2
, R2, T2) üzenetet, és anonim

csatornán az Yk||(sm3
, R3, T3) értékeket tovább́ıtja VA-nak. A szavazat

az ElGamallal kódolt C
(k)
i · Yk ≡ gvi+zk·γk (mod P ) érték, ahol a ZQ-

beli zk értéket VA küldte anonim csatornán, ı́gy zk a támadó számára
ismeretlen. Ha a BB-n levő szavazat különbözik, vagy hiányzik, akkor a
szavazó reklamál és újra szavazhat.

Az összeszámlálási fázis során a következő számı́tások történnek: Az
Ellenőrző Szervezet lefuttatja a ProofVerEG algoritmust minden egyes
Yk-ra és kiszámolja az Y ≡ ∏m

k=1 Yk (mod P ) értéket, ahol csak az
érvényes randomizált komponenseket veszi figyelembe, és elküldi Y -t a BB-
re. Miután ellenőrizte a titkośıtott szavazatok érvényességét a ProofVerEG
algoritmussal, a

Γ ≡
m
∏

k=1

gαk (mod P )

Λ ≡
m
∏

k=1

hαk · C(k)
i · Yk (mod P )

értékek megjelennek BB-én, ahol csak az érvényes szavazatokat veszik
figyelembe. Elosztva Λ-t Y -nal, a szavazás eredményének ElGamallal
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titkośıtott képe lesz BB-n. Az A1, A2, . . . , As Szavazó Bizottságok osz-
tott ElGamal dekódolással együttesen kiszámolják a Ct1

1 ·Ct2
2 · · ·Ctn

n meny-
nyiséget. Shanks baby step giant step vagy Pollard rho algoritmus alkal-
mazq-ható ti, i = 1, . . . , n kiszámı́tására, mely megadja a szavazatok számát
az i jelöltre vonatkozóan.

A t1, . . . , tn értékek kiszámı́tása nehéz problémának bizonyul, időbonyo-
lultsága: O(m(n−1)/2) (lásd a [52] dolgozatot). Ez a séma használható nagy
létszámú választások esetén, ha a szervezetek a teljes Γ,Λ értéket felosztják
részekre (p.l. választási kerületek).
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J. M. Thuswaldner, On a generalization of the radix representation
– a survey, in ”High Primes and Misdemeanours: lectures in honour
of the 60th birthday of Hugh Cowie Williams”, Fields Institute Com-
mucations, 41 (2004), 19 – 27.
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notes on a conjecture of W.J. Gilbert, J. Math. Anal. and Appl., 281
(2003), 402–415.

[6] S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Remarks on
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[53] G. Lettl, A. Pethő, Complete solution of a family of quartic Thue
equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365–383.

[54] E. Magkos, M. Burmester, V. Chrissikopoulos, Receipt-
freeness in large-scale elections without untappable channels, In B.



150 BIBLIOGRAPHY

Schmid et al., editor, First IFIP Conference on E-Commerce, E-
Business, E-Government (I3E) (2001), 683–694.
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tures, NýırCrypt Central European Conference on Cryptography,
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tatócsoportjának az anyagi támogatást.
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szertáció elkészülését.

159


