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ABSTRACT

The inelastic buckling behaviour of different rectangular thin isotropic plates having a free edge is
studied. Various combinations of boundary conditions are subject to in-plane uniaxial compression and
each rectangular plate is bounded by an unloaded free edge. The characteristic deflection function of
each plate is formulated using a polynomial function in form of Taylor–Maclaurin series. A deformation
plasticity approach is adopted and the buckling load equation is modified using a work principle
technique. Buckling coefficients of the plates are calculated for various aspect ratios and moduli ratios.
Findings obtained from the investigation are found to reasonably agree with data published in the
literature.
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1. INTRODUCTION

Rectangular plates are used as thin-walled structural elements in engineering structures, such
as ships, aircrafts, bridges, and offshore structures. Analysis of inelastic buckling of thin
rectangular plates is important, especially if the plate material, such as aluminium alloys and
stainless steel, has a low proportional limit in comparison with the nominal yield stress [1].
Inelastic and elasto-plastic buckling of rectangular plates subjected to in-plane compression
have been analysed using different methods and plasticity theories. Recent investigations on
elasto-plastic and inelastic buckling of plates have been conducted [2–11]. Analytical solu-
tions to elasto-plastic and inelastic buckling problems of rectangular plates are available for
simply-supported plates [12]. Closed-form solutions for most boundary conditions are
difficult to obtain owing to the mathematical complexities involved. Various energy and
numerical approaches such as the Rayleigh–Ritz, Galerkin, finite difference, finite element
and differential quadrature methods are, therefore, employed to solve more complex prob-
lems. A work principle technique [13] is an approximate method, which uses total work error
functional and requires minimisation. The technique is applicable to deflection functions
with multiple degrees of freedom and seems to have more effective convergence than the
Raleigh–Ritz technique [14]. The work principle is combined with Taylor’s series to form the
deflection function of rectangular plates. The Taylor’s series is more useful than the trigo-
nometric series in formulating deflection functions of various boundary condition arrange-
ments whose solutions are difficult to solve [14].

The inelastic and elasto-plastic buckling of rectangular plates subjected to free edges have
not received much attention although some researchers [15–20] analysed plate elastic
buckling with free edges. Maarefdoust and Kadkhodayan [7] studied the elasto-plastic
buckling of rectangular plates using deformation plasticity theory and generalised differential
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quadrature method, with each plate having one or two
loaded free edges. The inelastic buckling of different
isotropic thin rectangular plates with an unloaded free edge
is analysed in this article using polynomial deflection func-
tions in the energy approach. Total work error function,
deformation theory of plasticity and Taylor–Maclaurin se-
ries are applied in deriving the critical buckling loads.
Different boundary condition combinations under uniaxial
loading are studied.

2. BOUNDARY CONDITIONS AND
POLYNOMIAL DEFLECTION FUNCTIONS

An isotropic thin rectangular flat plate under in-plane
uniaxial compressive loads is considered (Fig. 1). The
compressive loads act parallel with the longitudinal direction
(x-axis), and the edge numbering is identified as seen in
Fig. 1. Six boundary condition combinations are analysed in
the present study. The boundary conditions are considered
such that each plate has an unloaded free edge. The other
three edges are simply supported, clamped, or a blend of

both simply-supported and clamped. The combinations of
the boundary conditions are SSFS, CCFC, SCFS, SCFC,
CSFS and CSFC (Fig. 2). The letters are denoted such that
the first letter represents the support condition at edge 1, the
second letter is for edge 2, the third letter is for edge 3 and
the fourth letter is for edge 4. For example, for the SCFC
plate, edge 1 is simply supported, edges 2 and 4 are clamped,
whereas edge 3 is free.

A non-dimensional system is obtained from the Carte-
sian axes to make it easier to solve the problem:

x ¼ aX; y ¼ bY (1)

where a and b are the sides of the plate which represent the
length and width, respectively while X and Y are non-
dimensional axes in terms of x-axis and y-axis, respectively.
The boundary conditions for the simply-supported edges at
X 5 0 and X 5 1 are as follows:

w ¼ 0; wXX ¼ 0 (2)

and are, at Y 5 0 and Y 5 1:

w ¼ 0; wYY ¼ 0 (3)

where w is the deflection function, and wXX and wYY are the
second derivatives of the deflection with respect to the X-
and Y-axes, respectively. Similarly, the boundary conditions
for the clamped edges at X 5 0 and X 5 1 are as follows:

w ¼ 0; wX ¼ 0 (4)

and, at Y 5 0 and Y 5 1, are:

w ¼ 0; wY ¼ 0 (5)

where wX and wY are the first derivatives of the deflection
with respect to the X- and Y-axes, respectively. Repeating the
same procedure for free edges gives the boundary conditions
at X 5 0 and X 5 1 as follows:

wXX ¼ 0 ; wXXX ¼ 0 (6)

and the boundary conditions at Y 5 0 and Y 5 1 are as
follows:

Figure 1. Rectangular plate showing the loading condition and the
edge numbers

Figure 2. Boundary conditions of rectangular plates)
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wYY ¼ 0 ; wYYY ¼ 0 (7)

where wXXX and wYYY are the third derivatives of the
deflection with respect to the X- and Y-axes, respectively. In
the problem definition shown in Fig. 2, the free edge
boundary condition is only considered along the edge, Y 5
1. Thus, the boundary conditions for the free edge for all the
plates being considered are as follows:

wYYðY ¼ 1Þ; wYYYðY ¼ 1Þ ¼ 0 (8)

The Taylor’s series refers to any representation of a
function, fx, as an infinite sum of terms calculated from the
values of the derivatives of the function at a single point, x0
[21]. Glyn [21] expressed Taylor’s series as follows:

f ðxÞ ¼
X∞
n¼0

ðx � x0Þn
n!

f ðnÞðx0Þ (9)

The Maclaurin series expansion is a special type of Tay-
lor’s series when x0 is equal to zero. Taking fn(x0)/n! as an
and making x0 equal to zero, the Taylor–Maclaurin series
may be written as follows:

f ðxÞ ¼ a0 þ a1x þ a2x
2 þ a3x

3 þ a4x
4 þ . . .þ anx

n (10)

A polynomial function written in form of Eq. (10) can be
used to express the deflection function of a rectangular plate
[22]. Using this approach involves applying the non-
dimensional coordinate system given in Eq. (1) and trun-
cating the polynomial series at the fifth term. The deflection
equation, therefore, is expressed as follows:

w ¼A
��
a0 þ a1X þ a2X

2 þ a3X
3 þ a4X

4
��
b0 þ b1Y

þ b2Y
2 þ b3Y

3 þ b4Y
4
��

(11)

where A is the amplitude, a1, a2, a3 and a4 are unknown
constants of the polynomial series with respect to the
X-direction, and b1, b2, b3 and b4 are unknown constants of
the polynomial series with respect to the Y-direction. The
deflection function (11) can be expressed in terms of the
buckling curve expression, H, as follows:

w ¼ AH (12)

The method for calculating the unknown constants of the
buckling curve expression of Eq. (11) for any combination of
boundary conditions of rectangular plates are explained in
detail by Onwuka et al. [23]. Following similar procedures
based on boundary conditions (2) to (7), the characteristic
deflection functions of the plate are as follows:

SSFS:

w ¼ A
��
X � 2X3 þ X4

��
8Y � 4Y3 þ Y4

��
(13)

CCFC:

w ¼ A
��
X2 � 2X3 þ X4

��
4Y2 � 4Y3 þ Y4

��
(14)

SCFS:

w ¼ A
��
1:5X2 � 2:5X3 þ X4

��
8Y � 4Y3 þ Y4

��
(15)

SCFC:

w ¼ A
��
X2 � 2X3 þ X4

��
8Y � 4Y3 þ Y4

��
(16)

CSFS:

w ¼ A
��
X � 2X3 þ X4

��
4Y2 � 4Y3 þ Y4

��
(17)

CSFC:

w ¼ A
��
1:5X2 � 2:5X3 þ X4

��
4Y2 � 4Y3 þ Y4

��
(18)

3. CRITICAL BUCKLING LOAD

The governing plastic buckling differential equation of
equilibrium of a thin rectangular isotropic plate under in-
plane uniaxial compressive loading along the x-axis is
given as follows [24]:�

1
4
þ 3
4
Et
Es

�
v4w
vx4

þ 2
v4w

vx2vy2
þ v4w

vy4
� Nx

�D
v2w
vx2

¼ 0 (19)

where Et and Es are the tangent and secant modulus,
respectively, Nx is the in-plane compressive load, and �D is
the plate flexural rigidity in the plastic range. The tangent
modulus and secant modulus are both determined by the

Figure 3. Aspect ratio versus buckling coefficient of SSFS rectan-
gular plate

Figure 4. Aspect ratio versus buckling coefficient of CCFC rectan-
gular plate
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uniaxial stress-strain curve of the material of the plate. In Eq.
(19), the flexural rigidity within the plastic portion of the
stress-strain curve is expressed as follows [24]:

�D ¼ Est3

9
(20)

where t is the plate thickness.
A work principle method was applied in [14] using a

total work error function. For a single degree of freedom, the
buckling load Eq. (21) is obtained:

where F is the aspect ratio. The aspect ratio is defined in
in Eq. (22):

f ¼ a=b (22)

Critical buckling occurs when the equilibrium of the plate
changes from stable to unstable, and the critical buckling load
can be expressed in the form:

Nx;CR ¼ p2�D
b2

k (23)

where Nx,CR is the critical inelastic buckling load, and k is the
buckling coefficient. The critical load is calculated by first finding
the integrals of buckling load Eq. (21) through the application of
variational principles. For the SSFS plate, the buckling curve
expression from Eqs (12) and (13) is given in Eq. (24):

H ¼ �
X � 2X3 þ X4

��
8Y � 4Y3 þ Y4

�
(24)

The numerical values of the integrals of the SSFS plate are
as follows: Z1

0

Z1

0

H
v4H
vX4

vXvY ¼ 52:7847619 (25)

Z1

0

Z1

0

2H
v4H

vR2vQ2
vXvY ¼ 30:19755067 (26)

Z1

0

Z1

0

H
v4H
vY4

vXvY ¼ 3:779047619 (27)

Z1

0

Z1

0

H
v2H
vX2

vXvY ¼ 6:118457978 (28)

Substituting Eqs (24)–(28) into Eq. (21) yields the expres-
sion for the critical inelastic buckling load expressed in
Eq. (29).

Figure 5. Aspect ratio versus buckling coefficient of SCFS rectan-
gular plate

Figure 6. Aspect ratio versus buckling coefficient of SCFC rectan-
gular plate

Nx ¼
�D

�R1
0

R1
0

h
1
f2

	
1
4 þ 3

4
Et
Es



H v4H

vX4 þ 2H v4H
vX2vY2 þ f2H v4H

vY4

i
vRvQ

�

b2
R1
0

R1
0
H v2H

vX2 vRvQ

(21)

Nx;CR ¼
�D
b2

2
460:4647619

p2

	
1
4 þ 3

4
Et
Es



þ 30:19755067 þ 3:779047619p2

6:118457978

3
5 (29)
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Expressing Eq. (29) in form of Eq. (23) gives the buckling
coefficient of the SSFS plate in Eq. (30).

k ¼ 1:001292

f2

�
1
4
þ 3
4
Et
Es

�
þ 0:500069þ 0:062581f2Þ (30

The procedures described from Eqs (24) to (30) are
applied to the other rectangular plates. The buckling co-
efficients of the CCFC, SCFS, SCFC, CSFS and CSFC plates
are given in Eqs (31)–(35), respectively.

k ¼ 4:255490

f2

�
1
4
þ 3
4
Et
Es

�
þ 0:607927þ 0:265968f2 (31)

k ¼ 2:127745

f2

�
1
4
þ 3
4
Et
Es

�
þ 0:500069þ 0:054338f2 (32)

k ¼ 4:255490

f2

�
1
4
þ 3
4
Et
Es

�
þ 0:500069þ 0:051478f2 (33)

k ¼ 1:001292

f2

�
1
4
þ 3
4
Et
Es

�
þ 0:607927þ 0:323334f2 (34)

k ¼ 2:127745

f2

�
1
4
þ 3
4
Et
Es

�
þ 0:607927þ 0:280744f2 (35)

4. RESULTS AND DISCUSSION

The factors that influence the plate buckling coefficient are
the aspect ratio and moduli ratio, as can be seen from Eqs.
(30)–(35). Thus, buckling coefficients are calculated for
various aspect ratios and moduli ratios. The relationship
between the buckling coefficient and the aspect ratio are
presented from Figs 3 to 8 for the different rectangular
plates. A special case exists for a square plate with the aspect
ratio being equal to one. Also note that by setting Et 5 Es,
the moduli ratio is equal to unity, and the problem is thus
reduced to elastic buckling theory. A general trend that can
be observed from Figs 3 to 8 is that the reduction in the
moduli ratio decreases the buckling coefficient of the plate.
Differences in buckling coefficients due to variations in
moduli ratio are higher for aspect ratios ranging from 1 to 2.
However, as k approaches 4, the effect of the moduli ratio on
the buckling coefficient reduces significantly.

The aspect ratio significantly influences the buckling
coefficient of the plate, especially when the aspect ratio is less
than one (F < 1). For F ≤ 1, the values of the buckling
coefficient were generally highest for the CCFC plate, fol-
lowed by SCFC plate. The least values of buckling coefficient
for F ≤ 1 are observed for the SSFS plate. At F 5 4, the
CSFS plate had the highest buckling coefficients, while the
SCFS produced the least values of buckling coefficient. The
least values of buckling coefficient for the SSFS, CCFC and
CSFC are observed for 1.5 ≤ F ≤ 2. Depending on the actual
values of moduli ratio for the SCFS and SCFC, the corre-
sponding lowest values of buckling coefficient lie between 2
≤ F ≤ 3, whereas those of CSFS exist within 1 ≤ F ≤ 1.5.
The least buckling coefficient is usually of practical interest
because lower values of buckling coefficient will give corre-
sponding lower stresses and loads that will cause buckling.

The relationship between the buckling coefficient, plate
thickness, and critical inelastic buckling stress can be derived
by substituting the flexural rigidity expression given in Eq.
(20) into Eq. (23) and making σx,CR the subject of the
equation. Therefore:

σx;CR ¼ p2kEs
9

	t
b


2

(36)

where σx,CR is the critical inelastic buckling stress. In the
classical thin plate theory t/b is less than 0.05 (Eq. 36). From
Eq. (36), the critical inelastic buckling stresses of a thin
rectangular plate having one unloaded free edge can be
determined for different arrangements of boundary condi-
tions. It may be observed that the critical buckling mode
occurs in mode m 5 1. The critical buckling stress defined
by Eq. (36) expresses the limit state criteria for the plastic
buckling of the thin rectangular plate. However, the actual
values of the secant modulus need to be first known from the
uniaxial stress-strain curve of the plate material.

There is shortage of literature for results of inelastic/
plastic buckling of rectangular thin plates with an unloaded
free edge. To validate the accuracy of the present study, the
solutions are compared with available data found in the

Figure 7. Aspect ratio versus buckling coefficient of CSFS rectan-
gular plate

Figure 8. Aspect ratio versus buckling coefficient of CSFC rectan-
gular plate
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literature. Table 1 shows the elastic buckling coefficient for
uniaxial compression of SSFS rectangular thin plate obtained
from different authors. The results of the present study
reasonably agree with previous analytical solutions, especially
for F ≤ 1. The results presented in Table 1 are for different
material properties; the values of m used in Refs. [25] and [12]
are 0.25 and 0.3, respectively. The present study based on [21]
applied m 5 0.5 in deriving the governing equation, and the
results given in Table 1 were set at Et/Es 51.

5. CONCLUSION

In this study, the inelastic buckling behaviour of uniaxially
loaded isotropic thin rectangular plates with an unloaded
free edge is investigated using a modified Stowell’s tech-
nique. The combinations of the boundary conditions are
SSFS, CCFC, SCFS, SCFC, CSFS, and CSFC. A unique
deflection function was first obtained for each plate using
polynomial functions in the form of Taylor–Maclaurin se-
ries. The buckling coefficients of each rectangular plate for
various values of aspect ratio and moduli ratio were pre-
sented. The solutions reasonably agreed with existing results
documented in literature. The aspect ratio has a significant
influence on the buckling coefficient of the plate, especially
when the value of the aspect ratio is less than one (F < 1).
The effect of moduli ratio on the buckling coefficient de-
creases as the aspect ratio increases. Inelastic buckling co-
efficients of thin rectangular plates having a free unloaded
edge are presented which can be used to compare other
derived solutions of future investigations. The Taylor’s series
used in this study will be useful in formulating deflection
functions of different combinations of boundary conditions
whose solutions are difficult to obtain. The technique pro-
posed in this paper may be extended to other loading
and boundary conditions, such as plates under biaxial
compression and plates with loaded free edges.
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