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INTRODUCTION

In this Ph.D. dissertation we undertake a quite comprehensive survey of general
theoretical elements of Finsler geometry. The primary aim of this survey is to
present a standard system of notations and terminology built on three pillars: the
theory of horizontal endomorphisms, the calculus of vector-valued forms and a
“tangent bundle version” of the method of moving frames. On the other hand we
present a systematic treatment of some distinguished Finsler connections and some
special Finsler manifolds. In particular we are interested in the conformal theory
of Riemann-Finsler metrics and the theory of Wagner connections and Wagner
manifolds. As we shall see, they are closely related. Finally, we investigate a
special conformal change of the metric proving that its existence implies the Finsler
manifold to be Riemannian. (The necessity is clear.)

I

By the classical conception of Finsler geometry the geometrical objects are char-
acterized in terms of local coordinate systems. In exposition and application of such
a theory of Finsler manifolds the tools of tensor calculus, adapted to the Finsler
setting play a dominant role. In Matsumoto’s fundamental work [24] the starting
point of this adaptation is a principal bundle, the so-called Finsler bundle constitut-
ing the area where problems of Finsler geometry, mainly of Finsler connections are
presented: “Differential-geometric concepts and quantities are mainly introduced in
the principal bundle over the tangent bundle induced from the linear frame bundle

.7 (see [24], p. 46). As it can be seen, Matsumoto’s theory of Finsler connections
is developed from a strongly generalized standpoint. Here we follow an alterna-
tive approach based on Grifone’s theory of nonlinear connections [10], [11] (whose
role is played in our presentation by the so-called horizontal endomorphisms) and
the coordinate-free, “intrinsic” calculus of the vector-valued differential forms and
derivations established by A. FROLICHER and A. NIJENHUIS [9]. Our main purpose
is to insert the theory of Finsler connections and the foundations of special Finsler
manifolds in the new approach of Finsler geometry. The first epoch-making steps
in this direction were done by J. GRIFONE himself, our work can be considered as a
systematic continuation of the program initiated by him. Technically, we enlarged
and — at the same time — simplified the apparatus by using the tools of tangent
bundle differential geometry. This means first of all the consistent use of a special
frame field, constituted by vertically and completely (or vertically and horizontally)
lifted vector fields. Thus the third pillar of our approach is the method of mov-
ing frames. It has a decisive superiority in calculations over coordinate methods:
the formulation of the concepts and results becomes perfectly transparent, and the
proofs have a purely intrinsic character. Nevertheless, coordinate-calculations will
not be avoided completely. In section I/6 we felt that an indication of the con-
nections to the traditional theory will be useful, while in sections I/7 and III/2
the nature of the problem forced us to use a suitable coordinate-system. Finally,
we have to emphasise that the classical sources H. RUND [30], M. MATSUMOTO



[24] and, especially Hashiguchi’s works [13], [14] etc. were indispensable and very
stimulating for our investigations.

The dissertation is divided into three parts. In part I first of all we present a
quite detailed exposition of the conceptual and calculational background. Although
it means a practical summary (the troublesome details will be omitted) it seems
to be enough to make our work self-contained as far as possible. As the next step
we come to the overview of the fundamental facts and constructions concerning a
Finsler manifold. Simply put a Finsler structure on a differentiable manifold M is
a function

E:TM —- R

satisfying some conditions of differentiability, homogeneity and regularity. In con-
formity with the demands of Finsler geometry, the smoothness is not required or
assured a priori on the whole tangent manifold 7M. (It is well-known that Finsler
structures without singularities are just Riemannian). With the help of the so-called
energy function E we can introduce a (pseudo-) Riemannian metric

g:veTM\{0} =gy, Go:T" TMxT"TM— R

(the so-called Riemann-Finsler metric) on the vertical subbundle of the “tangent
bundle” TT M. This means that in such the geometry all of objects depend on both
“position” and “direction”. As it is usual in case of a Riemannian manifold we also
can associate a canonical horizontal endomorphism (the so-called Barthel endo-
morphism) to the function E together with lots of important tensors and further
geometrical structures such as Cartan tensors and the canonical almost complex
structure on the Finsler manifold. Among others we pay a particular attention to
the so-called first and second Cartan tensors. The second Cartan tensor is intro-
duced in a more general situation as usual. It means that this tensor is associated
to an arbitrary horizontal endomorphism instead of just the canonical one. In par-
ticular we investigate the connection between the symmetry properties of the tensor
and the characteristic data of the horizontal endomorphism. Although our results
belong to the foundations, they are new. The reason of this careful investigation is
that the first and second Cartan tensors play an essential role in Finsler geometry as
it will be demonstrated in section I/4. Here we present an invariant and axiomatic
description of three notable Finsler connections (linear connections associated to
a nonlinear one with the help of some conditions of compatibility): the Berwald,
Cartan and Chern-Rund connections. We hope that our approach helps in better
understanding the role of the different axioms, and open a path for further, essential
generalizations. Theorems are organized as follows: the first group of the axioms
characterizes a unique Finsler connection allowing us to derive the explicit rules of
calculations for the corresponding covariant derivatives. Adding further conditions
to them the second group yields the characterization of the three classical Finsler
connections.

The next step is to insert the foundations of special Finsler manifolds such as
the so-called Berwald and locally Minkowski manifolds into the framework has been
elaborated by then. To realize our plan we need several technical observations sum-
marized under the title Basic curvature identities. In this section we derive some
important (partly well-known) relations between the curvature data of the different



Finsler connections, these will be indispensable for a tensorial description of the
special Finsler manifolds studied in the last two sections. Section I/6 concentrates
the characterization of Berwald manifolds; some of them (e.g. 6.5 and 6.7) are new,
and all of the proofs are original. We believe that the compact, elegant and effi-
cient formulations presented here demonstrate the power of our approach. In the
concluding section I/7 the key observation is given in Proposition 7.2; this provides
a very simple proof of the classical characterization of locally Minkowski manifolds.
Finally, we have to emphasize that these results, more precisely the analogous ones
play an important role in the theory of Wagner connections and Wagner manifolds.
Since they are generalizations of the usual concepts in Finsler geometry (such as
the Cartan connection and the Berwald or locally Minkowski manifolds) we present
some of proofs in sections II/4 and II/5 in a more general situation as well. In this
consideration one of the most important results is a generalization of a classical
theorem (see 1.6.3), first formulated and proved intrinsically by J. G. Diaz [8]. It
contains equivalent tensorial characterizations of the vanishing of the second Cartan
tensor associated to the Barthel endomorphism, i.e. the characterizations of the
so-called Landsberg manifolds. In his thesis [8] the author gives a coordinate-free
proof of this theorem using several explicit relations between the classical Cartan
tensors and curvatures (or their lowered tensors) of the Cartan connection. We
managed to reduce the number of these relations to some of fundamental ones and
the theorem is proved in generality of Wagner connections and Wagner manifolds
in section II/5; see Proposition 5.4. Techniques we need to discuss them are suitable
to reproduce lots of classical results as well. We found this observation very useful.

II

In part IT we start with the definition of conformal equivalence of Riemann-
Finsler metrics. This relation is formally the same as that in Riemannian geometry.
Two Riemann-Finsler metrics g and g are said to be conformally equivalent if there
exists a function ¢ : TM \ {0} = R™ such that

g =g

It is an immediate consequence of the definition that the so-called scale or propor-
tionality function ¢ can be prolonged to a smooth function on the whole tangent
bundle, actually it is constant on each tangent space TpM (p € M). We give a mod-
ern proof of this fameous observation due to M. S. KNEBELMAN [19]. In sections
II/1 and II/2 we also derive some important conformal invariants and transfor-
mation formulas, first of all a key formula describing the change of the canonical
spray of a Finsler manifold under a conformal change of the metric. As a conse-
quence, we get immediately, how the Barthel endomorphism is changing. Having
these results, one can also describe the change of the Berwald and Cartan (and
other) connections, etc. A complete summary can be found in Hashiguchi’s paper
[14] using the classical coordinate methods of calculation. In order to illustrate the
problem we derive how the second Cartan tensors are related in case of conformal
equivalence of Riemann-Finsler metrics. An application of our results is also given
in this section: we present an intrinsic proof of the classical theorem which (roughly
speaking) states that in case of a simultaneous conformal and projective change the



scale function is constant, i.e. the conformal change must be homothetic (see [30],
p. 226).

After these “preliminaries” and illustrations we define the notion of Wagner con-
nections. Such kind of Finsler connections were first constructed and used by V.
V. WAGNER [40]. With the help of this seemingly strange connection Wagner in-
troduced the notion of generalized Berwald manifolds (especially — in present day
terminology — Wagner manifolds) and he showed that this class of special Finsler
manifolds contains any two-dimensional Finsler manifold with cubic metric. The
next important steps in the extension of the theory of Wagner connections and
generalized Berwald manifolds were taken by M. HasuicucHI [13]. He successfully
carried over Wagner’s ideas to the arbitrary finite dimensional case, characterizing
the Wagner connections by an elegant system of axioms (cf. section II/3 ). One
of the most important observations, due to M. HASHIGUCHI and Y. ICHIJYO [16]
is that Wagner connections are at the heart of the theory of conformal change of
Riemann-Finsler metrics. Among others it turned out that the class of Wagner
manifolds is closed under a conformal change of the metric. These results con-
firm Matsumoto’s remarkable principle: “there should be existing a best Finsler
connection for every theory of Finsler spaces” (see [25]).

In this part we demonstrate that the Froélicher-Nijenhuis formalism provides
a perfectly adequate conceptual and technical framework for the study even of
such complicated objects as Wagner connections. Our intrinsically formulated and
proved results not only cover the classical local results but give a much more pre-
cise and transparent picture and open new perspectives. For example, we calculate
the tension, the weak and strong torsion of a so-called Wagner endomorphism (the
“nonlinear part” of a Wagner connection), i.e. data determining uniquely a non-
linear connection by Grifone’s theory. As one of the main results we conclude
that the rules of calculation with respect to a Wagner connection are formally the
same as those with respect to the classical Cartan connection. These investiga-
tions are realized with the help of a number of new (but more or less) technical
observations and a fine analysis of the second Cartan tensor belonging to a Wagner
endomorphism. Basic curvature identities concerning a Wagner connection, includ-
ing Bianchi identities are also derived. Using these results an important classical
theorem on Landsberg manifolds will be generalized in section II/5 (cf. remarks at
the end of part I). Finally, after a new intrinsic definition as well as several tenso-
rial characterizations of Wagner manifolds, we present an intrinsic formulation and
coordinate-free proofs for Hashiguchi-Ichijyo’s theorems. In their joint work [16]
the authors have explored the significance of Wagner manifolds relating them to
the conformal changes of Riemann-Finsler metrics. Simply put, for any conformal
change of the metric we can construct a special Finsler connection, the so-called
Wagner connection with the help of the scale function. We can say that a Wagner
counection is a Cartan connection with non-vanishing (h)h-torsion; i.e. it is a gen-
eralized Cartan connection. (The (h)h-torsion has a special semisymmetric form;
cf. section II/3; Definition 3.1.) Then Wagner manifolds can be introduced on the
model of classical Berwald manifolds. This means that the Wagner endomorphism,
i.e. the nonlinear part of the Wagner connection is induced by a linear connection
on the underlying manifold M. (Or, equivalently, the Wagner endomorphism is
smooth on the whole tangent manifold TM.) In his paper [14], Hashiguchi sug-
gested and (in some sense!) solved the problem: under what conditions does a
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Finsler manifold become conformal to a Berwald (or locally Minkowski) manifold.
“These conditions were, however, given in terms of very complicated systems of dif-
ferential equation, for which appropriate geometrical meanings have been wanted”,
he wrote a year later in [16]. As it was shown these “appropriate geometrical
meanings” were hidden in the notion of Wagner manifolds, sketched by the follow-
ing diagram:

Wagner manifolds (with integrable Wagner endomorphism)

N /
N
Conformal change of the metric
7N
e hY
Berwald manifolds — — — — —— --» Locally Minkowski

manifolds
Integrability condition

Namely, in the classical terminology: “The condition that a Finsler space be
conformal to a Berwald space is that the space becomes a Wagner space with
respect to a gradient a;(z)” ([16], Theorem B.).

III

In part III we deal with a special conformal change of Riemann-Finsler metrics
introduced by M. HasHIGUCHI [14]. The point of the so-called C-conformality is
that we require the vanishing of one of conformal invariants described in section
I1/1; ct. Proposition 1.12 and III. 2.1. Under this hypothesis the gradient vector
field of the scale function becomes independent of the “direction”, i.e. it will be a
vertically lifted vector field. (Vector fields with such a property is called concurrent
too; see e.g. [14], [28] and [37].)

Consider a conformal change g = g, where the scale function ¢ is given in the
form

¢ = expoa';

a € C®(M), a¥ = aow. It is said to be a C-conformal change at a point p € M
if the following conditions are satisfied:

(a) « is regular at the point p € M,
(b) [J,grad o] =0,

where J is the canonical vertical endomorphism (or, in equivalent terminology,
the canonical almost tangent structure of the tangent bundle 7 : TM — M).
In his cited work [14] Hashiguchi proved for some special Finsler manifolds (in
his terminology: two-dimensional spaces, C-reducible spaces, spaces with («, 8)-
metric etc.) that the existence of a C-conformal change of the metric implies



that the manifold is Riemannian (at least locally; cf. the condition (a)). Here we
show that Hashiguchi’s result is valid without any extra condition. In terms of
our characterization this means that the vanishing of some conformal invariants,
like the conformal invariant first Cartan tensor, can be interpreted as a sufficient
condition for a Finsler manifold to be Riemannian. (The necessity is clear.) Our
result is based on a usual, but relatively “rigid” definition of Finsler manifolds: the
differentiability of the energy function is required at all nonzero tangent vector,
i.e. there is no singularity except for the zero vectors of tangent spaces. The basic
idea we use to prove our statement is an observation on homogeneous functions.
(Actually, we generalize the following well-known fact: if a function is homogeneous
of degree 0 and it is continuous at the origin, then the function is constant.) In
other words, the main points are the homogeneity and continuity of the Riemann-
Finsler metric along the gradient vector field of the scale function which depends
only on the “position” in case of a C-conformal change. Weakening the condition
of differentiability new perspectives open to investigate the C-conformality. As an
illustration we shall cite some valuable fragments from Hashiguchi’s original ideas
in one of the last remarks.



I. A NEW LOOK AT FINSLER CONNECTIONS
AND SPECIAL FINSLER MANIFOLDS

1. NOTATION AND SOME BASIC FACTS

1.1. M is a counected, paracompact, smooth (i.e., C*°) manifold of dimension n,
where n € N\ {0,1}. C°°(M) is the ring of real-valued smooth functions on M,
the C°°(M)-module of vector fields on M is denoted by X(M).

1.2. Vk € {0,...,n} : Q¥(M) is the module of differential k-forms on M; by
convention Q°(M) := C*°(M). QM) = @ (Q*(M) is the graded algebra of
differential forms with multiplication given by the wedge product. To each vector
field X € X(M) correspond two derivations of Q(M): the substitution operator 1x
of degree —1, and the Lie derivative Lx, of degree 0. These are related to the
operator d of the exterior derivative through H. Cartan’s magic formula

Lx =ix,d:=1xod+doux.
1.3. A vector k-form on M is a skew-symmetric k-multilinear map
[X(M)]* — x(M) if k € N\ {0}, and a vector field on M, if k = 0. They constitute

a C°(M)-module, denoted by ¥¥(M). In particular, the elements of ¥ (M) are
just the (1,1) tensor fields on M.

1.4. The Frélicher - Nijenhuis bracket of a vector 1-form K € ¥'(M) and a vector
field Y € X(M) is the vector 1-form [K, Y] defined by

(L4a) [K,Y](X) = [K(X),Y] - K[X,Y], X e X(0).

The Frolicher - Nijenhuis bracket of the vector 1-forms K, L € ¥(M) is the vector
2-form [K, L] € ¥?(M), given by

(K, L](X,Y) = [K(X), L(Y)] + [L(X), K(Y)] + K o L[X, Y]+
(1.4b) +LoK[X,Y]- K[X,L(Y)] - K[L(X),Y]-
- L[X,K(Y)] - LIK(X),Y]; X,Y € X(M).
In particular,

(1.4c) %[K, K|(X,Y) = [K(X),K(Y)] + K*[X,Y]-

— KX, K(Y)] - K[K(X),Y].

(1.4d) Ng := %[K, K]

is said to be the Nijenhuis torsion of K.



8

1.5. The adjoint operator K* : Q(M) — Q(M), w — K*w of a vector 1-form
K € V(M) is defined by the value of K*w on k vector fields Xi,..., Xy € X(M)
through the formula

(1.5) K*w(X1,..., Xp) = wEK(X1),. .., K(Xp)

itk#0,and Vf € C*°(M): K*f:=f.

1.6. Any vector 1-form K determines two derivations of 2(M). One of them
denoted by 1k is defined on the analogy of the substitution operator in the following
way:

(1.6a) VfeC®(M): i f=0;
(1.6b) ucw( X1, Xp) =Y w(Xy, e, K(XG), ., X
i=1

(we QF(M); X; € X(M), 1<i<k).
1x is a derivation of degree 0. The other one denoted by dg is the mapping
(1.6¢) dg = [1k,d] =1 od —doik;

it is of degree 1. As an easy consequence of the definitions the following rule of
anticommutativity holds:

(].Gd) dOdK = —dKOd.
Evaluating di on a function f € C*°(M), we get
(166) dKf = Zde = K*df

Finally, we summarize some algebraical identities relating these operators to the
Frolicher — Nijenhuis bracket (see [43]):

(1.6f) [fK, X] = K, X] - (Xf)K;

(1.6g) [K,fL] = fIK,L] +dg f N\L —df NK o L;

(1.6h) X, w®Y]=LxywdY +[X,Y]®w;

(1.61) [K,w® X]=drw® X —dw® K(X) + (-1)fw A [K, X]

(K,L € ¥'(M);w e QF(M); X,Y € X(M)).

1.7. m: TM — M is the tangent bundle of M; it is also denoted by 7ps. w9 : TM —
M is the subbundle of 73, constituted by the nonzero tangent vectors to M. The
kernel of the tangent map T'w (or T'm) is a canonical subbundle of 7y (or 77ar),
called the wvertical subbundle and denoted by 77, (and 77,;, resp.). The sections
of the bundles 77,, and 77, are called vertical vector fields; the C° (T M )-modules
of vertical vector fields are denoted by X¥(T'M) and XV(T M), respectively.
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1.8. Tangent bundle geometry is dominated by two canonical objects: the Liouville
vector field C € XV(T'M), and the vertical endomorphism J € WY(T M) (for the
definitions see e.g. [22]). We shall frequently use the following properties:

(1.8a) ImJ =KerJ =X"(TM);
(1.8b) J? =0;

(1.8¢) Ny := %[J, J]=0;
(1.8d) [J,C] = J.

In particular the derivations 2, and d; of Q(T'M) are called the vertical derivation
and the vertical differentiation, respectively. A straightforward calculation shows
that

(1.8¢) wody+dyoic =1y.

1.9. A differential form w € QF(T'M) (k # 0) is semibasic, if for each vector field
X on TM, 1yxw = 0. Analogously, a vector k-form K € ¥*(TM) is said to be
semibasic, if

(1.9) JoK =0 and VX € X(TM): ijxK =0.

1.10. A semispray on the manifold M is a mapping
S:TM - TTM, v~ S(v) € T,TM,

satisfying the following conditions:

(1.10a) S is smooth on T M;
(1.10b) JS=C.

The semispray S is called a spray, if

(1.10c) S is of class C* on TM
and

(1.10d) [C,S]=S5.

1.11. The wvertical lift ([22], [41]) of a function f € C®(M) is f' := fomw €
C> (T M), the complete lift of f is the function

fS:TM - R, v f(v) :=df(v) =v(f).

The following “homogeneity” properties are immediate consequences of the defini-
tions:

(1.11a) Cf'=0, Cf°=f4
(1.11b) Sf=r°

where S is an arbitrary semispray on M.
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1.12. Lemma. A smooth function ¢ on TM or T M is a vertical lift if and only
Zf d](p =0.

Proof. According to (1.6e) and (1.8a) we conclude that dyp = 0 if and ouly if for
any vertical vector field X € XV(T'M) : X =0, i.e. ¢ can be written in the form
p=fom. O

1.13. Vector fields on T M are determined by their action on { f¢ | f € C>*(M) }
(see [42]). Thus for any vector field X € X(M) there exist vector fields X7V,
X°¢ e X(T'M) such that

(1.13a) Ve C®(M): X°f = (Xf)om =(X[)"
(1.13b) Vf e (M) : XOf° = (X f)°.
XV and X°¢ are called the vertical and the complete lift of X, respectively.

From the formulas (1.13a) and (1.13b) it can be easily seen that
(1.13c) Ve C®(M): XVf'=0;
(1.13d) Ve C®(M): XfP=X"f = (X[)".
1.14. Lemma. A vertical vector field Y € XV(T M), is a vertical lift if and only
if for any vector field X on M, [X?,Y] =0.
Proof. Suppose that Y is a vertical lift, i.e. ¥ = ZY(Z € X(M)). Then for any
function f on M we get

[Xv,Y]fc — [Xv,ZU]fc — XU(szC) _ ZU(X’UfC) —

" xzy -z

1.13c)

0.

Conversely, the vanishing of the Lie-bracket [ X", Y] implies that for any function
fon M

0= [X",Y]f* = XUV ) = V(X f9) “EY X0y o) - V(X f)T = XUV fO)

since Y is a vertical vector field. According to Lemma 1.12 it means that for any
function f on M, Y f¢ is a vertical lift (as a function) and, consequently, Y is a
vertical lift (as a vector field; cf. (1.13a)). O

1.15. Lemma. If S is a semispray on M, then
(1.15) VZ e X(TM) :J[JZ,S|=JZ.
For a proof, see [10], p. 295.
1.16. Lemma. For each vector fields X,Y € X(M) we have
(1.16a) [X',Y?]=0, (X", Y] =[X,Y]", (XY =[X,Y]%
(1.16b) [C,X"] = -X", [C,X€] =0;
(1.16c) JX¢= X", [J,X] =0, [J,X°]=0.

1.17. Lemma (1st local basis property). If (X;);_, is a local basis for the module
X(M), then (X}, X¢), is a local basis for X(T'M).

i/i=1
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2. HORIZONTAL ENDOMORPHISMS AND FINSLER CONNECTIONS

2.1. In the sequel we shall introduce some important vector forms over 7M. In
conformity with the demands of Finsler geometry, their smoothness will not be
required or assured a priori on the whole tangent manifold T M.

2.2. Definitions.

(i) A vector 1-form h € W!(T'M), smooth only on T M, is said to be a horizontal
endomorphism on M, if it is a projector (i.e. h? = h) and Kerh = XV(T'M).

(ii) Assume h € U} (T'M) is a horizontal endomorphism. The mapping

(2.2a) X e X(M)— X":=hX® e X(TM)

is called the horizontal lifting determined by h. The vector 1-form

(2.2b) H :=[h,C] € ¥ (T M)

is said to be the tension of h. If H = 0, then h is called homogeneous. The vector
2-form

(2.2¢) t:=[J,h] € ¥*(TM)
and the vector 1-form
(2.2d) T:=wst+ H

are said to be the weak and the strong torsion (S is an arbitrary semispray on M),
respectively. The curvature of the horizontal endomorphism A is the vector 2-form

(2.2¢) Qi=—N, = —%[h,h].

2.3. Remark. We emphasize again the condition of differentiability about a hori-
zontal endomorphism is prescribed only on 7 M. As a consequence, the smoothness
of the tension, the torsion and the curvature is also guaranteed only over 7 M.

2.4. Remark. The following relations are easy consequences of the definitions:

(2.4a) hoJ=0, Joh=J.
(2.4b) VX € X(M): JX" = X",
(2.4c) VX,Y € X(M): JX" Y =[X,Y].

2.5. Lemma and definition. Suppose that h is a horizontal endomorphism
on M.

(a) If XM(TM) := Imh, then X(TM) = XV (TM)DX"(T M) (direct sum). X"(T M)
is called the module of horizontal vector fields. v := 1y () —h is also a projector,
the vertical projection on X¥(T'M) along X"(TM).

(b) (2nd local basis property.) If (X;)i, is a local basis of X(M), then (X7, X!)T
is a local basis of X(T'M).

Proof. Trivial. O
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2.6. Lemma. The vector forms H, t, T and  are all semibasic, so they are
completely determined by their action on completely (or horizontally) lifted vector
fields. Namely, for any vector fields X, Y on M,

(2.6a) H(X°) =[X"C];

(2.6b) HX,Ye) = [XM Vv - [Yh XV - [X,Y]Y

(2.6¢) T(X®) =v[S, X" + X" - X°,

where S := h(S") (S’ is an arbitrary semispray on M );

(2.6d) QXY = —v[ X" Yh.

Proof. Straightforward calculations. |

2.7. Lemma. If h is a horizontal endomorphism on M, then there exists a unique
almost complex structure F (F? = —lx(rar)) on TM, smooth over TM, such that

(2.7a) FoJ=h, Foh=-J
Explicitly
(2.7b) F = R[S, h] — J,

where S := h(S') (S' is an arbitrary semispray on M ).
For a proof see [10], p. 314.

2.8. The following formulas can be obtained easily:

(2.8a) JoF=v, Fov=hoF.
(2.8b) voF=F—-Fov=F—-hoF =-J.
(2.8¢) J[C,Fl=v—|[C,h].

2.9. Definitions. Suppose that h is a horizontal endomorphism on M and con-
sider the almost complex structure F' characterized by Lemma 2.7. Let, further-
more, D be a linear connection on the manifold TM or 7M. The pair (D, h) is
said to be a Finsler connection on M if it satisfies the following conditions:

(2.9a) Dh =0 (D is reducible);

(2.9b) DF =0 (D is almost complex).

The mappings

(29¢) D" (X,Y) € X(TM)x X(TM)+~ DY := DypxY € X(T'M),

(29d) DV:(X,)Y)eX(T'M)xX(I'M)— DYY :=D,xY € X(TM)

are called the h-covariant and the v-covariant differentiation with respect to (D, h),
respectively. The h-deflection of (D, h) is the mapping

(2.9¢) W (DC): X € X(TM)— DC(hX) = DpxC,

while the v-deflection is v*(DC). The covariant differential DC is called the de-
flection map.
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2.10. Remark. Assume that (D, h) is a Finsler connection on M. Applying (2.9a)
we get immediately that

(2.10a) Y € XY(TM) = VX € X(TM) : DxY € X*(T M),
(2.10b) Y € XM(TM) = VX € X(T'M) : DxY € X"(TM).

Owing to the condition (2.9b) it follows that D is completely determined by its
action on X(T'M) x XV(T'M). Namely, for each vector fields X, Y on T'M,

(2.10c) DyxhY = FD,xJY,
(2.10d) DpxhY = FDpxJY.
Moreover, D is almost tangent as well:

(2.10e) DJ=0.

2.11. Lemma and definition. Let (D,h) be a Finsler connection on M. Then
the torsion tensor field T of D is completely determined by the following mappings:

(2.11a) AX,Y) := hT(hX,hY) — (h)h-torsion,
(2.11b) B(X,Y) := hT(hX,vY) — (h)hv-torsion,
(2.11c) R (X,Y) := vT(hX,hY) — (v)h-torsion,
(2.11d) PY(X,Y) := vT(hX,vY) — (v)hv-torsion,
(2.11e) SYX,Y) :=vT(wX,vY) — (v)v-torsion.

2.12. Lemma and definition. If (D,h) is a Finsler connection on M, then
the curvature tensor field K of D is uniquely determined by the following three
mappings:

(2.12a) R(X,Y)Z := K(hX,hY)JZ — h-curvature,
(2.12b) P(X,Y)Z .= K(hX,JY)JZ — hv-curvature,
(2.12¢) QX,Y)Z =K(JX,JY)JZ — v-curvature.

2.13. Example 1: horizontal lift of a linear connection. Suppose that V
is a linear connection on the manifold M. It is well-known that V induces a
homogeneous horizontal structure h € W!(T'M), which is smooth on the whole
tangent manifold 7'M . In this case
VX, Y € X(M): (VxY)" = [X" V7]
h

It is also known (see e.g. [22]), that there exists a unique linear connection V on
the manifold 7'M, characterized by the following rules of calculation:

h h
Vx.Y'=0, VxuV?’=(VxY)" =[X" V"],
(2.13) X Xh (VxY)" = ]

h h h h h
VY =0, V¥ = (Vi)' XY € X(M).

h
V is called the horizontal lift of the linear connection V. Now it is easy to check that

h h
(V, h) satisfies the conditions (2.9a), (2.9b); therefore (V, h) is a Finsler-connection
on M.
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2.14. Example 2: Berwald-type connections. Let a horizontal endomorphism
h on the manifold M be given. Define the mapping

o

D: X(TM) x 2(TM) — X(TM), (X,Y) s DxY

as follows:

(2.14a) DyxJY := J[JX,Y],
(2.14b) DiuxJY = v[hX, JY],
(2.14c) DyxhY = R[JX,Y],
(2.14d) DixhY = hF[hX, JY]
and

DXy = DvaY + DthY + Dvth + thhY.

Then lo) is obviously a linear connection on 7M. It is easy to check that (lo), h)
satisfies (2.9a) and (2.9b).

2.15. Proposition. Suppose that (D,h) is a Finsler connection of Berwald-type
o o o o

on M. Then the h-curvature R, the hv-curvature P and the v-curvature Q of D
are semibasic and

(2.15a) VX,Y,Z € X(M): R(X,Y)Z° = [J,Q(X¢, V)| 2"

o] o

(2.15b)  VX,Y,Z € X(M):P(X,Y)Z =P(X",Y")Z" = [[X",Y"],Z2"];

o

(2.15¢c) Q=0.

Proof. It is obvious from (2.12a)—(2.12c) that R, P and Q are indeed semibasic.
Hence, in view of Lemma 1.17 and Lemma 2.5(b), they are completely determined
by their action on the triplets of form

(X°,Y%,Z% or (XM Yh ZM); XY, Z € X(M).
(a) Taking into account that for any vector fields X,Y, Z € X(M),

(X", vy, [X" Y™ ZY], ... are vertical; A[X",Y"] = [X,Y]",

JX" = JX¢ = X" (see (2.4b) and (1.16c)), J o F = v (from (2.8a));
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and applying the rules of calculation (2.14a), (2.14b) and the Jacobi identity for
the Lie bracket of vector fields, we obtain:

o]

R(XC,Y)Z¢ := K(hX®, hY®)JZ¢ = K(X",Y")Z" = Dx»DynZ"—
- f)yhﬁxhzv - .lo)[Xh7yh]Zv - .lO)X}l[Yh, ZU] - Byh [Xh, ZU]—
- D[X7y]hZU - DU[Xh7yh]Zv -
= [Xha[Yhazv]] - [Yha[Xh7ZU]] - [[X7 Y]hazv]_
— J[v[X", Y, Z"] =
= _[Zva[Xay]h] - [Zvav[Xhayh]] + [ZU,[X, Y]h]_
— J[[X", Y, 2" = —[JZ" o[ X" Y] + T[Z" o[ X" V] =
= —[Jolx?, vz P2 g xe, ve) zt.

Since R is semibasic, this proves (2.15a).

(b) Computing and arguing as before, we find that

o]

P(XC,Y%)Z¢ = K(hXC, JY)JZ¢ =
=—JY", FIX", 2] - J[[X",Y"], Z].
Since by (1.16¢) [J, Z¢] = 0, we can write
0=[J, Z9x" v = [J[X" V"], 2] — J[[X", YY), 2] =
= —J[[x" v, z7,

and so

o

P(X¢,Y)2¢ = J[FIX", 2'],Y"].
Now applying (1.16c) again, we obtain that
0=[LYFIX" 2| = [JF[X", 2"],Y"] — J[F[X", Z"],Y"],
and thus
JIFIX", 20, 70) B2 (Xt 20, v = - [[20, v, X -
[, xt, 2] PR [t v, 2);

hence our assertion.

(¢) A quick and easy calculation yields the relation (2.15c¢) and we omit it. O
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2.16. We recall that if h is a horizontal endomorphism on M jthen there always
exists a semispray on M, which is horizontal with respect to k. To see this, consider

an arbitrary semispray S’ on M. If S = hS’, then JS = J(hS') (2.42) JS' = C and
hence S is a semispray. Since hS = h2S’' = hS' = S, S is horizontal with respect
to h. It is also clear that S does not depend on the choice of S’.

The spray S constructed in this way is called the semispray associated with h

(cf. [10], p. 306).
2.17. Proposition. Suppose that h is a homogeneous horizontal endomorphism

on M and let (D,h) be the Berwald-type Finsler connection induced by h. If S is
a semispray on M, then

o

(2.17) VX,Y € X(TM):R(X,Y)S = Q(X,Y).

e}
Proof. Since R and 2 are semibasic, it is enough to check that

o

(2.17a) VXY € (M) : R(X", YM)S = (X" vh).

We can also assume that S is the semispray associated with h. Then hS = S and
(2.15a) yields the relation

o

R(X",Y")S = [, X", Y")]S = [0, (X", Y")] - J[S, (X", Y")]
(BOALES) fxh Y1), 0] + J[TFQX",Y"), S]
bemme S [y kY1), O] + (X", Y.

It remains only to show that the first term on the right hand side vanishes. In view
of the homogeneity,
[v,C] =0 and [X" C]=0,

thus, in particular,
0=[v,C][ X", V" = [v[X",Y"],C] —v[[X",Y"],C].

Finally, using the Jacobi identity and the homogeneity of h over again, we obtain
that

0= [[Xhayh]ac] + [[Yh7c]7Xh] + [[CaXh]ayh] = [[Xhayh]ac]

which completes the proof. |
2.18. Corollary. Hypothesis as in Proposition 2.17. Then

]1%:0 <— 0 =0.

Proof. If Q vanishes, then R also vanishes by (2.15a). Conversely, it follows from
(2.17) that R =0 = Q= 0. O
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3. FINSLER MANIFOLDS
3.1. Definitions. Let a function E : TM — R be given. The pair (M, E), or
simply M, is said to be a Finsler manifold, if the following conditions are satisfied:
3.1a) Va€TM:E(a)>0; E0)=0.
3.1b)  Eis of class C* on TM and smooth over T M.
3.1c) CE =2E; ie. E is homogeneous of degree 2.
3.1d)  The fundamental form w := ddyE € Q*(T M) is nondegenerate.

The function F is called the energy function of the Finsler manifold. A horizontal
endomorphism on M is said to be conservative if dy E = 0.
3.2. Metrics. Assume (M, E) is a Finsler manifold with fundamental form w.
(a) The mapping
(3.2a) g: XY(TM)xX"(TM) - C®(TM),(JX,JY) » g(JX,JY) :=w(JX,Y)

is a well-defined, nondegenerate, symmetric bilinear form which is said to be the

Riemann — Finsler metric of (M, E). The Finsler manifold is called positive definite

if g is positive definite.

(b) Suppose that h is a horizontal endomorphism on M, v = Ly — h. Then
gn  X(TM) x X(TM) - C*(TM),

(3.2b)
(X,Y) = gn(X,Y) :=g(JX,JY) 4+ g(vX,vY)

is a pseudo-Riemannian metric on 7 M, called the prolongation of g along h.
(¢) It follows at once from (3.2b) that

(3.2¢) VX,Y € X(TM) : gn(hX,JY) = 0.

3.3. The following formulas can be easily obtained:

(3.3a) 9(C,C) = gn(C,C) = 2E;

(3.3b) VX,Y € X(M) : g(X", YY) = gu(X",Y"?) = X*(YVE);
(3.3¢) 1yw =0, 1ow=d;E;

(3.3d) Low=w, LodE=dyE,

where h is an arbitrary horizontal endomorphism on the Finsler manifold (M, E).

3.4. The Cartan tensors. Let a Finsler manifold (M, E) be given. Suppose that
h is a horizontal endomorphism on M and let g5, be the prolongation of g along h.

(i) There exists a unique tensor

C: X(TM) x X(TM) = X(TM)
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such that J oC =0 and
1
(3.4a) VX,)Y,Z € X(TM) : gn(C(X,Y),JZ) = 3 (LixJ gn) (Y, Z).

The tensor C, as well as its lowered tensor C, defined by

(3.4b) VX,Y,Z € X(TM):C(X,Y, Z) == gu(C(X,Y),72Z) “2” g(c(X,Y), T 2)

is called the first Cartan tensor of the Finsler manifold.

(ii) Analogously, we introduce a tensor
C':X(TM) x X(TM) = X(TM)

by the conditions J o C' = 0 and
1
(3.4¢) VX,Y,Z € X(TM): gu(C'(X,Y),JZ) = 5 (Lnxgn) (JY, T Z).

Then C' is well-defined; it is called the second Cartan tensor of the Finsler manifold,
belonging to the horizontal endomorphism h. We use the same terminology also
for the lowered tensor C.

3.5. Remark. C and C’ are clearly semibasic. We shall see soon that C is inde-
pendent of the choice of the horizontal endomorphism h, it depends on the energy
function alone (i.e., on the Finsler structure). On the other hand, the second Cartan
tensor C’ strongly depends on the horizontal endomorphism!

3.6. Lemma. Let (M, E) be a Finsler manifold and (D, h) a Berwald-type Finsler
connection on M. Then for each vector fields X, Y, Z on M,

(36a)  26,(X°,Y7,7°) = (ﬁmh) (¥*,2Y) = X'[V* (Z°E)};

(3.6b) 2C0(X°,Y*, Z°) = (f)thh> Yv,z") = [V, [X", 2] B+
+YY[Z°(X"E)]

(C' is the second Cartan tensor belonging to h).
Proof. Straightforward calculations. d

3.7. Corollary. The first Cartan tensor is symmetric, the lowered first Cartan
tensor is totally symmetric.

Proof. We infer this immediately from (3.6a): since the Lie bracket of vertically
lifted vector fields vanishes, XV[Y?(Z"E)] does not depend on the order of the
vector fields. O
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3.8. Lemma. If S is an arbitrary semispray, then 1sC = 15C, = 0.

Proof. Due to symmetry, it is enough to check that for each vector fields X,Y on
M we have C,(S,X,Y) =0. From (3.6a)

2,(5, X°,1°) = (D,fsgh> (X", YY) = Cgn(XY,Y") = gn(DeX", V)=

— gn(X?, DeY?) = CIXP (YU B,

since e.g.

(2 1.16b

DeX? = Dysaxe ®29 jio, xe M .

Using systematically (1.16b) and (3.1c¢) we obtain the vanishing of C[XV(YVE)];
hence our assertion. O

3.9. Proposition. Let (M,E) be a Finsler manifold. If h is a conservative,
torsion-free horizontal endomorphism then the lowered second Cartan tensor is to-
tally symmetric.

Proof. Since h is conservative, for each vector field X on M,
0= (dpE)(X°) "2V (ipdE)(X) = (dE)X" = X"E,
so it follows from (3.6b) that
VX,Y,Z € X(M):2C)(X°, Y, Z°) = [Y',[X", Z"]| E.

Now, using the Jacobi identity and the condition ¢ = 0, we obtain

0= [¥V,[X", 2] + [X",[2%, ¥V]] + [2¢, [v*, x7) 2

— [YU, [Xh,ZU]] + [Zv7 [YU,Xh]] (2£b) [YU, [Xh, ZU]]+
+ [z, -y XY + (20, (X, Y] = Y X 2] - (20 v X
therefore [Y?,[X", Z']] = [ZY,[Y", X"]]. This means that
Co(X, Y, Z°) =C(Y°, Z° X°).

The other symmetries of C{ can be shown in the same manner. |

3.10. Example: Randers manifolds. Let a be a Riemannian metric and £ a
nonzero 1-form on the manifold M. Consider the functions

Lo :TM - R, v — La(v) = [ty (0,0)]%

(3.10) B:TM — R, v— g(v) = Brv)(v);

~ 1._.
L:=L,+p5; E .= iLZ'
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If

1] = sup 2O

<1,
veETM La(U)

then (M, E) is a Finsler manifold which is said to be the Randers manifold con-
structed from the Riemann manifold (M, a) by perturbation with 3.

(a) The Riemann— Finsler metric of a Randers manifold can be represented in
the form:

1 ~
AR e + —i1ca ® dy S+

L
(3.102) ITL. T I L.

1 ~ ~ ~
+ dvﬁ®lca+dvﬁ®dvﬁa
Lq

where v := 1y (rar) — h and for any vector fields X,Y € X(M),
a(X%Y") = [o(X, Y)]".

(b) The lowered first Cartan tensor of a Randers manifold can be given by the
formula

3
(3.10Db) C,=—- L%J*an@) Jca ® Jica+
o7
+S m(ij*ae@d E—EJ*EG@JW T— L eae Jeaed E)
y L. J I3 c JE ¢} e} J -

[e3 «

For the formulas (3.10a) and (3.10b) see [38].

(c) The Japanese school of differential geometry has played a dominant role in
development of the theory of Finsler manifolds with so-called («, 8)-metrics (espe-
cially Randers manifolds); lots of interesting historical remarks and further facts
can be found in Matsumoto’s synthetical report [26] (see also [15], [17] and [23]).
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4. NOTABLE FINSLER CONNECTIONS
4.1. Lemma and definition. On any Finsler manifold (M, E) there is a spray
S:TM — TTM, uniquely determined on T M by the relation
(4.1) 1sw = —dE
and prolonged to a C*-mapping of TM such that S | TM \ TM = 0. The spray S
is called the canonical spray of the Finsler manifold.
For a proof, see [10], p. 323 and [7], p. 60.

4.2. Theorem (Fundamental lemma of Finsler geometry). Let (M, E) be a Finsler
manifold. There exists a unique horizontal endomorphism h on M ,called the Barthel
endomorphism, such that

(a) h is conservative (i.e., dyE =0),

(b) h is homogeneous (i.e., H = [h,C] =0),
(c) h is torsion-free (i.e., t =[J,h] =0).
Explicitly,

1
h = 3 (Lxcrm) + [, 9])

where S is the canonical spray.
The result is due to J. GRIFONE [10].

4.3. Theorem. Let (M,E) be a Finsler manifold and let h be a horizontal en-

domorphism on M. There exists a unique Finsler connection (D,h) on M such
that

(4.3a) the (v)hv-torsion P* of D vanishes;
(4.3b) the (h)hv-torsion B of D vanishes.

This Finsler connection is of Berwald-type, so the covariant derivatives with

respect to D can be calculated by (2.14a)—(2.14d). If (D,h) satisfies the further
conditions

(4.3¢) h is conservative;
(4.3d) the h-deflection h* DC' vanishes,
(4.3¢) the (h)h-torsion A oflo) vanishes,

then h is just the Barthel endomorphism of the Finsler manifold.
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4.4. Remark. The Finsler connection determined by (4.3a)—-(4.3e) is said to be
the Berwald connection of the Finsler manifold. The axioms presented here were
at first formulated by T. OKADA [29], with a slight difference. The novelty of
our approach consists in drawing a distinction between the roles of the first group
(4.32)—(4.3b) and of the second group (4.3c)—(4.3¢) of axioms. For an intrinsic proof
of the theorem, see [33].

4.5. Theorem and definition. Let (M, E) be a Finsler manifold and suppose
that h is a conservative torsion-free horizontal endomorphism on M. Let g be the
prolongation of g along h and C' the second Cartan tensor belonging to h. There
exists a unique Finsler connection (D,h) on M such that

(4.5a) D is metrical (i.e. Dgp, =0);
(4.5b) the (v)v-torsion S' of D vanishes;
(4.5¢) the (h)h-torsion A of D vanishes.

The covariant derivatives with respect to D can be explicitly calculated by the fol-
lowing formulas: for each vector fields X,Y on TM,

45d)  DyxJY = JJJX,Y] +C(X,Y) = DyxJY + C(X,Y);

(45¢)  DaxJY = o[hX,JY]+C'(X,Y) = DpxJY +C'(X,Y);
45)  DyxhY = BJX,Y]+ FC(X,Y) = DyxhY + FC(X,Y);
(45g)  DpxhY = hF[hX, JY] + FC'(X,Y) = DpxhY + FC'(X,Y).

Then 1
h*DC = iH

where H is the tension of h (2.2b). Therefore, if in addition to (4.5a)—(4.5c)
(4.5h) h*DC =0

is also satisfied, then h is the Barthel endomorphism of the Finsler manifold. In
this case (D, h) is called the (classical) Cartan connection of the Finsler manifold
(M, E).

Proof. The idea of the existence proof is immediate. We start from a conservative,
torsion-free horizontal endomorphism h (whose existence is clearly guaranteed; see
also 4.6. Remarks (c¢)) and build the second Cartan tensor C' belonging to h. Then
we define a rule of covariant differentation by the formulas (4.5d)-(4.5g). It can be
checked by a straightforward calculation that the pair (D, h) obtained in this way
is indeed a Finsler connection, and the axioms (4.5a)—(4.5¢) are satisfied.

In our subsequent considerations we are going to prove the wunicity statement.
Assume (D, h) is a Finsler connection on M, satisfying (4.5a)—(4.5¢c). We show that
the rules of calculation (4.5d)—(4.5g) are valid.
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1st step. Applying the “Christoffel process”, we derive (4.5d). We can restrict
ourselves to vertically lifted vector fields. From condition (4.5a), for any vector
fields X,Y, Z € X(M),

X9n(Y", Z") = gn(Dx»Y", Z") + gn(Y", Dx+ Z"),
YO9r(Z",X") = gn(Dy+Z", X") + gn(Z", Dy»X"),
—Zgn(X", YY) = —gn(Dz» X", Y") = gn(X", D22 Y").
Since from (4.5b) Dx+Y? — Dy+X? = [X",Y"] = 0 and so on, adding the above
three equations we get the relation
9n(2DxY", 2%) = X gn(Y", Z2°) + Y gn(2°, X°) = Zgn(X",Y") =
(BILEEDIT 90, (X0, ¥°, 2°) = 200 (C(XE,Y7), ZY).
Hence
Dx. Y’ =C(XY¢) = C(hX+vX hY° +0Y°) =C(X" v,

from which (4.5d) easily follows. In view of (2.10c) this implies (4.5f).

2nd step. Now we apply the Christoffel process to the h-covariant derivatives
of gn. Then (4.5a) yields the relations

Xtg(YV, Z2Y) = gn(DxnY?, Z%) + gn(YV, Dxn ZY),
(a) thh(ZvaXv):gh(DYhzvav)+gh(ZU7DYhXU)7
—Z g (XY, YY) = —gn(Dyn XV, YY) — gn (XY, DynY'V)

(X,Y,Z € X(M)). From condition (4.5c), i.e., from the vanishing of the (h)h-
torsion we conclude that e.g.

Dxn Y — Dy X" = p[X" Y = [X,V]" = h[X, Y],

hence

2.7a),(1.16¢)

FDY" — FDyn X" = FRIX, V] (X, Y]

So, taking into account (2.10d), we obtain the relations
DxnYV — Dyn X' = [X, Y],
(b) DyrZ' — DypnY® =Y, 2],
—Dpn X+ DxnZ° = —[Z, X]".

Adding now both sides of (a) and using (b), it follows that

gn(2Dxn YV, Z%) = X g, (Y, Z°) + Y (2, X)) — Z"gr (XY, Y )+

© T (X, Y], 2°) — gu([Y, 27, X7) + gu([Z, X]", ).
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3rd step. We apply the Christoffel process to the tensor C’' belonging to h. For
any vector fields X,Y, Z € X(M), we get:

20n(C"(X",Y"),Z°) = X"gp (Y, Z°) — gn([X", Y], Z%) — gu(Y", [X", Z7)),
29n(C' (Y™, ZM), XY) = Ygu(Z2°, X") — gn(Y", Z°], XV) — gn(2Z°, V", X)),

—2g(C"(Z2", X"),Y") = =Z"gn(X",Y") + gn([Z", XV], V") + gn (X", [ 2", V).

Adding these three equations, in view of the symmetry of C' (assured by Proposi-
tion 3.9) we obtain:

gn(2C"(X" YR, Z2¥) = X1 g (Y'Y, Z°) + Yign(Z2°, XY) — Z"gn(X?,Y7)—
(d) - gh([Xh7YU] + [YhaXv]azv) +gh([Zh7Xv] - [thzv]yyv)_'_

+on([2", Y] = Y, 27, X7).
From (c) and (d) it follows that
gn(2DxnY", Z") = g, (2C" (X", Y™), ZY)+

© +on([(X" Y]+ [YP, XY+ [X, Y], Z2Y)+
e

+ gh([Xha Z'] - [ZhaXv] - [X, 2], Y")+

+ gh([Yha A [Zh> Y-y, Z]", X").
Since h is torsion-free, the last two terms on the right hand side of (e) vanish
(cf. (2.6b)), while in the second term

[XP YY)+ VR XY+ [X, Y)Y = 2[X", Y.

Hence
gh(2Dxr Y, ZY) = gn(2C" (X", Y") + 2[X", Y], ZY),

which yields the formula

DxnY¥ = [X" Y]+ /(X" vh).
This proves (4.5e) and, by (2.10d), (4.5g). We have thus established the unicity
assertion.

4th step. We show that
h*DC = %H

Let X and Y be arbitrary vector fields on M. Then h*DC(X") = DC(X") =
DxnC and

gn(DxnC,Y") = gr(Dxn S, YY) 27 g (X", 0, v ) +
¢ 1
+gn(C'(X",8),v") P2 g (1X", 0, Y7 + SX"gn(C, V")~
1 1 1
- Egh([Xhac]ayv) - §gh([Xh>YU]>C) = §gh([Xh7C]>YU)+
1 1 1
+3 (X"(YYE) - [X"Y'E) = 5gh([Xh, Cl,Y"Y) + 5Y”(X"E):

hL= ]' v
! g Ogh(i[Xhac]ay )7
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from which follows that )
i[Xh7 C] == thc

This means that £H(X") = h*DC(X"), proving our assertion. O

4.6. Remarks.

(a) Observe that axioms (4.5a) and (4.5h) imply for any Finsler connection (D, h)
that h is a conservative horizontal endomorphism. Indeed, for each vector field X
on M,

(4.53)

0 (Dxngn) (C,C) = X"gn(C,C) — 291 (DxnC,C) =

B2 9xXhE — 2gu(DxnC,C) "2V 20X E = 2(d, E) (XM,

which means that dy E = 0.

(b) Axioms to characterize the classical Cartan connection were first formulated by
M. MarsumoTo; for an instructive historical remark see [24], p. 112.

(c) For the sake of completness we sketch an original process to construct torsion-
free, conservative horizontal endomorphisms on a Finsler manifold (M, E). Let a
function f € C*°(M) be given and define a semispray S by the formula

(4.6) S =8 —grad Y,

where S denotes the canonical spray and grad Y is the gradient of the function

BY := B omx (see 11.1.1). Then the horizontal endomophism h induced by S s
torsion-free and conservative. Indeed, from the definition

1 ~ 1
h:=3 (13€(TM) +[J, 5]) = h—5[J,grad °]

we get immediately that for any vector fields X,Y € X(M),

~ (2.6b)

(X, Y°) X YY) — [vh XV - [X, Y] =

1 1 s
= H(X%, V%) = S[[X",grad ), Y] + S [V, grad £°], X*] Th. 4.2 (<)

. _%[[Xv,gradﬂv]aYv] + %[[Y”,gradﬂ”],X”] =0

using the Jacobi identity. This means that h is torsion-free.
On the other hand, for any vector field X € X(T'M),

dy E(X) = h(X)E = h(X)E — %[J, grad gU)(X)E T £ @

- —%[J, grad 8°)(X)E " ¢(Fgrad §°, X)E = dE(C(F grad 8°, X)) =

(4.1) ~w(S,C(Fgradf*, X)) = w(C(F grad %, X), S) =

= g(C(Fgrad 8%, X),C) = C,(F grad 8°, X, §) "2+ %% g,

i.e. h is conservative.
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4.7. Corollary. Let (M, E) be a Finsler manifold and h the Barthel endomor-
phism. If C' is the second Cartan tensor belonging to h, then 1sC' = 0, for any
semispray S.

Proof. We consider the classical Cartan connection (D, h). Then for each vector
field X € X(TM):

0“2Y DuxC = Dpx s "2 unx, 0] + C'(X, 8) =

— H(AX)+C(X,8) = 2(h*DO)(hX) +C'(X,8) "2V ¢'(x,5). O

4.8. Lemma. Let (M, E) be a Finsler manifold, (D, h) the classical Cartan con-
nection and S the canonical spray. Then

(4.8a) DsC = -C'
(4.8b) DeC=—C,  DoC' =0,

where C' is the second Cartan tensor belonging to h.
For a proof see [11], pp. 331-332 and 335.

4.9. Theorem and definition. Let (M, E) be a Finsler manifold and h a conser-
vative torsion-free horizontal endomorphism on M. Assume gy is the prolongation
of g along h and C' is the second Cartan tensor belonging to h. There exists a

R
unique Finsler connection (D, h) on M such that

R o
(4.92) J*D = J*D;
R R
(4.9b) D is h-metrical, i.e. VX € X(TM) : Dpxgn = 0;
R
(4.9¢) the (h)h-torsion of D vanishes.

R
The covariant derivatives with respect to D can be calculated by the following for-
mulas: for each vector fields X, Y on T M,

R o
(4.9d) DyxJY = J[JX,Y] = D,;xJY;
R
(4.9¢) DyxJY =v[hX,JY]+C'(X,Y) = Dyx JY;
R o
(49f) DthY: h[JX,Y] :DJXhY;
R
(4.9g) DyxhY = hF[hX,JY]+ FC'(X,Y) = DpxhY.
Then

R 1
h*DC = EH
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Therefore, if in addition to (4.9a)—(4.9¢)

R
(4.9h) h*DC =0

is also satisfied, then h is the Barthel endomorphism of the Finsler manifold. In
R
this case (D, h) is called the (classical) Rund (or the Chern—Rund) connection.
The proof of this theorem is completely analogous to that of Theorem 4.5.

4.10. Remark. The classical Chern—Rund connection was first constructed by
S. S. CHERN in 1948, using a local coframe field. Three years later H. RUND also
discovered an important, seemingly different Finsler connection. Almost fifty years
had passed until M. ANASTASIEI [1] realized that both constructions result the
same Finsler connection.

4.11. Remark. Using vertically and horizontally lifted vector fields, the rules of
calculation for covariant derivatives take a somewhat simpler form. Namely, if D

o R
stands for D, D or D, we get the following table:

BERWALD (lo)) CARTAN (D) RuND (B)
DxoY? 0 C(Xh, Yh) 0
Dxn YV [Xh, VY] (X" VY] +C(Xh,Yh) [(XP YY) +C(XP YR
Dx.Yh 0 FC(X™" Y™y 0
DynYh | FIXMYY]  |F[XM Y]+ FC'(XP, YR | FIX" YY)+ FC'(XP, YT
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5. BASIC CURVATURE IDENTITIES
5.1. Convention. Throughout this section (M, E) is a Finsler manifold and b is

o R
the Barthel endomorphism on M. D, D and D denote the Berwald, the (classical)
Cartan and the Rund connection, respectively.

o R
5.2. Proposition. Let R, R and R be the h-curvature of the Berwald, the Cartan
and the Rund connection, respectively. We have the following relations:

(5.2a) R(X,Y)Z =R(X,Y)Z + (DnxC")(Y,Z) — (Dpy(C") (X, 2Z)—
—C'(X,FC'(Y,Z))+C'(Y,FC'(X, Z))+
+C(FQUX,Y), 2);
R
(5.2b) R(X,Y)Z =R(X,Y)Z -C(FQX,Y),Z) (X,Y,Z € X(TM)).
Proof. The first formula has been obtained by J. Grifone; see [11], pp.333-334.
R
Since the tensors R and R are semibasic, it is enough to check (5.2b) for triplets of
R
the form (X¢, Y€, Z¢); X,Y,Z € X(M). Taking into account that D* = D" from
R o
(4.9¢) and (4.9g) while D¥ = DV from (4.9d) and (4.9f), we get:

R R R R R R R
R(X€,Y%)Z¢ = K(hX®,hY)JZ¢ = DxnDynZ’~ DynDxn Z'— Dixn yn Z'=

R R
- DXhDYth —_ DththU —_ Dh[Xh7yh]ZU — DU[Xh7yh]Zv -
R
= ]R(XC,YC)ZC + DU[Xh7Yh]ZU - DU[Xh7Yh]Zv = ]R(XC,YC)ZC

+ C(F[X" Y",Z°) = R(X¢,Y)Z + C(Fv[X", Y™, Z°)+

+ C(FR[X", Yh), z¢) BT pexe yeyzeo

— C(FQ(X®,Y*), Z°). O

5.3. Proposition. The hv-curvature tensors of the Cartan, the Berwald and the
Rund connection are related as follows:

(5.32) P(X,Y)Z = P(X,Y)Z + (DpxC) (hY, hZ) — (DyyC') (hX, hZ)+
+C(FC'(hX,hY),hZ) + C(FC'(hX,hZ),hY)—
— C'(FC(hX,hY),hZ) — C'(FC(hY,hZ), hX).

R o
(5.3b) P(X¢,Y)Z¢ =P(X°,Y)Z +[C' (X", Z"),Y"].

Proof. In the same manner as above, evaluating P on a triplet (X¢, Y, Z¢) we get
its expression in terms of the hv-curvature tensor of the Berwald connection, the
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Cartan tensors and their h- or v-covariant derivatives, respectively (for the details
see e.g. [36], p. 52). A similar reasoning, but a shorter calculation shows that

R R R R R R R
P(X¢,Y°)Z¢ = K(X",Y")Z" = DxnDy+Z" — DysDxnZ" — Dixn yo Z° =
R R
= Dy ([X", Z°1+ C'(X", Z")) = D ypixn yn) JZ" =
R R
= —D yn JE[X", Z") — D jyn JFC' (X", Z") — J[[X", V"], Z"].
Taking into account that for any vector fields X,Y, Z € X(M)
(X" v, [[Xh, Y], Zh] ,... are vertical,

we obtain that

R R R
P(X¢,Y%)Z¢ = —D jyn JF[X", Z°] — D jyn JFC' (X", Z") =

=—J[YY,FIX", Z°]] - JIY*,FC'(X", Z")] =
= P(X°,Y9)Z° + [C'(X", 2"), Y],
since

(1.16¢) (2-8a)

0 [J,YU]FC' (X", ZM) [C'(X", zM),y°] - JFC' (X", zM),y?]. O

5.4. Proposition.

(a) The v-curvature tensor of the Berwald and of the Rund connection vanishes,
o R

i.e.,, Q=0 and Q=0.

(b) For the v-curvature tensor of the Cartan connection we have the expression

(5.4) QX,Y)Z=C(FC(Z,X),Y)-C(X,FC(Y,Z)) (X,Y,ZeX(TM)).

Proof. The first assertion can be verified by an immediate calculation. Formula
(5.4) was derived by J. GRIFONE [11], we recall only the key observation, the
identity

(54&) (DJXC) (Y, Z) = (DJYC) (X, Z) (X, Y, Z € :*:(TM)) (|

5.5. Example. Suppose that (M, E) is a positive definite two-dimensional Finsler
manifold. Let S be the canonical spray, h the Barthel endomorphism and F' the
almost complex structure induced by h. Consider the prolongation g, of the Rie-
mann - Finsler metric along h (3.2b). Let Cp := \/%—EC be the normalized Liouville
vector field; then g¢,(Co,Co) = 1. The vector field Sy := \/%S = FCy is gp-
orthogonal to Cy, i.e.,

91 (S0, Co) = gn(hSo, vCo) = gn(hSo, JFCo) =7 0,
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and g, (So, Sp) = 1. Next, using the Gram—Schmidt process, we can construct —
at least locally — a gp-orthonormal basis (Cy, Xo) of X¥(T M), where the vector
field X¢ is uniquely determined up to sign. Using the almost complex structure
once more, we arrive at a (local) gj-orthonormal basis

(553) (Co,Xo,FXo,So)

for the module X(7M). The quadruple (5.5a) is called the Berwald frame of the
Finsler manifold after L. BERWALD, see his posthumous paper [3]. As for the details
of the coordinate-free construction, we refer to [39].

Now, since the first Cartan tensor C is semibasic, it follows by 3.8 that C is
completely determined by its value on the pair (F Xy, FXp). Taking into account
(5.4), we infer immediately that in two dimensions the v-curvature of the Cartan
connection vanishes. This proposition was first proved by D. LAuGwITZ [20] with
the machinery of classical tensor calculus.

5.6. Remark. If n > 3, (M, E) is a positive-definite n-dimensional Finsler mani-
fold, and the energy function is symmetric (E(—v) = E(v) for any tangent vector
v € TM), then the vanishing of Q implies that (M, E) is a Riemannian manifold.
This far from trivial result (conjectured by D. LAuGwITzZ [21]) was first proved by
F. BRICKELL [4].
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6. BERWALD MANIFOLDS

6.1. Convention. Retaining the notations introduced above, in our following dis-
cussion h will denote the Barthel endomorphism and C' the second Cartan tensor
belonging to h, unless otherwise stated.

6.2. To begin with, we recall an important classical result, first formulated and
proved intrinsically by J. G. DI1AZ; see [§].

6.3. Theorem and definition. Let (M, E) be a Finsler manifold. The following
assertions are equivalent:

(a) The hv-curvature PP of the Cartan connection vanishes.

(b) The second Cartan tensor C' vanishes.

(c) VX,Y,Z € X(TM) : (DrxC) (Y, Z) = (DpzC) (X,Y).

o]

(d) VX,Y,Z € X(TM) : P(X,Y)Z = — (DpxC) (Y, Z).
If one, and therefore all, of the conditions (a)-(d) are satisfied, then (M,E) is
called a Landsberg manifold.

6.4. Other characterizations.
(a) The property C' = 0 implies immediately (see e.g. 4.11) that in a Landsberg
manifold the h-covariant derivatives with respect to the Cartan, the Berwald and

o o R
the Rund connection coincide. Conversely, if D" = D" or D" = D" then C' = 0
and the Finsler manifold is a Landsberg manifold.

(b) Now let us have a look at the (v)hv-torsion of the Cartan connection. For
each vector fields X, Y on M,

PLX" YY) := vT(X", V") =vDxn YV —vDy . X" — o[ X" VY] =
Ly [X YY) + oC (XYY — wFC(X Y ) —
—o[xh, Y] P2 et vy 4 Je(Xh Y = ¢ (xh Y.

It follows that the vanishing of the (v)hv-torsion of the Cartan connection charac-
terizes the Landsberg manifolds.

(¢) We infer immediately from (3.6b) that a Finsler manifold is a Landsberg

manifold if and only if the Berwald connection is h-metrical (i.e., D"g; = 0). In
Matsumoto’s monograph [24] Landsberg manifolds are defined by this property.

6.5. Definition. A Finsler manifold (M, E) is said to be a Berwald manifold if
there is a linear connection V on M such that for each vector fields X,Y on M,

(VXY)U = [Xh> YU]:

where the horizontal lifting is taken with respect to the Barthel endomorphism.

6.6. Remarks.

(a) The linear connection V in definition 6.5 is clearly unique, so it will be men-
tioned as the linear connection of the Berwald manifold. One can see also at once
that the horizontal endomorphism induced by V is just the Barthel endomorphism.
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We immediately infer that the Barthel endomorphism and the canonical spray of a
Berwald manifold are smooth on the whole tangent manifold T M. The converse is
also true: if the canonical spray of the Finsler manifold (M, E) is smooth on 7'M,
then (M, E) is a Berwald manifold. For another reasoning see [8].

(b) By a clever observation of Z. I. Szabé the linear connection V of a positive
definite Berwald manifold is Riemann —metrizable: there always exists a Riemann-
ian metric gps on M whose Levi-Civita connection is V. This is the first step
toward the classification of positive definite Berwald manifolds achieved by him
in [32).

(¢) As in Example 3.10, consider a Randers manifold (M, E) with energy function

E =1L% L := Lo+ . It is well-known (see e.g. [18], [23] and [27]) that (M, E)

is a Berwald manifold if and only if 8 is parallel with respect to the Lévi— Civita
connection of the metric a.

In this case the Lévi—Civita connection coincides with the linear connection of
(M, E) as a Berwald manifold.

6.7. Lemma. A Finsler manifold (M, E) is a Berwald manifold if and only if

(6.7) VX, Y € (M) : [X"Y"] is a vertical lift.

Proof. The necessity of (6.7) is evident. To see the sufficiency, we consider the
mapping

V:(X,Y)€X(M)x X(M)— VxY € X(M),(VxY)" :=[X" Y],

where the horizontal lifting is taken with respect to the Barthel endomorphism, of
course. Then V is well-defined and an easy calculation shows that it is a linear
connection, indeed. O

6.8. Lemma. Suppose that (M, E) is a Berwald manifold and let V be its linear

h h
connection. Then the pair (V,h), where V is the horizontal lift of V and h is the
Barthel endomorphism, is just the Berwald connection.

Proof. Our ouly task is to check (4.3a) and (4.3b). But this is easy: for any vector
fields X, Y, Z on M, we have

h h .
PHX", YY) = (vxhyv — Vy X" — (X", Y”]) CL) ) (VXY = X", Y7]) =0,

h h
B(Xhayv) =h <VXhYU — Vvah _ [thyv]) (2é3) 0. -

6.9. A coordinate view. Let (U, (ui)?zl) be a chart on M. With the help of
the induced chart

(W_l(u)a (l‘iayi)?zl) ) l'i = U,i oT,

yiven HU) = yi(v) = v(u) (1<i<n)
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we review some important coordinate expressions. Einstein’s summation convention
will be used.

(i) We get from (3.3b) that the components of the Riemann—Finsler metric g
are
0 0 O0’E
gij =9\ 7> 5 = .
Oyt OyJ Oy*dy’

(3.6a) implies that the components of the first Cartan tensors C, and C are

1 1
() ijk = 5Cins Cij = 5%
where s
. O°F ¢ .tk kY . -1
Cijk = EREREL Cii =9"%Cijr,  (9) = (ga)™ .

The coordinate expression of the canonical spray S is

0 0
-1 _k ok
Sta(U)=y 5k 2G oy
where
. 1 0’E oF
k _ o jkey. e 7L _
(6.9a) G* =¢’"Gj, Gj: 5 (y a0y axj)'

The Barthel endomorphism can be represented in the form

o .0 . OGk .
_at 2 i k. T 1<i,k<n).
5.7~ Gt W)@dx, Gii=gr  (1<ik<n)

(6.9b) h | X(x L (U)) = <

o

The Berwald connection (D, h) of (M, E) is completely determined by the functions

x  OGY  9*GH

(6.9¢) Gl = 3ot = 3,70y

(1< ik < n).

The functions G¥; are called the connection parameters for the Berwald connection.

(ii) Traditionally Berwald manifolds are defined as follows: “the connection pa-
rameters for the Berwald connection depend only on the position”, i.e. by the
condition

G* aifJ

fit = i =0 (1<i,jkt<n).

Finsler manifolds with this property were called affinely connected spaces by
L. BERWALD himself, see [2]. Now we show that our definition is equivalent to
the classical one. To see this, let V be a linear connection on M, locally given by
the functions I'f; € C°°(U) (1 < i,4,k < n), such that




34

Then

O\ (N (2 2 em o o o]
out) T\ Ouw N out) Toyi| |0 LoykT oyi | T

_9Gi 9 (699 4 O

oyl oy Y oy*

. ' 8 v_ 8 h a v

= Ifjor=G; (1<k<n)

thus

— Gi,=0 (1 <k, £<n).

(iii) Notice that the components of the hv-curvature tensor P of the Berwald
connection are just the functions —Gfﬂ (hence the classical definition in (ii) has a
tensorial character). Indeed,

(2N (2N () e [[( 2 (2] (2)]_
out )\ Oud Out N out )\ ouw "\ Out N
o 0 oG
=[S ay7] =~ = -G

It follows that a Finsler manifold is a Berwald manifold if and only if the hv-
curvature of the Berwald connection vanishes. We shall see soon how this follows
intrinsically at once.

6.10. Proposition. The second Cartan tensor C' vanishes in any Berwald mani-
fold, consequently the Berwald manifolds are at the same time Landsberg manifolds.

Proof. We have already seen in the proof of 3.9 that for any vector fields X, Y, Z
on M,

20,(X°, Y, 2% = [Y',[X", Z2°]|E
(due to the fact that h is homogeneous and conservative). Since (M, E) is a

Berwald manifold, [X", Z'] is a vertical lift and, consequently [Y?,[X" Z']] = 0
by Lemma 1.16, whence our conclusion. |

6.11. Corollary. The Berwald connection of a Berwald manifold is h-metrical
(i.e., D"gp, =0).
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6.12. Theorem. Let (M, E) be a Finsler manifold. Then the following assertions
are equivalent:

(a) (M, E) is a Berwald manifold.
o
(b) The hv-curvature tensor P of the Berwald connection vanishes.
R
(¢) The hv-curvature tensor PP of the Rund connection vanishes.
(d) With respect to the Cartan connection, the h-covariant derivative of the first

Cartan tensor vanishes (i.e., D"C =0).

Proof.
(a) <= (b) This is an immediate consequence of (2.15b), Lemma 6.7 and
Lemma 1.14.

(a) = (c¢) We infer this at once from (5.3b), from Proposition 6.10 (C' = 0) and
from the equivalence (a) <= (b).

(¢) = (a) To prove the implication, note first that

VXY € £(M) : (Xh Yhs =c'(xh yh),

where S is an arbitrary semispray. Indeed,
R R R R R R R
P(X",Y")S = K(X",Y")C = Dx»Dy+C — Dy+Dx»C — Dixn y|C,

R
where D x»C = 0 by (4.9h), while

(4.90) R

R R v g (1:15) v
thDYvC - thDJthS thJ[Y S] D Y -

P CR S ENA0 CR L)

(4.9d),(1.15)

R
Dixn ys)C (X", v,

R
thus we obtain the desired relation. We conclude that P = 0 implies that C' = 0

and, therefore, that P = 0 (by (5.3b)); hence our assertion.
(a) = (d) In view of the property C' = 0 it follows that in Berwald manifolds

Dh = Dt (cf. 6.4(a)). Therefore it is enough to check that
VX € X(M): DynC = 0.
Let X,Y,Z,U € X(M) be arbitrary. D is h-metrical by Corollary 6.11, so
0= (Dxngn) (COY", ZM),U") = Xt g, (CY™, Z2M),U°) — gn (DxnC (Y™, Z%),U) —
(€™, 2, D) P XMLy ) (2, UM

o 1
—gn(DxnC(Y",ZM),U") — E(szh J*gr)(Z", FIX",U"))
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and hence
2 (DxnC(Y™, ZM), UY) = X" (Y g, (2°,U°) — gn(J[Y", 2", U")—
—gn(Z°,J[Y",U") = YVgn(Z°,[X",U"])+
+gn(JYY, ZM, [ X" U]) + gn(2°, J[Y", F[X",U"]]) =

X (v gn(27,U7)) - Ygn(2°, (X", U7)),

taking into account that from the proof of (2.15b)

o

J[YV FIX" U] = —J[FIX", U], Y"] = —P(xe, youe @ = P,
Now we evaluate the term D yx»C. For each vector fields Y, Z on M,

(DxnC) (Y™, ZM) = DynC(Y'™, ZM) — C(Dyn Y*, Z%) — C(¥*, D xn 27) =
LD et 2 — C(FIXP, YY), 2% — (vt FIX", 2°).

Applying the last two results, we obtain:

2gh((f)xhc)(yh,zh), U) =29 (DxnC(Y", 2, UY) -
— 29, (C(F[X", Y], Z2M),U") — 294 (C(Y", F|X", Z°]),U") =
=X"(Y'gn(2°,U") =Y gn(Z",[ X", U"]) = (Lixn,yo) T gn) (2", U")—
(Ly+J*gn) (FIX", 2°),U") = X" (Y9 (Z2°,U")) = Y gn(Z",[X",U"])~
— (X" Ygn(2°,U°) + gn (J[[X", Y], Z"],U") + gn(2Y, J[[ X", Y], U"])
— Y, (X", Z"1,U") + gn (J[Y", FIX", 2"]],U") +
+gn((X", Z°), JY,UM) = =Y gn(Z%, [X", U"]) + Y (X gn(2",U")) -

o

—Yg,([X", Z"],U") — gn (P(X€,Y)Z°,U") =Y (X gy (2",U")) -

—Ygn([X", 2], UY) — Yigu(2Z°, (X", UY]) 2 v Klo?)(wh) (zv, U”)} =0,

since lo) is h-metrical. Hence lo)hXC =0.
(d) => (a) Assume D"C = 0. Then for each vector field X on TM, DyxC = 0.

In particular, taking the canonical spray S, we obtain:
0 = DysC = Dsc "2 ¢,
The vanishing of C’' implies by Theorem 6.3 that

VX,Y,Z € X(TM) : P(X,Y)Z = — (DuxC) (v, 2) L 0,

so (M, E) is a Berwald manifold. With this we reach the end of the proof of 6.12.
O
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7. LocALLY MINKOWSKI MANIFOLDS

7.1. Proposition and definition. Let (M, E) be a Berwald manifold. Then the
following conditions are equivalent:

(a) Q::—%[h,h]zo, (b) R=0,

o

(¢) R=0, d) R=0.

If one, and therefore all, of these conditions are satisfied, then (M, E) is called a
locally Minkowski manifold.

Proof.
(a) <= (b) Since the second Cartan tensor C’ vanishes in any Berwald manifold,
formula (5.2a) reduces to

(71) VXY, Z e X(TM):R(X,Y)Z = R(X,Y)Z + C(FQX,Y), Z)

in this case.We infer at once from (7.1) and 2.18 that (a) = (b). Conversely,
suppose that R = 0 and let S be the canonical spray. Then for each vector fields
X,Y on TM,

0 RX,Y)S + C(FOX,Y), S) ¥ R(X,v)S “2” a(x,Y),

so (b) = (a).

(b) <= (c) We have just seen that R = 0 implies Q = 0. Then, by (7.1), R = 0;
thus we get the desired implication (b) = (c¢). The converse is obvious from (7.1)
and (2.17).

(b) <= (d) If R = 0, then 2 = 0 by the equivalence (a) <= (b) and we deduce

R R
from (5.2b) that R = 0. Thus (b) = (d). Assume R = 0. If S is the canonical
spray again, then from (5.2b)

R
VX,Y € X(TM):0=R(X,Y)S = R(X,Y)S — C(FQX,Y),S) =
2 rx,v)s 2R, Y)S P27 X, y),

so 2 = 0 and, therefore, R = 0. O

7.2. Proposition. A Finsler manifold (M, E) is a locally Minkowski manifold
if and only if there exists a torsion-free, flat linear connection ¥V on M whose

h
horizontal lift V is h-metrical with respect to the horizontal endomorphism arising
from V.

Proof.

Necessity. Assume (M, E) is a locally Minkowski manifold. Then (M, E) is a
Berwald manifold as well; let V be its linear connection (in the sense of 6.6(a)).
Then V is torsion-free and, by Proposition 7.1, it is flat. In view of Lemma 6.8,
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h
the horizontal lift V of V is the Berwald connection of (M, E), which is h-metrical
by Corollary 6.11.

Sufficiency. Suppose that V is a torsion-free, flat linear connection on M, sat-
isfying the condition

h
VX € %(TM) :Vixgn =0.
(h is the horizontal endomorphism arising from V). Clearly, the tension, the weak

h
torsion and the curvature of h vanish. We claim that the Finsler connection (V, h)
is of Berwald-type. To show this, by Theorem 4.3 it is enough to check (4.3a) and
(4.3b). For each vector fields X,Y € X(M),

h h
PL(X" YY) = oT(X" YY) =w (vxhyv — Vy. X" — [Xh,Y”]> =
(Zég) [thyv] - [Xhayv] = Oa
B(X", YY) := hT(X",Y")=0;

hence our statement. Let S be the geodesic spray of V ([5], p. 173). Then hS =S
and for any vector field X on M

h h .
VnS = VyxnhS PEY ppixt, 8] = hF[X", 0] = 0,

since the tension of A vanishes. Now we show that A is conservative. For each
vector field X on M, we have

h h
0= (thgh) (S,5) = X"gu(S, S) — 201 (ths, s) — X"gu(S,S) =

B2 xhg(18,18) = Xtg(C,0) P2 2XME = 24, B(X®),

h
which gives the result. Finally we check that the (h)h-torsion A of V vanishes. For
any two vector fields X, Y on M,

h h
A(X€C,YC) =hT(hXC, hY*) = hT(X" Y") = h (vxhyh — Vyn X — [X",Y"]) =
2.13
(213 ), ((VXY)h — (VyX)" — [Xh,Yh]) = (VxY)" — (VyX)" — [X,Y]" =
= (VXY -y X - [X, V)" =0,
since V is torsion-free. Now v;;e infer from Theorem 4.3 that h is the Barthel
endomorphism and, therefore, (V, h) is the Berwald connection. Hence (M, E) is a

Berwald manifold satisfying the condition 2 = —%[h, h] =0;i.e., (M, E) is alocally
Minkowski manifold. O
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7.3. Locally affine structures. Recall that an atlas A = (Ua, (ug)i":l)aeA of a
manifold M is said to be a locally affine structure on M if the transition functions

8uf8

oul,

(p)> € GL(R")

Yap ip €Uy mu,ﬁ’ '_)Vaﬁ(p) = (

((a,8) € Ax A)

are constant. If X,Y € X(Ua), Y =Y'52- and

V&Y = X(Y")% (a € A),

«

then the family (V®),c4 determines a well-defined linear connection V on M. We
say that V arises from the locally affine structure A. Clearly, the torsion tensor
and the curvature tensor of V vanish. Frobenius’ classical theorem on integrable
distributions assures that the converse is also true. Namely, we have

7.4. Lemma. A linear connection on a manifold M which has zero curvature and
torsion arises from a locally affine structure on M.

This is proved e.g. in [5].
7.5. Theorem. A Finsler manifold (M, E) is a locally Minkowski manifold if and

only if there exists an atlas (Ua, (ug)?zl)aeA on M such that in the induced atlas
(7T71 (Z/{a), (:L'fx, ytzx)?:l)aeA
oE
Yae A: — =0, 1<i<m
0x?,

i-e. the energy function “does not depend on the position” over the induced charts.

Proof.

Necessity. Assume (M, E) is a locally Minkowski manifold. Then, in particular,
(M, E) is a Berwald manifold and the curvature tensor of its (torsion-free) linear
connection V vanishes by Proposition 7.2. Applying Lemma 7.4 it follows that V

arises from a locally affine structure A = (Uy, (ufx)?:l)aeA on M. Choose a chart

(U, (u),) € A (the lower index « is omitted for simplicity). Then over U
0

#Wzo, 1<4,5<n.

h
Since the Berwald connection of (M, E) is just (V,h) by Lemma 6.8 (h is the
Barthel endomorphism), we have on the one hand

o o\ _ & 9\’ (213) 0\ _ .
B () =¥ (aw) = (Vi) =0 a<iism

On the other hand, for each indices 7,5 € {1,... ,n}

i 9 \"am a\" (8 \| e . 0
rer ) ]
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consequently
GY=0, 1<ijk<n.

Notice that the functions G¥ (introduced in 6.9) are homogeneous of degree 1.
Thus, by Euler’s theorem,

8Gk (6.9¢)
k __ ? i
Gi =y ; =

ON'_ 0 g
oui) T 9z ==

Since the Barthel endomorphism is conservative, i.e. dpE = 0, we deduce

0 \° o \" 0 OF
= — ] = — ) = ) == <i<n.
0=dnBs <8u’> B <8ui> & <8xi) oxt’ l<isn

It means that the atlas A has the desired property.

Sufficiency. Assume the condition holds. Again, choose a chart (U, (u)),) € A.
Then we have

Yy G =0, 1<ik<n.

Hence

oFE
- =0
oxt ’
Let h be the Barthel endomorphism. The coordinate expression of the property
dpE = 0 reduces to the relation

1<i<n.

Gka_E_

’ayk_o’ 1< <n.

Now from (6.9a) we deduce
G* =0, 1<k<n.

Hence the functions G, Gf; and G¥,, also vanish over ¢/. The vanishing of the

functions ijl means that P = 0, therefore (M, E) is a Berwald manifold (6.9(iii)).
Finally, the relations

szo, G?jzoa (1<i,j,k<n)

imply that = 0, and this ends the proof. |

7.6. Example. Let (M, E) be a Randers manifold with energy function £ = %LZ;

L := Lo+ 3. In view of Kikuchi’s theorem (see [18]), (M, E) is a locally Minkowski
manifold if and only if the following two conditions are satisfied:

(a) B is parallel with respect to the Lévi—Civita connection of the metric «;

(b) the Lévi-Civita connection has zero curvature.

(Both necessity and sufficiency can be seen from (6.6¢) and Proposition 7.2.)
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II. WAGNER CONNECTIONS AND WAGNER MANIFOLDS

1. CONFORMAL EQUIVALENCE OF RIEMANN — FINSLER METRICS

1.1. Gradient operator on a Finsler manifold. Let (M, E) be a Finsler
manifold with fundamental form w. Consider a smooth function ¢ : TM — R
Since the fundamental form is nondegenerate, there exists a unique vector field
grad ¢ € X(T M) such that

(].].) lgrad oW = dy;
this vector field is called the gradient of .

1.2. Proposition. Let (M, E) be a Finsler manifold and suppose that
p € C®(TM) is a vertical lift: ¢ = fom (f € C°(M)). Then the gradient vector
field of ¢ has the following properties:

(1.2a) grady € X(TM);
(1.2b) [C,grad ] = —grad ¢;

(1.2¢) gradp(E) = f¢

1
(1.2d)  tpgraaoC = —§[J, grad ] (F is an almost complex
structure associated with an arbitrary horizontal endomorphism);
(1.2e) if grade = pC (p€ C(TM)) then p =0 and,
consequently, the function f € C*°(M) is constant.

Proof. For a proof of (1.2a)—(1.2c) and (1.2e) we refer to [35]. To verify (1.2d), let
Y, Z € X(M) be arbitrary vector fields. Then, applying some well-known identities
concerning the vertical and horizontal lifts of a vector field (see 1.1.16) we get:

29(C(F gradp,Y°), 2°) "L

29(C(Y*®, F gradp), 2°) =
=Y'g(gradp, 2%) — g(JIY", F grad 9], Z*) =
=Y ((Zf)") — g([J,Y"|F gradp, Z")
—g([Y*,grad ], 2°) = —g([Y", grad 9], 2°) =
= —g([J, grad ]V, 2");

hence our assertion. O
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1.3. Remarks. Hypothesis as in Proposition 1.2. An easy calculation shows that
for any vector field JX € XV(T'M)

(1.2d) 1[
)

(1.3a) D, x gradp = —C(F grad ¢, X) J, grad p] X,

where the covariant derivative is taken with respect to the classical Cartan connec-
tion. On the other hand for any vector field X € X(M),

1.(4.5b
Dgraqa o X (L20) Dxvgrade — [X 7, grad p] =

U2V _O(F gradp, X°) - [X°, grad ] =

= —C(Fgrady, X°) — [J,grad p] X° (124)

= C(Fgradp,X¢), ie.

(1.24)

1
(1.3b) Dgraa o X° = C(Fgrady, X°) —§[J,grad<p]Xc.

(Note that (1.3b) is not a tensorial relation!)

1.4. Definition. Consider the Finsler manifolds (M, E) and (M, E) and let us de-
note by g and g their Riemann — Finsler metrics. g and g are said to be conformally
equivalent if there exists a positive smooth function ¢ : TM — R such that

(1.4) g =¢g.

The function ¢ is called the scale function or the proportionality function. If the
scale function is constant, then we say that the conformal change is homothetic.

1.5. Remark. If g = g then

(1 5) E I.(3:.3a) I.(3:.3a)

5 1
9(C,C) = 5@9(07 C) eE.

N | =

1.6. Lemma (Knebelman’s observation). The scale function between conformally
equivalent Riemann — Finsler metrics is a vertical lift, i.e., it can always be written
in the form

(1.6) ¢ =expoa’ :=expoaoT,

where a € C*°(M).

Proof. First of all we show that the scale function is homogeneous of degree 0, i.e.
Cyp = 0. Using (1.5) we get that

3.1c

CE = C(pE) = ECp + oCE " Bopt

.(3.1c

+20E " BECp 1 2E" ) ECp + CE = Cp =0
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Now for any vector fields X,Y € X(T'M)

GIX,JY) = 5(JX,Y) = ddyE(JX,Y) =)

= de((pE)(JXa Y) = d(EdJ(p + QOdJE)(JXa Y) =
=dE ANdyp(JX,Y) + Eddyo(JX,Y)+

+dp NdyE(JX,Y) + pdd, E(JX,Y) "=

=JX(E)JY () + EJX(JY () — EJ[JX,Y](¢)+
+ JX(p)JY(E) + g(JX,JY).
Therefore
(1.6a) 0=JX(E)JY () + JX(p)JY (E)+
+ EJX(JY (9)) — EJJX,Y](p).

By the substitution Y := Sy (Sp is an arbitrary semispray on M), we obtain:

0 = JX(E)Cop + JX(p)CE + EJX(Cy) — BJ[JX, Sol(p) " 172

=2EJX(p) — EJX(p) = Edjp(X) = dyp =0.

According to 1.1.12 this implies that ¢ is a vertical lift, which ends the proof.
O

1.7. Proposition. If a Finsler manifold (M, E) with the Riemann — Finsler metric
g and a function a € C®(M) are given, then § = pg (p := expoaV) is the

Riemann — Finsler metric of the Finsler manifold (M, E), where E = pE.

Proof. It is enough to show that the form w := dd,E is nondegenerate. Since
E := pF we get immediately the relation

(1.7a) w=dpANdjE + puw.

Then the following assertions are equivalent:
(1.7b) 0 =1xw;
(1.7¢) 0=XpdsE — JX(E)dp + prxw.

Applying both sides of (1.7c) to an arbitrary vertical vector field JY (Y €
X(TM)) we obtain:

0=pixw(JY) = pw(X,JY) = —pg(JX,JY).
Therefore JX = 0 and thus X € XY(TM). Hence
0=1xw <= 0=pixw <— X =0,

which means that @ is nondegenerate .
Finally, for any vector fields X,Y € X(T'M),

S(IX,Y) "L pu(JX,Y) = pg(JX, JY) = G(IX, JY),

i.e. the Riemann - Finsler metric of (M, E) coincides with g as was to be stated.
O
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1.8. Remark. According to Proposition 1.7 we also speak of a conformal change
g =g (p :=expoa?) of the metric g.

1.9. Proposition. Let (M, E) and (M, E) be Finsler manifolds with Riemann —
Finsler metrics g and g, respectively. g and g are conformally equivalent if and
only if

d;E _ d;E
%:J? (over TM ).

In particular, iE-LE is tnvariant under the conformal changes of the Riemann —
Finsler metric.

Proof. The necessity is clear: if g = ¢g, then E = pFE, where djp = 0 by Lem-
ma 1.6, and so

d;E  dj(pE) Edjp+¢pd/E  dsE

E ok ) E

Suppose, conversely, that over 7 M

Then we get immediately the relation

d;(InoE) = d;(InoE)

dy <lnog> =0.

This means by 1.1.12 that the function In og and, therefore

or, equivalently,

E
- ' E
So there is a positive function f € C°° (M) such that £ = fom. If ¢ := for, then
we have for any vector fields X,Y € X(7T M) that

is a vertical lift.

GUIX,JY) =X, V) "L do A dyE(IX, V) +
+ ow(JX,Y) = pw(JX,Y) =
= pg(JX, JY);
hence
g =9,
as was to be shown. O

1.10. Proposition. The Cartan tensor is invariant under a conformal change of
a Riemann — Finsler metric, while the lowered Cartan tensor changes by the formula

Cy = ¢Cy,

where @ is the scale function.
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Proof. Consider the conformal change § = ¢g. Then for any vector fields XY,
Z € X(T'M) we obtain that

3.4a)

25(C(X,Y),72) "V £, (J5:) (Y, 2) =
= JXG(JY, T Z) - G (JJX,Y], T Z)—
- ; (JY,J[JX, Z]) = JX§(JY,JZ)—
-g(JJX,Y],JZ) —g(JY,J[JX, Z]) =
= JX (pg(JY, ] Z)) — <p(g(J[JX, Y], JZ)+

+g(JY, JJX, Z])) Lemma 1.6

- <p(JXg(JY, JZ) - g(JIJX,Y],JZ) — g(JY, JJX, Z]))

= 2<pg(C(X,Y),JZ) = 2§(C(X7Y)7JZ)7

therefore C = C. This relation implies immediately that @ = @Cp. |

1.11. Remark. It is well-known that the vanishing of the conformal invariant
tensor C implies that the Finsler manifold (M, E) is Riemannian.

1.12. Proposition. Let (M, E) be a Finsler manifold and 8 € C*°(M). Then the
tensors
E[J,grad 5], d;E ® grad B*

are invariant under any conformal change of the metric g.

Proof. Let us consider the conformal change § = ¢g (¢ = expoa?). Since
grad 8 € XV(T M) (see Proposition 1.2), we get from (1.7a) the relation

~ 1 —
lgrad v W = Plgrad pvW — pdf? = ; grad Y = gradf®.

Therefore )
E[J,gradp’] = pE [J, E grad ﬂv] = E|[J, grad 8],

since ¢ is a vertical lift.

In the same way

~ — 1 1
dyE ® gradB® = dj(¢FE) ® ;gradﬂ” =@dsjE ® ;gradﬂ” =djE®gradf’. O
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2. SOME TRANSFORMATION FORMULAS

2.1. Theorem. Suppose that g and g are conformally equivalent Riemann — Finsler
metrics on M, namely

g=vg; @w=expoaom, «a€cC®(M).
Then the corresponding canonical sprays satisfy the relation

(2.1) S=S8—a°C+ Egrada’.

Proof. On the one hand, since E = pE, we have
—dE = —d(pE) = —pdE — Bdp = i,sw — Edep.
On the other hand,
~dE = izo = igddy (pE) = igd(Ed;p + ¢d E) =
=ig(dp NdjE + pdds E) = (igdp)d; E—
—(igdsE)dp + pigw = S(p)ds E — dE(JS)dp+

. L(1.11b),I.(3.3c);(1.2¢) . .
+ prgw = lgrad o(E)CW — 2Edyp + L,GW-

Comparing the right sides of these relations, we obtain that
b,gW = lpsW — lgrad p(B)CW + Edp = ip5_grad o(B)C+E grad oW-

Hence

1 1
S=85——gradp(E)C + E—grad .
¥ 14
Since
grad ¢ = grad(exp oa’) = (exp’ oa) grada’ = pgrad a”
and therefore

(1.2¢)
= ac7

1
” grad p(E) = grada’(E)
(2.1) is proved. O

2.2. Corollary. Under the conditions of Theorem 2.1, the Barthel endomorphisms
are related as follows:

(2.2) h=h- %(acJ +da’" ®C) + %E[J, grad o] + %dJE ® grad a”.
P gy (2D 117 oC 1 v
Proof. h:= % (1xrm) + [/, S]) =" h—$[J,a°C] + 3[J, E grad a”]. Here

(2.2a) —[J,a°C| = [a“C, J] L af[C, ]+ da NigJ—

—djaf oY s —dav w0,

(2.2b) [J, E grad ] L E[J,grada’] — dE A igrad o J + djE ® grad o’
= E[J,grada’] + d;E ® grad a*,

thus we obtain the desired relation. O
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2.3. Definition. Suppose that L € *(T'M) is semibasic (cf. 1.1.9.). The semiba-
sic trace L of L is the semibasic scalar (¢ — 1)-form defined by recurrence as follows:

(2.3a) if ¢ =1, then L := trace (F o L),
where F' is the associated almost complex structure

of an arbitrarily chosen horizontal endomorphism;
(2.3b) if £> 1, then 1x L := 1x L for all X € X(TM).
2.4. Lemma. For anyn € Q¥(TM) semibasic form:

(2.4a) m = (=1)FFygn,

where S is an arbitrary semispray on M.

(2.4b) J=n.
For a proof see [35], p. 173 and [43].

2.5. Divergence operator on a Finsler manifold. Let (M, E) be a Finsler
manifold and consider the volume form

(_1)n(n+l)/2

(2.5a) w = Tw"
on TM. The divergence of a vector field X € X(T'M) is the function 6X given by
(2.5b) (0 X)w = Lxw.

We have the following formulas (see [12] and [35]):

(2.5¢) VX € X(TM):6(JX) =[], JX] + 2C(X);
(2.5d) 0C = n;
(2.5¢) VoeC®(TM):dgradp = 0.

2.6. Application. A well-known, classical result states (in H. Weyl’s terminology)
that “the projective and conformal properties of a Finsler space determine its metric
properties uniquely” [30], p. 226. Now we are going to formulate this nice and
important theorem in our framework and prove it purely intrinsically.

Definition. (cf. [6]) (a) Two sprays S and S given on the manifold M are said to
be projectively equivalent if there is a function A : TM — R satisfying the following
conditions:

(2.6a) A is smooth on 7M, C° on T M.
(2.6b) S=5+\C.

(b) We say that the Finsler manifolds (M, E) and (M, E) are projectively equi-
valent if their canonical sprays have the property described in (a).
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Remark. (2.6a) and (2.6b) easily imply that A is homogeneous of degree 1.

Theorem. Suppose that (M,E) and (M,E) are projectively equivalent Finsler
manifolds of dimension n > 1. If their Riemann — Finsler metrics are conformally
equivalent as well then the conformal change is homothetic.

Proof. Keeping the previous notation, now we have by (2.6b) and (2.1) the relations
S=S+XC and S=S-a°C+ Egrada’
simultaneously. From these it follows that
(2.6¢) AC = —a°C + Egrada”.
Applying both sides to the energy function E, we obtain by I.(3.1¢) and (1.2c) that
INE = —20°F + o°E,

i.e. 1
)\ = —Eac.

Substituting this into (2.6¢), we get the relation

aC
da' = —C.
grad a 5%

(6]

Let p := ﬁ In view of I.(1.11a) and I.(3.1c), p is homogeneous of degree —1.
Thus we have:

(2.6d) grada’ = pC,
(2.6e) Cu=—p.

Let Sp be an arbitrary semispray on M. First we note that

(2.6f) C(So) = 0.
Indeed,
L.(1.8d)

[t/]:\_é] ‘I‘ 2(’/;(50) j + 2C~(SO) Lemga 2.4
= n+2C(So),

so (2.6f) is true. Secondly, we claim that

(2.6g) [J,grad a?] = 0.

To see this, consider the vector field X := uSy. Then

JX =pJSy = pC (2.5 grada?,
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therefore

0 %2 §grada® = 6(JX) "2 [7,JX] + 26(X) =

= [J.grada?] + 2uC(So) “2” [/, gradav),

so (2.6g) is also true. Now we come back to (2.6d). Taking Frolicher-Nijenhuis
bracket with J we get the relation

(2.6h) [J,grad o] = [J, uC].

We calculate the semibasic trace of both sides.

(L.61) ~—

0“2 (7, grador] “2Y (7, uC) "= T -

—_— ~

—dpuNic +dyjpRC =pJ +dpC =

2.4a),(2.4b . .
(2.42),(2.4b) un +isydyp = pn +is iydp =

2.6e
=y + dp(JSo) = pn + Cp “2) pm — = (n = 1,

so u = 0. This implies in view of (2.6d) that grada? = 0. Thus
da’ = igradavw = 0,
therefore da = 0. Because M is connected (cf. 1.1.1), this means that the function

a is constant which was to be proved. |

Remark. Observe that under the hypothesis of the Theorem the projective equiv-
alence is trivial: the function A\ vanishes.

Corollary. Suppose that the Riemann — Finsler metrics g and g on M are confor-
mally equivalent:

Jd=¢g; ¢=expoaom, a€C®(M).

Then the following assertions are equivalent:
(i) The conformal change is homothetic.
(ii) The canonical sprays S and S coincide.
(iii) The Barthel endomorphisms h and h coincide.

Proof. (i) = (ii) Indeed, if (i) holds, then a¢ and grad «” vanish so (2.1) implies
that S = S.

(i) = (i) This follows immediately from the Theorem.

(i) = (iii) This is evident.

(iii) = (ii) From the hypothesis that (iii) holds we obtain the relation

[J,5] =[J,S].
Applying both sides to the spray S, we have by I.(1.4a) that

[C,S] - J[S,S] = [C, S] - J[S, S].
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Using 1.(1.10d), it follows that

S—J[S,5]=5.
Let Z:=S —S. Then Z € X*(TM) and

J[S,S] = J[Z,S)].

Here, by 1.(1.15),

JZ,8|=2Z=58-5.

Therefore _ _
S-5+85=5

hence S = S, proving the implication (iii) = (ii). O

2.7. Remarks. Lots of further transformation formulas and applications can be
found in Hashiguchi’s fundamental work [14]. The author surveis them system-
atically including the most complicated ones as well, i.e., the relations between
curvatures of notable Finsler connections. In order to illustrate the problem we are
going to derive how the second Cartan tensors are related in case of conformally
equivalent Riemann — Finsler metrics. Notations as usual.

2.8. Proposition. The second Cartan tensor associated with the Barthel endo-
morphism h changes by the formula

1
(28) JXY)=C(XY) -3 (acC(X, Y)+
+ JX(E)C(Fgrada®,Y) + JY(E)C(F grad o, X )+
+6(Fgrada®, X, Y)C) — E(Dygraq 0+ C)(X,Y),

where ¢ := expoa’ is the scale function.

Proof. Tt is obvious from (1.2d) and Corollary 2.2 that for any vector fields XY,
Z € X(M):

7 1 1
(2.8a) Xh=x"— SO X" - i(Xa)”C — EC(F grada, X°)+

1
+ §X”(E) grad o

and, consequently,
7 1
(2.8b) [X"Y'] =[X"Y"]+ 3 (Ya)' X" + (Xa)'Y") —
— E[C(Fgrada®, X),Y']+ YY(E)C(F grada”, X¢)+

1
+ XY(E)C(Fgrada’,Y®) — ig(X”,Y”) grad a’.
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Therefore
25(C(X°,Y°), 2°) = XPG(y", 2") — §([X7L,Y”],Z”)—
—g(ve, (X", 27]) = XM (p)g(v", 2°)+

+o (Xﬁg(yv, Zv) - g([XE, Y], Zv) - g(Y”, (X", Z”])) .

X"(p) = X"(expoa’) = (exp’ 0a”) X" (a’) = (expoa’)(Xa)" = p(Xa)",
2(C"(X°,Y°), Z%) = 2pg(C"(X°,Y°), ZY).
Thus we obtain the formula
(2.8¢) 2g(C~'(XC,YC),Z”) =(Xa)g(Y",Z%) + Xﬁg(Y”,Z”)—
_ g([XE,Y”],Z”) _ g(Y”, [Xﬁ)Z’U]) (2-8a),(2.8b)

=2¢g(C'(X°, Y%, Z") — %achg(YU,ZU)—
— EC(Fgrada,X)g(Y",Z"°)+
([C(Fgrada®, X),Y"], Z")+
(Y, [C(Fgrada’, X¢), Z"])—
- XY(E) g(C Fgrada”,Yc),Zv)—
—YY(E)g(C(Fgrada’,X¢),Z")—
- Z"(E)g(C(F grada’,X¢),Y").

+ Eg
+ Eg

Since the Cartan connection is metrical and its (v)v-torsion vanishes it follows
that

C(Fgrada',X)g(Y",Z") — g([C(F grada’, X¢),Y"], Z") -
—g(Y",[C(Fgrada’, X°),Z"]) =
(Dy+C(Fgrada,X¢),2") + g(Dz-C(F grada’, X),Y") =
=" 29((Dgraa avC) (X, Y), Z")+
g(C(FDy+ grada®, X¢), Z") + g(C(F grada’, FDy« X"), Z")+
g(C(FDyvgrada’, X¢),Y") + g(C(F grada’, FD 7. X"),Y").
For example, using the symmetry properties of the (lowered) first Cartan tensor:

g(C(FDy.grada®,X¢),Z") + g(C(F grada’, FD 4 X"),Y") =
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= g(C(XC,ZC),Dyv grada”) +g(C(Fgrada”,Yc),DZvX”) =
M g(C(X¢, Z9), Dy grada?) +
v yrc c cy) (1:3a)
+g(C(Fgrada®,Y*),C(Z°, X)) =" 0.

Moreover,
(& (& v 1 v v v v v

By the substitution these results in (2.8¢) it can be easily seen that

¢'(X°,Y°) = C'(X°,Y°) — %(aCC(XC,YCH
+ XY(E)C(Fgrada’,Y®) + YY(E)C(F grada’, X°)+

+Cy(Fgrada’, X¢, YC)C) — E(Dygrada+C)(X¢, V),

as was to be proved. |

2.9. Remarks. Following Hashiguchi’s idea we can introduce a semibasic tensor
V:X(TM)x X(TM) x X(TM) — X(TM) as follows

(2.9) V(Z,X,Y):= % (dJE ©C(Z,X,Y) +dyE®C(X,Z,Y)+
YA E®CY, Z,X) +C(Z, X, Y)C) + E(DyzC)(X,Y).
Then (2.8) can be written in the form:
c'=C - 1F gradav V.

It is clear that the tensor V is “semi”-invariant under a conformal change of the
metrics, i.e.
V = V.
Moreover (cf. [14], Proposition 4.1 and 4.2, p. 44), the following conditions are
equivalent:
(a) V=0.
(b) C' is invariant under a conformal change of the metric.

(¢) The hv-curvature IP of the Cartan connection is invariant
under a conformal change of the metric.
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3. WAGNER CONNECTIONS ON A FINSLER MANIFOLD

3.1. Definition. Let (M, E) be a Finsler manifold. The triplet (D, h, «) is said
to be a Wagner connection on M if it satisfies the following conditions:

(3.1a) (D, h) is a Finsler connection on M,a € C*(M);
(3.1b) D is metrical with respect to g; : Dg; = 0;

(3.1¢) the (v)v-torsion S' of D vanishes: §' = 0;

(3.1d) D is (h)h-semisymmetric, i.e. the (h)h-torsion A

of D has the following form:
A =da’ ®h—h®da’;

(3.1e) the h-deflection 7 (DC) vanishes: i (DC) = 0.

Then h is called a Wagner endomorphism on M.

3.2. Proposition. Any Wagner endomorphism is a conservative horizontal en-
domorphism, i.e. dpE = 0.

Proof. VX € (TM):

20 E(X) " 2n(x)E " EY n(x)g(C,0) P2 ¢ (D5, C, C)

+9(C, Dy C) 20, 0

3.3. Theorem. The Wagner endomorphism h and the Barthel endomorphism h
of a Finsler manifold are related as follows:

(3.3a) h=h+a‘J — E[J,grada’] —d;E ® grada®.

Proof. Due to the 2nd local basis property, we can restrict ourselves to vertically
and horizontally lifted vector fields, so let X,Y,Z € X(M) be arbitrary. From
(3.1b) we get:

Xﬁg(yv7ZU) =9 (Exfyvazv) +g (Yvaﬁxﬁzv) )
(33b) Yﬁg(ZUPXVU) =g (ﬁyfzvaXv) +g (ZvaﬁyFXv) )

-Z g(XU7YU) =g (ﬁzvaayv) -9 (Xvaﬁ
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Adding now both sides of (3.3b) it follows that
29 (DY, 2°) = X"g(Y", 2%) + YPg(Z",X") = ZMg(X", V") +
+9(X",D,5Y" —=DyxZ") +g (Y’ Dz X" - DZ") +
+9(2°, DY’ =Dy X?) = X'g(Y", 2%) + Yhg(2¥, X*)-
_Zhg(XV, YY) 4 g (X“,FK (YE, Zﬁ)) +g (Yv,FK (XE, Zﬁ)) +
+g (ZU,FK (Yﬁ, Xﬁ)) —g(X?,[Y, Z)°) — g(Y?,[X, Z]°)—

—g(2°, [, X1%) U2V XPg(vv, 2¢) + Yhg(2Y, X7) — Zhg(XY, YY)+

+29(X",Y")g(grada",Z") — 2g(grada’,Y")g(X", Z2%)—
- g9(X° [V, Z]") —g(Y", [X, Z2]") — 9(Z°,[Y, X]").

Applying an analogous “Christoffel process” to the Cartan connection (D, h) we
get:

g(EX;YU — Dy Y?, Z”) —g (C(YC, 70, XF — X") +
+g(C(xe, 29,y —yh) — g (c(xeve), 2" - 2") +
+9(X",Y")g(grada”, 2%) — g(grada®, Y")g(X", Z°).

From this follows that VX,Y,Z € X(TM):
(3.3¢) g (D;xJY — Dy JY, JZ) :g(C(X,Z),(E—h)Y)—
—9(C(X,Y),(h—h) Z) +g(JX,JY)g(grada®, JZ)—
—g(grada?, JY)g(J X, JZ).
By the substitution Y := Sy (Sp is an arbitrary semispray on M), we obtain
(3.3d) g((h=nh)X,JZ) =ag(JX,JZ) - g(C(X,Z),S — S)—
—g9(JX,C)g(grada®, JZ).
If X :=Sp, (3.3d) implies the relation
g(S—S,JZ) =a‘g(C,JZ) — 2Eg(grada”, JZ).

Hence the semispray S associated with h and the canonical spray S are related
as follows:

(3.3.¢) S=8+a‘C —2Egrada’.

Substituting this into (3.3d) and applying the total symmetry of Cp, we get the
relation

(= h)X = a°JX + 2EC(F grada’, X) — dy E(X) grad o® "'2Y
=a‘JX — E[J,grada”]X —djE(X)grada”. O



55

3.4. Corollary. The tension of a Wagner endomorphism vanishes.

Proof. Applying the formulas I.(1.6f)—(1.61), a routine calculation shows that

H=LcdyE®grada® + [C,grada’] ® dyE 1.(3.3d)s(1.2b) 0 0

3.5. Corollary. The weak torsion and the strong torsion of a Wagner endomor-
phism can be given as follows:

t=da'"®J—-J®da, T=a‘d—da’®C.

Proof. Applying the formulas 1.(1.6g) and 1.(1.61), we get:
t=dja® AN J — E[J,[J,grad a"]].
From the graded Jacobi identity

[J, [, grad o] = [/, [grad a®, J]] — [grad a?, [, J]] "=

= [J7 [grad av) J]] = _[Ja [J7 grad av]]a

therefore
[J, [/, grad a’]] = 0.
Thus we have
t=djaANJ=da’ ®J—-J®da’.
Finally, VX € X(M):

T(XC) = (is,t + H)X® =" 1(So, X°) = (a°J — da* ® C)X°. O

3.6. Corollary. Let h be a Wagner endomorphism on M. Then

dyw =wAda".

Proof. We start from (3.3a). Since dpw = 0 (see e.g. [10], p. 329), we have only to
check the relation

doc g BlJ,grad o] —dy E@grad oW = W A da”.
Here
docgw = (igegod —doigey)w = —d(aijw) L(3:3¢) 0.
On the other hand, VX, Y € X(TM):
1, 1 )
_5 (Z[J7gradav]w) (X7 Y) = _5 (w([Ja grada ]X7 Y)+
+ w(X, [/, grad a”]Y)) (1.24) w(C(Fgrada®,X),Y)—
—w(C(Fgrada®,Y),X) =g(C(Fgrada’,X),JY)—

—g(C(Fgrada’,Y), JX) "&" 0,



56

therefore
dE[J,grad av]W = 0.

Finally, VX,Y € X(TM):
(td, Bogradavw) (X,Y) = w(JX (E) grada®,Y)+
+w(X,JY(E)grada’) = (dyE ® da’)(X,Y)—
— (dyE ® da)(Y, X) = (dsE A da®)(X,Y),
so we get
dpw = —dg; Eograd oW = d (g, Eggradavw) = d(djE Nda’) =w Ada®. 0O

3.7. Proposition. The second Cartan tensor c of a Wagner endomorphism h
has the following properties:

(3.7a) it is semibasic,
(3.7b) its lowered tensor E; is totally symmetric,
(3.7¢) c° = isoal =0 (So is an arbitrary semispray on M ).

Proof. From the formula I.(3.4c) we get immediately the property (3.7a) and it is
also clear that E; is symmetric in its 2nd and 3rd arguments.

Evaluating the form dj w on the vector fields Xt yv, zh (XY, Z € X(M)) it
follows that

drw (XE, Y, Zﬁ) =9, (ZE, YR XE) —2C, (XE, YR Zﬁ) +

+ (w A da®) (XE, Y Zﬁ) Cor. 3.6

c (XE, vk, Zﬁ) =C, (ZE, YR XE) ,

ie. E; is symmetric in its 1st and 3rd arguments.

According to the above symmetry properties, VX,Y, Z € X(M):
C, (Xﬁ, Ye Zﬁ) =z, (ZE, Ye XE) =G, (Zﬁ, X" Yﬁ) =z, (YE, X" ZE) :

ie. E;, is totally symmetric.
Finally, let Sp be an arbitrary semispray on M. Then VY, Z € X(M):

29(C' (S0, Y™), 2°) L 2g(@ (Y7, Sy), 2°) := Yg(C, 2%)—
—g([Y,C), 2%) — g(C, [y, zv)) F A EECon 2

Prop. 3.2

=YM(Z(E)) - [Y", 2°|(E) 0. O
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3.8. Proposition. Let (D,h,a) be a Wagner connection on the Finsler manifold
(M, E). The covariant derivatives with respect to D can explicitly be calculated by
the following formulas:

(3.8a) DyxJY = J[JX,Y]+C(X,Y),
(3.8b) Dy JY =o[hX,JY]+C (X,Y),
(3.8¢) DyxhY = hlJX,Y] +FC(X,Y),
(3.8d) Dy hY = RF[RX,JY]+ FC (X,Y).

Proof. Applying the usual “Christoffel process” it can easily be seen that a Wagner
connection is uniquely determined by the conditions (3.1b)—(3.1e).

Consider now the Wagner endomorphism h and let us define a Finsler connec-
tion (D, h) by the formulas (3.8a)—(3.8d). It is easy to check that (D, h) satisfies
the conditions (3.1a)—(3.1e) and, consequently, (3.8a)—(3.8d) are just the rules of

calculation with respect to the Wagner connection (D, h, a). |

3.9. Remark. Comparing the formulas (3.8a)—(3.8d) with I1.(4.5d)—(4.5g) we can
say that a Wagner connection is a ”Cartan connection with nonvanishing (h)h-
torsion”, i.e. it is a generalized Cartan connection.

Our next Proposition emphasizes the strict analogy between the Cartan connec-
tion and a Wagner connection.

3.10. Lemma. VX,Y € X(TM):

(3.10a) D;yJY — D;y JY = g(JX,JY)grada’ — g(grada’, JY)JX +
+Cy(Fgrada', X,Y)C — JY(E)C(F grada”, X))+
+ 2EQ(F grad o, X)Y,

(3.10b) C(X,Y)=C'(X,Y)+a‘C(X,Y) + JX(E)C(F grada’, X )+
+ JY(E)C(Fgrada®, X) + Cy(Fgrada’, X, Y)C+
+ 2E(Dgraq o C)(X,Y).

Since these relations can be obtained by an easy calculation from (3.3a) and
(3.3¢) we omit the proof. (Note that (3.10b) also implies Proposition 3.7)

3.11. Proposition. Let (D, h, a) be a Wagner connection. Then the covariant
differentials DC, DC have the following properties:

(3.11) DsC=-C, DoC=-C  DcC =0.

Proof. According to the formulas 1.(4.8a) and I1.(4.8b), (3.11) immediately follows
from the relations (3.10a), (3.10b). O
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3.12. Proposition. Let (D,h,a) be a Wagner connection on the Finsler manifold
(M, E). Then the following assertions are equivalent:
(a) da’ =0 (i.e. o€ C™(M) is constant).
(b) S =S (i.e. the semispray S associated with h coincides with the canonical
spray).
(c) Ihe Wagner endomorphism arises from a semispray, i.e. there is a semispray
S on M such that

— 1 —_
h = 5(1 +[J,S)]).
(d) h = h (i.e. the Wagner endomorphism coincides with the Barthel endo-

morphism).
(e) The Finsler connection (D, h) coincides with the Cartan connection (D, h).

Proof. (a) = (e) If da’ = 0 then it follows, by Corollary 3.5, that the weak torsion
of h vanishes. Therefore the Wagner endomorphism is a conservative horizontal
endomorphism on M with vanishing strong torsion (cf. Corollary 3.5). Thus h = h
and (e) is an immediate consequence of (3.8a)—(3.8d).

The implications (e) = (d) and (d) = (c¢) are evident.

(¢c) = (b) Tt is easy to check that the hypothesis (c) implies the vanishing of
the weak torsion . Hence, as above, h = h and consequently S = S.

(b) => (a) If (b) holds then (3.3e) implies the relation

af
v = = — o .
grada’ = uC (,u 5F € C>(7 M))

In view of (1.2¢) this means that grad ¥ = 0, proving the implication (b)) = (a).
a
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4. BASIC CURVATURE IDENTITIES

4.1. Lemma. Let (D, h,«) be a Wagner connection on the Finsler manifold
[e]

(M, E). There is a unique Finsler connection (D,h) on M such that:

(4.1a) the (v)hv-torsion P* of D vanishes: P' = 0,
(4.1b) the (h)hv-torsion B of D vanishes: B = 0.

The covariant derivatives with respect to D can explicitly be calculated by the
formulas

(4.1¢) DyxJY = J[JX,Y],
(4.1d) Dy JY =9[hX,JY],
(4.1e) EJXEY = h[JX,Y],
(4.1f) D5 hY = hF[hX,JY].

In addition, (D, h) has the following two properties:

(4.1g) the h-deflection " (DC) of D wvanishes: h (DC) = 0,

(4.1h) D is (h)h-semisymmetric, i.e. the (h)h-torsion A of D has the following
form:
A=da*@h—h®da®.
Proof. We can argue as in the proof of Theorem 1 in [33]. O

4.2. Remark. It is easy to check (see e.g. [11], [33]) that if h coincides with the
Barthel endomorphism then (D,h) is the well-known Berwald connection on the

Finsler manifold (M, E). In general we can say that (D, h) is a “Berwald connection
with nonvanishing (h)h-torsion”, i.e. it is a “generalized Berwald connection”.

4.3.Proposition. Under the conditions of Lemma 4.1 the curvature tensors of D

and D are related as follows:

(43a) EX,V)Z=R(X,V)Z+ (EEXE’) Y, Z) - (Eﬁyé’) (X,2)+
+C(FC(X,2),Y)-C(X,FC (Y, 2))+
+C (Fi(X,Y),Z)+C(FQX,Y),Z),

(43b)  B(X,Y)Z = B(X,Y)Z + (D C) (Y. (D ch) Z)+
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+C(FC(X,Y),Z) -C (X,FC(Y,Z)) +
+C(Y,FC(X,2)) -C (FC(X,Y),Z),

(4.3¢)  QX,Y)Z=C (FC(X,Z2),Y) -C (X,FC(Y,Z)),

o

Q=0 (X,)Y,Z e X(TM)).
The proof is a straigthforward but lengthy calculation.
(Note that c (FEI(X, Y),Z2), c (Ft(X,Y),Z)... are independent of the choice

of the almost complex structure F.)

4.4. Corollary. Let (D, h, a) be a Wagner connection. Then its curvature tensors
have the following properties:

(4.4a) R(X,Y)Sy = Q(X,Y),
(4.4b) P(X,Y)So =C (X,Y), B(X,S0)Y = P(S, X)Y =0,
(4.4c) Q(X,Y)Sy = Q(X,S80)Y = Q(S,X)Y =0

(X,Y € (TM), Sy is an arbitrary semispray on M).

Proof. We deduce only the less trivial third relation of (4.4b). Let X,Y € X(M)
be arbitrary vector fields on M. Then

o

P (50, Xﬁ) yh (430 5 (507 Xﬁ) yh (410, (4.1d)

o

= —ﬁxv (5[5, Y’U]) - §5[§7XU]YU - DE[§7X”]Y’U =

L.(2.6¢),1.(2.7a);(4.1¢) — - e = o ;
= Do (V"= Y* ~T(Y9)) = Dz V" =

o

= Do (Y7 =) = D (F(V)) = Dy oV

Here

o] o]

Dxe (YE — Yc) =[X", vh Y¢], since the (v)v-torsion of D vanishes,

Cor. 3.5, (4.1¢) (4.1c¢)

%Xv (T(Y°)) (Xa)'Y"? — (Ya)”%XvC =

= (Xa)'Y® - (Ya)"J[X",5] "L°
= (Xa)UY’U _ (YOé)va Cor.:3_5 E (Xﬁy Yﬁ) 7

. v L1 = v = v (4.1d) h v
DEjsxnY’ = D px . Y'=D_7¥Y" = —[X" Y.

Thus we have:

P (507 Xﬁ) Yﬁ — [)(v7 YE _ Yc] _ z (XE, Yﬁ) + [XE, YU] I.(2.6b)7:I(1.16a) 0.

O
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4.5. Lemma. -VX,Y,Z € X(TM):

X,G)Scz (K (K(X’Y)’ Z) - (EEXK) (Y, Z)) =0.

Proof. Omitting the troublesome details we note that VX,Y, Z € X(M):
& (K (K (XE, Yﬁ) ,ZE) + (D (#A) (YE, Zﬁ)) —
A (A (X" Yh) ZE) iy (K (Yﬁ, ZE) ,Xﬁ) +A (K (ZE, XE) ,Yﬁ) +
+ (Dyid) (Y, 2") + (Dyh) (2" X") + (D &) (X", v7) =
= (Ya)'R (Xh, Zh) — (Xa)"& (Yﬁ, Zﬁ) — (Za)"& (XE, Yﬁ) =

(3.1d)

= ~(da’ AB) (X", 2M) =V 0, O

4.6. Corollary. (Bianchi identities) —VX,Y,Z € X(TM):

(46a) & (D). 2)= & (E’ (FQ(X,Y), Z) -0 (K&(X,Y), Z)) ,

(b)) & (DpE)Y.2)= & (P(X.FOY,2)-E(RX.Y)2)),

(4.6¢) X?/’Z (DsxQ)(Y, 2)=0,

(4.6d)  (DpxP) (Y, 2) = (DpyP) (X, 2) + (D _) V)=

=P(X,FC(Y,2)) - P(V,FC
R(Y,FC(X, 2)) — P (A(X,

(4.6e)  (D5xQ) (Y,2) - (DyyP) (X, 2) + (Dy7P) (X,Y) =
= F(Fc(X,Y), Z) - BFC(Z,X),Y) —@(Fé (X,Y), Z)+

——

+QFC(Z,X),Y).
Proof. Let X,Y,Z € X(T M) be arbitrary. By Lemma 4.5, the “usual” first Bianchi
identity

_ & RAEXW)hZ=_ 6 _ (T(T(RX,hY),hZ) + (DyyT) (Y, 52) )
hX,hY,hZ hX,hY,hZ

gives the relation

& K(X,hY)hZ=

RX,hY,hZ ( (D7) (AY, 1Z) +

hY),hZ) + FC (FQ (hX,hY) hZ) —

-T (Fﬁ(ﬁx,ﬁy) hZ)),
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(4.6f) T (hX,hY) = A(X,Y) + Q(X,Y),
(4.6g) T (hX,JY) =C(X,Y) - FC(X,Y).

From this it follows that
0=0v <_ & K(EX,EY)EZ) =
hX,hY,hZ

=_ & _ ((Dpx®) (AY,12) + Q (& (RX,RY) ,1Z) -
hX,hY,hZ

~C (FQ(RX,FY) }2) ),
which proves the relation (4.6a).

Applying the second Bianchi identity, the other relations can also be obtained
by a direct calculation. For example we derive (4.6d). Since

0= 6 K(T (hX,hY),JZ D+K) (hY, JZ
& (BT (ExRY),72) + (Diy ) (. 2).

we get
0=P(AX,Y),2)+Q (FQX,Y),2) - F(X,FC (Y, Z))—

~R(FC(Y,2),X) +B(Y,FC (X, Z)) + R (FC(X, Z),Y) +

+ (D7xP) (v, 2) — (D5, P) (X, 2) + (D,s4R) (X,Y),
proving the relation (4.6d). O
4.7. Corollary. VX,Y,Z € X(TM):
(4.7a) (DcR) (X,Y)Z =0, (DcP) (X,Y)Z = -P(X,Y)Z,

(DcQ) (X,Y)Z = —2Q(X,Y)Z,

(4.7b) (DsQ) (X,Y)Z =C(X,FC (Y, 2)) - C(Y,FC (X, Z))+

+C (X,Fc(y,2)) -C (Y,FC(X, Z)).

Proof. Substituting Z := S in the Bianchi identity (4.6d), we have
DcR =0.

In the same way, consider the vector field Y := S. From the Bianchi identity
(4.6e) it follows that
DcP = —P.
The relation DcQ = —2Q is an immediate consequence of the Bianchi iden-
tity (4.6¢).
Finally, by Proposition 3.11 and (4.3c), an easy direct calculation shows that
(4.7b) holds. O
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4.8. Corollary. VX,Y,Z,W € X(TM):

(4.8a) g (P(X,Y)Z,JW) = —g (P(X, Y)W, JZ),

(4.8b)  P(X,Y)Z -P(Z,Y)X = (D5xC) (Y, Z) — (D5,C) (X,Y)+
+C(FC(X,Y),Z) - C(X,FC (Z,Y)),

(4.8¢) P(X,Y)Z -PB(X,2)Y = (ﬁ JZK’) (X,Y) - (ﬁ Jyﬁ’) (X, Z)+
+C (Fc(2,X),Y) =C (FC(X,Y),2),

(4.8d) P(X,Y)Z-P(Y,X)Z=C(Y,FC(X,Z))-C(X,FC (Y, 2))+
+C (Y,FC(X,Z)) - C (X,FC(Y, 2)).

Proof. Tt is easy to check that the first identity holds for the curvature tensors of
an arbitrary metrical connection.

Let now X,Y, Z € X(M) be arbitrary vector fields on M. Applying the formulas
(3.8a)—(3.8d) we get:

F(xX"v") 2"~ B (2", y") x" = (D zc) (Y7, 2") = (D szC) (X" 7") +
+c (FE’ (XE, YE) ,ZE) —C (XE,FE' (YE, Zﬁ)) .
Evaluating the Bianchi identity (4.6e) on S, it follows by Corollary 4.4 that (4.8¢)

holds.
Finally, from the Bianchi identity (4.6e), VX,Y,Z € X(TM):

(D5Q) (X,Y)Z — (DsxP) (S,Y)Z + (D,yP) (S,X)Z =0,
s0 we have
B(X,Y)Z - B(Y,X)Z = — (D5Q) (X,v)z “Z”
=C(V,FC(X,Z)) - C(X,FC(Y,Z))+
+C (Y,FC(X,2)) -C (X,FC(Y, 2)). O
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5. WAGNER MANIFOLDS

5.1. Definition. Let (M, E) be a Finsler manifold endowed with a Wagner con-
nection (D, h,«). (M, E) is said to be a Wagner manifold (with respect to (D, h, «))
if there is a linear connection V on M such that

(5.1) VXY € X(M): D, zY" = (VxY)".

Then V is called the linear connection of the Wagner manifold.

5.2. Proposition. If (M, E) is a Wagner manifold (with respect to (D, h,«)) then
the second Cartan tensor C of h vanishes.

Proof. Since (M, E) is a Wagner manifold, it follows that D,zZ" (X,Z € X(M))
is a vertically lifted vector field to the manifold 7 M and, consequently, VXY,
Z € X(M):

(3.82)

0=[D 52",y "2 ﬁ< Y- Dy D 2" "2

EXFZ”
—C (FEXFZ”,YE) 4P (XE, Yﬁ) A (c (YE, Zﬁ)) +

v, (F[XE, Y, ZE) 650 p (XE, YE) 7% — (D #C) (Yﬁ, ZE) -
—c (FE’ (XE, Yﬁ) ,Zﬁ) ,

therefore (5.1) is equivalent to the relation

(5.2) B(X,Y)Z — (D;5C) (Y, Z) - C(FC (X,Y), Z) = 0,

where X,Y,Z € X(TM).

By the substitution Z := S we obtain that

0=P(X,v)s “2 ¢ x, 1) O

5.3. Theorem. Let (D,h,a) be a Wagner connection on the Finsler manifold
(M, E). Then the following assertions are equivalent:

(a) (M, E) is a Wagner manifold (with respect to (D, h,a)).

(b) The hv-curvature tensor P of the Finsler connection (D, h) vanishes.

Proof. (a) => (b) In view of (5.2) and (4.3b), we have

B(X,Y)Z = (ﬁ JYE’) (X,2)+C (X,FC(Y, 2)) +C (FC(X,Y), Z)—

Pro& 5.2

—C(Y,FC (X, 2)) 0.

o

(b) => (a) Since VX,Y,Z € X(M): P (Xﬁ, Yﬁ) ZF = [[X",Y"], Z"], the van-

ishing of P implies that [XE, Y] is a vertical lift.
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On the other hand,
2 (@’ (XE, Yﬁ) ,Z”) = XPg(YY,2Y) — g ([XE, Y'Y, Z”) _

—g (1, 1x7,20) MEY X (20 E) - (X Y20 B)-

_ YU (l:)(ﬁ7 ZU]E) PI‘O]:& 3.2 07

so the second Cartan tensor C of h vanishes, and consequently VX, Y € X(M):

DoV =D vv U2 xP vy,

Finally, if we define a linear connection V on M by the formula
(5.3a) (VxY)' == [XP, Y],

then V clearly satisfies the condition (5.1). O
5.4. Proposition. Let (D,h,a) be a Wagner connection. Then the following
assertions are equivalent:

(a) the hv-curvature tensor P of D vanishes: P = 0.
(b) The second Cartan tensor C'of h vanishes: C = 0.
(¢) VX,Y,Z € X(TM) : (D5xC) (Y, Z) = (D;,C) (X,Y).
(d) VX,Y,Z € X(TM) : %(X, Y)Z = — (D;C) (Y, Z).
Proof. From (4.4b) we immediately get the implication (a) = (b).
This implies by (4.8b) that (a) = (¢) is also valid.
(a) = (d) In view of (4.3b), we have

B(X,Y)Z + (D5+C) (Y, 2) = (ﬁ,,ya’) (X,2) - C(FC'(X,Y), 2)+

() = (b)

+C (X, FC(Y,2)) —C(Y,FC (X, 2))+C(FC(X,Y), Z) 0.

(d) = (a) As it can be seen from the proof of Corollary 4.4,

o —_ —

VX,V € x(M):0 "2 B(S, X))y = B(S, X"V,

where S is the semispray associated with h. Therefore, by the substitution X := S,
(d) yields the relation

Prop. 3.11

0= %(F, Y)Z = — (DsC) (Y, 2) c(v,2).

Hence, by (4.3b), _
F(X,Y)Z = 0.
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(¢c) = (a) Let X := S in (c). Then
(ﬁgC) Y,2) = (ﬁﬁzc) (S,Y) =0, and consequently ¢ =o.

By Corollary 4.8, this means that the curvature tensor PP is totally symmetric.
Since VXY, Z € X(TM):

F(X,Y)Z = (F(X +Z,Y)X +Z -P(X,V)X - P(Z, Y)Z)

DN | =

and

(4.82)

—g(B(X, )X, 2) "2 g(B(X,Y)2,7X) = g(B(2,Y)X, JX) "2

0,

it follows that

P=0.

(b) = (a) From the assumption C' =0 and (4.8¢), (4.8d), we get immediately
that VX,Y,Z € X(TM):

- (4.80) = (4.84)

B(X,Y)z "2 Bx, 2)y "2V Bz, x)v "2 P

P(Z,Y)X,
Le. P is totally symmetric. So, repeating the preceding reasoning, we infer that
P=0. |

5.5. Theorem. Let (D,h,a) be a Wagner connection on the Finsler manifold
(M, E). Then the following assertions are equivalent:

(a) (M, E) is a Wagner manifold (with respect to (D,h,a)).
(b) VX,Y,Z € X(TM): (D5xC) (Y, Z) =0.

Proof. (a) = (b) We know from Proposition 5.2 that C = 0 and so

o]

P(X,Y)Z

Pro& 5.4 Th. 5.3

(DrxC) (Y, 2) 0.

(b) => (a) Our assumption (DjC) (Y, Z) = 0 implies by Proposition 3.11 that
0=—(DgC) (Y,2) =C (Y, 2).

Applying Proposition 5.4, this yields the relation
P(X,Y)Z = — (D5xC) (Y, Z),

therefore .
P(X,Y)Z =0,
so (M, E) is a Wagner manifold. O
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5.6. Proposition. Let (M, E) be a Wagner manifold with respect to (D, h,a).
Then the following assertions are equivalent:

(a) Q=0 (i.e., h is integrable).

(b) The h-curvature tensor R of D vanishes.

o o]

(¢) The h-curvature tensor R of D vanishes.

Proof. As it was shown in Proposition 5.2, the second Cartan tensor c belonging
to h vanishes in any Wagner manifold. This means that the Bianchi identity (4.6d)
reduces to the formula

(DszR) (X,Y)

(563) (ﬁﬁXF) (Y, Z) — (EEYF) (X, Z) +
)+ R(Y,FC(X, Z))

= —R(X,FC(Y, Z)
-PA(X,Y),2) - Q(FQ(X,Y), Z).
Substituting a semispray Sy into (5.6a), by Corollary 4.4 we get the relation
(Ds2Q) (X,Y) -R(X,Y)Z = -Q(X,FC(Y, Z)) + QY,FC(X, Z)).

Therefore the implication (a) = (b) holds. The converse is an immediate conse-
quence of the relation (4.4a).

Finally, by Proposition 4.3,

R(X,Y)Z = ﬁ(x, Y)Z +C(FQ(X,Y), Z),

so (b) and (c) are also equivalent. (We can argue as in the proof of 1.7.1 using the
equivalence (a) <= (b) and (4.4a).) O
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6. HASHIGUCHI-ICHIJYO’S THEOREMS

6.1. Theorem. Let (M, E) be a Wagner manifold with respect to (D, h,«) and
let us consider the conformal change § = pg (p = expof¥) of the metric g. Then

the Finsler manifold (M, E) is also a Wagner manifold with respect to the Wagner
connection induced by 16 + a € C=(M).

Proof. Let us consider the Wagner endomorphism Z induced by the function %B +a.
We get from the relation (3.3a)

Z:ﬁ+<%ﬂ+a) J—E[J,g?&i(%ﬂ-l-a) ]—@E@g?&i(%ﬂ-l-a) -

rop. 1.12 7 1 ‘ 1 ' L )
P p:112h+<§ﬂ+a) J_E[J,grad<§ﬂ+a) ]—dJE®grad<§ﬂ+a) =

~ 1 1 1
=h+5p°J = SE[J,grad 8] - 5d, B @ grad §°+

v Cor. 2.2

1
+aJ — E[J,grada’] —d;E®@grada’ = h—Edﬂv@)C—l-acJ—

3a)— 1
_ E[J,grada’] — d;E ® grada® ®2V h - 58" & C.

Using this form of E, we easily obtain that the hv-curvature tensor of the

Berwald-type connection associated with / vanishes (see Lemmma 4.1). This means
that (M, E) is a Wagner manifold. O

6.2. Definition. A Finsler manifold (M, E) is said to be conformal to a Berwald
(or a locally Minkowski) manifold if there is a conformal change g = g
(¢ = expof?) such that (M, E) is a Berwald (or a locally Minkowski) manifold.

6.3. Theorem. A Finsler manifold is conformal to a Berwald manifold if and
only if it is a Wagner manifold.

Proof. Let us suppose that the Finsler manifold (M, E) is conformal to a Berwald
manifold, i.e., there is a conformal change § = ¢g (¢ = expof¥) such that
(M, E) is a Berwald manifold. Since the Berwald manifolds are, in particular,
Wagner manifolds (cf. Prop. 3.12), in view of Theorem 6.1, the conformal change
g= %5 yields a Wagner manifold with respect to the Wagner connection induced by
—%B € C™®(M).

Explicitly, the Wagner endomorphism » and the Barthel endomorphism h of the
Berwald manifold (M, E) are related as follows:

- ~ 1
h:h+§dﬂ”®C.

Conversely, let us suppose that (M, E) is a Wagner manifold with respect to
(D, h,a). Then, in view of Theorem 6.1, the conformal change § = ¢g (p :=
expofi?, f := —2a) yields a Wagner manifold whose Wagner connection is induced
by the function 8 4+ a = —a 4+ a = 0. Therefore (cf. Prop. 3.12) (M, E)is a
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Berwald manifold. The Barthel endomorphism h and the Wagner endomorphism
h of the Wagner manifold (M, E) are related as follows:

h=h+da" ®C. O

6.4. Theorem. A Finsler manifold is conformal to a locally Minkowski manifold
if and only if it is a Wagner manifold and one (therefore all) of the conditions

are satisfied.

Proof. Let us suppose that the Finsler manifold (M, E) is conformal to a locally
Minkowski manifold, i.e., there is a conformal change § = pg (¢ = exp oY) such
that (M, E) is a locally Minkowski manifold. Then, in view of Theorem 6.3, (M, E)
is a Wagner manifold with respect to the Wagner connection induced by the function
—38 € C>(M) and

- ~ 1
h:h+§dﬂ”®C.

Since (M, E) is a locally Minkowski manifold, Q := —%[E,TL] = 0. This implies
by an easy (but little lengthy) calculation, that € := —%[E, h] also vanishes.
Conversely, if (M, E) is a Wagner manifold with respect to (D, h,«) then, in

view of Theorem 6.3, the conformal change g = pg(p :=exp oY, § := —2a) yields

a Berwald manifold with the Barthel endomorphism A such that
h=h+da"®C.

Now applying the further condition Q = 0, we get:

Q0= _%[ﬁj@] - _%([E,E] +2[h,da’ ® C]+

+ [do’ @ C,da’ @ C]) = —[h,da’ @ C] — %[da” ® C,da’ ® C] =

ML gda® © C + da? A (R, C] — %ddav(@cda” ® C+
+ %da” Alde? ® C,C) 0= %da” Alda® @ ¢,0) "= o,
since, for example,
drda® " _ddra? = —d(d — dg)a? "2 —dda’ = 0.

(An easy calculation shows that dg,vgcda? also vanishes.) O
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III. C-CONFORMALITY

1. AN OBSERVATION ON HOMOGENEOUS FUNCTIONS

1.1. Remark. Let k € Z. We recall that a function f : R® — R is called positive
homogeneous of degree k if for any vector v € R™ \ {0} and positive real number ¢,
we have

(L1) F(tv) =t £ (v).
It is easy to check that if f : R” — R is positive homogeneous of degree 0 and
continuous at the point 0 € R" then f is a constant function.

1.2. Proposition. Let us select a subspace W of dimension n — 1 and a nonzero
vector ¢ of R* (n > 2) such that

R* =W @ {tq|t € R} = W & L(q).

Suppose that a function f : R* — R has the following properties:
(i) it is positive homogeneous of degree 0;

(i) it is continuous at the points q, —q;

(iii) for any point a € W \ {0} and scalar t € R

fla+tq) = f(a).

Then f is constant on R™ \ {0}.

Proof. Consider the function f1 := f [ W\ {0}. Let ¢: N — W\ {0}, n — ¢, be a
sequence such that

lim ¢, = 0.
n—roo

Then i)
. . 111 .
Jim fi(e,) = lim f(e,) = lim flen +q) = f(a),

since f is continuous at the point ¢ € R™ \ {0}. This means that f(g) is the limit
of the function f; at 0 € W and, consequently, the extended function

fi(a) (a#0)
fle) (a=0)

is continuous at the point 0 € W and it preserves the homogeneity property of the
function f. Therefore, by Remark 1.1, f; is constant and in any point @ € W \ {0},

(1.2a) f(@) = fi(a) = f1(0) = f(a).

Using the relation (1.2a), with the choice b = a + tq, where a € W\ {0}, t € R,
we have

fi: W =R, a—>fl(a):={

(1.2a)

(1.2b) ) = fla+tq) 2 £a) "2 f(g).



To end the proof, it is enough to check that

(1.2¢) fl@) = f(—q)-
This is almost trivial:

(iii)

flg) = lim fi(e,) = lim f(e,) = lim f(en =)

since f is continuous at the point —¢g € R™ \ {0}.
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2. C-CONFORMAL CHANGES OF RIEMANN-FINSLER METRICS

2.1. Definition. Consider a Finsler manifold (M, E). A conformal change g = g
(p = expoa?, a € C®(M)) is said to be C-conformal at a point p € M if the
following conditions are satisfied:

(2.1a) (da)p # 0,i.e., o is regular at the point p;
(2.1b) [J,grad o] = 0.

2.2. Proposition. Let (M, E) be a Finsler manifold and o € C*®(M). Then the
following assertions are equivalent:

(a) [/, grada”] =0.
(b) ZFgradoz”C = 0
(c) gradaV is a vertical lift, i.e., there exists a vector field X € X(M) such that

(2.2) grada’ = X".
Proof. (a) <= (b) It is an immediate consequence of II.(1.2d). Moreover, it can
be seen from its proof that
VY e X(M):[J,grada’]Y° =0 < [V, grada’] =0,
which implies by 1.1.14 the equivalence (a) <= (c); hence our assertion. O

2.3. Lemma and definition. Consider a Finsler manifold (M,E) and let us
suppose that the change § = pg (p = expoa?, a € C®(M)) is C-conformal at a
point p € M. Let o € X(M) be an arbitrary vector field with the property o(p) # 0
which obviously implies that o is nonvanishing over a connected open neighbourhood
U of p. Then the mapping

(2.3a) (,): X(U)xX(U) - C>=(U),
(Y7 Z) - (7 >(Y7Z) = <Y7 Z> = g(Yv7ZU) °0

is a (pseudo-) Riemannian metric. This metric is called the osculating Riemannian
metric along o.

If, in addition, grady a € X(U) is the gradient of the function o with respect to
(,) then

(2.3b) (grady ) = grad a”.
Proof. Let X € X(M) be the vector field determined by the formula (2.2). Then
for any vector field Y € X(U),

(22 g(grada’,Y") oo =

(X,Y):=¢g(X", Y% oo
=w(grada®,Y" oo = (Y"a") o0 =
=Ya)’ooc=Ya)omroo =Y,

hence X = grad;, a and, consequently,

(grady ) = grad o”. O
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2.4. Remark. In the sequel we shall fix the vector field X determined by the
formula (2.2) as ¢ in Lemma 2.3. (Note that the regularity property (2.1a) implies
that X (p) #0.)

Therefore, the osculating Riemannian metric (, ) will be considered as a mapping
(2.4) (,):X(U)x X(U) - C>(U),
Y, 2) = ()Y, 2) = (Y, 2) :=g(Y", Z2") 0 X,
where U is a fixed connected open neighbourhood of the point p such that for any

g€ U, X(q) #0.

2.5. Proposition. Consider a Finsler manifold (M, E) with the Riemann-Finsler
metric g and let us suppose that the change g = g (p = expoa?, a € C®°(M)) is
C-conformal at a point p € M. If W C TpM is a subspace of dimension n— 1 such
that TpM =W @ L(X (p)) then for any tangent vector w € W \ {0} and t € R,

g(Y",Z%)(w+tX(p) = g(Y", Z")(w).
Consequently, for any vector fields Y,Z € X(M), the function g(Y'V,Z") is con-
stant on TpM \ {0}.

Proof. For the sake of brevity, consider the parametric line
C:teR—= () :=w+tX(p) € TpM,

where w € W\ {0} is an arbitrary fixed tangent vector. Now let us define a function
O as follows:
O:teR—=>0(t):=9g(Y",Z%) 0l(t) e R
If (m Y(U), (2%, y")™,) is the chart induced by a chart (U, (u)®_,) on M then

we have

! _ a v v ) J,‘io ! i v v . io !
o0 = (5),, 007N 0O+ (gr) 6072w o)

oy’
Here, for any i € {1,...,n} and ¢t € R,
' o l(t) = u' oo l(t) = u' ow(w + tX(p)) = u'(p),

i.e., x' o ( is constant, and so for any t € R, (z% o £)'(t) = 0.
On the other hand

y o l(t) =y (w +tX(p) = w' + tX'(p),

therefore

! _ 0 v vy . io i — i . i v v _
o0 = (gy7),, 02D W0 =X (5) w2

= X' om(é(t) (c{;)e( (07, 29) = (X2 o ) =

LESDLLE0D 90 (xh YR ZhY o 6(t) = 20,(FX°, YT, Z%) 0 0(t) =

Pro& 2.2

=2C,(F grada®,Y", Z") o £(t) 0
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and, consequently, © is also a constant function.
Thus for any real number ¢ € R,

0(t) =0(0): = (Y, Z2%)(w + tX(p)) = g(Y*, Z°) (w).

According to Proposition 1.2, this means that the function g(Y'?, Z?) is constant
on TpM \ {0}, namely for any tangent vector v € TpM \ {0},

9(Y*, Z2%)(v) = g(Y", Z°)(X(p)) = (Y, Z)(p)- =

2.6. Theorem. Let (M, E) be a Finsler manifold. If there ezists a C-conformal
change § = pg (p = expoa?, a € C*®(M)) at a point p € M, then (M, E) is locally
Riemannian, more precisely,

g(Y*,2") =Y, Z)om = (Y, Z)",
where (, ) is the osculating Riemannian metric defined over U.

Proof. Tt is enough to mention that if g = g is a C-conformal change at the point

p € M then it is also such a change for any point ¢ € U. (Note that the assumption

X (q) # 0 implies the regularity property (da), # 0 for any point ¢ € U.)
Therefore, the theorem is a direct consequence of Proposition 2.5. |

2.7. Remarks. (a) Without loss of generality we can obviously assume that
a(p) = 0 under a C-conformal change § = pg (¢ = expoa?, a € C®(M)) at
the point p. If, in addition, the Finsler manifold (M, E) is positive definite, then it
is natural to consider the tangent space TpN, N := a~*(0), as the subspace W in
Proposition 2.5.

(b) Our result can be interpreted in case of a vector space endowed with a so-
called Minkowski functional; cf. [31]. Under such an interpretation Proposition
2.5 states a new condition for Minkowski spaces to be Euclidean; but we omit the
details.

(¢) Note that Theorem 2.6 is based on the usual, but a relatively “rigid” definition
of Finsler manifolds: the differentiability of the energy function is required at all
nonzero tangent vectors; i.e. there is no singularity except from the zero vectors of
tangent spaces. Actually, the main points are the homogeneity and continuity of
the Riemann—Finsler metric along the gradient vector field of the scale function,
which depends only on the “position” in case of a C-conformal change. It can be
easily seen that the following examples due to M. HASHIGUCHI are not within the
competence of our result.

“When I wrote my thesis ... , I imaged the following example as a non-Rieman-
nian Finsler metric L admitting a C-conformal change: Let m be a fixed integer
such that 1 < m < n. Indices a, b and A, pu are supposed to take the values 1,...,m
and m + 1,...,n, respectively. On R" we consider L given by

L*(z',y") = LI (2%, y") + L3 (", y),

where L, is a non-Riemannian Finsler metric, and L, is a Riemannian metric ...
Especially, the three-dimensional Finsler metric L on R® given by

3 (y1)4
(y?)?

L*(z',2%,2% " y%y°) =2 + (y%)°
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admits a C-conformal change L = e*L, where a := —%(m3)2, which gives a so-called
concurrent vector field «; 7. (Hashiguchi’s letter to the author; 2000-01-05).

Indeed, a routine calculation shows that for example the gradient of the function
il

v

a’ = aom, a = —i(z%)? is just the vector field (—2%5%)" = —(2° o ™) 55
Therefore, the elements of the matrix
1y 2 1y 3
() ()
) Y
(9i)sxs = g\’ g\
—4| = 3= 0
Y Y
0 0 1
are neither continuous along the vector field X := —:UB% and even nor defined

there.
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IV. SUMMARY

In this Ph.D. dissertation first of all we undertake a quite comprehensive survey
of general theoretical elements of Finsler geometry. The primary aim of this survey
is to present a standard systemn of notations and terminology built on three pillars:
the theory of horizontal endomorphisms, the calculus of vector-valued forms and a
“tangent-bundle version” of the method of moving frames. On the other hand we
present a systematic treatment of some distinguished Finsler connections and some
special Finsler manifolds. In particular we are interested in the conformal theory
of Riemann-Finsler metrics and the theory of Wagner connections and Wagner
manifolds. As we shall see, they are closely related. Finally, we investigate a
special conformal change of the metric proving that its existence implies the Finsler
manifold to be Riemannian. (The necessity is clear.)

I

This dissertation is divided into three parts. In part I first of all we present
a quite detailed exposition of the conceptual and calculational background. Our
main purpose is to insert the theory of Finsler connections and the foundations of
special Finsler manifolds into a new approach of Finsler geometry. The first epoch-
making steps in this direction were done by J. GRIFONE [10], [11], our work can be
considered as a systermatic continuation of the program initiated by him. Following
Grifone’s theory of nonlinear connections (whose role is played in our presentation
by the so-called horizontal endomorphisms) we use systematically an “intrinsic”
calculus based on the Frolicher-Nijenhuis formalism. Technically, we enlarged and
— at the same time — simplified the apparatus by using the tools of tangent bundle
differential geometry. This means first of all the consistent use of a special frame
field, constituted by vertically and completely (or vertically and horizontally) lifted
vector fields. Thus the third pillar of our approach is the method of moving frames.
It has a decisive superiority in calculations over coordinate methods: the formula-
tion of the concepts and results becomes perfectly transparent, and the proofs have
a purely intrinsic character. We believe that the compact, elegant and efficient
formulation presented here demonstrate the power of our approach. For example,
in section I/4 we present an invariant and axiomatic description of three notable
Finsler connection (linear connections associated to a nonlinear one with the help of
some conditions of compatibility): the Berwald, Cartan and Chern-Rund connec-
tions. Theorems are organized as follows: the first group of axioms characterizes
a unique Finsler connection allowing us to derive the explicit rules of calculations
for the corresponding covariant derivatives. Adding further conditions to them,
the second group yields the characterization of the three classical Finsler connec-
tions. Although these results belong to the foundations they are new. Moreover,
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we hope that they help in better understanding the role of the different axioms, and
open a path for further, essential generalizations. As motivations, we can mention
the so-called Wagner connections (as generalized Cartan connections, i.e. Cartan
counections with nonvanishing (h)h-torsion) or the associated Berwald-type Finsler
connections (as generalized Berwald connections, i.e. Berwald connections with
nonvanishing (h)h-torsion).

II

In part IT we start with the definition of conformal equivalence of Riemann-
Finsler metrics. (This relation is formally the same as that in Riemannian geom-
etry.) We give a modern proof of Knebelman’s famous observation which points
out that the scale function between conformally equivalent Riemann-Finsler metrics
must be independent of the “direction”, i.e. it is a vertical lift. We also derive some
important conformal invariants and transformation formulas. As an application of
the results a well-known classical theorem will be proved intrinsically. It states (in
H. Weil’s terminology; [30], p. 226) that “the projective and conformal properties
of a Finsler space determine its metric properties uniquely”.

In this part we also demonstrate that the Frolicher-Nijenhuis formalism pro-
vides a perfectly adequate conceptual and technical framework for the study even
of such complicated objects as Wagner connections. Our intrinsically formulated
and proved results not only cover the classical local results but give a much more
precise and transparent picture and open new perspectives. First of all we establish
an explicit formula between the (canonical) Barthel endomorphism and a Wagner
endomorphism (the nonlinear part of a Wagner connection). Then we calculate its
tension, weak and strong torsion, i.e. data determining uniquely a nonlinear con-
nection by Grifone’s theory. It turns out that the rules of calculation with respect
to a Wagner connection are formally the same as those with respect to the classi-
cal Cartan connection. These investigations are based on a number of some new
(but more or less) technical observations and a fine analysis of the second Cartan
tensor belonging to a Wagner endomorphism. Using these results an important
classical theorem on the so-called Landsberg manifolds, first formulated and proved
intrinsically by J. G. DI1AZ will be generalized. The classical version contains equiv-
alent characterizations of the vanishing of the second Cartan tensor belonging to
the Barthel endomorphism (i.e. the canonical nonlinear connection of the Finsler
manifold). In his thesis [8] the author gives a coordinate-free proof of the theorem
using several explicit relations between the classical Cartan tensors and curvatures
(or their lowered tensors) of the Cartan connection. We managed to reduce the
number of these relations to some of fundamental ones and the theorem is proved
in generality of Wagner connections and Wagner manifolds. Techniques we need to
discuss them are suitable to reproduce lots of classical results as well. We found
this observation very useful.

Finally, after a new intrinsic definition as well as several tensorial characteriza-
tions of Wagner manifolds we present coordinate-free proofs of Hashiguchi-Ichijyo’s
theorems to clarify the geometrical meaning of this special class of Finsler manifolds.
In the classical terminology: “The condition that a Finsler space be conformal to a
Berwald space is that the space becomes a Wagner space with respect to a gradient
a;i(z)”, (see [16], Theorem B).
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III

In part III we deal with a special conformal change of Riemann-Finsler metrics
introduced by M. HasHiGucHI [14]. The point of the C-conformality is that we
require the vanishing of one of conformal invariants. Under this hypothesis the
gradient vector field of the scale function becomes independent of the “direction”,
i.e. it will be a vertically lifted vector field. (Vector fields with such a property is
called concurrent too; see e.g. [14], [28] and [37].)

In his cited work [14] Hashiguchi proved for some special Finsler manifolds (in
his terminology: two-dimensional spaces, C-reducible spaces, spaces with («, 8)-
metric etc.) that the existence of a C-conformal change of the metric implies that
the manifold is Riemannian (at least locally). Here we show that Hashiguchi’s result
is valid without any extra condition. In terms of our characterization this means
that the vanishing of some conformal invariants, like the conformal invariant first
Cartan tensor, can be interpreted as a sufficient condition for a Finsler manifold
to be Riemannian. (The necessity is clear.) Our result is based on a usual, but
relatively “rigid” definition of Finsler manifolds: the differentiability is required
at all nonzero tangent vectors, i.e. there is mo singularities except for the zero
vectors of tangent spaces. Actually, the main points are the homogeneity and
continuity of the Riemann-Finsler metric along the gradient vector field of the scale
function which depends only on the “position” in case of a C-conformal change.
Weakening the condition of differentiability new perspectives open to investigate
the C-conformality. As an illustration we shall cite some valuable fragments from
Hashiguchi’s original ideas in one of the last remarks.
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V. OSSZEFOGLALO

Disszertacionkban mindenekel6tt egy meglehetdsen részletes attekintését adjuk
a Finsler-geometria altalanos elméleti alapjainak. Tessziik ezt egyfel6l azért, mert
a Finsler-geometridban taldn a mai napig sem alakult ki az a széleskorii termi-
nolégiai, jelolésbeli sth. konszenzusrendszer, mely egyértelmien feleslegessé tenné
a hosszasabb el6késziileteket. Célunk tehat a jelolés- és szohasznalat rogzitése. Ezen
tulmenden, disszertdciéonkban a Finsler-geometria (Finsler-konnexidk elmélete, spe-
cidlis Finsler-sokasigok stb.) koordinatamentes formaban keriil bemutatdsra, a
klasszikus tenzorkalkulus egy jelentGsen tovabbfejlesztett valtozatianak kalkulativ
keretei kozott. Megkozelitésiinkben alapvetd szerepet jatszik a nemlinearis kon-
nexiék Grifone-féle elmélete, szoros dsszefliggésben a vektorértéki differencidlformak
A. FROLICHER és A. NIJENHUIS [9] altal kidolgozott kalkulusdval. Segitséglikkel a
Finsler-konnexidk és a specidlis Finsler-sokasagok szisztematikus, egységes targya-
lasara nyilik lehetéség. Kiilon fejezetet szenteltiink a konform ekvivalens Riemann-
Finsler-metrikak, a Wagner-konnexiok (mint speciélis Finsler-konnexiok) és a Wag-
ner-sokasigok (mint specidlis Finsler-sokasdgok) elméletének; latni fogjuk, hogy
ezek a témakorok természetes médon kapcsolédnak egymdshoz. A harmadik fe-
jezetben a konform relacié egy specidlis esetével, a Riemann-Finsler-metrika un. C'-
konform ,,valtoztatdsaival” (change) foglalkozunk. Bizonyitdst nyer, hogy ameny-
nyiben ez lehetséges, igy a szoban forgé Finsler-sokasig Riemann-sokasdgra re-
dukalédik: a Riemann-Finsler-metrika egy az alapsokasdgon adott Riemann-metrika
vertikalis liftje. (A sziikségesség nyilvanvalo.)

I

A Finsler-geometriai problémdk dltalunk kovetett koordindtamentes targyalasa-
nak alapjait illetéen kivételes egyértelmiiséggel utalhatunk J. GRIFONE nevezetes
[10] és [11] dolgozataira, jollehet a nemlinedris konnexiok Grifone-féle elméletén
belil a Finsler-konnexidk ,,speciélis esetként” jelentkeznek. (Arrdl van szé ugya-
nis, hogy a Finsler-sokasidgok kanonikus nemlinedris konnexiéja, az un. Barthel-
endomorfizmus ,,metrikus” , azaz specidlis médon szarmazik a széban forgd Finsler-
sokasag alapfiiggvényébol — ez a Finsler-geometria alaplemmadja, amely analogonja
a Riemann-sokasdgok Lévi-Civita konnexidjanak egzisztencidjat allité nevezetes
eredménynek.) A kezdeteket és a folytatast illetGen, természetesen a teljesség igénye
nélkiil, els6sorban H. AKBAR-ZADEH, P. DAZORD, J. G. Di1az, N. L. YOUSSEF
és M. CRAMPIN, a hazai geométerek koziil pedig J. SzILASI munkdit emelhetjik
ki; utébbiak, kiilonds tekintettel a [36] dolgozatra, szerves egységet alkotnak dis-
szertacionk bevezeto részével. Témavélasztasunkat az altaluk megkezdett munka
kovetkezetes tovdbbvitele, a fentiekben korvonalazott megkozelités és moédszerek
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érvényességi korének kiterjesztése motivalta: a rendelkezésiinkre all6 kereteken
beliil kisérletet teszlink a Riemann-Finsler metrikdk konform elméletének modern
feldolgozasédra. Az appardtust egyszeriisiti — egyszersmind gyorsabbd és hatékonyabbd
teszi az érintésokasdgon konstrudlt (vektormezok vertikalis és teljes, ill. vertikdlis
és horizontdlis liftjei altal alkotott) ,,frame”-ek alkalmazdsa; ezzel az eszkozzel stirtin
fogunk élni meggondoldsaink soran. Ilyen koriilmények k6z6tt nem tamaszkodhattunk
kielégitOképpen a témakor napjainkban is szinte egyeduralkodo [24], [30] klasszikus
monografidira, vezérvonalként és inspiralé hatdsuk miatt azonban nem is nélkiilozhettiik
Oket. (Kézenfekvd példa a Finsler-konnexiék Matsumoto-féle elmélete, mely kiin-
dulépontként egy az érintényaldbhoz csatolt kiséréél-nyaldb segitségével konstrudlt
principalis nyalabot vesz alapul, az un. Finsler-nyaldbokat. Ezeknek a nyalaboknak

a konnexioi — durvan szélva a vertikalis disztribicié direkt komplementerei — adjak

a kulcsot a Finsler-konnexidk fogalmanak értelmezéséhez: | Differential-geometric
objects and quantities are mainly introduced in the principal bundle over the tan-
gent bundle induced from the linear frame bundle ... ” ([24], 46. old.). Mindene-
setre itt a Finsler-konnexiok rendszerezo, szisztematikus feldolgozdsardl van sz6.)
Arra torekedtiink tehat, hogy az olvasé minél teljesebb képet kapjon a targyrdl, s
munkdnk — amennyire ez lehetséges — onmagaban megéllhasson.

Mint jeleztiik, disszertacionk elsé részében rogzitjik a szo- és jeloléshasznalatot.
Ezen tulmenden a Finsler-geometria alapjait tekintjiik 4t. Kiilon figyelmet szen-
teltiink az un. els6é és — kivaltképp — a masodik Cartan-tenzoroknak, melyek
nélkiilozhetetlenek mar a legalapvetobb Osszefliggések és geometriai konstrukciok
esetén is. Minthogy a masodik Cartan-tenzor a szokdsosndl joval altaldnosabb
szitudciéban kertl bevezetésre — a kanonikus Barthel-endomorfizmus helyett tet-
szOleges ,,nemlinedris konnexiét” (horizontélis endomorfizmust) vesziink alapul-,
részletesen vizsgaljuk szimmetriatulajdonsigainak kapcsolatat a széban forgé hor-
izontalis endomorfizmus jellemz6 adataival. A kapott eredmények — bar kifejezetten
az alapokhoz tartoznak — jak. Megkozelitésiink elonyei részben a Wagner-konnexiék
és a Wagner-sokasdgok targyaldsanal jelentkeznek, részben pedig a nevezetes Finsler-
konnexidk leirasandl. Az utébbit illetéen fliggetlen axiémak megaddsara torekedtiink
és igyekeztiink ravilagitani geometriai jelentésiikre. Nevezetesen, az axiémak els6
csoportja mindig egy Finsler-konnexiét karakterizal és lehetové teszi a kovaridns
derivélas formuldinak explicit megaddsit. A masodik csoportban szerepl6 axiémak
,finomitjak” a konstrukciét és segitségiikkel visszakapjuk a klaszszikus Berwald-
, Cartan- és Chern-Rund-konnexidkat. Az els6 rész lezardsaként a kés6bbiekben
fontos szerepet jatszo specidlis Finsler-sokasiagokkal, a Berwald-, illetve lokdlisan
Minkowski-sokasagokkal foglalkozunk, élve a vélasztott eszk6zok és keretek nyijtotta
elegans targyalas lehetoségével. fgy — noha az attekintett tények jo része klasszikus
— a kozolt bizonyitdsok kivétel nélkil eredetiek.
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II

Tekintsiink egy (M, E) Finsler-sokasigot. Ismeretes, hogy az
E:TM — R,

un. energiafiigguény, mely bizonyos simasagi, homogenitdsi és regularitisi feltéte-
leknek tesz eleget, egy (pseudo-) Riemann-metrikat szdrmaztat a TT M | érintOnya-
1ab” vertikélis résznyalabjéan; a

g:veTM\{0} =gy, go: T TMxT", TM — R

un. Riemann-Finsler-metrikdt. (Egy djabb dolgozatban a wvertikdlis metrika eln-
evezés is hasznélatos, ami rovidebb és kifejezd; 1d. [34].) A széban forgd metrikdk
kozotti konform kapcesolat kozvetlen analogonja a Riemann-sokasidgok elméletében
is fontos szerepet jatszo

g=vg9

relaciénak, ahol ¢ pozitiv értékili, s a nullmetszettél eltekintve sima fliggvény a
T M érintésokasagon. Tekintettel a Finsler-geometridban szokasos médon eldirt ho-
mogenitasi feltételekre, kovetkezményként adddik, hogy konform ekvivalens Riemann-
Finsler-metrikdk csupan egy ,,irdnytol” fiiggetlen, azaz érintéterenként konstans
fiiggvényszorzéban kiilonboznek. fgy az un. ,,skaldzo” figgvény a teljes érintétéren
sima fiiggvénnyé terjeszthetd ki, pontosabban mindig felirhato

p =expoaom

alakban, ahol a az alapsokasigon adott sima fliggvény, m : TM — M pedig a
természetes projekcid. Ez a nevezetes észrevétel M. S. KNEBELMAN [19] nevéhez
flizédik, s modern eszkézokkel bizonyitjuk a II/1 szakaszban. Itt és a II/2 sza-
kaszban néhany a tovabbiak szempontjabdl nélkiilozhetetlen konform-invarians ten-
zorral és transzformacios formulédval is foglalkozunk. Mindenekel6tt explicit relaciot
vezetlink le a konform ekvivalens Riemann-Finsler metrikdkhoz tartozé kanonikus
sprayk kapcsolatara; azonnali kovetkezményként adddik a Barthel-endomorfizmusok
kozotti kapcsolat. Ezek birtokdban — elvileg — barmely mas kanonikus objek-
tum és operacié (a Berwald-, illetve a Cartan-konnexiéra vonatkozé kovaridns de-
rivélds, gorbiileti tenzorok stb.) ,,véltozdsa” leirhaté — tobb-kevesebb gyakorlati
nehézség aran. Illusztracidképpen a Barthel-endomorfizmushoz csatolt masodik
Cartan-tenzorra vonatkoz6 transzformaciés formulat vezetjiik le. (A részletes atte-
kintést illetéen — tenzorkomponensek és konnexié-paraméterek nyelvén — M. HASHI-
GucHI klasszikus [14] dolgozatara utalhatunk.) A nyert eredmények alkalmazasaként
modern eszkozokkel bizonyitjuk H. WEYL klasszikus tételét az egyidejiileg kon-
form és projektiv kapcsolatban all6 Finsler-sokasdgokrdl. Ekkor a Riemann-Finsler
metrikdk csupan egy konstans szorzéban kiilonboznek egymdstol. Szemléletesen
szOlva, egy Finsler-sokasig konform és projektiv jellemzéi (properties) egyértelmiien
meghatédrozzak a metrikus viszonyokat (metric properties; v.6. [30], 226. old.) A
I1/3 szakaszban ratériink a Wagner konnexidk tdrgyaldsira. Ezeket a speciélis
Finsler-konnexidkat elséként V. V. WAGNER vezette be és tette vizsgéalat targyava
[40] dolgozatdban. Segitségiikkel értelmezte az dltaldnositott Berwald-sokasigok
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(specidlis esetként az utébb rdla elnevezett Wagner-sokasigok) fogalmat és iga-
zolta, hogy az un. ,,cubic”, azaz kob-metrikdval rendelkezé kétdimenzids Finsler-
sokasagok egyidejlileg altaldnositott Berwald-sokasdgok is. Az elmélet magasabb di-
menziés esetekre valé kiterjesztését és alkalmazésait illetéen elsésorban M. HASHIGUCHI
(a Wagner-konnexiok axiomatikus leirasa) és Y. ICHIIYO ért el szamottevd eredményeket.
Fény deriilt arra, hogy a Wagner-sokasagok osztalya zart a Riemann-Finsler-metrika
konform ,,valtoztatasira” nézve, tovabba tisztazodott a széban forgd Finsler-sokasagok
viszonya a (klasszikus) Berwald-, illetve lokdlisan Minkowski-sokasdgokhoz:

Wagner-sokasagok (integralhaté Wagner-endomorfizmussal)

N a
N
A metrika konform véaltoztatdsa
7N
v hY
Berwald-sokasagok — — — --+ Lokalisan Minkowski-sokasagok

Integrabilitdsi feltétel

Roviden szélva, minden konform valtoztatashoz hozzarendellink egy specidlis
Finsler-konnexiét, az un. Wagner-konnexiot. Ezek utdn a Wagner-sokasagok a
klasszikus Berwald-sokasdgok mintdjara vezetheték be a Wagner-konnexiok nem-
lineéris része, az un. Wagner-endomorfizmus altal meghatarozott ,,Berwald-tipusu”
Finsler-konnexi6 segitségével. (Analitikus nyelven ez ,,csupdn” annyit jelent, hogy
megkoveteljiik a Wagner-endomorfizmus simasagat a teljes érintésokasagon. Ekvi-
valens médon: a széban forgd horizontélis struktirat — a Wagner-endomorfizmust
— egy az alapsokasdgon adott linedris konnexié szadrmaztatja. Ekkor a csatolt
Berwald-tipusu Finsler-konnexié egybeesik a linedris konnexié horizontélis liftjével.)
Az aldbbi, Hashiguchitdl és Ichijyotdl szarmazo szép tétel pedig ravilagit a Wagner-
sokasagok geometriai jelentOségére: egy Finsler-sokasag pontosan akkor Wagner-
sokasag, ha Riemann-Finsler-metrikdja konform ekvivalens egy Berwald-sokasag
Riemann-Finsler-metrikajaval (1d. II/6 szakasz, Theorem 6.3; [16]).

Disszertacionk masodik része hivatott demonstralni, hogy a Frolicher-Nijenhuis-
formalizmus egy tokéletesen adekvat fogalmi és kalkulativ eszkdznek bizonyul a
Riemann-Finsler-metrikdk konform elméletének haladottabb szintjén éppiigy, mint
az alapokat illetden. Mindenekel6tt explicit formuldt vezetiink le a kanonikus
Barthel-endomorfizmus és a Wagner-konnexiokhoz tartozé Wagner-endomorfizmu-
sok kapcsolatara. Ez lehetové teszi, hogy meghatdrozzuk az utébbi tenzidjat,
gyenge- és er0s torzidjat, vagyis azokat az adatokat, melyek a nemlinearis konnexidk
Grifone-féle elmélete szerint egyértelmiien meghatarozzak az operaciot. A Wagner-
endomorfizmusok ,,metrikus” karakterével kapcsolatban részletesen megvizsgaljuk
a hozzijuk csatolt masodik Cartan-tenzor tulajdonsiagait néhany 4j, tobbé-kevésbé
technikai jellegt észrevétel felhasznaldsaval. Mindezek birtokaban lehetévé valik a
Wagner-konnexidk szerinti kovaridns derivalas szabalyainak explicit meghatéarozasa,
melyek a klasszikus Cartan-konnexié szerinti kovaridns derivalas kdzvetlen analo-
gonjainak bizonyulnak. Alapvetd gorbiileti azonossagokat (beleértve a Bianchi-
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identitdsokat is) vezetiink le a I1/4 szakaszban és segitségiikkel Wagner sokasagokra
altalanositjuk a Finsler-geometria egyik fontos tételét a ,,Landsberg sokasagok”
jellemzésérol. Specidlis esetként természetesen visszakapjuk a klasszikus eredményt;
a Barthel-endomorfizmushoz csatolt masodik Cartan-tenzor eltiinésével ekvivalens
tenzoridlis feltételeket. Ezek koordinatamentes megfogalmazdasa és bizonyitdsa meg-
taldlhaté J. G. DIAZ hasznos 6sztonzéseket ad6 [8] munkdjaban. Ebben a szerzé
szamos olyan explicit formulat haszndl fel, melyek a klasszikus Cartan-konnexié
gorbiileti adatait kapcsoljak 0ssze a Cartan-tenzorokkal, illetve azok kovaridans de-
rivéltjaival. Az dltalunk adott bizonyitds egyrészt a Wagner-konnexidk ( Wagner-
sokasdgok) édltaldnossigaban mozog, masrészt pedig sikeriilt redukalni a széban
forg6 explicit formuldk szamdat néhany alapvetd gorbiileti azonossigra. E fejezet
lezdrasaként a Wagner-sokasagok intrinsic értelmezését, illetve tenzoridlis jellemzését
kovetden az eddigiekhez adekvat médon fogalmazzuk meg és bizonyitjuk Hashiguchi
és Ichijyo legfontosabb eredményeit a Wagner-sokasagokkal kapcsolatban.

III

Disszertacionk harmadik részében a Riemann-Finsler-metrikdk konform reldci-
6janak egy M. HASHIGUCHI altal a [14] dolgozatban bevezetett specidlis esetével
foglalkozunk. Ertelmezésiinkben az un. C-konformalitdst a 11/1 szakaszban leirt
konform-invaridns tenzorok egyikének eltiinése jellemzi; Proposition 1.12. (Er—
dekességképpen megemlitjiik, hogy az idézett helyen elséként szereplé konform-
invarians tenzor (v.6. Proposition 1.9) eltiinését kizarjdk a Finsler-sokasdgok en-
ergiafiiggvényével kapcsolatban el6irt homogenitasi feltételek, mig az ugyancsak
konform-invaridns elsé Cartan-tenzor eltinése jol ismert moédon azt jelenti, hogy
a Finsler-sokasdg Riemann-sokasdgra redukalodik. A kérdés tehdt az, hogy mi-
lyen kovetkezményekkel jar egy a harmadik csoportba tartoz6 konform-invaridnssal
kapcsolatban el6irt, analdg feltétel teljesiilése.) Idézett dolgozatdban Hashiguchi
bebizonyitotta, hogy szdmos speciélis Finsler-sokasag esetén (kétdimenziés Finsler-
sokasdgok, C-redukdlhaté Finsler-sokasdgok, Finsler-sokasagok (,)-metrikaval
stb.), a C-konform véaltoztatdst megengedd metrika valéjaban egy az alapsokasdgon
adott Riemann-metrika vertikdlis liftje, azaz a tekintett Finsler-sokasig Riemann-
sokasagra redukalhato. Az altalunk elvégzett vizsgdlatok azonban azt mutatjik,
hogy ugyanez teljesiil tetszdleges Finsler-sokasdg esetén, amennyiben a Finsler-
sokasagok szokdsos, de relative ,,merev” értelmezését vessziik alapul. Ez azt jelenti,
hogy a nullmetszettol eltekintve mindeniitt megfelelé simasagi feltételeket irunk
elé, vagyis kizarjuk a tovabbi szingularitdsokat. A lényeges mozzanat a Riemann-
Finsler-metrika homogenitdsa és — némi pontatlansiggal — folytonossaga a skaldzé
fiiggvény csupan ,helytél” fiiggd gradiense mentén. (Az ilyen tulajdonsigu vek-
tormezOket konkurrens vektormezdként is emlegeti a szakirodalom; Id. pl. [14], [28]
és [37]. ) Eredményilink alapjin a széban forgé konform-invaridns eltiinése — ha-
sonléan az elsé Cartan-tenzorhoz — elegendd feltétele a Finsler-sokasagok ,,Rieman-
nizélhatésagdnak”. (A sziikségesség nyilvanvald.) Gyengitve a Finsler-sokasdgokkal
kapcsolatban el6irt feltételeken, a C-konformalitds tovabbi vizsgalata is lehetové
valik. Illusztracioképpen M. HASHIGUCHI gondolataibdl idéziink a fejezetet lezard
megjegyzések egyikében.
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