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Abstract 

Identification of new biomarkers specific for various pathological conditions is an important field 

in medical sciences. Body fluids have emerging potential in biomarker studies especially those 

which are continuously available and can be collected by non- invasive means. Changes in the 

protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on 

both local and systemic conditions of medical relevance. In this review, our aim is to discuss the 

quantitative proteomics techniques used in biomarker studies, and to present advances in 

quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to 

biomarker identification. The advantages and limitations of the widely used quantitative 
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proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal 

pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of 

biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification 

of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of 

biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. 
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Introduction 

With the advances of diagnostic techniques there is an increasing demand for non- or minimally 

invasive methods in medical diagnosis. The constantly produced and continuously available body 

fluids which can be collected by non-invasive means such as tears, saliva, sweat etc. can provide 

a feasible alternative to cerebrospinal fluid, amniotic fluid, synovial fluid, bronchoalveolar lavage 

fluid, serum etc. for diagnostic purposes. In some cases the analysis of body fluids collected by 

invasive means cannot be avoided but considering the need for well-trained medical workers, the 

possibility of infections and complications, and costs of medical interventions required for the 

collection of the body fluids increase the need for utilization of non-invasively collectable body 

fluids. In this review we will present the diagnostic utility of those body fluids which can be 

collected without medical intervention, such as tears, saliva, sweat, nasal secretion, 

cervicovaginal secretion and urine and we will discuss the biomarkers discovered with the 

administration of proteomics techniques. 

Quantitative proteomics is a challenging part of proteomics, providing information not only on 

the presence or absence of proteins or protein isoforms, but also on their quantities. Typically, 

mass spectrometry, electrophoresis or immunological assays are utilized to give the relative or 

absolute quantities of proteins of interest. Absolute quantification determines the exact 

concentration of proteins, while in relative quantifications, only the relative change in protein 

quantity is compared in different conditions [1]. In most cases, relative quantification is sufficient 

to answer biological questions regarding changes in the amount of proteins following treatment, 

or when comparing two or more states. Relative quantification can give us an idea about protein-

level changes in different states and conditions, and can show us differentially expressed proteins. 
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The semi-quantitative ELISA, one- or two-dimensional gel electrophoresis [2] and most of mass 

spectrometry-based techniques are suitable for relative quantification (Table 1). 

For absolute quantification, a more elaborate experimental setup is needed. The simplest method 

for absolute quantification is the quantitative ELISA and the multiplex immunobead assay [3], 

however, these are rather expensive methods. Regarding mass spectrometry-based techniques, 

SRM-based targeted proteomics using various dilutions of purified, stable isotope labeled 

peptides is the method of choice [4]. Absolute quantification is required when the exact protein 

amount has biological significance, as in the case of stoichiometry analysis of protein complexes, 

biopharmaceutical applications for quality control or drug safety, inter- or intra-laboratory cross-

validations, biomarker studies, or when the amount of various proteins within the same sample is 

required [1].  

It is very hard to find the ideal quantitative proteomics technique applicable for the body fluid 

analysis; researchers willing to administrate such techniques should find the optimal solution 

matching their needs, considering the biological question, sample availability, costs, workload, 

and availability of mass spectrometers (Table 1). The presence of highly abundant proteins, such 

as α-amylase in saliva, dermcidin is sweat, lactotransferrin, lysozyme-C, etc. in tears and the low 

amount of available sample, especially when posttranslational modifications are to be studied, 

may require the administration of protein depletion and/or enrichment [5,6]. However the 

possible loss of quantitative information may hinder the wide application of these methods in the 

examination of non-invasively collectable body fluids. The administration of antibodies and the 

use of well-defined standards to monitor for example phosphoprotein enrichment [7] make 

possible the utilization of quantitative data. Another variation of protein enrichment is the 

utilization of antibodies against the digested peptides in the samples [8]. The Stable Isotope 
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Standards with Capture by Anti-Peptide Antibodies (SISCAPA) approach can be utilized to 

enrich specific peptides from different samples by using anti-peptide antibodies to capture 

endogenous peptides and spiked stable isotope-labeled internal standard peptides [9]. 

 

Biomarkers 

The two major fields utilizing quantitative proteomics in medicine are biomarker studies and 

identification of therapeutic targets; however, these two fields sometimes overlap. In some 

conditions, proteins are considered biomarkers when identified as having a central role in the 

normal or pathological function of the cells/tissues, and their presence or absence causes a 

malfunction leading to disease [10]. Consequently, biomarkers are at the same time targets for 

drug design and therapy [11]. In other cases, although the biomarkers can give information 

regarding alterations related to disease, they are not suitable targets for therapeutic intervention; 

their presence, absence or differential expression may be the consequence and not the cause of 

the pathological condition, hence, they cannot be used as target for therapies, nor can they 

explain the pathophysiological phenomena [12]. In this review, our aim is to show advances in 

the biomarker field aided by quantitative proteomics. According to the National Institutes of 

Health Biomarkers Definitions Working Group, a biomarker is “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention” [13]. In recent years, studies 

aiming to identify biomarkers specific for different pathological conditions emerged, and 

hundreds of proteins were shown to be potential biomarkers specific for various diseases [14]. 
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In this review the potential biomarker term will be used for proteins whose level is significantly 

different between the disease and control groups, while the validated biomarker will refer to those 

proteins which were validated using an independent antibody-based technique. 

Despite the fact that advances in research techniques and intensive efforts in biomarker studies 

had led to identification of high numbers of potential biomarkers in the discovery phase, the 

number of FDA approved biomarkers is much less [15–21]. One reason for drastically decreasing 

the number of validated biomarkers as they go through the verification and validation processes 

can be the lack of standardized workflows [14]. Comparative studies examining protein profiles 

usually include less than ten samples per group, with different analytical methods detecting many 

differentially expressed proteins between the diseased and control groups. The number and 

identity of the differentially expressed proteins can vary from study to study, depending on the 

sensitivity of the applied analytical method, the size of the groups, and the patients enrolled in the 

study. Ideally, the only difference between the diseased and control groups should be the 

presence or absence of the disease [22]. In small groups, this is possible, however, when larger 

patient cohorts are enrolled, the presence of secondary disorders serves as hindrance to the 

analysis.  

The Clinical Proteomic Technologies for Cancer (CPTC) initiative established by the National 

Cancer Institute recommends a workflow for cancer biomarker development [14]. They suggest 

the use of SRM-based targeted proteomics method for verification of hundreds of potential 

biomarkers identified in the discovery phase. For verification, a large sample number is required. 

Ideally, hundreds of samples are analyzed, and after verification, the biomarkers can be subjected 

to the next step, the validation step. For validation, only few proteins should be chosen and tested 

on thousands of samples. Statistical analysis, including ROC curves [23] for biomarkers proved 
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to be convenient in the verification process can help identify the proteins with the highest 

specificity and sensitivity in discriminating between the control and diseased groups. 

Immunoassays are also very suitable for biomarker validation, allowing for analysis of large 

sample numbers in a short period of time. When multiple proteins have to be validated, the 

utilization of multiplex immunobead assays are more cost effective [3]. 

One of the bottlenecks of biomarker studies is sample availability. From pathophysiological point 

of view, it is of critical importance to analyze the tissue or the biological material in which the 

alteration happens, as well as the proximity of the material to the site of pathological alteration. 

In many cases however, these types of samples are not available for biomarker studies. For 

example, in case of pathological conditions affecting the retina; such as diabetic retinopathy, 

proliferative vitreoretinopathy, etc., the study of proteome changes of the retina would be 

important to understand the pathological mechanisms underlying the disease. On the other hand, 

for diagnostic purposes, the retina; which can be obtained only with highly invasive surgical 

intervention, is not an acceptable source for minimally- or non-invasive biomarker studies.  

In spite of the availability of advanced imaging methods, there is a high demand for laboratory 

diagnostic assays using biological samples or body fluids acquired by non-invasive or minimally 

invasive methods. Advances in proteomics and metabolomics techniques had led to improved 

sensitivity, and provided the possibility to detect protein or metabolite changes in body fluids 

which are not necessarily in proximity to the diseased area. For example, studies of tear or serum 

composition could identify potential biomarkers specific for retinal diseases [24,25].  

The emerging “omics” technologies provide new possibilities for identification of biomarkers 

form the continuously available body fluids that can be collected by non-invasive means, shifting 
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the focus from the study of tissue material obtained by autopsy and biopsy to the study of easily 

collectable and continuously available body fluids such as tears, saliva, sweat, etc. 

Tear fluid as a source of biomarkers for ocular and systemic diseases 

Tear fluid is a complex mixture of proteins, lipids, salts and other organic molecules produced by 

the lacrimal glands. Normally, the tear production rate is approximately 2 µl/min [26] and its 

typical protein concentration is 5-7 µg/µl [27]. Functions of the tear film are lubrication of the 

eye, delivery of nutrients and maintenance of the refractivity of the cornea [28]. Beside these 

roles, tear provides an effective chemical barrier on the surface of the eye via the secreted 

antimicrobial and immunomodulatory proteins (AMP), which provide protection against 

infections [29]. Currently, more than 1500 tear proteins have been identified by proteomics 

techniques [30–32]. Major tear proteins; such as lactotransferrin, lysozyme-C, prolactin-inducible 

protein, lacritin etc., are involved in the defense against pathogens [31], and their relatively high 

abundance makes these proteins the major antimicrobial proteins of tear. While many of the tear 

proteins are produced by the lacrimal glands, some of them originate from epithelial cells; such 

as dermcidin, defensins, etc., and there are also proteins filtered from the blood such as albumin 

[33,34]. 

The human tear has become one of the most investigated body fluids, being a possible source of 

biomarkers [30,31]. Tear fluid is one of the non-invasively obtainable body fluids that is 

relatively easy to collect, and its study may help understand the pathogenesis of ocular and some 

systemic diseases, in addition to aiding in the prediction of the outcome and scheduling follow-

ups for therapeutic sessions. Based on localization, tear can primarily reflect pathological 

conditions related to the anterior segment of the eye, but it can also provide information on the 
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retinal or vitreal status, and more broadly, information related to systemic changes can also be 

acquired by analysis of tear proteins (reviewed by [35,36]). The protein composition of tear was 

examined in various pathological conditions, and proteome-level changes were observed in case 

of contact lens wearers as well [37]. Analysis of tear protein profile can provide useful biological 

information on understanding the molecular mechanisms of ocular diseases; such as dry eye 

syndrome [38–41], blepharitis [42], climatic droplet keratopathy [43], diabetic retinopathy [25], 

keratoconus [44,45], mycotic keratitis [46] and vernal keratoconjunctivitis [47]. Changes in the 

tear proteome can also reflect systemic diseases such as multiple sclerosis [48] and Alzheimer’s 

disease [49]. SELDI-TOF data are available on tears of patients with Sjögren’s syndrome [50] 

and breast cancer [51,52], but the exact protein composition of the peaks characteristic for the 

pathological conditions is missing. Biomarkers for these pathological conditions identified by 

quantitative proteomics are listed in Table 2.  

Various immunological tests exist to study the concentration of pro- or anti-inflammatory 

markers in tears, in order to assess the inflammatory status in ocular or systemic diseases [53–

55]. Inflammatory changes were shown to be associated with glaucoma and neurodegenerative 

disorders such as Parkinson’s disease and multiple sclerosis [48,56–59]. The 47 potential and the 

10 validated biomarkers for various ocular or systematic diseases identified by quantitative 

proteomics experiments predict the clinical application of some of the identified biomarkers in 

the near future.  

Saliva – the easily accessible, continuously available source for biomarkers  

Saliva is a complex mixture secreted from major and minor salivary glands and from the gingival 

crevice [60]. It is composed of more than 99% water, making it a very dilute body fluid. The 
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remaining part of saliva is composed of various electrolytes, proteins, mucins and nitrogenous 

products such as urea [61]. Saliva contains more than 2000 proteins [62], the most abundant of 

which are α-amylase [63], mucins [64], proline rich peptides [65], cystatins [64] and serum 

albumin [66]. Although high variability in protein content was observed depending on collection 

time, sex, age, pathological conditions, the typical protein concentration of saliva is 0.7-2.4 

mg/ml [67–69]. Similarly to tear fluid, the abundant salivary proteins are part of the innate 

immune system, due to their antimicrobial activity, and their protective role from microbial 

proteases. The non-invasive collection and the continuous availability of the saliva make it an 

excellent source of biomarker studies; unsurprisingly, the protein composition of saliva has been 

analyzed by several workgroups, indicating its relevance to medical applications. A classical 2D 

gel electrophoresis-based study of saliva obtained from children with autism spectrum disorder 

revealed 8 down-regulated and 8 up-regulated salivary proteins as potential biomarkers for the 

disorder [70]. The advantage of multiplex measurements by chemical labeling with iTRAQ and 

label free quantification mass spectrometry of salivary proteins have been used for analysis of 

patients with breast cancer [71,72], malignant oral lesions [73], oral squamous cell carcinoma 

[74,75], chronic graft-versus-host disease [76,77], Sjögren's syndrome [78] and bisphosphonate-

related osteonecrosis of the jaw [79]. Differentially expressed proteins have been identified in 

these studies (Table 3), providing potential biomarkers to aid diagnosis and possibly enable for a 

deeper understanding of the molecular mechanisms involved in the pathogenesis of the studied 

diseases. SRM-based quantitative proteomics method for the analysis of O-glycosylated forms of 

salivary protein MUC7 in saliva of patients with rheumatoid arthritis has been developed and 

used to demonstrate the altered O-glycosylation pattern in rheumatoid arthritis, with a proposed 

role in diagnosis and treatment follow-up [80]. SELDI-TOF mass spectrometry method was used 

to identify biomarkers for fibromyalgia [81], oral squamous cell carcinoma [82,83] and Sjögren's 
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syndrome [84] (Table 3), and peaks showing significant differences are available for breast 

cancer [85] and oral mucositis [86]. From the so far identified 347 potential biomarkers for 

various diseases only 10 were validated by antibody-based techniques and are indeed suitable for 

population screening. This is highly relevant, especially in case of oral cancers, given the high 

prevalence of orals squamous cell carcinoma and its increasing tendency in the younger 

population [87,88]. 

Sweat biomarkers for local and systemic conditions 

The skin acts as an effective barrier against pathogens in the first line of host defense. Besides 

providing a physical barrier, the skin also creates a chemical barrier via antimicrobial and 

immunomodulatory proteins secreted by keratinocytes, sebocytes and epithelial cells [89]. Like 

saliva, sweat is a continuously secreted and highly diluted body fluid, its protein content provides 

an effective defense against pathogens, and is involved in tissue regeneration after injury [90]. 

The most abundant human sweat protein is dermcidin, though clusterin, prolactin-inducible 

protein, apolipoprotein D and serum albumin are highly expressed in sweat as well [91]. These 

proteins are essential to the formation of the chemical barrier of the skin, due to their 

antimicrobial activity [90,92], chaperone function [93] and antioxidant effect [94,95]. Sweat 

samples from patients with skin or systemic diseases such as ectodermal dysplasia, cystic 

fibrosis, atopic dermatitis and schizophrenia were analyzed using quantitative proteomics [96–

99]. It was demonstrated that in case of skin disorders, the level of proteins involved in the host 

defense and tissue regeneration were reduced in the samples of patients with ectodermal 

dysplasia and atopic dermatitis [96,99]. The typical concentration of sweat proteins is 0.1-0.4 

mg/ml [97,100] but it can vary depending on the exterior and interior conditions such as 

temperature, stress etc. [101,102]. It was proposed that reduction in the amount of proteins 
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involved in the immune homeostasis may contribute to the development of ectodermal dysplasia; 

therefore, they are classified as potential biomarkers and possible therapeutic targets in this 

disease. In case of systemic conditions, analysis of the sweat proteome has revealed proteins 

which were differentially expressed in schizophrenia (Table 4) [97]. In spite of the 180 potential 

and two validated (dermcidin and RNase7) biomarkers identified, many open questions remain in 

connection to the properties of sweat. Only limited information is available regarding (1) the 

normal rate of the sweat production, (2) the basal protein composition of the sweat collected at 

various body surfaces, (3) possible diurnal variations of the protein content, (4) the protein 

composition depending on the collection method etc., highlighting the role of proteomics in 

utilizing this continuously available, but very dilute and sometimes not so easy-to-collect body 

fluid for diagnostic purposes. 

Nasal secretion as a valuable source of potential biomarkers 

The nasal secretion has a protective role in the airways; its production rate and the protein content 

can vary substantially. Protein amounts produced between 0.8 and 32.7 mg/ml were observed 

depending on the collection methods [103,104]. Nasal discharge contains a lot of antimicrobial 

proteins; such as lysozyme-C, lactotransferrin, several types of defensins [105], also in addition 

to components of the adaptive immune system, such as immunoglobulins [106]. Compared to the 

other body fluids, a few number of publications report nasal mucus as a source of biomarkers; by 

quantitative proteomics only six potential biomarkers have been identified and only one of them 

has been validated so far (Table 5) [107]. As a result of various studies, more than 451 proteins 

were identified in the nasal mucus, and many of them are related to the immune system [107–

109]. Because of the anatomical localization, nasal mucus is the easily collectable body fluid with 

the closest proximity to the nervous system. This property is exemplified by the nasal 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

13 
 

administration of drugs, enabling their direct delivery through the olphactory neurons or 

trigeminal nerve endings to the central nervous system [110,111]. Considering the fact that parts 

of the olphactory neurons are embedded into the nasal mucosa, their secretions should be 

detectable in the mucus. Based on the high sensitivity and versatility provided by the state-of-the-

art quantitative proteomics methods, the easy-to-collect nasal discharge is predicted to be a very 

valuable source for further biomarker studies. 

Cervicovaginal fluid as source for biomarkers for obstetrics and gynecology 

Vaginal fluid is a non-invasively collectable body fluid which may secrete from vagina, cervix or 

upper genital tract [112]. Vaginal discharge has an important function in the innate immunity and 

homeostasis and pathological conditions can significantly influence the balance in normal vaginal 

milieu leading to qualitative and quantitative protein alterations in vaginal secretion [113–115]. 

Many factors can influence the protein composition of the vaginal fluid, for example the varying 

levels and ratios of estrogens and progesterone resulting in variable amounts of protein yield, 

therefore it is practically impossible to quantify the normal amount of total protein compound in 

healthy cervicovaginal fluid [116]. Currently, more than 680 proteins have been identified in 

vaginal fluid and the majority of the identified proteins have a role in host defense [117]. The 

proteomic analysis of vaginal fluid can provide more information about the pathophysiological 

conditions affecting the female genital tract [118,119]. 63 potential biomarkers for pregnancy-

related problems such as intra-amniotic inflammation [112,120] and preterm labour/preeclampsia 

[121–125], cervical cancer [126] and HIV infection [127] were identified (Table 6) using 

quantitative proteomics techniques and six biomarkers were validated.  

Urine biomarkers for systemic and urogenital diseases  
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Urine is formed in the kidneys as a result of ultrafiltration of the plasma to eliminate waste 

products; such as urea and metabolites. Serum proteins are filtered based on their size and charge 

at the glomeruli, and are thereafter reabsorbed in the proximal renal tubules [128,129], thus, 

protein concentration in urine under physiological conditions is very low, usually between 0 and 

0.2 mg/ml [130] and the normal protein excretion is less than 150 mg/day [131]. This is about 

1000 times less compared to other body fluids such as plasma [132]. Excretion of more than 150 

mg/day protein is defined as proteinuria, and is indicative of glomerular or metabolic dysfunction 

[129]. 

Urine can be collected in large quantity and non-invasively. Therefore, despite the low protein 

concentration, adequate amounts of proteins can be collected from a single sample [131,133]. 

Another advantage of using urine as a body fluid for diagnosis is the possibility of collection of 

samples repeatedly, even over long periods of time. Under normal conditions, urine contains 

proteins originating from the blood and kidneys [134–139], making urine a good source for 

analysis of diseases affecting the kidney or the urogenital tract; such as kidney failure resulting 

from high blood pressure and diabetic nephropathy [140,141], prostate cancer [142,143], 

polycystic kidney disease [144], kidney chronic allograft dysfunction [145], chronic allograft 

nephropathy [146], congenital obstructive nephropathy [147], lupus nephritis [148], urolithiasis 

[149], in addition to urinary, renal and bladder cancer [150–161]. Besides urogenital and kidney 

dysfunctions, urinary proteomics has a great potential in biomarker studies of coronary artery 

atherosclerosis [162,163], obstructive sleep apnea [164], ovarian cancer [165], breast cancer 

[166] and sepsis [167,168]. 

Urine has become one of the most attractive body fluids in clinical proteomics [155], 

nevertheless, variability in protein concentration poses a hindrance to the analysis of samples. 
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This can be compensated for by standardization based on urinary creatinine [169] or urinary 

housekeeping peptides, which are present almost ubiquitously in human urine independently of 

age, sex, health, or drug administration [170]. Details on urine sample preparation have already 

been discussed in some recently published reviews [171–175]. However, urine samples require 

handling through a set of methods; such as centrifugal filtration, ultrafiltration, lyophilization or 

precipitation. Removal of albumin is sometimes required to improve identification of low-

abundance proteins [176].  

Urine proteome analysis may potentially unravel markers for cancers of urogenital or systemic 

origin including bladder [150–154,156,157,160,161], prostate [170], renal [158,159], breast [166] 

and ovarian cancers [165] (Table 7). There has been an increasing interest in developing urine 

biomarkers for the detection of renal allograft rejection as an alternative to percutaneous needle 

biopsy, which is costly and associated with significant patient morbidity and mortality [79]. The 

245 identified potential and 10 validated biomarkers for kidney-related and systemic diseases 

make urine a rich source of easy-to–collect, and continuously available source of biomarkers. 

Body fluids as part of the innate immune system 

The localization of the above mentioned body fluids correlates with the possible entry sites for 

microorganisms, implying the presence of a well-defined defense system. Besides mediating their 

physiological functions; body fluids also partake in the protection of the organism by providing a 

chemical barrier [29]. This chemical barrier is made up of the secretions of various glands and 

epithelial cells, and the characteristic composition of antimicrobial and immunomodulatory 

peptides (AMP) makes the AMP cocktail specific for different body fluids [177]. The 

composition of the AMP cocktail may determine which microbes can colonize our body, 
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providing unfavorable conditions for pathogen growth under physiological conditions. It was 

demonstrated that skin microbiome changes in response to various stimuli such as food, drugs, 

age, gender, physiological status etc., implying changes of the AMP cocktail [178]. These 

changes can be examined by the sensitive quantitative proteomics techniques, which are well 

suited to monitor AMP levels at various sites of the body in different physiological or 

pathological conditions [179].  

Proteomic analyses have revealed that highly abundant proteins observed in some body fluids; 

such as tears and sweat, are part of the first line defense. Biomarkers identified from body fluids 

by different research groups have enriched the library of proteins possessing antimicrobial or 

immunomodulatory properties (proteins with italics in the Table 2-7). More than half of the 

identified tear biomarkers for eight pathological conditions have antimicrobial or 

immunomodulatory functions. A similar phenomenon can be observed in case of vaginal fluid 

and nasal mucus as well, though only one proteomic study is available for the nasal mucus. In 

case of saliva and sweat, the number of the proteins having a role in host defense is high, making 

up in; most of the cases, more than half of the identified biomarkers, in some instances, where 

more than 130 proteins were identified approx. only 30% of the proteins belonged to the AMP 

family (Table 8). From an analytical point of view, this can also mean that utilizing mass 

spectrometers with high resolution mass analyzers or extensive sample fractionation, enrichment 

or depletion and identifying more than 100 proteins can reveal the proteome masked by the 

highly abundant proteins. The urine is unique in a sense that its distinct anatomical and 

physiological properties imply the presence of a different chemical barrier as compared to that of 

other body fluids [180]. The number of AMPs among the identified urine biomarkers is high but 

fall far less than those of other body fluids (Table 8). 
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Analysis of the chemical barrier components can provide valuable information; our group has 

identified lipocalin 1, lactotransferrin, lacritin, lysozyme-C, lipophilin A and immunoglobulin 

lambda chain as potential biomarkers for the proliferative stage of diabetic retinopathy [25], 

lipocalin 1, lacritin, lysozyme-C and dermcidin for Alzheimer’s disease [49]. Lactotransferrin, 

lipocalins, lysozyme-C, lacritin and dermcidin are involved in the immunologic and 

inflammatory processes and defense against pathogens [30,31,35,36]. It has been shown that 

lactotransferrin found in all body fluids is an active agent against microbes and parasites, and has 

been implicated in protection against cancer [90]. Lysozyme-C is a hydrolytic enzyme with 

muraminidase activity required for degradation of the bacterial cell wall [90], has antifungal 

activity [181] and protects against HIV infection [182]. Lipocalins are a family of lipid binding 

proteins, they play a role in host defense because of their protease inhibitor activity [183] and by 

sequestrating iron, they limit bacterial growth [184]. Lacritin is a secreted protein found in tears 

and saliva, it promotes secretion [185], epithelial cell proliferation [186], corneal wound healing 

[187], additionally, its C-terminal fragment has bactericidal activity [188]. Changes of tear AMP 

levels are likely not the cause but rather the consequence of diabetic retinopathy progression, 

hence, it can be used to develop bedside test for screening purposes. Currently, photographic 

methods and retinal image analysis to track neovascularization and increased vascular 

permeability in the retina can be used for screening [189–191], this, however, requires proper 

instruments, software, and well-trained human graders, making diagnosis available only in big 

screening centers. In order to make the screening widely accessible, easy-to-implement tests; 

which can be used by general practitioners, are needed. Potential biomarkers for different stages 

of diabetic retinopathy were identified, and their validation is in progress, making tear biomarkers 

novel tools for population screening, based on the pre-screening of a large number of patients and 

involving human graders only in positive or ambiguous cases [192]. 
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The composition of the AMP cocktail changes constantly, implying both qualitative and 

quantitative changes of the cocktail components, in order to adapt to various conditions. Most 

probably, composition of the chemical barrier is characteristic to the stimulus to which the 

organism has to adapt. Thus, changes of the composition of the host defense proteins in body 

fluids as a response to pathological conditions provide a feasible source for biomarker studies, 

which can be implemented using cutting edge quantitative proteomics analyses. 

Extracellular vesicles – future perspectives 

Different types of membrane vesicles of endosomal and plasma membrane origin are released in 

an evolutionally conserved manner into the extracellular environment by cells. These circulating 

microvesicles found in many types of body fluid and in extracellular space play an important role 

in cell signaling and intercellular communication [193–195]. According to their biogenesis, the 

extracellular vesicles can be grouped as apoptotic blebs, exosomes and microparticles, but the 

nomenclature is not clear for the latter two [196]. 

Exosomes, the membrane vesicles of endocytic origin are fragments from 40 to 100 nm secreted 

by most cell types. There are studies regarding exosome analysis of plasma [197], urine [198], 

amniotic fluid [199], saliva [200], bronchoalveolar lavage fluid [201], breast milk [202] etc.  

Microparticles are of cellular membrane origin shed from stressed or damaged cells. Their 

diameters ranges from 0.1 to 1.0 μm [203]. Almost 3700 proteins were identified in total plasma 

microparticles using proteomic methods [204,205]. 

Proteomics has traditionally focused on the study of extracellular vesicle (EVs) proteins found in 

body fluids, but the proteomic profiles are highly dependent on how EVs were isolated [206]. 

Alterations in EV protein levels observed in pathological conditions make exosomes a good 
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source for biomarker investigations [207]. More than 35000 proteins were found in the 

extracellular vesicles (http://www.microvesicles.org/) and using quantitative proteomics 

techniques 32 potential biomarkers for bladder and prostate cancer, kidney diseases, deep vein 

thrombosis and brain tumors were identified in body fluids. 10 of the potential biomarkers were 

validated using antibody-based methods (Table 9) [208–215]. 

 

Conclusion 

Based on the reviewed literature, hundreds of biomarker candidates have been identified, mainly 

from shotgun quantitative proteomic studies. Experiments using 2D electrophoresis, SELDI-

TOF, label-free quantification, iTRAQ and TMT labeling on various body fluids have already 

provided more than 800 soluble potential biomarkers specific for different diseases. The number 

of verified potential biomarkers using targeted; preferentially SRM-based, approach in examined 

body fluids is 40, and the number of biomarkers validated by antibody-based methods is 34, 

highlighting the need for verification and validation studies. In our opinion, the NCI-CPTC 

Biomarker Development Pipeline suggested for cancer biomarker identification [14] should be 

used in all biomarker studies involving body fluids, regardless of the nature of the examined 

pathological condition. In some diseases, there are hundreds of potential biomarkers identified; in 

such cases the verification step using targeted proteomics followed by validation step using 

antibodies should be carried out (Figure 1). In those diseases where there are no data available, 

shotgun proteomics studies followed by targeted methods have to be applied in order to identify 

new biomarkers with high diagnostic value. In the field of body fluid proteomics, the need for 

non-invasively obtained, readily available biomarkers with diagnostic significance imposes 
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pressure on state-of-the-art quantitative proteomics to utilize more body fluids, a rich source of 

yet undiscovered biomarkers. 
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Figure legends 

Figure 1. Body fluid analysis workflow for biomarker discoveries 
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Table 2: Tear protein biomarkers identified by quantitative proteomics methods. 

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes. The other font settings (normal, underline, asterix) refer to the method by 

which the biomarkers were identified.  

Disease Method Potential biomarkers (Gene symbol) References 

Alzheimer’s 

disease 

SRM LACRT, LCN1, LYZ, DCD 49 

 

Blepharitis 2D SDS-

PAGE 

ALB, CST2, IGKCVIII, LACRT, LYZ, PIP, 

PKLR, SERPINA1 

42 

Climatic droplet 

keratopathy 

iTRAQ DKFZp686M08189, HP, JCHAIN, LACRT, 

PIGR 

43 

Diabetic 

retinopathy 

iTRAQ IGLC1, LACRT, LCN1, LTF, LYZ, SCGB1D1 25 

Dry eye syndrome iTRAQ 

2D SDS-

PAGE  

SELDI-

TOF* 

ALDH1A1, APOA1, AZGP1,C3, CST4, ENO1, 

EZR, GC, HP, IGHA1, IGHA2, IGHG3, IGLC1, 

JCHAIN, LACRT, LCN1*, LTF, LYZ*, ORM1, 

PIGR, PIP, PRDX1, PRP1, PRR4*, S100A11, 

S100A4 , S100A8*, S100A9, SCGB2A1, 

SERPINA1*, SMR3B*, TCN1, ZG16 

38,39,40,41 

Keratoconus Label-free 

quantification 

AZGP1, B2M, CLU, CTSB, CST1, CST4, FGA, 

IGHA1, IGHA2, IGKC, IGLC1, JCHAIN, 

KRT14, KRT5, LACRT, LCN1, LCN1P1, 

LGALS3BP, LTF, LYZ, PIGR, PIP, PROL1, 

PRR4, SLPI, ZG16B 

44,45 

Multiple sclerosis TMT SERPINA3  48 

Mycotic keratitis 2D SDS-

PAGE 

ALB, CST1, CST4, GLRX5, LCN1, PIP 46 

Vernal 

keratoconjunctivitis 

iTRAQ ALB, HPX, SCGB1D1, SCGB2A1, TF 47 
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Table 3: Salivary proteins identified as biomarkers revealed by quantitative proteomics. 

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes. The other font settings (normal, underline, asterix) refer to the method by 

which the biomarkers were identified.  

Disease Method Potential biomarkers (Gene symbol) References 

Autism spectrum 

disorder 

2D SDS-

PAGE 

ALB , AMY1A, ATP6V1C1, BPIFA2, CA6, CST5, 

FRAT1, GRTP1, IGHA1, JCHAIN, LCN1P1, MUC16, 

PIP, TF 

70 

Bisphosphonate-

related 

osteonecrosis of 

the jaw 

iTRAQ A1BG, A2ML1, ACTG2, ADH7, AKR1B10, 

ALDH3A1, ALDH9A1, ANXA1, ANXA2, ANXA4, 

APOA2, ARPC3, ARPC4, ATP5A1, ATP5B, BASP1, 

C1R, C5, CA2, CAB39L, CALML5, CAPN1, 

CARHSP1, CCT5, CCT8, CEACAM5, CHAD, 

CHI3L2, CLTC, CRABP2, CRNN, CSTA, CTSA, 

CUTA, DSP, ECM1, EEF1A1, EEF1G, EIF5A, EVPL, 

FAM49B, FKBP1A, FLG, GBP6, GNB2, GSTP1, 

H2AFY, HBD, HBG2, HIST1H1B, HIST1H2AA, 

HIST1H4A, HIST2H2BE, HIST2H2BF, HIST3H2A, 

HIST3H3, HSP90AA1, HSP90AB1, HSP90B1, 

HSPA1L, HSPB1, HSPD1, HTN1, IGHD, IGHG1, 

IGLC2, IL36A, IQGAP1, ITIH2, IVL, JUP, KRT10, 

KRT13, KRT14, KRT15, KRT16, KRT19, KRT25, 

KRT3, KRT4, KRT5, KRT6A, KRT73, KRT76, 

KRT78, LGALS7, LMNA, MGP, MMP9, MYH14, 

MYH9, MYL6, NPEPPS, ORM1, PCBP2, PDIA6, 

PFKL, PKP1, PLA2G2A, PLEC, PLS3, PPL, PRB3, 

PRDX1, PRDX6, RAB10, RDX, RHOA, RHOB, 

RNASE4, RNASET2, RNH1, RPLP0, RPS12, RPS25, 

RPS8, S100A14, S100A16, SAA4, SCEL, SCGB2A1, 

SERPINA1, SERPINA4, SERPINB2, SERPINB5, 

SERPIND1, SFN, TGM1, TGM3, TPM2, TPT1, 

TUBB1, UGP2, VCP, YWHAZ 

79 

Breast cancer iTRAQ AKR1E2, ALB, ALDOA, AMY1A, ANXA1, ANXA3, 

APOA1, ARHGDIB, AZGP1, B2M, BPIFA2, BPIFB2, 

C3, CA1, CA6, CALM1, CAT, CRISP3, CST1, CST2, 

CST3, CST4, CST5, CSTA, CSTB, DMBT1, ENO1, 

FABP5, FAM25A, FAM25B, FAM25C, FAM25G, 

71, 72 
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FGA, GSTP1, HBA1, HBB, HIST1H2BL, HIST1H4A, 

HIST2H2AB, HP, HPX, HTN1, IGHA1, IGHA2, 

IGHG1, IGHG2, IGHM, IGKC, IGLC1, JCHAIN, 

KLK1, KRT1, KRT13, KRT16, KRT4, KRT6C, KRT9, 

LCN1, LCN2, LPO, LTF, LYZ, MPO, MUC5B, NUCB2, 

PFN1, PIGR, PIP, PPIB, PRB2, PRDX1, PRH1, 

RPS27A, S100A4, S100A6, S100A7, S100A8, S100A9, 

S100A11, SPRR1A, SPRR3, TALDO1, TCN1, TF, 

TGM3, TKT, TMSB4X, TPM3, UBA52, UBB, UBC, 

VIM 

Chronic graft-

versus-host 

disease 

iTRAQ, 

Label-

free 

quantific

ation 

A2ML1, ACTB, ALDH3A1, ALDOA, AMY1A, 

ATP6AP1, AZGP1, B2M, BPIFA1, BPIFA2, BPIFB1, 

BPIFB2, C4orf40, C6orf58, C6A, CALM1, CALML5, 

CAMP, CEACAM5, CHI3L2, CRISP3, CRNN, CST1, 

CST2, CST3, CST4, CST5, CST6, CSTB, CTSB, CTSD, 

CYCS, DBI, DEFA1, DKFZp686C15213, 

DKFZp686K18196, DMBT1, DSC2, DSG1,  DSG3, 

ELANE, ENO1, ERO1A, EZR, FAM3B, FAM3D, 

FCGBP, FGA, FGB, FGG, GAPDH, GOLM1, GRN, 

GSTP1, HBA2, HBB, HP, HRP, HSPA5, HTN1, HTN3, 

IGHA1, IGHA2, IGHM, IGHV3-23, IGHV3-49, IGKC, 

IGKV4, IGL@, IL1RN, IGLC2, IGLL5, JCHAIN, 

KLK1, KRT1, KRT10, KRT16, KRT2, KRT6A, KRT9, 

KTR1, LCN1, LCN2, LEG1, LGALS3BP, LOC652694, 

LOC654188, LPO, LTA4H, LTF, LYPD3, LYZ, MPO, 

MUC5B, MUC7, NUCB2, P4HB, PGD, PGK1, PI3, 

PIGR, PIP, PKM, PKM2, PLTP, PPIB, PRB2, PRB3, 

PRB4, PRDX5, PRDX6, PRH1, PRR27, PRR4, 

PRTN3, PSAP, S100A7, S100A9, SCGB1A1, 

SERPINA3, SERPINB3, SERPINB5, SFN, SLPI, 

SMR3B, SPARCL1, SPINK7, SPRR2B, SPRR3, 

TALDO1, TCN1, TGM3, TIMP1, TKT, TTN, TXN, 

TXNDC17, Vκ3, YWHAZ, ZG16B 

76, 77 

Fibromyalgia SELDI-

TOF 

ARHGDIB, S100A8, S100A9 81 

Malignant lesions iTRAQ ACTB, MRLC2 73 

OSCC Label-

free 

A1BG, A2M, AHSG, APOA1, APOA2, APOA4, 

AZGP1, BPIFB2, C3, C4B, C4BPA, C6, C9, CD109, 

74, 75, 82, 
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quantific

ation 

SELDI-

TOF* 

CFB, CHIT1, CRISP3, CST1*, CST2, CST4, CSTB, 

DSG1, DSG3, EGF, EPHX1, FABP4, FAM49B, FGB, 

FGG, FSCN1, GSTM1, HBA1, HEXA, HIST1H2AA, 

HK3, HP, HPR, HPX, HSD17B4, ICAM3, IGHA1, 

IGHA2, JCHAIN, ILV102, ITIH2, ITIH4, IκVI, IκVIV, 

KLK1, KNG1, LCN2, LCP1, LPA, MIF, MUC5B, 

ORM1, PPIA, PRCP, PRTN3, RAC2, RETN, RPL7, 

SERPINA1, SERPINA6, SERPIND1, SLC4A1, 

SPINK5, TF, TLN1, TMEM132A, TPI1, TTR, 

TUBA1C, VIM, VTN, YWHAZ 

83 

Rheumatoid 

arthritis 

SRM MUC7 80 

Sjögren's 

syndrome 

2D SDS-

PAGE  

Label-

free 

quantific

ation 

SELDI-

TOF* 

ALB , AMY1A, AMY2B, ANXA1, APOA1, AZGP1, 

B2M*, BPIFA2, BPIFB2, C3, CA6*, CFB, CLU, CST1, 

CST2, CST3, CST5, DMBT1, HBA1, HBB, HTN1, 

HTN3, IGHA1, IGHA2, IGHG1, IGHG3, IGHM, IGKC, 

IGLC2, IGLL5, JCHAIN, KLK1, KRT1, KRT10, 

KRT13, KRT16, KRT4, KRT5, KRT6C, KRT9, LCN2, 

LGALS3BP, LPO, LTF*, LYZ, MGP, MUC5B, 

NUCB1, NUCB2, PIGR*, PIP, PLTP, PRB1, PRB2, 

RR27, PSAP, S100A8, S100A9, SERPINA1, SFN, 

SLPI, SMR3B, STATH, TF, ZG16B 

78, 84 
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Table 4: Sweat proteins identified as biomarkers by quantitative proteomics analyzes.  

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes. The other font settings (normal, underline, asterix) refer to the method by 

which the biomarkers were identified.  

Disease Method Potential biomarkers (Gene symbol) References 

Atopic 

dermatitis 

SELDI-TOF DCD 99 

Ectodermal 

dysplasia 

Label-free 

quantification 

A1BG, A2ML1, ACTN4, AHSG, ALAD, AMY1A, 

ANXA2, AP1B1, ARG1, ARHGDIB, ASAH1, 

ATP5B, ATRN, AZU1, BPIFA1, BPIFB1, BRN, 

CALM2, CAPG, CAT, CD44, CEACAM5, CHIT1, 

CLU, CNTRL, COPB2, COTL1, CPA4, CPE, CPM, 

CPNE3, CREG1, CRISP3, CTSA, CTSB, CTSD, 

CTSV, CYB5R2, CST1, CST2, CST4, CST5, CSTB, 

DCD, DDAH1, DDAH2, DDB1, DMD, DSC1, 

DSG1, DTD1, ECM1, EEF2, ELANE, ENDOD1, 

FABP5, FAHD1, FASN, FCGBP, FLNA, GBA, 

GGCT, GM2A, GPI, GSS, GSTP1, HARS2, HBA1, 

HEBP2, HRSP12, HSD17B4, HSPA5, IDS, IGHA2, 

IGHM, IGLL5, IL1RN, IL37, INTS7, JUP, KLK10, 

KLK11, KLK5, KLK7, KLK8, KRT33B, KRT35, 

KRT4, KRT73, KRT77, KRT82, KRT83, KRT85, 

LACRT, LAMP1, LCN1, LCN15, LDHA, LDHC, 

LEG1, LGALSL, LRG1, LYNX1, LYPD3, LYPD5, 

LYPLA1, LYZ, MDH1, MDH2, MMP8, MMP9, 

MUC5AC, MUC7, MYDGF, MYH9, NQO2, 

NUDT5, NUTF2, ORM2, PEBP1, PFN1, PGAM1, 

PGK1, PGM2, PIP, PITHD1, PLBD1, PM20D1, 

PNP, PPIB, PRCP, PSMA7, QPCT, RAB7A, 

REXO2, RNASE7, RNASET2, S100A18, S100A6, 

S100A8, S100A9, SBSN, SCGB1D2, SCGB2A2, 

SCPEP1, SERPINA12, SERPINB1, SERPINB13, 

SERPINB2, SERPINB8, SERPINC1, SIAE, SLPI, 

TALDO1, TF, TGM1, TOLLIP, VPS26A, ZG16B 

96 

Schizophrenia Label-free 

quantification, 

SRM* 

ANXA5*, ARG1*, AZGP1*, BLMH*, CALML3, 

CALML5*, CASP14*, CDSN*, CSTA*, DCD,  

DSG1*, FLNB, GAPDH*, GOT1, KLK11*, 

97 
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KRT10, KRT1B, KRT2, KRT6A, KRT9, MDH2, 

NUCB1, PARK7*, PEBP1*, PIP*, PKM, PRDX1*, 

S100A7*, TPI1, TXN* 
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Table 5: Biomarkers in nose water revealed by quantitative proteomics 

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes.  

 

Disease Method Potential biomarkers (Gene symbol) References 

Chronic 

rhinosinusitis 

Label-free 

quantification 

BP1A, BPIFB1, CHI3L1, LCP1, 

MUC5B, SERPINB10 

107 
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Table 6: Vaginal fluid protein biomarkers identified by quantitative proteomics methods. 

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes. The other font settings (normal, underline, asterix) refer to the method by 

which the biomarkers were identified.  

Disease Method Potential biomarkers (Gene symbol) References 

Cervical cancer Label-free 

quantification 

ACTN4, ACTR3, CFH, CRABP2, EEF1A1P5, 

GC, NAMPT, PGK1, SERPINB13, 

SERPINB3, YWHAE 

126 

HIV-infection iTRAQ PRTN3, SERPINA5 127 

Intra-amniotic 

inflammation 

 

Label-free 

quantification 

SELDI-TOF* 

 

A1BG, C3, CSTA, DEFA1*, DEFA2*, 

DEFA3*,  DSG3, DSP, FABP5, FN1, GC, HP, 

IGFBP1, IVL, KLK13, LMNA, LTF, LYZ, 

MMP9, ORM1, PPL, S100A7, S100A8*, 

S100A9*, SERPINA1, SERPINB3, 

SERPINB13, SPRR3, VCL 

112, 120 

Preterm labour/ 

preeclampsia 

2D-SDS-PAGE 

SELDI-TOF 

SRM* 

ACBP, ACTB, ALB AMBP, ANXA1, , 

ANXA3, APOA1, COL, CSTA, DSP*, 

FABP5, FGB, GC,  GGCT, GSTP1, HP, 

IL1RN, MICA, ORM1, PRDX1, PRDX2, 

RBP, S100A7, S100A9, SERPINA1, 

SERPINB1, SERPINB3, SFN*, SOD1, 

TCEA2, TF, THBS1*, TPM1, TXN 

 

 

121, 122, 

123, 124, 

125 
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Table 7: Protein biomarkers identified in urine by quantitative proteomics techniques. 

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes. The other font settings (normal, underline, asterix, etc.) refer to the 

method by which the biomarkers were identified.  

Disease Method Potential biomarkers (Gene symbol) References 

Bladder cancer 2D SDS-PAGE 

iTRAQ 

Label-free 

quantification
*
 

SRM
#
 

A2M, ALB, AFM
#
, AGT

#
, AHSG

#
, APOA1, 

APOA2
#
, APOA4, APOB, APOC2, APOC3, 

APOE, APOH APOL1
#
, AXL, AZGP1, BCAN, 

C2, C3, C9
#
, CADM1

*
, CALR, CD44

*
, CDH2, 

CEL, CLEC4G, CNTN1, COL15A1, CP, 

CPQ, CST3, CTSA, EGF, F2
#
, FABP5, FBN1, 

FGA, FGB, FGG,  FN1, GAA, GC, GGH, 

GUCA2A, GUSB , HPX
*
, HSPG2, IGFBP7, 

ITIH4
#
, GALS7, MGAM, MMP2, MMP9, 

NID1, ORM1, PGA5, PLG
#
, PRCP, PRG4, 

PROZ, PSAP
*
, QPCT

*
, QSOX1, RBP4, 

ROBO4, S100A7, S100P, SAA4, SDC4, 

SERPINA1
*#

, SERPINC1, SOD3, SPP1
*
, 

TF
*#

, THBS1
#
, TNXB, TTR, UMOD

*
, YIPF3 

150, 151, 

152, 153, 

154, 156, 

157, 160, 

161 

Breast cancer Label-free 

quantification 

ALB, AGRN, ANXA1, AHSG, APOA4, C3, 

C9orf131, CA1, CSTA, DNAH8, HBA1, 

IGHG2,  IκV, ITIH4, LCN2, LRRC36, LTF, 

MAST4, NEGR1, ORM1, PGA3, SPARCL1, 

SULF2, VTN 

166 

Chronic allograft 

nephropathy 

SELDI-TOF B2M 146 

Congenital 

obstructive 

nephropathy 

Label-free 

quantification 

SRM 

ARG1, AMY1A, AMY2B, CASP14, CDH1, 

CUBN, EGF, FLNB, IGFBP7, KLK1, 

LRRC15, PDCD1LG2, PTGDS, SERPINA5, 

TGM3, VCAN 

147 

Coronary artery 

atherosclerosis 

Label-free 

quantification 

COL1A1, COL1A3 163 

Diabetic 

nephropathy 

2D SDS-PAGE 

iTRAQ 

APOA4, CP, EGF, PIP, SERPINA1, TTR 140, 141 
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Kidney chronic 

allograft 

dysfunction 

Label-free 

quantification 

KNG1, UMOD 145 

Lupus nephritis 2D SDS-PAGE AMBP, AZGP1, IGKC 148 

Obstructive sleep 

apnea 

2D SDS-PAGE AMBP, EGLN2, KAT2B, KLK1, ORM2, 

TNC, TRIB2,  UCN3, UMOD, ZFP36, 

ZNF81 

164 

Ovarian cancer 2D SDS-PAGE RNASE2 165 

Polycystic kidney 

disease 

iTRAQ 

SRM 

A2M, ADGRF5, ADGRL1, ADM, AGT, 

AFM, ALB, AMY1A, AMY2A, ANGPTL2, 

ANPEP, ANXA11, APOA1, APOA2, APOA4, 

APOB, APOD, APOE, ART3, AXL, B2M, 

B3GNT2, B4GAT1, BHMT, BLMH, C1RL, 

C3, C4B, C5, C7, CA1, CADM1, CASP14, 

CD14, CD248, CDH11, CDH13, CDH2, 

CDH6, CDHR5, CEL, CETP, CFB, CFD, 

CFH, CHL1, CILP, CILP2, CNTN1, 

COL15A1, COL6A1, CPN2, CRB2, CRYAB, 

CRYM, CST6, DPEP1, DSC1, EGF, FAT4, 

FBN1, FBP1, FCGR3B, FGB, FGG, FLG, 

FLRT2, FN1, FREM2, GAA, GALNS, GAS6, 

GC, GGCT, GOLM1, GP5, GPC1, GPC3, 

GPC4, GSTM3, GSTT1, GUCA2B, HP, HPX, 

HRG, HSPB1, HSPG2, HYAL1, ICAM2, 

IGFBP6, IGFBP7, ISLR, ITFG1, ITIH1, 

ITIH2, KRT4, KRT6A, LCAT, LGALS3BP, 

LRRC15, MAN1A1, MB, MCAM, MFI2, 

MME, MMRN2, MUC20, MXRA8, MYOC, 

OGN, OLR1, ORM1, OSCAR, PCDH1, 

PCDHGC3, PDCD6 , PFN1, PHPT1, PON1, 

PROM2, PSAP, PSG11, PSG9, PVALB, 

PVR, PVRL1, PVRL3, QPCT, QSOX1, 

RBP4, REG1A, ROBO4, SDF4, SDK1, 

SERPINA1, SERPINA4, SERPINA5, 

SERPINC1, SERPIND1, SERPINF1, 

SERPINI1, SH3BGRL, SPRR3, SUSD2, TF, 

TGM4, TNXB, TPP1, TTR, VASN, 

144 
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XPNPEP2 

Prostate cancer 2D SDS-PAGE S100A9 143 

Renal cell 

carcinoma 

SELDI-TOF ALB, IGLC, MASP2, SECTM1, VMO1 158, 159 

Sepsis iTRAQ A1BG, AFM, AMY2A, CDH1, CEACAM8, 

DPP4, GM2A, HP, HSPG2, IκV, KRT1, 

KRT10, KRT16, KRT5, KRT9, LAMP1, 

LCN1, MUC1, SELENBP1 

167, 168 
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Table 8: Number of antimicrobial peptides/proteins among the identified potential 

biomarkers 

Disease Body 

fluid 

Technique Number of 

potential 

biomarkers 

Number 

of AMPs 

MS instrument type 

Blepharitis Tear 2D SDS-PAGE 8 5 Q-TOF  

Climatic droplet 

keratopathy 

Tear iTRAQ 5 4 Q-TOF  

Diabetic retinopathy Tear iTRAQ 6 5 4000QTRAP  

Dry eye syndrome Tear iTRAQ 

SELDI-TOF 

33 21 Q-TOF  

LTQ-Orbitrap  

PBS-IIc ProteinChip 

Reader  

Keratoconus Tear Label-free 

quantification 

26 19 LTQ-Orbitrap 

Multiple sclerosis Tear TMT 1 0 LTQ-Orbitrap 

Mycotic keratitis Tear 2D SDS-PAGE 6 4 MALDI-TOF  

Vernal 

keratoconjunctivitis 

Tear iTRAQ 5 0 MALDI TOF-TOF  

Autism spectrum 

disorder 

Saliva 2D SDS-PAGE 14 7 Q-TOF  

Bisphosphonate-related 

osteonecrosis of the jaw 

Saliva iTRAQ 135 41 LTQ-Orbitrap 

Breast cancer Saliva iTRAQ 92 50 Q-TOF 

Chronic graft-versus-

host disease 

Saliva iTRAQ 

Label-free 

quantification 

140 46 TOF-TOF 

LTQ-Orbitrap 

Fibromyalgia Saliva SELDI-TOF 3 2 ProteinChip SELDI 

system  
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Malignant lesions Saliva iTRAQ 2 0 LTQ-LIT  

Rheumatoid arthritis Saliva SRM 1 0 5500QTRAP  

OSCC Saliva Label-free 

quantification 

SELDI-TOF 

76 30 LTQ-Orbitrap  

ProteinChip biology 

system 

Sjögren's syndrome Saliva Label-free 

quantification 

65 35 LTQ-Orbitrap  

Atopic dermatitis Sweat SELDI-TOF 1 1 Protein Chip Array  

Ectodermal dysplasia Sweat Label-free 

quantification 

159 42 LTQ-Orbitrap 

Schizophrenia Sweat Label-free 

quantification 

SRM 

30 9 LTQ-Orbitrap  

TSQ Quantum Ultra 

 

Chronic rhinosinusitis Nose 

water 

Label-free 

quantification 

6 3 LTQ- Orbitrap  

Bladder cancer Urine 2D SDS-PAGE 

iTRAQ 

Label-free 

quantification 

SRM 

79 14 MALDI-TOF  

LTQ-Orbitrap 

4000QTRAP  

Chronic allograft 

nephropathy 

Urine SELDI-TOF 1 1 Protein Chip Array  

Breast cancer Urine Label-free 

quantification 

24 9 LTQ-Orbitrap 

Congenital obstructive 

nephropathy 

Urine Label-free 

quantification 

16 1 LTQ-Orbitrap 

Coronary artery 

atherosclerosis 

Urine Label-free 

quantification 

2 1 LTQ-Orbitrap  
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Diabetic nephropathy Urine 2D SDS-PAGE 6 1 SELDI-TOF  

5600Triple-TOF  

Kidney chronic 

allograft dysfunction 

Urine Label-free 

quantification 

2 1 LTQ-Orbitrap 

Lupus nephritis Urine 2D SDS-PAGE 3 2 TOF-TOF 

Obstructive sleep apnea Urine 2D SDS-PAGE 11 1 MALDI-TOF  

Polycystic kidney 

disease 

Urine iTRAQ 151 19 LTQ-Orbitrap 

Prostate cancer Urine 2D SDS-PAGE 1 1 MALDI-TOF  

Renal cell carcinoma Urine SELDI-TOF 5 3 ProteinChip Reader 

PCS 4,000  

Sepsis Urine iTRAQ 19 4 LTQ-Orbitrap  

Cervical cancer Vaginal 

fluid 

Label-free 

quantification 

11 3 LTQ-Orbitrap 

HIV-infection Vaginal 

fluid 

iTRAQ 2 1 MALDI-TOF-TOF 

Intra-amniotic 

inflammation 

Vaginal 

fluid 

Label-free 

quantification 

SELDI-TOF 

29 12 LTQ-Orbitrap 

Protein Chip Array  

Preterm labour/ 

preeclampsia 

Vaginal 

fluid 

2D-SDS-PAGE 

SELDI-TOF 

SRM 

34 13 LTQ-LIT 

MALDI-TOF 

Linear ion trap 
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Table 9: Extracellular vesicle biomarkers identified by quantitative proteomics methods.  

The proteins in italic have antimicrobial and immunmodulatory effects, while the bold face refers 

to validated biomarkes. The other font settings (normal, underline) refer to the method by which 

the biomarkers were identified.  

Disease Method Potential biomarkers (Gene symbol) References 

Bladder cancer Label-free 

quantification, 

Dimethyl labeling 

TACSTD2, GSA, RETN, GPRC5A 211, 212 

Brain tumor 2D-DIGE EEF1B, PSMA1, 3DPGH, ARRDC2, NANS, 

CENP-P, EIF3B, PCNA, MTAP, GPNMB, 

EGFR, HSC70, HSPD1 

215 

Deep venous 

thrombosis 

2D SDS-PAGE, 

iTRAQ,  

Gal3BP, A2M 213,214 

Nephropathy/ 

nephrotic 

syndrome 

Label-free 

quantification,  

 

ANPEP, VASN, SERPINA1, CP,  209, 210 

Prostate cancer Label-free 

quantification 

FASN, XPO1, PDCD6IP, CD9, ENO1 208 
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Figure 1 
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