Inequalities on two variable
Gini and Stolarsky means

doktori (Ph.D.) ertekezés

Készitette: Czinder Péter
Témavezeto: Dr. Pales Zsolt

DEBRECENI EGYETEM
TERMESZETTUDOMANYI KAR

Debrecen, 2005






Ezen értekezést a Debreceni Egyetem Matematika doktori program Analizis
alprogramja keretében készitettem 2002-2005 kdz6tt és ez(ton nyujtom be a
Debreceni Egyetem doktori (Ph.D.) fokozaténak elnyerése céljabél.

Debrecen, 2005.
Czinder Péter
jelolt

Tanusitom, hogy Czinder Péter doktorjel6lt 2002-2005 kdzott a fent nevezett
doktori alprogram keretében iranyitasommal végezte munkajat. Az értekezés-
ben foglaltak a jelolt 6nall6 munkéjan alapulnak, az eredményekhez 6néallo
alkotd tevékenységével meghatarozé6 madon jarult hozza. Az értekezés elfo-
gadasat javaslom.

Debrecen, 2005.
Dr. Pales Zsolt
témavezetd







Acknowledgements

I should like to thank everybody who contributed a good deal to the production
of this dissertation with their encouragement and help. First and foremost | express
my thanks to my supervisor Professor Zsolt Pales for not finding my situation hope-
less after 15 years of interruption; instead he helped me to "go back to my roots".
What is more is he honoured me with his friendship. | would like to say thank you
to every colleague of the Department of Analysis (Mihaly Bessenyei, Zoltan Boros,
Zoltan Dar6czy, Borbala Fazekas, Attila Gilanyi, Attila Hazy, Zoltan Kaiser, San-
dor Kéantor, Karoly Lajkd, Laszl6 Losonczi, Gyula Maksa, Agota Orosz, Arpad
Szaz, LészIo Székelyhidi) who | had the good fortune to meet at exams and/or con-
ferences for accepting my particular status as an "elderly" correspondent student
and giving me all the help | needed for my preparations and research. Last but
not least I am grateful to my wife, Ddra and my sons, Balazs and Zoltan, and fur-
thermore to all my colleagues who, because of my studies and research, frequently
endured my (mental and physical) absence.






Contents

Chapter 1. Introduction 1
Chapter 2. Preliminary results 3
2.1. Introduction 3
2.2.  An elementary identity 3
2.3. Representations by integral averages of the means with equal
parameters 3
2.4. A consequence of Karamata’s inequality 4
2.5.  Auxiliary functions and their properties 5
2.6.  On the partial derivatives of the Gini and Stolarsky means 7
Chapter 3. Asymptotic properties 9
3.1. Introduction 9
3.2. Elementary asymptotics 9
3.3.  Composed asymptotics 12
Chapter 4. Extensions and applications of the Hermite-Hadamard inequality 17
4.1. Introduction 17
4.2. The weighted Hermite-Hadamard inequality for convex or concave
functions 17
4.3. 0Odd and even functions with respect to a point 19
4.4, The weighted Hermite-Hadamard inequality for convex-concave
functions 20
4.5.  An application for Gini and Stolarsky means 24
4.6. A variant of the Hermite-Hadamard inequality 26
Chapter 5.  Comparison of Gini means 31
5.1. Introduction 31
5.2.  On certain directional derivatives 32
5.3. A new proof of the comparison theorem for Gini means 34
Chapter 6. Comparison of Stolarsky means 37
6.1. Introduction 37
6.2. Comparison theorem for Stolarsky means revisited 37

Chapter 7. Comparison of Gini and Stolarsky means 41

7



7.1. Introduction

7.2.  Necessary conditions

7.3. Particular comparison inequalities
7.4. Sufficient conditions

Chapter 8. Minkowski inequality for general two variable means
8.1. Introduction
8.2.  Minkowski inequality and convexity

Chapter 9. Generalized Minkowski inequality for Gini means
9.1. Introduction
9.2. Proof of the generalized Minkowski inequality for Gini means

Chapter 10. Generalized Minkowski inequality for Stolarsky means
10.1. Introduction
10.2. Necessary conditions
10.3. Minkowski-separators and sufficient conditions

Summary
Osszefoglalas

Bibliography

41
41
42
48

55
55
55

59
59
61

65
65
65
67

73
83
93



CHAPTER 1

Introduction

There is an extended literature concerning the so-called Gini and Stolarsky
means. These two variable homogenous means play important roles both in the
theory of means and in the application of inequalities in various branches of math-
ematics.

We recall now the definition of these means. If x, y are positive numbers, then
their Gini mean is defined by:

1
za_,'_ya a—b .
G . (Ib+yb> ) ifa # 0,
ab(T,y) = ¥ log 244 lox y —
eXp ( ;Ea,_;’_ya ) b ITa = Y

while their Stolarsky mean is the following:

( 1
(4523)™, (0 Db # 0,2 %
exp<_%+w), ifa=0b£0x#y,

$a_,ya
Sa,b(%?J) == rd—y% .
<a(logz—ylogy)> ’ ifa#0,b=0,2#y,

/TY, ifa=b6=0,

x, ifx=y.

Q=

This setting is a special case of a more general one. Namely, the concept of
the Gini mean can be defined for any number of positive variables in the following
way:

1
L%lx,‘})ﬂ ; if a # b,
Ga,b;n(x) = Ga,b;n(mla Z2,. .. 71'11) = <Zi:1 xz 75
S xdlogx; . .
exp <W) , ifa=0b.
Similarly, the Stolarsky — or, as it is also known in the literature: the difference
mean — of n (n € N) positive numbers can be given by divided differences.

The power mean with exponent p of the positive numbers = and y can be
obtained both as G, (x, y) and Sa;, ,(x, y). That is, the power means are included
in both classes of means. More surprisingly, as it has recently been proved by Alzer
and Ruscheweyh [4], the class of power means forms exactly the intersection of
the classes of Gini and Stolarsky means.

1



2 CHAPTER 1. INTRODUCTION

In particular, S 1, So,0, and S_p _1 are the arithmetic, geometric, and har-
monic means, respectively. The special settings S1 o and S, are called logarith-
mic and identric means.

These definitions create a continuous, moreover, infinitely many times differ-
entiable function

(a,b,z,y) — My p(x,y)
on the domain R? x R?%, where M, ;(z,y) can stand for either G, (x,y) or
Sa,b(xv y)

The Gini and Stolarsky means provide us a large field for research. Extended
surveys have been done towards the comparison of them. Others aim at Holder or
Minkowski-type relations — and so on.

In the recent years, under the supervision of Professor Zsolt Pales, my studies
were directed first of all to these topics. This activity can be followed by [16], [17],
[15], [19], [18], [14], [13] (the first five are joint works with my supervisor). This
thesis covers the main part of the results.

In the meantime some of our theorems, concepts have been completed or re-
formulated. Additionally, after publishing the above papers some new connections
were found. Therefore, | changed the original structures of the articles and tried to
reorganize them in the way as it seemed to be the most logical.

My thesis consists of three main parts. Chapters 2, 3 and 4 serve as prelimi-
naries for the rest of my work. In Chapters 5, 6 and 7 | present the results, obtained
in the field of comparison of our means. Finally, Chapters 8, 9 and 10 deal with
the generalized Minkowski-type inequalities, concerning the two variable Gini and
Stolarsky means.

The results are builded on known statements. To distinguish them, the next
convention was followed. The new results, published first in [16], [17], [15], [19],
[18], [14] and [13] were numbered numerically, like, for example, THEOREM 1.1,
while the known results were labelled by letters: LEMMA 1.A. In the first case the
reference number is also indicated.

Finally, in the cases when a property holds both for the Gini and the Stolarsky
means, the notation M, ; (or sometimes simply: A7) will be applied. If an addi-
tional specification is needed, M = G stands, for instance, for the fact that the
statement concerns only the Gini means.



CHAPTER 2

Preliminary results

2.1. Introduction

In this chapter we collect the most important elementary properties of the Gini
and Stolarsky means. Section 2 consists of a (well known) basic identity that will
help us several times to avoid the unnecessary duplications when proving certain
statements for the parameter pairs (a, b) and (—a, —b).

Nevertheless the cases in the definitions of Gini and Stolarsky means seem
quite different, we will see that they all can be derived from the case of equal pa-
rameters, which — in a sense — plays a central role in our treatment. The following
statement can be found in the literature (see e.g. [53]), whose proof will also be
presented for sake of completeness. Lemma 2.B turns out also to be very useful,
since it makes possible to apply the Hermite-Hadamard-type theorems. The details
can be read in Section 3.

Lemma 2.1, presented in Section 4 is the first result that can directly be con-
verted to inequalities for Gini and Stolarsky means.

In Section 5 we get familiar with three elementary functions, playing important
roles at the comparison theorems. Their fundamental and useful properties will
also be presented.

Finally, in the last section we describe the first (partial) derivatives of the Gini
and Stolarsky means since we will apply them many times. (Due to the symmetry,
it is enough to calculate them by their first variable.)

2.2. An elementary identity

LEMMA 2.A. Fora,b € R, we have the identity

(21) Ma,b(xay) = [M—a,—b(x_lvy_l)]_l

(x,y € R+)

2.3. Representations by integral averages of the means with equal
parameters

LEMMA 2.B. Let the positive numbers x and y be fixed. Then for any real
numbers a, b (a # b) the following formula holds:

a

(2.2) log My p(x,y) = log M +(x, y)dt.

a—> b

3



4 CHAPTER 2. PRELIMINARY RESULTS

PROOF. We may assume that x # y, since the case z = y is trivial. For Gini
means, we have

1 e 1 @ ztlogx + y'logy
log G dt = dt
a—b/b og t,t(‘rvy) a—b/b xt—l-yt

1 N 1 %+ y°
=l +y)}b:a—blog:cb+yb:logG“’b@’y)'

a

In the Stolarsky case we will assume that z > yanda > b. If0 < b < a or
b < a < 0then

1 @ 1 e 1 ztlogz —yltlogy
log S dt = —= dt
a—b/b og t,t(xvy) a—b/b ( t + .Tt—yt
zt — oyt @ 1 o —y°
log ( ; > L =3 log mbgyb =log Sap(z,y).

If 0 =b < aorb < a=0then we can apply the continuity of the integral as the
function of its bounds. For example,

1 [/ 1 a 1 zllogz —yllogy
= log S(a, y)dt = 1 ( - )dt
a/o 08 St.1(,y) b0t a—b/b ( t + at —yt
1 AN R a_ ya b_ b
= — lim |log S =— logx Y _ lim logx i
a b—0+ t , @ a b—0+ b

1 a__ ,a
= <10g & - Y-~ log(logz — log y)) = log Sa0(z, y).

a—b

a
Finally, inthe case b < 0 < a

1 a 1 0 a
; / log Sy ¢(z,y)dt = 7( / log St +(,y)dt + / IOgS@t(fE,y)dt)
b a—>b\J, 0

a —

1 1 x® —y?
p— <aa(log P log(log x — log y))
b _ yb
— log(log x — log y))) = log Sap(, y).

—b% (log:C

2.4. A consequence of Karamata’s inequality
LEMMA 2.1.([18]) For any positive x # 1,
1 -1\*
2.3) et (z .
2 log
PROOF. By Karamata’s classical inequality (see [40, p. 272]), we have that

x+ /3 - 1

14213 " logx’

(2.4)
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Thus, it suffices to show that

3
2.5) 2z tl) (“"”1/3> .

2 14 z1/3

Dividing both sides by x, then multiplying them by 2(1 +:c1/3)3, finally, collecting
the terms on the right side, one can easily check that (2.5) turns to

0< @+ 22+ 1)@ —1)4,
which is obviously true for all positive = # 1. O

The inequality stated in the above lemma can be translated to an inequality
concerning the geometric, arithmetic and logarithmic means.

COROLLARY 2.2.([18]) For all z,y > 0,

(26) S(%,O(x>y) ’ 52,1($7y) < Sio(ﬂ?,y).

PROOF. If z = y, then (2.6) is obvious. If z # 1 and y = 1, then (2.6) is
literally the same as (2.3), hence (2.6) holds in this case, too. Now replacing x by
x/y in (2.3), and using the homogeneity of the Stolarsky means, we get that (2.6)
is valid for all positive x # v. O

REMARK 2.3. Arguing in the same way as in the proof of Corollary 2.2, one
can deduce that the inequalities (2.4) and (2.5) are equivalent to

SS,O(x’y) ’ G? 1 (l’,y) < S%,O(l'vy)

3’3
and
SQ,I(ZE?y) = GO,I(Zan) < G%’%(l‘,y),

respectively. The latter inequality can also be derived from the comparison theo-
rem of two variable Gini means (cf. [48], [49], [16] and [19]).

2.5. Auxiliary functions and their properties
DEFINITION 2.4. Define the functions &, M, L : R? — R by

la| — o]
2.7) E(a,b) :{ a—>b ifa # b,

sign(a), ifa =0,

min{a,b}, ifa,b>0,
(2.8) M(a,b) := <0, if ab < 0,
max{a,b}, ifa,b<0,
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ai_b, if0 <aband a # b,
log(a/b)

(2.9) L(a,b) =9 g, if0 < aband a = b,
0, if ab < 0.

LEMMA 2.5.([16]) For the function &, the following statements hold:

(i) € is symmetric with respect to its variables and it is also odd, that is
&(—a,—b) = —E&(a,b) foralla,b € R;
(ii) & is continuous on R? \ {(0,0)} and &(a, —a) = 0 foralla € R;
(iii) For fixed a € R, the function b — &(a, b) is increasing over R. If a < 0, then
this function is strictly increasing on R, furthermore, —1 < &(a,b) < 1 for

alla,b € R.
PROOF. These results can immediately be obtained from the definitions of the
function &. O

The function £ can be considered as the extension of the logarithmic mean
L = S1. (Clearly, if a,b > 0 then L(a,b) = Sp1(a,b), that is, L coincides with
the logarithmic mean on R%..)

LEMMA 2.6.([17]) For the function L, the following statements hold:

(i) L is symmetric with respect to its variables and it is also odd, that is,
L(—a,—b) = —L(a,b) forall a,b € R;
(ii) L is continuous on R?;
(iii) For fixed a € R, the function b — L(a,b) is increasing over R. If a > 0,
then this function is strictly increasing on R and limy_, ., L(a, b) = oo;

(iv) L is concave over the region [0, o).

PrROOF. The first three properties of £ can be obtained easily. We note that
(iii) is the consequence of the strict concavity of the log function.
For (iv), we have to prove that the matrix

oL 0128
0L Ok
is nonpositive definite. Really, due to the symmetry of L,

0114 0120 —0
Ol O0nL | 7

and an elementary calculation shows that ;1L < 0 on the domain indicated. O

REMARK 2.7. For (iv) we may also refer to a statement, detailed later in Chap-
ter 10. Namely, by Theorem 10.A, S} o satisfies the reversed Minkowski inequal-
ity. Thus, using also the homogeneity,

L(tar + (1 —t)by, taz + (1 —t)by)
> L(tay, tas) + L((1 — )by, (1 — t)ba) = th(ar,az) + (1 — t)L (b1, bo)
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for ai,as,b1,b0 > 0, t € [0,1]. By continuity, this inequality extends for a;, as,
by, by > 0, hence L is concave on |0, 00)2.

The next lemma will also be used several times.

LEMMA 2.8.([17]) Suppose that 2 < a + b. Then

L(a,b)

<
oy Lat+b-1), if  min{a, b}

(=)
PROOF. Due to the symmetry, we can assume that a < b.

First, let us assume thate < 1. Thenb > 2 — a > 1.
In the case a < 0,

<
é) 1.

L(a,b)=0< L(1,a+b—1).
In the case 0 < a < 1 the only way to provide a = bisa = b = 1. In this case our
statement is trivial. Consequently, we may suppose that a # b.

b
Define t :=
b

. With this choice of ¢, we have that ¢ € [0, 1), furthermore
—a

ta+(1—-t)b=1 and tb+(1—t)a=a+b—1.
Due to this reason and the concavity of £ (see Lemma 2.6 (iv)), we get that

L(a,b) = tL(a,b)+ (1 —1)L(b,a)
< L(ta+ (1 —t)b,tb+ (1 —t)a)
= L(l,a+b—1).
b—

Suppose now that ¢ > 1. Definet .= ————
a+b—2

reason, we will enclose the case a = b.)
Again, t € [0,1),

. (For the above mentioned

t-1+(1—-t)a+b—-1)=a and tla+b—1)+(1—t)-1=0.
Consequently, applying Lemma 2.6 (i) and (iv),
LA,a+b—-1) = tL(l,a+b—-1)+(1—-t)L(a+b—1,1)

< L(t+A—=t)(a+b—1)t(a+b—1)+ (1 1))
= L(a,b).

Thus, the proof of the lemma is complete. O

2.6. On the partial derivatives of the Gini and Stolarsky means

An elementary computation yields the following formulae for the partial de-
rivatives of the Gini and Stolarsky means.
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REMARK 2.9. Let a, b be any real numbers. Then

0
(2.10) o~ Gaple,y) =

0
@11) o Susle,y) =

1 a—1 b—1
pSanl@y) (adge b3 s ).

Sa,a(x>y) <_ax (27 —ya)2

1 ra—1 b1
a_bGa,b(xay) (axa+ya - xb+yb) )

ifa # b,

Guaalz,y) <ar“‘1y“(logw—logy) 4 oae! >7

($a+ya)2 Ta4yo

ifa =10,

Yy
if (a—b)ab# 0,z # vy,
y° (log z—log y) + zo~1 ) ’

m(liy(l

ifa=b+#0,z #y,

a—1

a—1

1
Savo(x’y) (J:xa—y“ - az(logm—logy)) ’

ifa#£0,b=0,z # vy,

¥ ifa=b0=0,

ifx=y.

It is also easy to see that all these functions are continuous on the domain

(a,b,z,y) € R x R2.



CHAPTER 3
Asymptotic properties

3.1. Introduction

In this chapter we list a number of asymptotic properties of Gini and/or Sto-
larsky means. In the first section we will perform elementary transformations on
the means, while in the last one the limits of some composed expressions will be
calculated.

These results will be extremely useful when proving the comparison theorems.

We will try to preserve the symmetry of the treatment concerning the two fam-
ilies of our means, that is, if possible, we will present the theorems simultaneously.

3.2. Elementary asymptotics
LEMMA 3.1.([16]) Assume that a,b € R. Then

. +
lim (Mgp(z+ 2,y +2) — 2) = Ty (z,y e Ry).

2—00 2

PROOF. Using the homogeneity of M, ; and replacing y by 1/¢, we get

) . Myt +1,ty+1)—1
lim (M, —z)=1 = ’
Jom, (Maplar+ 2y +2) = 2) = Jligy t

)
= o Map(tz + 1ty + 1)‘

We can apply the chain rule of the differentiation of composed functions. Applying
Remark 2.9, one can directly check that in all cases

t=0

P
Motz + 1, ty + 1)‘

ot =
0 0 T4y
=X - 7Ma :I:, + . 7M(l :L', g s
Ox ol y)‘(x,y)=(171) Y Jy #(@:9) (z.y)=(1,1) 2
which completes the proof. O

REMARK 3.2. This result is known also for any homogeneous, symmetric
means (cf. [1], [2], [9] or the proof of Theorem 8.3).

9
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LEMMA 3.3.([16]) Suppose that a, b are real numbers. Then

(3.1)
Y, if min{a,b} > 0,
. N
$£Igl+ Gap(®,y) = y-2 maxtadl | if min{a,b} = 0 and max{a,b} > 0,
0, if min{a,b} < 0 or (a,b) = (0,0),
while
_71 . .
3.9 lim S, p(z,y) =4 Y€ Lt if min{a,b} > 0,
(3.2) et bl9) { 0, if min{a,b} <O0.

PrROOF. The statement easily follows from the definition of our means.
For (3.1) suppose first that a, b > 0, a % b. Then

. Ty o oty 21
S, Gapl@,y) :JH&(W) =) =y

For the case a = b > 0 we note first that lim,_.g. % logx = 0. Thus,

. . z%logx + y*logy
i, Gaale) = Jig oxp( = 5m)
Y <y“logy> B (yalogy> _
= lim exp = exp Y
z—0+ Tt +y° v

Suppose now that min{a,b} = 0 and max{a,b} > 0, for example, a > 0 and
b= 0. Then

a a, 1
x ‘;y )a:y.2_%’

as we stated. Finally, assume that min{a, b} < 0, for example, @ < 0 and a < b.
Observe first that

lim Guolz,y) = li (
A, Guole,y) = liz,

t*+1
1Im ——— =00
t—0+ 0 +1
(If b > 0 then the numerator tends to co and the denominator tends to 1, thus their
ratio also tends to co. If b < 0 then we can apply L’Hospital’s rule to obtain our
result.) Consequently,

a a a 1 ta 1
" +y — ya—b lim (:C/y) + — ya—b lim + — 00
a—0+ xb 4 yb =0+ (z/y)? + 1 t—0+ tb 4+ 1

Since the exponent 1/(a — b) is negative, we get that lim, o4 G, 5(z,y) = 0, as
we stated.
If a = b < 0thenlim, g1 z*logx = —o0, therefore,

z%logx + yalogy> _0
x¢ 4 @ -
Since the case (a, b) = (0, 0) is trivial, the proof of (3.1) is complete.

lim Ggq(z,y) = xli)l&r exp(

z—0+
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To prove (3.2), suppose first that a # b. Then

. ) ¢ — ya b ﬁ _ya b %
xli%lJr Sap(z,y) = Jg&( . m) = ( )

b\ a5 o
:y<7> =y-e L(a,b) |
a

Moreover,
. ) 1 z%logx + y*logy
xli%i Sa,a(ﬂf, y) = zlirtljl+ eXp(_E + x4y >
1 —y?l
— exp(— + —L1080)
a —y@

1

1 _ 1
:exp(—a—l—logy) :y-eig =y-e L(a,a) |

The proof of the case min{a,b} < 0 is similar to the one applied for the Gini
setting, therefore, it is omitted. O

REMARK 3.4. Applying the homogeneity of our means, the previous lemma
can be reformulated in the following way:

(3.3)
1 if mi b 0
 Gaey [, Mminted) >0
zh_{Tolo — s 2" max{ab} - jf min{a,b} = 0 and max{a,b} >0,
0, if min{a,b} <O0or (a,b) =(0,0),
while
S S
(3.4) lig S22 ] TEE i minfa,b) > 0,
oo T 0, if min{a,b} <0.

REMARK 3.5. Due to the continuity of M, ;(x,y) in its variables, Lemma 3.3
can be extended in the following way: Suppose that a, b are real numbers. Then
(3.5

2, if min{a,b} >0,
. —71 -

mli%lJrGa,b(ﬂ%y) =94 z-2 max{abljf min{a, b} = 0 and max{a,b} > 0,

y—z 0, if min{a,b} < 0or (a,b) =(0,0),
while

S

3.6 lim S,4(z,y) =4 %€ L@®  if min{a,b} > 0,
(36) it +l@y) { 0, if min{a,b} <O0.

Yy—z

LEMMA 3.6.([16]) Assume that a,b > 1. Then

zli{go (Ga,b(x7y+z)_z) =Y (x,y€R+)-
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PROOF. Using the homogeneity of G, and replacing z by 1/¢, we get

Gopltz, ty +1) —1
lim (Gop(z,y+ 2) — z) = lim ap(te,ty + 1) .
Z2—00 ’ t—0 t

Due to Remark 3.5, the numerator on the right hand side goes to 0, hence we can
apply L’Hospital’s rule again to obtain the statement. By the chain rule, again,

0
—Gop(te, ty + 1)’

ot t=0

9 )
=z- lim Gop(z,y) +y- lim  —Gyp(z,y) =y.
e R P G T o Y e

3.3. Composed asymptotics
THEOREM 3.7.([19]) Let a, b € R be arbitrary. Then
Map(t,1) =52 [ = ifM =G,
S L 7 1 -l R
CLT, if M = S

PROOF. Let ¢ be an arbitrary positive number. By Remark 2.9,

2 ) 5 (afimr — bl ) Ganlt. 1), ifa#b,
—Ggap(t, 1) =
t ’ 2a—1 alo a—1 )
0 t +((ta1+g1§;rl)t Gun(t,1), ifa—b,
and a direct calculation shows that
0? ) a1 -1
—Gap(t,1) = —— =G, t,l( S )
o012 b(t,1) u—bot b )at“—i-l T
1 — 1)ta72 — ¢2a=2 h— 1)¢b—2 _ $2b—2
# gCantt ) (e —p= ):
a—b 7 (t"“ + 1)2 (tb + 1)2
while
0 0 (alogt + 1)te~1 4 ¢2a—1
=5Gaa(t, 1) = =Gaalt, 1
at® 2 + (a — 1)(alogt + 1)t%2
Ga a t; 1 (
+ Gaal(t,1) 11y
~ 2at*(alogt -t ! #2071 4 t“_1)>
(i +1)3 '
It means that
lim 2 G y(t1) = -
t—1 at a,b Y - 2
and

02 a+b—1
i 5 Gap(t 1) = ———
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Consequently, applying L’Hospital’s rule twice,

, 2
lim Ga,b(ta 1) - % — lim %Ga,b(ta 1) - % — lim %Ga,b(tv 1)
t—1 (t — 1)2 t—1 2(t — ]_) t—1 2
2
%Ga,b(L 1) _a +b—-1
2 8

that is, we are ready with the proof for Gini means.

For Stolarsky means, we will follow the same method.
Let ¢ be a positive number, different from 1. After some calculations, we get
(from Remark 2.9) that

Ly lashie ot LG 1), if (o — bab £ 0,

P a—b tatb—ga—tb4]
aSa,b(t, 1) = t2a_1_gfaligi§jl)ta_l Sa,b(tv 1), ifa=0> 7& 0,
%S%b(tv 1)7 ifa£0,b=0.

(The case a = b = 0 was covered by the first part of the proof.)
Applying L’Hospital’s law twice for the fractions, one can easily check that
0 1
lim —S,(t,1) = —.
tEI} 8755 »(&:1) 2
We will also need the limit of the second derivative. Elementary calculations show
that in the case (a — b)ab # 0

82
ﬁsmb(t, 1)
1 2072 4 (a— 1)t 2 12724 (b— 1)th2
— _ Sap(t,1
a— b( “ (te —1)2 + (tb —1)2 ) ot 1)
1 (a—0b)tett=1 —qgte=1 4 ptd=1 9
=S, (t,1).
R totb —qo — b4 1 g Jan(t:1)

Using L’Hospital’s law twice for the fractions, again, and our previous results, we
get that
0? a+b—3
lim — t,1)= ———
i Sz Sae(t: 1) 12

After similar calculations one can get the same result in the other two cases as
well.

The rest of the proof can be treated as it happened when proving the theorem
for Gini means. 0

For the next theorem we will need a simple statement.
LEMMA 3.8.([19]) For any real number a
1 at —at
(3.8) lim log(e® +¢7*)

Jim " = |al,
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—at

(3.9) i 22

t—o00 t

PROOF. After some transformations and applying L’Hospital’s law,

. log(ed 4 e~9%) ) log(2€at+e at) . logcoshat + log 2
lim ——— = lim ———=—~ = lim
t—00 t t—00 t t—00 t
. sinh at . .
= lim a = lim atanhat = asigna = |al.
t—oo coshat t—oo
The proof of the other statement is completely similar. O

THEOREM 3.9.([19]) Let a, b € R be arbitrary. Then
1 Ma t ,—t
(3.10) Jim o8 ’bt(e e”)

PROOF. Suppose first that M = G.
If a # b, then — applying Lemma 3.8 -

= &(a,b).

1
i JogGaplele™) . log(e +em®) " —log(e" + ™) a| — [b|
t—o0 t t—o00 a—2b a—>b
On the other hand, if a = b, then
log G tet
lim —&Yaa (¢ e™) = lim = lim tanh(at)
t—o00 t t—o00 t(eat =+ e_at> t—o00
= sign(a).

Consider now the case M = S.
In the case (a — b)ab # 0 we can apply Lemma 3.8, again:

log Sup(e e™!) _ | log(<"5) T — log(57)
m St .
t—oo t t—o0o a— b P b

Suppose now that a = b # 0. Then

1
t

e logel + e loge?

_l + eatt_;'_efatt

a eat _e—at

log S t ,—t
lim 10g Sa.a(e, ™) = lim = lim coth at = signa.
t—00 t t—00 t t—00

Finally, if a # 0 and b = 0, then we use Lemma 3.8:

—at eat

log S,.0(et, e log £2=¢ log &—=5— — log 2t
lim w — lim 08 Toar — _ lim g &
t—o0 t—o00 at t—o0 at
at —at
. log &—&—
limgo % e B M la| = 0] |0]
a a a—0

The case a = b = 0 has been covered while handling the Gini case, so the proof is
complete. O
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THEOREM 3.10.([19]) Let a, b € R be arbitrary. Then
t+log Gaplet,e)

log
t—1 wplet, et
(311) hm OgG 7b(e € ) fry M(a7 b)
teo 2t
PROOF. For (3.11) it is enough to show that
0 ifa,b>0
1 t l Ga tv —t ’ ) - Y
(3.12) tlim Og( u Og2t e )) =<0, if ab < 0,
max{a, b}, ifa,b <0,
and
J— 3 H >
_log (t —log Gup(et,e™)) min{a, b}, !f a,b> 0,
(313) thm 2t ’ = 07 |f a,b < 07

0, ifa,b <0,

because (3.11) is just the difference of (3.12) and (3.13). In the proof of (3.12) we
distinguish two cases. If either ab < 0 or a,b > 0, then —1 < &£(a,b) < 1. Thus,
in view of (3.10), we get

. log (t +log G (e, e_t)) . logt+log (1 + log G p(€, e_t)/t)
m m

li = 1
t—o00 2t t—o00 2t
logt

log (1 + &(a,b
= lim —— + lim og( + &(a, ))
t—oo 2t t—o0 2t

=0.

Finally, we consider the case a,b < 0. We may assume that b < a < 0; we shall
prove that

log (t + log Ggp(et, et
(3.14) Jim og ( + Og% e )

If b < a, then a short calculation shows that

2t 2t

To determine the limit of the last expression, we can apply L’Hospital’s rule. Com-
puting the derivatives of the numerator and the denominator of the right hand side
term, after some transformations, it turns out that their ratio is equal to

| Lo (e
log (t +log Ga (e, e7t)) Cla—p® (1 + eth)

a -+ (a . b)62bt o be—?(a—b)t

3.15 |
( ) (1 + e2at)(1 + e20t) <log(1 + e2at) B log(1 + eth)>

e2at 62at
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In (3.15) the limit of the numerator equals a. With L’Hospital’s rule it can imme-
diately be checked that

1, ifp=¢<0,

. log(1 + et .
(316) tll}n;.lo (62qt) = lOg 2, |fp =q= 0,
0, ifp<qg<O,

which means that the the limit of (3.15) in each cases equals a, as we stated.
The case of the equal parameters in (3.12) can be treated similarly. The proof
of (3.13) is completely analogous, therefore, it is omitted. O

REMARK 3.11. Using the homogeneity of the Gini means, one can obtain the
following more general statements

Gap(r,y) = 5% atb—1

3.17 lim = t>0),
(.17 (z,y)—(t:t) (x —y)? 8t ( )
(3.18)
l a
lim (Gag(at,y) " = yag[max{va/y, Vu/r}]“0 (25> 0),
and
1
) logyt —log Gap(zt, yt)\ * Mab
319) 1 : _ ab) '
G149 A <10g Gaplat,y') —logat (&/9) @y >0)

Observe that with z = e, y = 1/e and after taking the logarithm of both sides, the
relations (3.18) and (3.19) reduce to (3.10) and (3.11), respectively. Conversely,
using the homogeneity of Gini means, (3.17), (3.18), and (3.19) can easily be
deduced from (3.7), (3.10), and (3.11).



CHAPTER 4

Extensions and applications of the Hermite-Hadamard
inequality

4.1. Introduction

The so-called Hermite-Hadamard inequality [28] is one of the most investi-
gated classical inequalities concerning convex functions. It reads as follows:

Theorem 4.A. LetJ C R be an interval and f : J — R be a concave (convex)
function. Then, for all subinterval [a,b] C J with non-empty interior,

1) f<a+b> % /f > fla) + f(b)

2 b—a 2

holds.

An account on the history of this inequality can be found in [41]. Surveys
on various generalizations and developments can be found in [44] and [25]. The
description of best possible inequalities of Hadamard-Hermite type are due to Fink
[26]. A generalization to higher-order convex function can be found in [6], while
[7] offers a generalization for functions that are Beckanbach-convex with respect
to a two dimensional linear space of continuous functions.

In this form (4.1) is valid only for functions that are purely convex or concave
on their whole domain. We will see that under appropriate conditions the same
inequalities can be stated for a much larger family of functions. It will turn out that
the results, obtained for this situation, can be applied for the Gini and Stolarsky
means. In this way, we will get new inequalities for these classes of two variable
homogeneous means.

4.2. The weighted Hermite-Hadamard inequality for convex or concave
functions

In this section we will extend Theorem 4.A, replacing the arithmetic mean by
more general means, applying weight functions.
Given a positive, locally integrable weight function o : J — R, define the

o-mean of a and b by
f; zo(x)dz

fj o(x)dx ‘

My(a,b) :=

Then the following statement holds:

17
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LEMMA 4.1.([14]) Let J C R be an interval, f : I — R be a concave (convex)
function and o : J — R a positive, locally integrable weight function. Then, for
all subintervals [a, b] C J with non-empty interior,

b
FO@0) 2y i [ @i

PROOF. Suppose that f is concave over J and let the linear function e(z) :=
cx + d be a support line of the function f at the point M, (a, b). Let

=IO S, W@ aft)
be the chord of f from (a, f(a)) to (b, f(b)). Then, applying the concavity,

e(x) 2 f(z) 2 g(z) (z€J),

(4.2)

that is,
J; e@ela)dz _ [} f@)o@)dz _ [} g(x)o(x)dz
fo@de —  [Jolx)dz [} o(x)dx
After a calculation, we obtain that
f; e(x)o(x)dx B f;(ca: + d)o(z)dx _ f: zo(z)dx

2 olw)d [olwdr [P ola)da
= eMy(a,b) +d = f(M,(a.b)

(4.3)

and
[Powewar  Jr (M + G0 oz
W - f; o(z)dx
DAY pgy 4 Ml D) g

which proves (4.2).
For convex functions the proof is similar. g

(It can immediately be seen that Theorem 4.A is a special case of Lemma 4.1
with g(z) = 1.)

REMARK. The primary motivation for the various extension of the Hermite-
Hadamard inequality, such as those obtained by Zsolt Pales and the author [15] is
to provide inequalities for the Gini and Stolarsky means.
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Lemma 4.1 can also be applied, for instance, to give an upper and a lower
bound for the Stolarsky mean S 5(£,n). For, suppose that f(z) = 2"%, o(x) =
i x x)ax
21, Then My(€,n) = Sucsa(€,1), while 00 — (5, (&)=, n
this way we can give bounds for the general Stolarsky mean in terms of a more
special instance of it, namely, by the one where the difference of the parameters
equals 1.

4.3. Odd and even functions with respect to a point

In the following we will encounter with functions showing two kinds of sym-
metry.

DEFINITION 4.2. Let J be a real interval, m € J. We say that the function
f: 3 — Ris odd with respect to the point m, if t — f(m +¢) — f(m) is odd,
that is,

(4.4) fm—1t)+ f(m+1t) =2f(m) (te (@—m)n(m-—17)),

while it is said to be even with respect to the point m, if t — f(m-+t) is even, that
is,

(4.5) fm—1t)=f(m+1) (te (@—=m)n(m-—7)).

REMARK 4.3. Observe that when J is closed and m is one its endpoints then
(3 —m) N (m —J) is either empty or the singleton {m}, therefore the condition
t € (J—m) N (m — J) does not mean any restriction on f.

For the integral of the product of odd and even functions with respect to the
midpoint of the same interval, the following statement is true:

LEMMA 4.4.([14]) Let g, h : [o, 5] — R be integrable functions over [«, 3], g be
odd and h be even with respect to the point (« + [3) /2. Then

/a () h(x)de = g <‘”2r5) /a (),
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PROOF. Let m denote the midpoint of [«, 5]. By splitting the integral at the
point m and applying (4.4) and (4.5) for g and h, respectively, we get that

[ st

:/mg dx+/ﬂ g(2m — z))h(2m — z)dx
- / " o) ) 9(1)) h(y)dy
_[" z) + 2g(m)h(z) — g(z)h(z))da

67

=2g(m)/amh /jh

REMARK 4.5. As a special case of Lemma 4.4 with h(z) = 1 we get the

following statement:
m+to
| gta)ds = 2ag(m)

m—«

g

for any positive « in (J —m) N (m — 7).

4.4. The weighted Hermite-Hadamard inequality for convex-concave
functions

THEOREM 4.6.([14]) Let the function f : 3 — R be odd with respect to the
elementm € J, o : J — R a positive, locally integrable weight function, which is
even with respect to m, and let [a, b] be a subinterval of J with non-empty interior.
Then the following statement is valid:

If f is convex over the interval J N (—oo, m| and concave over J N [m, 0o), then

> 1 b
POt (2 i [ T@etwis
o e (@.)
> — MQ a, My(a,b) —a
) e ) + =5 )
La+b > . . g
if — (2) m. In (4.6) the reversed inequalities are valid if f is concave over

the interval J N (—oo, m| and convex over J N [m, 00).)

PROOF. First we shall prove the left hand side inequality.
Suppose that m < (a+b)/2, f is convex over the interval JN(—oo, m] and concave
over J N [m, o). (The other cases can be derived from this situation, applying one
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of the transformations f(m — x), —f(x) and —f(m — z).) Moreover, the case
m < a has no interest, so we may assume that m > a. Then, applying Lemma 4.4,

J2m " wo(x)da + f;maxg(x)da:)

f(My(a,0)) = f(

f; o(x)dx
_ (m fan—a o(z)dx + bemfa xg(a:)d:c)
J2 o(a)
= f (fazm_a g(:c)dm f2m o 0(x)dz fzm Jrole )dﬂf’)'
J2 ola)dz J olx Jorna €

2 wo(z)de

Since
f2b'm7a ‘Q(x)da:

that

= M,(2m — a,b) —that is, a mean of 2m — a and b —, we get

f2m a l’Q( )dSE

f2m a

Therefore, both m and M,(2m — a, b) belong to the concavity domain of f. Ap-
plying the concavity of f, we conclude that the previous expression is greater than
or equal to

>2m —a >m.

—fg f(m) + fg = (M b))
_ f(m)ffm ¢ f2m a? . M. (2m — a.b
o) fg = (M, b))

Using Lemma 4.4, again, one can substitute the first numerator of the right hand
side phrase by fzm “ f(z)o(x)dz. Summarizing the above calculations, we ob-
tain

J" " )o@ | oo >dm
b
fie@dz o)

Since f is concave over the interval [2m — a, b], we can apply the left hand side
inequality of Lemma 4.1 and get that

4.7) f (Mo(a,b)) >

f (Mp(2m — a,b)).

b
F (My(2m —a,0)) > bl()d | r@etaa.

2m—a
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Substituting this in (4.7) we obtain that
2" f(@)e(x)da
‘f o(x)dx
f2m o A0)r ! b x)o(x)dz
i T e x/m_af( Jo(a)
S @ew)de + [y, S@)e@)dr [} f(@)e(e)de
fa o(z)dx f; o(x)dx

that is, the proof of the first inequality is complete.

[ (My(a,b)) >

To prove the second inequality in (4.6), it is enough to prove that

b b
I O )

which is apparently equivalent to the second inequality in (4.6). We need the
following simple statements:

A fm) = =" )+ "),
®) fem—a)> T2y L 2 gy

b— b—a

For (A), observe that f is concave over the interval [m,b], containing the point
2m — a. Thus,

b—2m+a m-—a

(4.9) f2m—a) = f(0).

b—m
Substituting 2f(m) — f(a) for f(2m — a) in (4.9), we obtain — after some trans-
formations — (A).

Moreover, if we put in (4.9) w in place of f(m), after rearranging the
inequality, we get (B).

After these preparations, we are ready to prove (4.8). First, applying Lemma 4.4,

/ab f@)o(x)dz = /a2m_a F(x)o(x)dx + /Q:Laf(a:)g(x)dx

b

= g [ e [ st

m—a

In the first term on the right hand side, we may apply (A) for f(m). Moreover, we
can apply the right hand side inequality of Lemma 4.1 to the second term of the
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last expression, since f is concave in the interval [2m — a, b]:

b — z)dzx
[ s > Janca® = Delo)de )

m—a b—2m—|—a

Jorn—o@ = 2m + a)o(x)dx
b—2m+a

f(b).

Applying (A) and (B) for f(m) and f(2m — a), we get that

[ s

(bmf( )+ thw) [ et

i e (" )+ 2 )
\ Fonal (o —2m : Dela)de
= Z__?: /jm_a o(x)dz + f;m“(l;__z)g(x)dx] f(a)
+ [7:__; /a " ey Q(Zn_—aa) J ;mb“f);mxlgix)dx
N ffm_a(i:ZZiz)Q(w)dw] i)

Finally, we will check that the coefficients of f(a) and f(b) are the desired ones.
First, from Lemma 4.4 we get that [*"~“(m — =)o(x)dz = 0. Thus,

b—m [?me f2ma —x)o(z)dz
b—a of)dz + b—a

2ma da;+/: b—a:)()dx)

m—a

(
(e [0 o)
0 Lot

a

b_

S

(b—1x)o

@
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This accounts for the coefficient of f (a). Moreover,

Q(m—a) bem a b_ me a —2m—|—a)g(x)dl~
b—a b~ 2m—|—a b—2m+a
_ b 2(b—a:)(m—a)+($_2m+a)(b_a)
a /Qm—a (b—a)(b—2m+a) o(x)dx
b Tr—a
- /Qm—a b_aQ(.Z')dl‘,

while, with Lemma 4.4, again,

m—a 2m—a 2m—a m—a 2m—a T —a
- /a o(z)dr = /a N o(z)dx = /a — o(z)dz.

Therefore, the coefficient of f(b) equals

2mfal,_a b r—a 1 b
[ e [ S @de = - [ (o a)otada,

m—a

as required. O
In the special case when o(x) = 1, our statement can be read as follows:

COROLLARY 4.7.([14]) Let the function f : I — R be odd with respect to the
element m € J, and let a, b] be a subinterval of J with non-empty interior. Then
the following statement is valid:

If f is convex over the interval J N (—oo, m| and concave over J N [m, co), then
a+b > > fla)+f
w1 (20 2 [ 2 00,
2 < —a 2
La+b > . o oy ep
if 5 (2) m. In (4.6) the reversed inequalities are valid if f is concave over

the interval J N (—oo, m| and convex over J N [m, 00).)
That is, in this case our inequalities are literally the same as those in Theo-
rem 4.A.
4.5. An application for Gini and Stolarsky means

Our aim is to apply the results in Corollary 4.7 for Gini and Stolarsky means.
For this purpose we will show that, for fixed positive z, y, the function

(4.11) fey : R — R, t— log M;(z,y)
satisfies the assumptions of Corollary 4.7.

LEMMA 4.8.([18]) Let =,y be arbitrary positive numbers. Then the function ., ,,
defined in (4.11) has the following properties:
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(1)
fay(t) + poy(—1) = 2p04(0)  (t € R),
(i1) puz,y 18 convex over R_ and concave over R .

PROOF. (i) For Gini means:

2tlogx +yllogy xtlogx +y tlogy

Mx,y(t) + Mx,y(*t) =

ot + ot Tt 4yt
B wtlogx +ytlogy y'logz + 2tlogy
- at 4yt yt+ at

o' log(zy) + y' log(zy)

= SCt + yt = log(xy) = 2ﬂx,y(0)7
while for Stolarsky means — assuming that ¢ = 0 —

1  atlogez —yllogy 1 a7 tlogx —y tlogy

oy (8) + pray(=1) - = ot + xt — gyt + t + xmt -yt
B ztlogz —ytlogy y'logx — xtlogy
- ot — 4t Yt — 2t
a'log(zy) — y' log(zy)
- 2t — ot = log(wy) = 2ﬂx,y(0)~

(i) If x = vy, then p,,(t) = « for all t € R, hence p,, is convex-concave
everywhere. Therefore, we may assume that = # y.
In the case of Gini means,

B (1) = ryloga’ —logy')(a’ — )
Z,y ($t + yt)3 :
The sign of z — 4 is the same as that of log z* — log v*, therefore, t31” , (t) > 0
lLLf,y

forall t € R. Thus, p 4, is convex over R_ and concave over R ..
In the setting of Stolarsky means, we have that

z'y'(log ' —logy")*(a* + 4"
(Z‘t _ yt)3
Y S o(x", y')S2,1 (2, y")
Stol@sy") ’

In view of Corollary 2.2, it follows that t3ug7y(t) > 0 for all ¢ € R. Therefore,
Iz, 1S cOnvex over R_ and concave over R in this case, too. O

tgﬂ.;'/,y(t) =-2+

As a consequence of Lemma 4.8 and Corollary 4.7, we can provide a lower
and an upper estimate for M, ; in terms of the means Ma+y avs and /M, o - My p.
20 2
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THEOREM 4.9.([18]) Let a, b be real numbers so that a + b 0. Then

>
(<)

> >
Magh o (2,9) (<) Map(z,y) (<) \/Ma,a(fﬂ,y)Mb,b(x,y)
holds for any positive numbers x, y.

PROOF. Letz,y be fixed positive numbers. By Lemma 4.8, the function i ,,
is odd with respect to m = 0 and is convex (concave) on R_ (on R,). Therefore,
Corollary 4.7 can be applied to f := p, ,. Then

a-+b > 1 a > pgy(a) + fizy(b)
Hay (2) (<) a=b /b Hay (B (o) 2

ifa+b
2

following iﬁequality holds:

E 0. Thus, by the definition of ;. ,, and in view of Lemma 2.B, the

log My q(,y) + log My p(z,y)
2

log MaT-Q-b’a,-QH) (x,y) (<

>
) log My p(x,y) (g)

ifa+b (i) 0. Applying the exponential function to this inequality, we get that

=

) Ma,b(way) (2) \/Ma,a(x7y)Mb,b(x7y)

IN IV

Mﬂ(x7y)
2 02 (

ifa+b (2) 0. Hence the stated inequalities follow in the Gini and Stolarsky

means settmg, respectively. O

4.6. A variant of the Hermite-Hadamard inequality

In the sequel, we shall need a new variant of (4.1), where the left hand side
is replaced by a certain weighted arithmetic mean of f(a) and f(b). To state this
result, we recall the notions of the positive and negative part functions defined, for
x € R, by
|x| + x |x| —

2 2
LEMMA 4.10.([19]) Let f : J — R be odd with respect to an element m € J,

furthermore, suppose that f is increasing. Then, for any interval [a,b] C J,
(4.12)

b
(6=m)* = (@=m) )10 + (@=m) = b-m))i@ 2, [ fad

a+b

7 = max{r, 0} =

and x~ = max{—z,0} =

holds if

>
<
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. . b
PRoOOF. We consider first the case ath > m and assume that a < m. Then

m < 2m —a < b. Applying that f is odd with respect to the point m, Remark 4.5
and using also the monotonicity, we have

/abf(t)dt = /amf(t)dtJr/ijaf(t)dtJr/;a Ft)dt

b
= 2(m—a)f(m)+ / f(t)dt

2m—a

b
fla)+ (m —a)f(2m — a))+/ f(t)dt

(

2m—a

< (m—a)f(a) +(m—a)f(b) + (a+b—2m)f(b)
(b—m)f(b) + (m —a)f(a)

= (b=m)" —(a=m)")f(b) + ((a—m)” = (b—m)") f(a).

If m < a, then, using only the monotonicity of f, we get

b
[ @t < - a)pe) = (0 m)" = (@ m)*) £0)
+ ((a —m)” —(b— m)*)f(a).
In the case %M < m, a similar argument completes the proof. O

REMARK 4.11. Using the monotonicity of f, it is elementary to see that the
left hand side of (4.12) can equivalently be written also in the form

(4.13) min{(b—m)f(b)—i—(m—a)f(a) , (b—a)f(b)}

it “% < 10 Indeed, if a < m, then

((b=m)" = (a=m)")f(b) + ((a—m)” = (b—m)")f(a)

= (b=m)f(b) + (m —a)f(a)

and (b —m)f(b) + (m —a)f(a) < (b— a)f(b) which results (4.13). In the case
m < a, we have that

(b=m)" —(a=m)")f(b) + ((a—m)” = (b—m)") f(a)
= (b—a)f(b)

and (b —m)f(b) + (m —a)f(a) > (b— a)f(b) which also leads to (4.13).

> m, then the left hand side of (4.12) can be replaced by

Analogously, if ot
max { (b —m)f(b) + (m —a)f(a) , (b—a)f(a)}.
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Now we apply the the result of Lemma 4.10 for Gini and Stolarsky means to
replace the left hand side in Theorem 4.9 by a weighted geometric mean of M, ,
and My . Due to the symmetry of M, ;(x, y) in its parameters, it suffices to handle
the situation b < a in the sequel.

>
THEOREM 4.12.([19]) If b < a and a + b (2) 0, then, for all positive x, 1,

at bt b~ —a—

(4.14) (]\4,1@(x,y))ﬁ(Mb,b(:t:,y))W (i) My p(z,y).

PROOF. Using the result of F. Qi [52], we get that the function g, , defined in
(4.15) Mgy R — Ry, t—log M(x,y)

is strictly increasing for all fixed =,y > 0 with = # y. (This statement also follows
from the comparison theorems of M — see later.) Applying Lemma 2.B, we obtain
that

1 a
(416) log Ma,b<x7 y) = a—b / mx,y(t)dt (‘Ta Yy € R+)
- b

To prove (4.14), we can restrict ourselves to the upper direction in the inequalities;
we could use an analogous argument for the reversed signs. Then, in view of
Lemma 4.10,

1 a
log My p(z,y) = / Mgy (t)dt
tl a — b b ’
at —bt b- —a~
< - 7 - -
< My (@) ey (0)
at — bt b~ —a~
- a—b IOgMa’a($,y) + a—b logMb,b(x7y)7
which is equivalent to the desired inequality (4.14). O

Combining the results of Theorem 4.9 and Theorem 4.12, we get the following
lower and upper estimates for the Gini/Stolarsky mean M, ; in terms of a weighted
geometric mean of M, , and Mj .

COROLLARY 4.13.([19]) For all real a,b with b < a, (a,b) # (0,0) and for
all positive , y,

Ma,b(xv y) < Ma,a(-fyy), if0 <b<a,
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PrRoOF. All the left hand side inequalities follow from the right hand side
inequality of Theorem 4.9. The right hand side inequalities in (i), (ii), (iii), and
(iv) are consequences of the inequality (4.14). O






CHAPTER 5

Comparison of Gini means

5.1. Introduction

The comparison problem of two variable Gini means on R was solved by
Pales [48]. The main result of that paper reads as follows.

Theorem 5.A. Suppose thata,b,c,d € R, (a — b)(c — d) # 0. Then

(51) Ga,b(x7y) S qu(x,y) (.’E, ye R-F)
holds if and only if

(i) a+b<c+d,

( min{a,b} < min{ec,d}, if min{a,b,c,d} > 0,

(5.2) max{a,b} < max{c,d}, if max{a,b,c,d} <0,

(ii)

B HH e <o
< max{a,b,c,d}.

This theorem does not offer conditions when (a — b)(c — d) = 0. In order
to cover this case as well, in [16] we extended Theorem 5.A. In the meantime,
the theorem obtained a new appearance, due to the auxiliary functions € and M,
introduced in Definition 2.4. Our theorem has the following form:

THEOREM 5.1.([15]) Let a, b, ¢, d € R be arbitrary parameters. Then
(53) Ga,b(‘r: y) < GC,d<m7 y)

holds for all positive x and y if and only if a, b, c, d satisty the following three
conditions:

(5.4) a+b < c+d,
(5.5) &(a,b) < E(c,d),
(5.6) M(a,b) < M(c,d).

In the sequel we will present a new, stand-alone proof for Theorem 5.1, there-
fore, the original method will not be detailed — we note here only that the main
idea in [16] was that the (equal) parameters could be approached by appropriate
sequences of different parameters. The process is analogous to that in the next
chapter, applied for the extension of the comparison theorem of Stolarsky means.

31
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5.2. On certain directional derivatives

DEFINITION 5.2. Let the positive numbers x and y be fixed. Then define the
function G, ,, as follows:

Goy R =R, (a,b) — Guyl(a,b) = Goyp(z,y).

The importance of the inequalities established in Corollary 4.13 will be clear
when we apply them to investigate the directional derivatives of the function G, .

LEMMA 5.3.([19]) Suppose that b < a and let the positive numbers x and y be
fixed. The directional derivative of the function G, , in direction d = (d1,d>) is
nonnegative at the point (a, b) if and only if

(5 7) (Ga,a(‘rv y))dl (Gb,b(m7 y))_d2 > (Ga,b($7 y))dl_d2> if a ?é b,
dy+dy >0, if a—b.

PROOF. The directional derivative of G, , at (a,b) in direction d can be cal-
culated as follows:

8dgx,y(aa b) = dl : algx,y(av b) + d2 . a2gac,y(a7 b)

(Here 0; stands for the partial derivative with respect to the ith variable.) An easy
calculation shows that, in the case a # b,

Cosly) | Cuala)
p— 2 1 7
alga:,y (a7 b> a—b 08 Ga,b(xa y)
and
Gap(@,y) Gap(,y)
T ) = ) ! | .
029Gz y(a,b) a—b 08 Gpp(z,y)
Therefore,

Ga,b<xv y) lo (Ga,a (.’E, y))dl (Gb,b(xa y)) e
o (Gear))™

By the assumption a > b, this expression is nonnegative if and only if

(Ga,a(l‘, y))d1 (Gb,b(xa y)) —da > (Ga,b(xa y))dl—dQ’

that is, the first inequality in (5.7) holds. In the case a = b, we have that

adgx,y(aa b) =

logx — lo 2
01Gzy(a,a) = 020, y(a,a) = (%ﬁ) (2y)*Goa(z,y).
Thus, it is easily seen that 9,G, ,(a,a) > 0 ifand only if d; + d2> > 0. O

Combining Lemma 5.3 and Corollary 4.13, we get the following result.
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COROLLARY 5.4.([19]) For b < a with (a,b) # (0,0), define the vectors ug
and v, in the following way:

(5.8)
(1,0), if0<b<a, (-1,1), if0<b<a,
(1,2), ifo<-b<a, (-1,1), if0< -b<a,
Y= (1,-1), if0<a< b, 7 (2,1), if0<a<—b,
(1,—-1), ifb<a<O0, (0,1), ifb<a<O.

Then the maps (a,b) — ug,yp and (a,b) — v,y are continuous on the domain
indicated, furthermore, the directional derivative of the function G, ,, at the point
(a,b) is nonnegative in the directions uqy and v, for all fixed positive numbers

z,y.

PROOF. Inview of Lemma 5.3, we have to check (5.7) for the vectors d = u,,
and d = v,p. By substituting these values of d into (5.7), it is easily seen that the
conditions obtained are equivalent to the inequalities established in Corollary 4.13.

]

The following lemma offers a useful sufficient condition for the comparison
of two Gini means.

LEMMA 5.5.([19]) Let the positive numbers x and y be fixed and let (a,b), (¢, d)
be two arbitrary points in R?. Suppose that the directional derivative of Goy IS
nonnegative in the direction (¢ — a,d — b) at any point of the segment

[(a,b), (c,d)] = {(a+t(c—a), b+t(d—b)) |t e[0,1]}.
Then
Gap(z,y) < Geal,y).
PROOF. Define
Gry(t) 1 = Goti(c—a) p+t(d—b) (T, Y)
=Goyla+tlc—a),b+t(d—0b)) (t € [0,1]).
Then ¢ is differentiable on R, and
opy(t) = 01Gey(a+t(c—a),b+t(d—b))(c—a)
+02Gzy(a+t(c—a),b+t(d—1b)) - (d—b)
= Oe—ad-t)Gayla+tlc—a),b+t(d—b) >0
by our assumption. Thus ¢, is nondecreasing on [0, 1], whence
Gap(7,y) = P y(0) < @ y(1) = Geal,y)

follows. O
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5.3. A new proof of the comparison theorem for Gini means

(Necessity.) Assume that (5.3) holds for all =,y > 0. Then, substituting z = t,

y = 1, we get that
Ga,b(ta 1) - % < Gc,d(tv 1) - %

(-1 = (-1
Now, taking the limit ¢ — 1 and using (3.7) of Theorem 3.7, we obtain
a+b—1 < c—i—d—l7
8 - 8

(t>0,t#1).

which is equivalent to (5.4).

The substitution z = ef, y = e~ results from (5.3) that

log G p(el,et) < log G a(et,e™)
t - t

Therefore, taking the limit ¢ — oo and using Theorem 3.9, we get the necessity of
(5.5).

Finally, again with the substitution x = ef, y = e~ we have (by the strict
mean value property of the Gini means) that

—t < log Gajb(et, e ) <log Gc,d(et, et <t (t > 0),

(t>0).

therefore,
t+1og Gaplet,e™) _ t+log Gealel,e™)
t —logGyp(et,e7t) = t —log Geq(et,e™t)
Hence, in view of Theorem 3.10,

t +log Gap(el,e™)

0<

(t >0).

t + log Gc,d(et, e t)

log log
t —log Ggp(et, et t —logGeq(et, et
M(a,b) = tlggo Og2ta,b(€ e < tlilllo Og2tc’d(€ )
= M(e, d)

and thus the necessity of (5.6) is also proved.
(Sufficiency.) Assume that conditions (5.4), (5.5), and (5.6) hold and let = and
y be two arbitrary positive numbers throughout the proof.
In order to distinguish various cases according to the positions of the points
(a,b) and (¢, d), consider the following five subsets of the half-plain
H :={(s,t) |t <s}:
Hy :={(s,t) [t <s<0, (s,t) #(0,0)}, Ho:={(s,t)]0<s< —t},
Hs:={(s,t)e H|s+t=0},
Hy:={(s,t) | 0 < —t < s}, Hs :={(s,t) |0 <t <s}.
Evidently H = H; U Hy U H3 U Hy U Hs, furthermore, H; U Hy = {(s,t) €

H|s+t<0},HHUHs = {(s,t) € H|s+t>0},and H; N H; = () for all
1<i<j<s5.
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By the symmetry of the parameters, we can assume that a > b and ¢ > d,
thatis, (a,b), (c,d) € H. Due to the pairwise disjointness of the sets H;, Hs, Hs,
Hy, and Hj, there exist unique indices ¢, j such that (a,b) € H; and (c,d) € H;.
Applying conditions (5.4), (5.5), and (5.6), we prove first that ¢ < j holds. If
(a,b) € Hj, then there is nothing to prove. If (a,b) € Hs, then a > 0, hence
&(a,b) > —1. Thus, condition (5.5) yields that (¢, d) > —1, hence, (¢, d) cannot
be in Hy, i.e., it belongs to Hy U H3 U H4 U Hs. In the case when (a,b) € Hs,
we have that a + b = 0. Hence, by (5.4), it follows that ¢ + d > 0, i.e., (¢,d) €
Hs U Hy U Hs. If (a,b) € Hy, thena + b > 0. Thus (5.4) yields that ¢ + d > 0,
which is equivalent to (¢,d) € H4 U Hs. Finally, if (a,b) is in Hs, then 0 < b.
Therefore, M(a, b) = min{a, b} > 0, whence, in view of condition (5.6), we get
that M(c,d) > 0. Thus (¢, d) has to be an element of Hj, too.

In the rest of the proof, we may assume that (a,b) € H; and (¢, d) € H; for
some indices 1 < 1¢ < j < 5. Our aim is to prove that

(59) Ga,b('rv y) S Gp7q($7 y) S Gc,d(mv y)7

where (p, q) is defined by distinguishing five cases (i)-(v) according to the possible
positions of the points (a, b) and (¢, d) in H as follows:

([ (i) (0,0), if (a,b) € Hy UHyU Hs,
(C d) € HyU Hy U Hs;
(i) (c,a+b—c), if (a,b)€ Hy,
(C, d) S H1,
(p.q) = (i) (&he, 255d), if (a,b) € Hy U Ho,
T (¢,d) € Hy;
(iv) (4a, <Hp), if (a,b) € Hy,
(c,d) € Hy U Hs;
(V) (C+d_bab)> if (a,b)€H5,
(C, d) € Hs.

For, we will show that at any point of the two segments [(a, b), (p, ¢)] and

[(p, q), (¢, d)] the directional derivatives of G, ,,, defined by the vectors (p—a, g—b)
and (c — p,d — q), respectively, are nonnegative. Thus, in view of Lemma 5.5, the
desired inequality (5.9) results, which demonstrates the statement.

Case (i). We have to show that G, 5 (z,y) < Goo(z,y) < Gealz,y) ifa+b <
0 < ¢+ d. Due to the symmetry, we may deal only with the first inequality.

If (a, b) € Hy, then the direction (p—a,q—0b) = (—a, —b) = (—a—">b)(0,1)+
(—a)(1,—1) is a cone combination of the vectors v = (1,—1) and v = (0, 1).
Since the segment [(a, b), (0,0)] is contained in H; U {(0,0)}, hence, by Corol-
lary 5.4, the directional derivative of G, ,, in the direction (—a, —b) is nonnegative
at any point of [(a, b), (0,0)]. Thus, Lemma 5.5 results G, (2, y) < Goo(z, ).

Similarly, if (a,b) € Ha, then (p—a,q—b) = (—a, —b) = (—b)(%,1). There-
fore, by Corollary 5.4, the directional derivative of G, ,, in the direction (—a, —b) is
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nonnegative at any point of the segment [(a, b), (0,0)] C H2 U {(0,0)}. Applying
Lemma 5.5, Gy (2, y) < Goo(z,y) follows again.

Finally, if (a,b) € Hs, then an elementary computation shows that the identity
Ga,b($7 y) = G070(IL’, y) holds.

Case (ii). Since (¢, d) € Hy, we know that ¢ < 0, and due to condition (5.4),
we getthat a+b—c < d < 0. Thus, (p, q) € Hi, whence, by the convexity of Hy, it
follows that [(a, b), (p, ¢)] C Hi. By condition (5.6), we have that a < ¢, hence the
vector (p—a,q—b) = (c—a,a—c) is obtained from u = (1, —1) by multiplication
with a nonnegative scalar. Therefore, by Corollary 5.4, the directional derivative
of G, in the direction « is nonnegative at any point of the segment [(a, b), (p, q)].
Applying Lemma 5.5, we obtain that G, ,(z,y) < Gy 4(z, ).

We have a similar situation for the segment [(p, q), (¢, d)] C H;. The vector
(¢c—p,d—q) = (0,c+d—a—b)is co-directional with v = (0, 1) (by condition
(5.4)). Using Corollary 5.4 again, the directional derivative of G, ,, in direction v is
nonnegative at any point of the segment [(p, q), (¢, d)]. Therefore, by Lemma 5.5,
we get that G (z,y) < Geal,y).

Case (iii). Then (¢,d) € H yields that ¢ > 0 and d < 0. The inequality ad —
bc > 0 is obviously valid if (a,b) € H;, because then a and b are nonpositive. In
the case (a,b) € Hy, We havethatb < 0 < a, therefore, the condition (5.5) ensures
that ad — be > 0 also holds. Thus the direction (p — a,q — b) = 2=%4(1, -1)
is co-directional with the vector v = (1,—1). Using Corollary 5.4, we can see
that the directional derivative of G, ,,, in the direction « is nonnegative at any point
of the segment [(a, b), (p, q)] C Hy; U Hs. Hence, by Lemma 5.5, it follows that
Ga,b(x7 y) < GP#](xv y)'

Observe that (p,q) € Ho, hence we have that segment [(p, q), (¢, d)] is also

contained in H,. On the other hand, (¢ — p,d — q) = %7“;}’)”[(5, 1), hence
(c—p,d—q) is co-directional with the vector v = (&, 1). In view of Corollary 5.4
again, we obtain that the directional derivative of G, ,, in direction v is nonnegative
at any point of the segment [(p, q), (¢, d)] C H,. Therefore, by Lemma 5.5, we get

that G4 (7, y) < Gea(w,y).

The Cases (iv), (v) are completely analogous to Cases (iii), (ii), respectively.
Therefore, the details are left to the reader.
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Comparison of Stolarsky means

6.1. Introduction

The comparison problem

(61) Sa,b(xv y) S Sc,d(xa y)

onR, (i.e., if x,y € Ry in (6.1)) was solved by Leach and Sholander [31]. Pales
[47] gave a new proof for this result. In [49] Péles solved the comparison problem
(6.1) on any subinterval (a, 3) of R,.. Several particular inequalities involving
Sap and their special cases were dealt with by Alzer [3], Brenner [8], Brenner
and Carlson, [9] Burk [10], Carlson [11], Dodd [24], Leach and Sholander [30],
Lin [33], Pittinger [50], [51], Sandor [53], Seiffert [54], [55], Stolarsky [56], [57],
Székely [58]. Neuman [42] studied multivariable weighted logarithmic means,
Leach and Sholander [32] dealt also with difference means of several variables.
In [47] the following result can be read:

Theorem 6.A. Let a,c,b,d € R and assume that a # b, ¢ # d. Then the
comparison inequality (6.1) holds for all z,y € R if and only if the conditions

(6.2) at+b<ctd

and

L(a,b) < L(e,d), if0 < min{a,b,c,d}
(6.3) or max{a,b,c,d} <0,
&(a,b) < &(c,d), if min{a,b,c,d} <0 < max{a,b,c,d}

are satisfied.

6.2. Comparison theorem for Stolarsky means revisited

In the following result, we restate the necessary and sufficient condition for
the comparison of Stolarsky means found by Pales [47]. The original result in [47]
(see Theorem 6.A above) does not cover the case of equal parameters, that is, the
conditions a # b, ¢ # d were also assumed. The conditions (6.5) and (6.6) also
differs from the analogous condition (6.3) of Theorem 6.A, though they turn out
to be equivalent to each other.

37
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THEOREM 6.1.([17]) Let a,b,c,d € R be arbitrary parameters. Then the
comparison inequality (6.1) holds for all positive x and y if and only if a,b,c,d
satisfy the following three conditions:

(6.4) a+b < c+d,
(6.5) E(a,b) < E&(c,d),
(6.6) L(a,b) < L(ed).

First we show that if (6.2) holds, then the conditions (6.3) and (6.5)-(6.6) are
equivalent to each other. Obviously, if (6.5) and (6.6) hold, then (6.3) is also valid.
Assume now that (6.3) is satisfied. We distinguish three cases.

Case 1: 0 < min{a, b, ¢, d}.

Then L(a,b) < L(e,d) by (6.3), that is, (6.6) holds. If (¢,d) # (0,0), then
&(c,d) =1, hence E(a,b) <1 =E&(c,d). If c=d=0,then, by (6.2),a +b <0,
hence a = b= 0and E(a,b) = 0 = E(c,d). Thus, (6.5) is also satisfied.

Case 2: min{a, b, ¢,d} < 0 < max{a,b,c,d}.

Then we have E(a,b) < E(c,d) by (6.3), that is, (6.5) holds automatically.
Now we show that min{a,b} < 0 and max{c,d} > 0. If, on the contrary,
min{a,b} > 0,then 1 = &(a, b), hence E(a,b) < E(c, d) yields that min{c,d} >
0. Thus we get the contradiction min{a, b, ¢,d} > 0. A similar argument validates
max{c,d} > 0. Due to these inequalities (and the definition of L), we have that
L(a,b) <0< L(e,d), e, (6.6) is also satisfied.

Case 3: max{a,b,c,d} <0.

The argument is completely analogous to that followed in Case 1.

Summarizing what we have proved, we can see that Theorem 6.A remains
valid if condition (6.3) is replaced by (6.5)-(6.6). Now we show that the condi-

tions (6.2) and (6.3) are necessary and sufficient in order that (6.1) be valid for all
positive x, y.

(Necessity.) Assume that (6.1) is satisfied for all positive x,y. Then, substituting
x =t,y =1, we get that
Sap(t,1) — L2 _ Sealt,1) — &2
t-12  ~ (12
Now, taking the limit ¢ — 1 and using (3.7) of Theorem 3.7, we obtain
a+b—3 < ¢ +d—-3
24 - 24 7

(t>0,t#1).

which is equivalent to (6.2).

The proof of the condition £(a,b) < E(c,d) is literally the same as we pre-
sented when proving (5.5), based on Theorem 3.9.

To prove L(a,b) < L(e,d), suppose first that 0 < min{a, b, c,d}. The cases

ab = cd = 0and ab = 0 < cd are trivial, while — applying (3.2) in Lemma 3.3 the
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case ab > 0 = cd is impossible. That is, we may assume that a, b, ¢, d > 0. But,
by Lemma 3.3, again, we have that

which is equivalent to our statement. Finally, the case max{a, b, ¢, d} < 0 can be
deduced from the previous one, due to Lemma 2.A and Lemma 2.6(i).

(Sufficiency.) Assume that (6.2), (6.5) and (6.6) — that is, (6.3) — are valid. Define
the following sequences:

1 1
a™ =q, b .=p—= Wi=¢c 4" .=d4 = (n € N).
n n

Then, for n large enough, a(™ £ (™, () —£ 4(™) Obviously,
a™ + ™ :a—i—b—% <a+b§c+d§c+d+%:c(”)—i-d("),

furthermore, by (6.2), (6.5), (6.6) and the monotonicity properties of £ and & (see
Lemma 2.5(iii) and Lemma 2.8(iii)),

(n) p(n) 21
£(a™, b )gL(a,b n)gﬁ(a,b)

1 n n
< L(e,d) SL(c,dﬁ—ﬁ) < L(c™,dm),
and
1
(n) p(n) _ L
E(a ,b )Sﬁ(a,b n)gé’(a,b)

1 n n
< &(c,d) < 8(c,d+ 5) < &(c™, d™).
Therefore, by Theorem 6.A, we get

(6.7) Sam pm (T,Y) < Sem g (T,y)  (z,y €RY).

Taking the limit n — oo and using the continuity of S, ,(, y) with respect to the
parameters a, b, we get that (6.1) holds for all positive x, y.

REMARK 6.2. In case of sufficiency, our proof followed the method we used
in [17]. The necessity, however, was proved here with a new method: we applied
the asymptotic properties presented in Chapter 3. The original proof, built on
sequences, can be found in [17].






CHAPTER 7

Comparison of Gini and Stolarsky means

7.1. Introduction

The comparison problem for the means of the same kind, but with different
parameters has covered by the previous two chapters. These results, however,
describe only the cases where at the two sides of the comparison inequality there
stand means of the same kind. Our present aim is to state necessary/sufficient
conditions for the comparison of Gini and Stolarsky means. The first results in
this direction are due to Neuman and Pales [43] who investigated the comparison
of Gini and Stolarsky means of equal parameters and proved that, for given real
numbers a, b, the comparison inequality

Ga,b(xvy) (;) Sa,b(xvy) (.fC,y € R+)

<
(>)
problem (which is equivalent to the monotonicity property of the ratios of the
means in question), has recently been investigated by Hasto [29].

In the next section some necessary conditions are obtained. After it, we for-
mulate two propositions that offer necessary and sufficient conditions for the com-
parison problem in a particular setting. These results will play an important role in
the last section when stating the sufficient conditions for the comparison of Gini
and Stolarsky means.

In the sequel, we restrict our attention to the inequality G, < S.q only

holds if and only if a+b 0. Another problem, the so-called strong comparison

because the analogous inequality S, < G, 4 isequivalentto G_. _q < S_, _,
therefore the results for the second type of the comparison inequality can easily be
derived from what we will be obtain.

7.2. Necessary conditions

In this section we derive conditions that are necessary for the mixed compari-
son inequality of Gini and Stolarsky means.

THEOREM 7.1.([15]) Suppose that the inequality

(71) Ga,b(‘ra y) < SC,d(mv y)
41
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holds for any positive z,y. Then

(7.2) 3(a+b) < c+d,

(7.3) &(a,b) < &(ed),

(7.4) min{a,b} < min{c,d},
(7.5) if min{a,b} = 0 < max{a,b} then max{a,b} < log2-L(c,d).

PROOF. Substituting (¢, 1) in place of (x,y) in (7.1), after some transforma-
tions we get that

Gap(t, 1) =L S 4(t,1) — H

(t—1)2 < (t—1)2 (tERJr\{l})

Performing the limit ¢ — 1 and applying Theorem 3.7, we get (7.2).
For (7.5), after the same substitution
Ga,b(ta 1) < Sc,d(t> 1)
t - t
Taking the limit of both sides as ¢t — oo we can apply the result in Remark 3.5.
Since the limit of the right hand side is less than 1, the inequality min{a,b} > 0
would yield a contradiction — that is, we are ready with (7.5). Moreover, (7.4) is
also a direct consequence of Remark 3.5.
Finally, applying Theorem 3.9, we obtain (7.3), that is, the proof is complete.
O

(t e Ry).

7.3. Particular comparison inequalities

In this section we examine three particular cases of the comparison of Gini
and Stolarsky means. These statements will turn out to be useful tools in formu-
lating sufficient conditions for the general comparison problem. In these cases the
parameters a, b and ¢, d of the Gini and Stolarsky means are chosen so that the
necessary condition (7.2) of Theorem 7.1 hold with equality.

The third inequality was presented by Zsolt Pales and the author as an open
problem at the 3-rd Debrecen—-Katowice Winter Seminar on Functional Equations
and Inequalities in 2003 [12].)

THEOREM 7.2.([15]) The inequality

(76) Ga,b(‘r? y) S Sga’gb(l’, y)

holds for all positive x,y if and only if a + b < 0, while the reversed inequality
holds if and only if a + b > 0.

PrROOF. We deal only with the characterization of the inequality (7.6), the
investigation of the reversed inequality is completely analogous.

Suppose first that a £ b, for example, a > b and ab # 0. Using the symmetry
and homogeneity of the means, setting ¢ = log v/ /y, (7.6) can be rewritten in the
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equivalent form

: 1
cosh(bt) — | sinh(3bt) +)5
3b

which is also equivalent to
sinh(3bt) < sinh(3at)

7.7 - teRy).
(- bt cosh®(bt) ~ at cosh®(at) ( +)
To investigate this inequality, introduce the function

sinh 3x
R\ {0 R _—.
fiRA{0} =R, x'_)x(coshx)3

It can immediately be seen that f is even. We also claim that it is decreasing on
R. We can easily obtain that

6x cosh 2z — sinh 42 — sinh 2x
/(@) = T (z € R\ {0}).

Thus, it suffices to show that 6z cosh 22 — sinh 4z — sinh 22 := h(x) is negative
for any positive . (Therefore, f’ is negative on R .)
Expanding the function & into McLaurin series, we get that

e 6 - 22i 42i+1 22i+1 )
h(x) _ Z : o ; o : . x21+1
o\ (2)! 2+ (20+1)!

- 3 1 22i 22i+2 2i+1

_;(” Seir "
Here the coefficient 37 + 1 — 2% vanishes for i = 0 and ¢ = 1 and is negative if
i > 2. Therefore, h(x) and also f’(x) is negative for all positive . Thus, the even
f is decreasing on the positive half line and increasing on negative reals. It readily
follows from this that (7.7), i.e., f(bt) < f(at) is valid if and only if |a| < |b].
One can easily observe that this inequality together with b < a holds if and only if

a+b<0.

In the cases a = b or ab = 0, the necessity and sufficiency of the condition
a + b < 0 can similarly be verified. O

REMARK 7.3. Theorem 7.2 implies the result of Neuman and Pales [43], since
(by Theorem 6.1) S3q 35(x,y) < Sqp(x,y) holds for all positive z, y if and only
ifa+b<0.

THEOREM 7.4.([15]) The inequality

(78) Ga,b(xa y) < 52a+b,a+2b($a y)

holds for all positive x,y if and only if ab(a+0b) < 0, while the reversed inequality
holds if and only if ab(a + b) > 0.
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PROOF. The case a = b is covered by Theorem 7.2. Moreover, if ab = 0, then
the inequality turns to an identity, since G 0(x,y) = Saq.q(x,y) for all positive

z,.
In the case 2a + b = 0, ab # 0, with the notation ¢ = log \/z/y, (7.8) is
equivalent to the inequality

cosh(at) % sinh(—3at) —5
o ()b o)t

Thus, we have to show that (7.9) holds if and only if ¢ < 0.
For, we will prove that the inequality

cosh(z) sinh(—3z)\ !
(7.10) cosh(—2x)2< —3x >

holds for all = # 0. The functions on the two sides of this inequality are even, so
we may assume that =z > 0. Then, inequality (7.10) can be rewritten into the form

sinh(4x) + sinh(2x) — 6x cosh(2z) > 0.

As we have seen it in the proof of Theorem 7.2, the left hand side of this inequality
is nonnegative. Thus (7.10) follows for all = # 0. In view of (7.10), the inequality
(7.9) holds for all ¢ > 0 if and only if a < 0, which completes the proof in this
case.

The case a + 2b = 0, ab # 0 can be treated similarly.

We may assume now that a # b, e.g. a > b, ab # 0, and (a+2b)(2a+b) # 0.
Now (7.8) can be rewritten in the equivalent form

sinh(2a+b)t
cosh(at) _ ~aayp
(711) cosh(br) = shia iz (t € R+),

or, rearranging this and dividing both sides by the positive ¢,
cosh(at) sinh(a + 2b)t < cosh(bt) sinh(2a + b)t
(a+2b)t - (2a+b)t

Finally, applying the product-to-sum formulas and denoting 2t by s, our statement
is equivalent to the following:

(t e Ry).

sinh(a + b)s + sinh(bs) - sinh(a + b)s + sinh(as)

(712) (a+2b)s - (2a+b)s

(s e Ry).
Introduce the function f(z) = 1+ 5 + ”g—? + ””7? + ... onR,. Clearly, f
is strictly convex on R, and sinhx = z - f(=?) holds for any real z. Using this
notation, (7.12) transforms to
(7.13)
(a+b)f((a+b)*s*) +bf(0%s%)  (a+b)f((a+b)*s?) +af(a’s?)
a+2b B 2a +b

<0.
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The left hand side of (7.13) is, however, the product of ab(a — b)(a + b) - s* and
the 2nd-order divided difference [(a + b)?s?, a%s2, b2s?; f]. The function f being
strictly convex on R, we have that this divided difference is positive if |a| # |b]
and |al, |b] # 0. Consequently, (7.13) holds if and only if ab(a — b)(a + b) is
nonpositive. With the assumption a > b this yields that (7.13), that is, (7.11) is
valid if and only if ab(a + b) < 0. O

THEOREM 7.5.([13]) For any positive numbers x and y

(714) GflJr%,flf%(xvy) S S—3,—3(I7y)‘

To prove this, we have to study some simple statements.

PROPOSITION 7.6. ([13]) Theorem 7.5 is equivalent to the following state-
ment:
For any nonnegative t

(7.15) G ,, 2 _1_l(et,e_t) < S_3,_3(et,e_t)

—+ 7 V5

holds.
PROOF. Proposition 7.6 is a special case of Theorem 7.5.
Inversely, let = and y be two arbitrary positive numbers. Due to the symmetry, we

may assume that > y. Define ¢t := log \/x/y. Then, applying Proposition 7.6
for this nonnegative ¢, we get that

T Y T Y
gt (D) 505 (5D
Multiplying both sides with the (positive) ,/zy and applying the homogeneity of
the means, we obtain (7.14). O

DEFINITION 7.7. Define the following functions:
1
ge(t) = % (logcosh(l — ¢)t —logcosh(l +¢)t) (t € R),
C
| 1/3 —tcoth(3t), ift#0;
s(¢) _{ 0, if t =0,
where ¢ stands for an arbitrary real number.

REMARK 7.8. Since M, ,(z,y) is infinitely many times differentiable for any
choice of M, p and ¢, the same holds for their logarithm, that is, for any real
number ¢, the functions g. and s are infinitely many time differentiable over R.

PROPOSITION 7.9. ([13]) Theorem 7.5 is equivalent to the following state-
ment:
For any nonnegative t

(7.16) g=(t) < s(t)
holds. (Here and in the following ¢ stands for the real number 2/ V5.)
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PROOF. Itis enough to show the equivalence of Proposition 7.9 and Proposi-
tion 7.6.
Since both (7.16) and (7.15) turns to identity for ¢ = 0, we will assume that ¢ > 0.
Applying the definitions of the Gini and Stolarsky means in this case,
1 e(=1+o)t + e(=1+o) (=)
9e(t) = 2¢ log e(=1=)t 4 e(=1-c)(=1)
1 cosh(-1+¢cjt 1

208 cosh(—1 —c)t  2c

(log cosh(1 — ¢)t — log cosh(1 + ¢)t)

and
1 et —et. (—t)1 cosh(=3t) 1
8( ) 3 + e—3t — egt 3 + Slnh(_gt) 3 0 ( )

Consequently, (7.15) can be written as

log cosh(1 — ¢)t — log cosh(1 + ¢€)t) < - — t coth(3t),

Wl

1
2
as we stated. O
We will show now that the function s — g is increasing over [0, c0). Since
its value equals 0 at the point 0, it will follow from this increase that s — g. is

nonnegative over the nonnegative half-line. By Proposition 7.9, this result will
complete the proof of Theorem 7.5.

PROPOSITION 7.10. ([13]) (s — g:)'(t) > 0, ift > 0 and (s — g:)'(0) = 0.

PrROOF. After some calculations, we obtain that for any positive number ¢

(7.47) (s — o) (t) = 28 ,

where

(7.18) ne(t) =(1 — ¢) sinh(6 + 2¢)t — (1 4 ¢) sinh(6 — 2¢)t — 2¢sinh 4¢
+ 12ct cosh 2ct + 12¢t cosh 2¢ — 2 sinh 2¢t — 2¢sinh 2¢

and

(7.19) d.(t) = 8ccosh(1 4 ¢)tcosh(1 — ¢)t - sinh? 3t.

We have to show that the numerator of (s — g.)’(¢), that is, n.(t) is positive for
c = e. For brevity, let 2t be denoted by y. After this substitution, introduce the
function f. for the numerator, that is,

fe(y) := (1 = ¢)sinh(3 + ¢)y — (1 + ¢) sinh(3 — ¢)y — 2csinh 2y
+ 6¢y cosh cy + 6¢y coshy — 2 sinh cy — 2¢sinh y (y € R).

We have to show that f, is positive for any positive real number .
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The function f. can be expanded into McLaurin series. Since

oo

. 1
Slnhﬂf = Z m$2k+l (.fU € R)
k=0

and

=1

x coshaxr = Z @a%x%+1 (x € R),

k=0 ’

we get that
> 1

(7.20) £0) =2 Gy ek ¥ WER),

k=0

where, for any nonnegative integer k,
A =1 —¢)(3+ o)L — (14 ¢)(3 — ¢)?F !
— 2c22F 1 9c2 L 9 4 (6¢2F ! 4 6¢)(2k + 1).

For ¢ = ¢ we have that for any nonnegative integer %

92 9 2k+1 9 92 2k+1 ] ok
Ap=(1-"=)(3+ "= —(1+=)(3- == —— 2

2 2k+1 4 2 2k+1 12

— 2. — — 4+ 16 — + —

NG NG NG V5

We will prove that \. g = A1 = A\co = 0and A\, > 0, if &k > 3.

The first statement can directly be checked. For the second one, introduce the
sequence

G [N O T e

and
92 2k+1 4 92 2k+1 12
bp=-2-(— - —+16-(—= +—
where k =0,1,2,.... As A\, = a + by (k=0,1,2,...), itis enough to prove

that
(A)ap > 0,ifk>3and (B) by > 0, ifk > 3.

(2k +1).

(2K +1),

For (A), we will show that dj, := a;/2?**1 > 0 for & > 3. Since d3 =

% 5, it suffices to verify that d;. is increasing. Really, for any nonnegative
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integer m,

since this inequality is equivalent to

3 1 2m—+1 1 5
<?+\/5> > 4750
)

3 1

2 5
which is obviously true (the two sides are separated by the number 1).

For (B), observe first that by = % We show, again, that by, is also increasing.
For, let m be an arbitrary nonnegative integer. We have that

5 2 2m+1
+(bmi1 = br) = (11 = 3m) - <\/5> +6V/5.

The right hand side of this inequality is positive, because the inequality

(11 — 3m) - <55>2m+1 +6v5 >0

2m—+1
@ - 1 . 11
2 2v/5 65

For m = 0 the difference of the left and the right side is positive. This difference,
as the function of m, can be extended to be a continuous function which has a
positive derivative, therefore, is increasing. In particular, this difference is positive
for any positive integer.

Consequently, we have proven that A, , = a; + b, > 0 for all nonnegative
integers k — in particular, A.;, > 0 for k > 3 —thatis, f-(y) > 0. It means that
(s —go)'(t) > 0, if t > 0. The statement (s — g-)’'(0) = 0 can immediately be
checked, that is, the proof is complete. O

is equivalent to

7.4. Sufficient conditions

In this section, according to the position of the pair (a,b) € R?, we give suf-
ficient conditions for the Gini-Stolarsky comparison inequality. These conditions
are sometimes (unfortunately not always) also necessary.

THEOREM 7.11.([15]) Let a, b be positive numbers. Then there are no param-
eters ¢, d so that the inequality

Ga,b(xy y) < Sc,d(wv y)
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be valid for all positive numbers x, y.
PROOF. This is a direct consequence of (7.5) in Theorem 7.1. O

THEOREM 7.12.([15]) Let a,b be real numbers so that min{a,b} = 0 <
max{a,b}. Then
Ga,b(ma Z/) S Sc,d(xa y)
is valid for all positive numbers x, y if and only if
(a) 3a < c+d,
(b) a <log2-L(c,d).

PROOF. The necessity of the condition follows form Theorem 7.1. For the
sufficiency, assume that 0 = b < a. Then Gy p(2,y) = Gao(z,y) = Su24(z,9),
and we can apply Theorem 6.1 to the inequality S, 2q(z,y) < Scd(z,y). Now
(a) is equivalent to a + 2a < ¢+ d and (b) yields L(a,2a) < L(c,d). Thus ¢,d
must be positive, whence £(a,0) < &(c,d) also follows. Therefore, in view of
Theorem 6.1, (a) and (b) yield that G o(z,y) = Sa2q(x,y) < Scq(z,y) holds
for all positive z, y. O

THEOREM 7.13.([15]) Let a, b be real numbers so that ab < 0 and a + b > 0.
If

(@ 3(a+b) <c+d,
(b) L{a+ 2b,2a + b} < L(c,d),
(c) E(2a+ b,a+ 2b) < E(c,d),

then
Ga,b(%y) < Sad(:);‘, Y)
is valid for all positive numbers x, y.
PROOF. By Theorem 7.4, the condition ab(a + b) < 0 yields that, for any
positive x, y,
Gap(z,y) < Savav2a+6(T,Y).
Moreover, the conditions guarantee that Theorem 6.1 can be applied to obtain

Sat2b,2a+6(T, Y) < Sea(@, y).
Combining these two inequalities, the desired inequality follows.. O
THEOREM 7.14.([15]) Let a, b be real numbers so that ab < 0 and a + b < 0.
Then
Gap(z,y) < Sealz,y)
is valid for all positive numbers x, y if and only if

(@ 3(a+b) <c+d,
(b) £(a,b) < &(c, d).
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PROOF. The necessity of conditions (a) and (b) is the consequence of Theo-
rem7.1.
By Theorem 7.4, the condition a + b < 0 yields that, for all positive z, y,

Ga,b(xa y) < S3a,3b(x7 y)
To complete the proof of the sufficiency, we will also prove that

S3a.36(2,y) < Scalz,y).

For, by Theorem 6.1, we have to ensure that, in addition to (a), £(3a, 3b) < &(c,d)
and L(3a, 3b) < L(c,d) hold. The first inequality trivially follows from (b) since
€(3a,3b) < E(a,b). On the other hand, ab < 0, consequently, £(3a,3b) = 0.
Thus it suffices to show that L (¢, d) is nonnegative. Indeed, in the opposite case
we have that ¢,d < 0, thus €(c,d) is equal to —1, while E(a,b) > —1 — in
contradiction with (b). O

REMARK 7.15. It is clear that the conditions of Theorem 7.13 and Theo-
rem 7.14 coincide in the case ab < 0, a + b = 0 —thatis, b = —a, b # 0.

THEOREM 7.16.([15]) Let a, b be real numbers, a,b < 0. If
(@ 3(a+b) <c+d,
(b) L(2a+ b,a+ 2b) < L(c,d),
then
Gap(2,y) < Scalz,y)
is valid for all positive numbers x,y.

PROOF. First we check our statement when (a,b) = (0,0). In this case
Goo(z,y) = /2y = Soo(z,y), SO we can use Theorem 6.1 again. Then (a)
and (b) are equivalent to the inequality 0 < ¢ + d which, by Theorem 6.1, results
that S(),() < Sc,d is valid.

In the rest of the proof, we assume that (a, b) # (0,0).

In view of Theorem 7.4, it is clear that, for all positive z, ¥,

Ga,b(x; y) < 52a+b,a+2b($7 y)

We have that a,b < 0 and a + b < 0, consequently, u(2a + b,a + 2b) = —1,
whence p(2a + b, a + 2b) < u(c,d) follows. Therefore, using Theorem 6.1, the
conditions (a) and (b) imply that

52a+b,a+2b(x> y) < Sc,d(x> y)7
which combined with the previous inequality results our statement. O
<

REMARK 7.17. In the domain a,b < 0 we also have the inequality G, ;
S3q,35 Which could be used to obtain that the inequality in (a) and £(3a,3b) <
L(c,d) form also a system of sufficient conditions. However, applying Theo-
rem 6.1, it easily follows that Sa, 14 o+26 < S34,35 holds, too. Thus, the sufficient
condition obtained this way is essentially weaker than that of Theorem 7.16.
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LEMMA 7.18.([13])

(7.21) (s — gc)/(o) =(s— gC)H(O) =0,
(7.22) (s = 9)"(0) = 0,
while

(7.23) (5 — g0)(0) = 353 — 82

PrROOF. With L’Hospital’s law, one can directly check that
s'(0) = g.(0) =0
and
S”(O) = gé/(0> = _27
that is, (7.21) holds.

We will need the values of the derivatives of n. and d. (defined in (7.18) and
(7.19)) at 0. For, we determine first the ones of f. and h., where h.(2t) = d.(t),
and — as before — f.(2t) = n.(t).

By means of (7.20) we get that

fU0) = A0 =0, fI(0)=0, fED(0)=A1=0,
FE90) =0, f(0) = Ae2 = 288¢ — 360¢°.

Moreover, following the method, applied in the previous proof, we can obtain the
McLaurin expansion of .(y). Namely,

8ccosh(1 + ¢)t cosh(1 — ¢)t - sinh? 3¢
= —2ccosh ¢y — 2ccoshy + ccosh(3 + ¢)y
+ ccosh(3 — ¢)y + ccosh 4y + ccosh 2y

-2 (21k)!,“c,k -y (yeR),
where
fieg = —2c-¢**—2ctc(3+4¢) P 4c (3—c)F 4%k e 2%k (k=0,1,2,...).
In particular,
he(0) = pieo =0, h(0) =0, hL(0) = pie1 =36c, h{™(0)=0.
That is, applying that n.(t) = f.(2t) and d.(t) = h.(2t),
7.2 ne(0) =0, ni(0)=0, n¢(0)=0, n(0)=0,
n{™0) =0, n(0) = 32(288¢ — 360c%)

and
(7.25) d.(0) =0, d.(0)=0, d’(0)=4-36c, d¥(0)=0.
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From (7.17) we obtain that n.(t) = (s — g)'(t)d.(¢).
Performing the forth derivative of both sides, we have that

n(t) = (s — g) (AU () + 4(s — 9)" (1) (1) + 6(s — 9) " (1)dL(t)
+4(s — )" (L) + (s — 9) ) (£)de ().
Putting ¢ = 0 in this equation and using (7.21), (7.24) and (7.25), we have that

(s — g))(0) must be equal to 0, that is, we have obtained (7.22).
Calculating the fifth derivative of this identity, we get the following equation:

n{(t) = (s — g)' (DA (8) + 5(s — 9)"" (1)dI) (¢) + 10(s — ) (£)d{™) (¢)
+10(s — )" (0)dZ () + 5(s — )" (D) de(t) + (s — 9)“) () ().
Substituting t = 0, and applying (7.21), (7.22), (7.24) and (7.25), we have that
32(288¢ — 360¢®) = 10(s — ¢)™)(0) - 144,

that is,
(s—9)™(0) = T — 8,
as we stated in (7.23). O
PROPOSITION 7.19. ([13]) Let ¢ be a real number. Then
(7.26) Gotte—1-c(2,y) < S-3,-3(z,y)

holds for any positive x, y if and only if |c| < e.

PROOF. Suppose first that (7.26) is valid for any positive x, y.
Putting e! and e~* into the place of x and 3, then taking the logarithm of the
sides of (7.26), it turns to the inequality

(7.27) s(t) — ge(t) >0 (t e R).
Assume that |c| > . As we know from Lemma 7.18, in this case (s — g.)'(0) =
(5 — g.)"(0) = (s — g.) ¥ (0) = 0, and (s — g.)*)(0) < 0, that is, the function
s — g. has a strict local maximum at 0. Since its value equals 0 at 0, we have
that in an appropriate place 7 of the neighborhood of 0, s(7) — g.(7) < 0, which
contradicts to (7.27).

Suppose now that |c| < e. Then, applying the comparison theorem for Gini
means (Theorem 5.1) and Theorem 7.5, we have that

Gtte—1-c(@,y) € Gorie1-c(7,y) < S3-3(z,y) (2,y € Ry),

that is, we obtained (7.26). a
PropPOSITION 7.20. ([13]) Leta,b < 0. Then

(7.28) G_2a _ 2 (z,y) < S_3_3(x,y)

a+b’ a+b

holds for any positive z, y if and only if

(7.29) % €9 — 45,9 + 4v/5].
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PrRoOOF. Denote the number g—jr’g by c. In the sense of Proposition 7.19, the
only thing to prove is that the inequality ’g—;’g‘ < ¢ is equivalent to (7.29).
Indeend, the inequality

is equivalent to

1—¢ a
<= 9
1+~ b 1—¢

9—4v5 <

that is, to
< 9+ 45,

SallES

PROPOSITION 7.21. ([13]) Leta,b < 0. Then
(7.30) Ga,b(xvy) < Sg(a+b),%(a+b) (, y)
holds for any positive x, y if and only if (7.29) is valid.

PROOF. Since

1
Myag(z,y) = (Ma,ﬂ(x’\;yA)) ’
both for M = G and M = S, we have that the statements

Gap(z,y) < Sys(z,y)  (z,y €Ry)
and
Grans(7,y) < Snps(@,y) (2,9 €Ry)
are equivalent to each other.
Applying this with A = —222, o = —2¢. 3 = 2 (7.28) turns to the

T atb atb’
(equivalent) (7.30), that is, both of them are equivalent to the condition (7.29). O

THEOREM 7.22.([13]) Let a, b < 0 and suppose that (7.29) holds. Then

(7.31) Gap(®,y) < Seal,y)
holds for any positive z, y if and only if

(7.32) 3(a+b)<c+d

is valid.

PROOF. We have seen in Theorem 7.1 that (7.32) is necessary for (7.31) to
hold.

For the sufficiency, suppose now that (7.32) holds. As one can immediately
check, the conditions of the comparison theorem for Stolarsky means are satisfied
(see Theorem 6.1) for the comparison

S5 (at0).3(att) (T ¥) < Sealz,y) (9 €Ry).
Combining this with (7.30), we obtain our statement. O
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REMARK 7.23. Summarizing our results: we can characterize the general
Gini-Stolarsky comparison in the cases a,b > 0, min{a,b} = 0 < max{a, b},
ab< 0, a+b<0,finally,a,b<0, a/be9—4v59+4/5]. However, if
ab<O0anda+b>0,a,b<0,0ra,b<0, a/b¢][9—4v5,9+4/5],thenwe
have only necessary, but not sufficient and sufficient, but not necessary conditions
— S0, we have these cases as open problems.



CHAPTER 8

Minkowski inequality for general two variable means

8.1. Introduction

The survey concerning the Minkowski-type (or reversed-Minkowski-type) be-
havior of our means has an extended literature. (In the next chapters we will refer
to some of the most important papers on this topic.) In general, the question for
the two variable setting is the following: under what conditions will the inequality

<
(8.1) Mg p(x1 + 22,91 + y2) (;) Map(w1,91) + My p(22,2)

be valid for all positive z1, x2,y1,y2? The direction "<" is called Minkowski,
while the opposite is the reversed-Minkowski inequality.

A possibility to generalize this problem is that each appearance of M, is
replaced by a mean of the same kind but having different parameters, that is, we
ask for necessary and sufficient conditions such that

<
(8.2) Mg po (21 + 22, Y1 + Y2) >) Mo, by (21, 91) + Moy p, (72, y2)
be valid for all positive x1, 22, y1, y2.
In the next two chapters we will study the question (8.2) first for the Gini,
then for the Stolarsky means. The following general results will prove to be useful
during that process.

8.2. Minkowski inequality and convexity

In this section we show that the Minkowski inequality (8.2) can be reduced to
convexity type inequalities with respect to certain one variable functions derived
from the means M, ;,. Our considerations will be even more general here, we
shall deal with Minkowski type inequalities for arbitrary two variable homoge-
neous means.

THEOREM 8.1.([17]) Let My, My, M> : ]Ri — R be two variable homoge-
neous means. Then

<
(8.3) Mo(z1 + z2,y1 + y2) (;) My (z1,y1) + Ma(z2,y2)

55
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holds for all x1,y1,x2,y2 € Ry if and only if

64) mo(t§ + (1= 8)n) (S tma() + (1 = ma(n)

is satisfied for all t € (0,1), £,n € R, where
m;(t) = M;(t, 1) (teRL,i=0,1,2).

PrRoOF. Due to the homogeneity of the means, (8.3) can equivalently be writ-
ten as

r1 + 22 < T T2
+y)My [ —21) S oMy (5,1 ) yeMy (2201,
(y1 + y2) Mo <y1+y2 > (>) Y1y <y1 ) Y2 Vi <y2 >
that is, (8.3) is equivalent to the inequality

(8.5)

Y1 X1 Y2 X2 < U1 T Y2 T2
mo — == my (=) + mo (== ).
vty yityeye) () ytwe Y1 Y1+ 2 Yo

After defining

Y1 r1 T2
t:= ) g = ni=—
Y1+ 2 Y1 Y2
we can see that (8.5) is valid for all positive x1, z2, y1, y2 if and only if (8.4) holds
on the domain indicated. O

If all the means in (8.3) are equal, then, as a corollary of the above result,
we obtain the following characterization of homogeneous two variable means that
satisfy the Minkowski or the reversed Minkowski inequality. In the special cases
when the mean is a Gini or a Stolarsky mean, this result appeared in [38], [39].

COROLLARY 8.2.([17]) Let M ]Ri — R be a two variable homogeneous
mean. Then

(8.6) M(z1 + x2,y1 + y2) é) M(z1,y1) + M(z2,y2)

holds for all x1,y1,x2,y2 € Ry if and only if the function
m(t) = M(t, 1) (teR4,i=0,1,2).
is convex (resp. concave) on R .

PROOF. Observe that, in the case My = M; = Ms = M, condition (8.4)
reduces to the convexity of the function mg = m; = ms = m. O

Using Theorem 8.1, now we derive two necessary conditions for (8.3).

THEOREM 8.3.([17]) Let My, M1, My : R2 — R be two variable homoge-
neous means such that My is symmetric on R?, and differentiable at the point
(1,1). Assume that (8.3) holds for all x1,y1,x2,y2 € Ry. Then

(87) M() - Mi and A (;) Mi (Z = 1,2),
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where A denotes the arithmetic mean.

PROOF. By Theorem 8.1, we have that (8.4) is valid for all ¢t € (0,1), &,n €
R.. By substituting « = £ = n and taking the limits ¢t — 0 and ¢ — 1, we get that

<

mo(u) T, mi(u ueR, 1=1,2).
0( ) (2) ( ) ( + )
Using the homogeneity of the means, it follows directly that the first inequality of
(8.7) is satisfied.
Substituting n = 1, using that mg(1) = ma(1) = 1, (8.4) implies
molt(€E — 1)+ 1] —mg(l) <
olt( )t I =mo(l) >) mi(€)—1 (0<t<1, £eRy).
Computing the limit as ¢ — 0 and using the differentiability of M, at (1, 1), we
get that

©8) OM(L(E 1) 5 m(©-1  (§ERy)

The function M, being a mean, we have My(z,z) = « for all x > 0. Thus,
differentiating this identity at = 1, we derive

81M0(1, 1) + 62M0(1, 1) =1.
Due to the symmetry of M, we also have 0y My(1,1) = 92My(1,1). Hence
01My(1,1) = 1/2. Thus (8.8) reduces to

S5 mO  €ery),

which results the second inequality in (8.7) for i = 1. The proof in the case i = 2
is analogous. 0

In order to derive also sufficient conditions, we need the following definition.

DEFINITION 8.4. Let My, My, M, : RZ — R be two variable means. A
mean M : R%r — R is called a Minkowski-separator (resp. reversed-Minkowski-
separator) for (M, My, My) if M satisfies the (reversed) Minkowski inequality
(8.6), furthermore,

< < .
é) M and M T, M; (i=1,2).

The existence of the (reversed-)Minkowski-separator yields a trivial but useful
sufficient condition for the (reversed) Minkowski inequality (8.3).

My

THEOREM 8.5([17]) Let My, My, M> : Ri — R be two variable means. Sup-
pose that there exists a (reversed-)Minkowski-separator for (Mg, M1, Ms). Then
the (reversed) Minkowski inequality (8.3) holds for all positive x1, 2, Y1, Y2-
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PROOF. Assume that M is a (reversed-)Minkowski-separator for
(M(), Ml, MQ). Then,

Mo(z1 + 2,91 + y2) (>) M (z1 + z2,y1 + y2)

IVIA IV IA

) M(x1,y1) + M(z2,92)

—~

IN

>) Mi(z1,y1) + Ma(z2,y2)

for all x1, z2,y1,y2 € R4, that is, (8.3) holds. O

Y



CHAPTER 9

Generalized Minkowski inequality for Gini means

9.1. Introduction

Minkowski’s inequality for the special Gini mean with a — b = 1 was treated
by Beckenbach [5]. Concerning the general case
(9.2)
Ga,b;n(xl + Xz) < Gmb;n(xl) + Ga,b;n(XZ) (Xl, X2 € R:L_, n = 2, 3, ‘e ),

Dresher and also Danskin proved that the conditions
9.2 0 < min{a,b} <1 < max{a,b}

are sufficient for (9.1) to hold. Losonczi [35] showed that the inequality (9.1) is
not only sufficient but it is also necessary for (9.2) to hold. He also proved that the
reverse inequality
9.3

Ga,b;n<xl + X2) > Gmbm(xl) + Ga,b;n(XZ) (Xl7 Xg € Ri, n=23,.. )

holds if and only if
(9.4) min{a,b} <0 < max{a,b} <1

is satisfied. In [37], the inequalities (9.1), (9.3) were characterized in the case,
where the coordinates of the variables x1,x2 vary only in a subinterval («, 3) of
R+.

Another possibility to generalize (9.1) is that each appearance of Gy, Is re-
placed by a possibly different Gini mean, that is we ask for necessary and sufficient
conditions such that
(9.5)

Gao,bo;n(xl +x2) < Ga17b1;n(xl) + Ga27b2;n(x2) (x1,%2 € RT—:-’ n=23,...)

be valid. The result obtained by Péles [45] states that (9.5) is valid on the domain
indicated if and only if

(1) a17a27b17b2 207
(9.6) (ii)  max{l,ag,bo} < max{ai,b;}, (i=1,2),
(iii)  min{ag,bo} < min{l,ay, b1, as,bs}.

59
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The reversed inequality
9.7
Gao,bo;n(xl +X2) 2 Gal,blgn(xl) + Gag,bg;n(XZ) (X17 X2 € Ri, n = 27 37 o )

was also characterized in [45]. It holds if and only if
(i) 1> aq,a9,by,bo,
(9.8) (i)  min{0, ap,bo} > min{a;, b;}, (1=1,2),
(iii) max{ag, bp} > max{0, a1, b1, a2,bs}.

Further methods and results were obtained by Dardczy and Losonczi [22],
Losonczi [34], [35], Pales [46] for characterizing inequalities (of quite general
form) involving quasiarithmetic means weighted by weightfunctions and by
Daroczy [20] [21], Losonczi [36], Dardczy and Péles [23] and Pales [47] for more
general means (deviation and quasideviation means).

In these general results, however, one has to suppose that the inequalities hold
for all n = 2,3,... . Fixing the number of variables » in (9.1), (9.3), (9.5), and
(9.7), we obtain new problems to investigate. The first step in this direction is of
course studying the case n = 2 and inequalities (9.1) and (9.3). This was done in
the paper of Losonczi and Pales [38]. The main result of [38] can be formulated
as follows.

Theorem 9.A. (Losonczi—Pales [38]) Let a,b € R. Then the inequality

(9.9) Gap(®1 + 22,91 +y2) < Gap(1,91) + Gap(T2,92)
holds if and only if
(9.10) 0 < min{a,b} <1<a+b.

Our aim is to characterize the situation when the more general inequality

(911) Gao,bo (l’l + T2,Y1 + 3/2) S Ga1,b1 (xla yl) + Gaz,bz ($25 3/2)

holds for all positive x1, y1, 22, y2. Our main result is contained in the following
theorem.

THEOREM 9.1.([16]) Let ag, a1, a2,bg, b1,b2 € R. Then (9.11) holds if and
only if

(1) al,CLQ,bl,bQ Zou
(9.12) (i)  max{1l,a0+ bo} < min{aj + by, as + b2},
(iii)  min{ag,bo} < min{l,ay, by, as,bs}.

The proof of the necessity of conditions (i)—(iii) of this result will be obtained
with the help of a sequence of lemmas. The proof of the sufficiency is based on
Theorem 9.A, since, as it will turn out, conditions (i)-(iii) of Theorem 9.1 are
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necessary and sufficient for the existence of some parameters a,b € R such that
(9.9) is valid and

Gao,bo S Ga,b) Ga,b S Ga1,b17 Ga,b S Gaz,bz

hold. Thus any inequality of the form (9.11) is a weakening of inequality (9.9) for
some a,b € R.
Concerning the inequality

(9.13) Gap(r1 + 22,91 +y2) > Gap(1,y1) + Gap(T2, y2),

which is reversed to (9.9), there are only necessary (but not sufficient) and suffi-
cient (but not necessary) conditions presented in [38]. Therefore, the investigation
of the inequality reversed to (9.11) is left as an open problem.

Itis interesting to note that the analogous problems, that is, the Minkowski and
reversed Minkowski inequalities for the so called Stolarsky means can be charac-
terized completely (see Losonczi—Pales [39]).

9.2. Proof of the generalized Minkowski inequality for Gini means
Because of the symmetry, we can assume that
(9.14) ao < bo, ar < by, az < bo.
(Necessity.)

Assume now that the Minkowski inequality (9.11) holds.
Theorem 8.3 yields that for i = 1,2

(9.15) Goa(71,91) < Gagp, (T1,91) (1,91 € Ry).
Consequently, by Theorem 5.1, 0 + 1 < a; + b;, therefore,
(9.16) 1< min{a1 + bi,as + bg}.

Using (9.14), (9.16) implies that that b1, b2 > 0. If a1, for example, were negative,

then (9.15) would also yield that £(1,0) < &(ar, by), thatis, 1 < “2=1 This
inequality, however, implies a; > 0. The contradiction obtained shows thata1 >0
and similarly ag > 0. Thus (9.12)(i) is proved.

In order to complete (9.12)(ii), one may apply Theorem 8.3, again: fori = 1,2

(9.17) Gagbo(@1,y1) < G, p, (21, 91) (x1,11 € Ry).

Thus, by Theorem 5.1, the inequality ag + by < a; + b; holds. These inequalities,
together with (9.16), yield (9.12)(ii).

To obtain (9.12)(iii), we show first that
(9.18) min{ag, bp} < min{ay, by, as,ba}.
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In the case min{ag,bp} < 0, (9.18) is obvious because the right hand side is
nonnegative. In case of min{ag, bo} > 0, (9.17) and Theorem 5.1 yield
min{ag, bp} < min{ay,b;}.
Similarly
min{ag, bp} < min{ag, b2 }.
Hence (9.18) is valid.

To complete the proof, we have only to show that min{ag, by} < 1. On the
contrary, suppose that ag, bg > 1.

We know, by (9.18), that in this case a1, b1,a2,bs > 1 (and consequently
a1,b1, az, by > 0). Taking the limit y; — 0in (9.11) and applying Lemma 3.3, we
obtain

Gao,bo (I’l, Y1 + y2> S Ga1,b1 (xlv yl) + Y2 ('1:17 Y1,Y2 S R+)
Thus

(9.19)  lim (Gagpo(z1,y1 +y2) — ¥2) < Gaypy (z1,91) (21,51 € Ry).

Y2—00

By Lemma 3.6, the limit of the left hand side is y1, that is,

U1 S Ga1,b1 (95173/1)a

for all positive z1 and 3. If x1 < y1, then the inequality obtained contradicts the
mean value property of G .
Thus the proof of Theorem 9.1 is completed.

(Sufficiency.)
Define
a := min{ay, az, 1}, b := min{a; + b1, a2 + b2} — a.
We are going to prove that G, is a Minkowski-separator for G, p,, Gg, 5, and
G, b, In the sense of Theorem 8.5, this will guarantee our statement. We have to
check the following three statements.
(I) G, satisfies the Minkowski inequality (9.9),
(“) Gao,bo S Ga,b7
(”I) Ga,b < Gai,bi (Z = 172)'
In order to prove (I), we have to verify that (9.10) holds. By the definition of
a and (9.12)(i), we get that 0 < a < 1. By (9.12)(ii), we also have
min{a; + b1, a2 + b} > 1> a.
Thus
b= min{a1 + by,as + bg} —a >0,
whence 0 < min{a, b} < 1. Using again the definition of a, b, and (9.12)(ii), we
obtain

(9.20) a+b=min{a; + by,as + b} > 1.



9.2. PROOF OF THE GENERALIZED MINKOWSKI INEQUALITY FOR GINI MEANS 63

Therefore G, , satisfies the Minkowski inequality (9.9).

In order to prove (1), we distinguish two cases.
If ag < 0, then Gy, b, < Ggp holds if and only if

(9.21) ap+bo < a+b, E(ap,bo) < E(a,b).
The first inequality follows from (9.12)(ii):
ap + by < max{1l,ag + bp} < min{ay + b1,a2 + b2} = a+b.

Due to (9.20), max{a,b} > 0. Therefore, we have that £(a,b) = 1. Thus, by
Lemma 2.5, the second inequality in (9.21) is obvious.
If ag > 0then G, 4, < G p holds if and only if

(9.22) ag+ by < a-+b, min{ag, bp} < min{a,b}.

The proof of the first inequality coincides with that of the previous case. To obtain
the second inequality, we show that ag < a and ag < b. Since then

min{ag, bp} = ag < min{a, b}.
By (9.12)(iii),
ap = min{ap, bp} < min{l,ay,b1,as,b2} = min{l,a1,as} = a.
In order to obtain ag < b we need to show that
ap < min{ay + b1, as + b} — min{ay, as, 1},
which is equivalent to the inequalities
ap + min{ay,az,1} < a; +b; (1=1,2).
On the other hand, by (9.12)(iii) and (9.14)
ap + min{ay,az,1} < ap+a; < aj+a; < a;+b; (1=1,2).

Thus we have proved (11).
To obtain (I11), we have to show that

(9.23) a+b<a;+b;, min{a, b} < min{a;, b;} (1=1,2).
The first inequality obviously follows from the definition of 5. On the other hand,
min{a, b} < a =min{aj,as, 1} < a; = min{a;, b; } (i=1,2),

therefore the second inequality of (9.23) is also valid. Thus the proof of (1) is
also complete.

Using the above method, one can get the following generalization of Theo-
rem 9.1.
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THEOREM 9.2.([16]) Let k > 2 and ag, a4, . ..,a, by, b1,...,b; € R. Then
Gaopo (1, 91) + -+ (hy Yk)) < Gay g (T1,91) + -+ + Gay b (Th, Yk)
holds for all positive x1,y1, X2, Y2, - - - , Tk, Y if and only if
(i) 1y.v., Ak, b1, ..., b >0,
(i)  max{l,ap + bo} < min{as + b1,...,ar + b},

(iii) min{ag, bo} < min{l,ay,b1,...,ar, by}



CHAPTER 10

Generalized Minkowski inequality for Stolarsky means

10.1. Introduction

In a paper [39] by Losonczi and Pales, necessary and sufficient conditions
for the Minkowski and the reversed Minkowski inequality have been found. The
results contained in Theorems 1 and 2 of this paper can be formulated in the fol-
lowing united form.

Theorem 10.A. Leta,b € R. Then the Minkowski inequality (or the reversed
Minkowski inequality)

<
(10.1) Sap(x1 + T2, Y1 + Y2) (;) Sap(x1,y1) + Sap(w2,y2)

holds for all positive x1, x2, Y1, y2 if and only if the conditions
< <
(10.2) 3 (;) a+b and 1 (;) min{a, b}.

are satisfied.

A possibility to generalize (10.1) is that each appearance of .S, ;, is replaced
by a possibly different Stolarsky mean, that is, we ask for necessary and sufficient
conditions such that

IV INA

(103) Sao,b()(l‘l + T2,Y1 + y?) ( ) Sa1,b1 (xla yl) + Sa2,b2(x25 1/2)

be valid for all positive x1, z2, y1, yo.

10.2. Necessary conditions

The main result of this section offers a necessary condition for the Minkowski
inequality (10.3). As we shall see below, the condition is not sufficient in the
general case.

THEOREM 10.1.([17]) Let ag, by, a1, b1, az, ba € R. If the Minkowski inequal-
ity
(10.4) Sagybo (T1 + 22, y1 + y2) < Say b (¥1, Y1) + Say by (T2,92)
65
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holds for all x1,y1,x2,y2 € Ry, then

(105) max{ag + bp,3} < min{aj + by,as + be}
' maX{L(ao,bo),L(1,2)} min {L(al,bl),ﬁ(ag,bg)}.

A

If the reversed Minkowski inequality
(10.6) Sao,bo(T1 + 2,91 + Y2) = Say by (21, Y1) + Saz by (T2, Y2)
holds for all x1,y1,22,ys € Ry, then
min{ag + bp,3} > max{a; + b1, as + ba}
(10.7) min {£(ao, bo), £(1,2)} > max {L(a1,b1),L(az,b2)}
E(ag,by) > max{S(al,bl), 8(&2,b2)}.

PROOF. Assume that (10.4) holds on the domain indicated. Then, by Theo-
rem 8.3,

\%

Saobo < Sayb; S12=A< S (i=1,2).
Due to our Theorem 8.1, these inequalities yield that, fori = 1,2,
(10.8) ag + bg < a; + b, L(ag,bo) < L(a;, b;), E(ap,bo) < E(ai, b;),
and
(10.9)  1+42<a;+b;,  L(1,2) <L(a,bi),  &(1,2) < &(as, by).

The value of L(a, b) is positive if and only if 0 < min{a, b}, therefore £(1,2) <
L(a;, b;) yields that 0 < min{a;, b;}. Thus £(a;, b;) = 1 and the conditions

(O,(ao,bo) S E(Cbi,bi), 8(1,2) S 8(az,bl)

hold automatically if the second inequality of (10.9) is valid. Combining the first
two inequalities of (10.8) and (10.9), the condition (10.5) of the theorem follows.

Now assume that the reversed Minkowski inequality (10.6) holds. Then The-
orem 8.3 yields

Saobo = Saib; S12=A2 Sup, (i=1,2).
By Theorem 8.1, it follows from these inequalities that, fori = 1,2,
(10.10) ag+by > a;+b;, L(ag,bo) > L(a;, b;), E(ap,bo) > E(ai,b;),
and
(10.11) 3> a;+ b, L(1,2) > L(a;, by), £(1,2) > E(as, by).

The last inequality in (10.11) is always valid since £(1,2) = 1 > &(a;, b;). Thus,
it can be omitted. Combining the rest of the inequalities from (10.10) and (10.11),
we can deduce the condition (10.7). O
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REMARK 10.2. The conditions (10.5) and (10.7) of the theorem are not suf-
ficient for (10.5) and (10.6) to hold, since even in the case ag = a1 = as = a,
by = by = by = b they are different from the corresponding condition of (10.2)
which is necessary and sufficient for (10.4) and (10.6), that is, for (10.1) in this
setting.

10.3. Minkowski-separators and sufficient conditions

Introduce the following notations

M = {(a,b) eR® : 3<a+b, 1 <min{a,b}},
M* = {(a,b)€R2 : a+b<3, minfa,b} <1},

By Theorem 10.A, a pair (a, b) belongs to M (resp. M*) if and only if the Minkow-
ski (resp. reversed Minkowski) inequality (10.1) holds.

DEFINITION 10.3. We say that (a, b) is a Minkowski-separator for
(ag,bo,ar, by, az,bs) € RO if

(a,b) e M, Saobo < Sap and Sap < Sa; b (i=1,2).

We say that (a, b) is a reversed-Minkowski-separator for (ag, by, a1, b1, a2,b2) €
RS if

(a, b) S M*, Sa,b < Sao,bo and Sai,b < Sa,b (Z =1, 2).

Clearly, (a, b) is a (reversed-)Minkowski-separator for (ag, by, a1, b1, az, bs) €
RY if and only if the mean S, ;, is a (reversed-) Minkowski-separator for the means

(Sao,bos Sar,br» Sas,b, ). Due to Theorem 8.5, we have the following sufficient con-
dition for the inequalities (10.4) and (10.6).

COROLLARY 10.4.([17]) Let ag,bo,a1,b1,a2,bs € R. Suppose that there
exists a Minkowski-separator (resp. reversed-Minkowski-separator) for
(a0, bo, a1, by, az,by). Then the Minkowski inequality (10.4) (resp. the reversed
Minkowski inequality (10.6)) holds for all positive x1, T2, Y1, yo.

In the following theorems we characterize the existence of a (reversed-)Min-
kowski-separator, therefore, in view of the previous theorem, we obtain sufficient
conditions for the (reversed) Minkowski inequality.

THEOREM 10.5.([17]) For (ag, by, a1,b1,a2,bs) € RS there exists a Min-
kowski-separator if and only if

max{ao + b, 3} < min{a1 + b1, a0 + bg},
(10.12) max {L(ao, bo),L(1,2), L(1,a0+bo—1)}
S min {L(al,bl),ﬁ(ag,bz)}
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THEOREM 10.6.([17]) For (ag, bo, a1, b1, az, ba) € RS there exists a reversed-
Minkowski-separator if and only if

( min{ag + bo, 3}
min { £ (ao, bo), £(1,2)}

(10.13) &(ao, bo)
finally, if min{ag, bp} > 1 then
L(1,a0 4+ bo — 1) max {£L(a1,b1), L(az, b2) }.

REMARK 10.7. In view of Corollary 10.4, we can see that (10.12) and (10.13)
are sufficient conditions for the Minkowski inequality (10.4) and the reversed Min-
kowski inequality (10.6), respectively.

One can also see that in the case ag = a1 = as = a, by = by = by = b these
conditions are also necessary and reduce to the necessary and sufficient condition
(10.2) of Theorem 10.A.

\Y]

max{a; + b1, az + ba},
max {L(al, b1),L(az, b2)}>
max {8(a17 b1), E(az, 62)}7

v

v

v

PROOF OF THEOREM 10.5. (Necessity.) Suppose that there exists a Minkowski-
separator (a,b) € M for (ag, by, a1, b1, az, b2). Then, by Corollary 10.4, the Min-
kowski inequality (10.4) holds. Thus, by Theorem 10.1, we have that condition
(10.5) is satisfied. In order to prove that (10.12) is valid, we have to show that

L(l,ag + by — 1) < min {L(al,bl),ﬁ(@,bg)}

holds, too.

Then, min(a,b) > 1, hence, by Lemma 2.8, we get that L(1,a +b — 1) <
L(a,b). Due to the inequalities Sy, p, < Sap < Sq, b, (@nd Theorem 9.A), we
also have ag + by < a+band L(a,b) < L(a;,b;) (i = 1,2). Therefore, using the
monotonicity property of L, it follows that

L(l,a0+byp—1) < L(l,a+b—1) < L(a,b) < min {L(al,bl),ﬁ(ag,bg)},
that is, we obtain our statement.

(Sufficiency.) Suppose now that the condition (10.12) holds. We show that in this
case there exists an appropriate Minkowski-separator.

Case 1: 3 < ag + by and min{ag, bp} < 1.
Then (a,b) = (1, a0 + by — 1) is Minkowski-separator. Indeed, it is clear that
(a,b) € M. Moreover, a+b = ay+ by, therefore, by the first inequality of (10.12),

ag+byp<a+b<a;+b; (1=1,2).
The inequalities
L(ag,by) < L(a,b), E(ap,bo) < E(a,b),
trivially hold since €(a,b) = 1 and Lemma 2.8 yields
L(ag,bo) < L(1,a0+ by — 1) = L(a,d).
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Thus, by Theorem 9.A, we get that S, 1, < Sa.p.

Finally, by the last inequality of (10.12),
L(a,b) = L(1,a0 + by — 1) < L(as, b;) (i=1,2).
Since £(1,2) < L(ay, b;), hence min{a;, b;} > 0. Therefore,
E(a,b) =E(L,ap+bp—1) <1=E(a;b) (i=1,2).

Thus we have also proved that S, ;, < S,, »,. Consequently, (a, b) is a Minkowski-
separator.

Case2:3<ap+band1 < min{ao, bo}

Using Theorem 9.A, it can immediately be checked that (ag, by) is an appro-
priate Minkowski-separator.
Case 3: ag + by < 3 and L(CLU, bo) < L(l, 2)

Again, by Theorem 9.A, it can easily be seen that (1, 2) is suitable for being a
Minkowski-separator.
Case 4: ag + by < 3and L(1,2) < L(ag, bp)-

By the symmetry, we may assume that ag < bg. We show first that 1 < ay.
In the opposite case, ag < by < 3 — ag implies that min{ag,3 — ap} = ag < 1,
therefore by Lemma 2.8 we would get

L(CLU, bo) < L(ao, 3 — CLQ) < L(l, ag+3 —ag — 1) = L(l, 2),

contradicting the conditions of Case 4.
Now, let us choose such a real number ¢ € [1, 3/2] such that

L(ao, bo) = L(c,3 = ¢)
be valid. In order to see that such a value c exists, define the continuous function
o(t) = L(t,3 —t). Applying the conditions of this case, and the monotonicity
properties of £, we find that
p(1) = L(1,2) < L(ao, by) < L(ao,3 — ag) = ¢(ao),

L(c,3 — c)p(c) = L(ag, by) holds. Define (a,b) = (¢, 3 — ¢). We verify that this
is a Minkowski-separator.

As1 < c< 3, wegetthat (a,b) € M. Applying the conditions of this case, it
is clear that

ap+bp<a+b=c+(3—-c)=3
and
L(ag,bo) = L(a,b) = L(c,3 —¢), &(ag, b)) < E(a,b) = E(c,3 —¢) =1,
furthermore, by (10.12),
a+b=3<a;+0b and L(a,b) SL(ai,bi), S(G,b) < 8(&1,12@) =1

are valid (: = 1,2). Thus, by Theorem 9.A, we get that S,, 1, < Sap < Sq, b, 1S
valid, i.e., (¢, 3 — ¢) is the desired Minkowski separator.

0,b0
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PROOF OF THEOREM 10.6. (Necessity.) Suppose now that (a,b) is a reversed
Minkowski-separator for (ag, bo, a1, b1, az,b2). Then, by Corollary 10.4, the re-
versed Minkowski inequality (10.6) holds. Thus, by Theorem 8.5, condition (10.7)
is also satisfied. In order to verify (10.13), we need to show that if min{ag, bp} > 1
then

(10.14) L(l, ag + by — 1) > min {L(al, bl), L(CLQ, b2)}
We distinguish two cases.
Casel:a+b<2.
First we show that, in this case, L(a,b) < 1. This inequality is trivial if

min{a, b} < 0since then L(a,b) < 0. If min{a, b} > 0, then, by the concavity
of L, we get

L(a,b) = <1.

5 =

L(a,b) +L(b,a)
2

gL(CH_b b+a>:a+b

2 72
Thus, the inequalities Sy, », < Sap and min{ag, bo} > 1 yield
max{L(al,bl),L(ag,bg)} < L(CL, b) <l1l= L(l, 1) < L(l,ao + by — 1)

Case2: a+b> 2.

Then, by Lemma 2.8, the inequality min{a, b} < 1, yields that £(1,a + b —
1) > L(a,b). Due to the inequalities Sy, b, > Sap > Sa,p, (@nd Theorem 9.A),
we also have ag + by > a +band L(a,b) > L(a;, b;) (i = 1,2). Therefore, using
the monotonicity properties of L, it follows that

L(L,ag+by—1) > L(1,a+b—1) > L(a,b) > max {L(ay,b1),L(az,b2)}.

(Sufficiency.) Suppose now that the condition (10.13) holds. We are going to prove
that there exists an appropriate reversed-Minkowski-separator.

Case 1: ap + bp < 3 and 1 < min{ag, bo}.

We show that (a,b) = (1,a9 + by — 1) is a reversed-Minkowski-separator.
Clearly, (a,b) € M*. Moreover, a + b = ag + bo, hence, by the first inequality of
(10.13),

ag+byp<a+b<a;+ b (1=1,2).
The inequality £(a, b) < E(ay, bo) trivially holds since £(agp, by) = 1.
By Lemma 2.8, we also have

L(a,b) = L(l,ao + by — 1) < L(ao,bo).
Thus, due to Theorem 9.A, we deduce that S, ;, < Sg b, -

By the conditions of this case and the third inequality of (10.13),

L(a;, b)) < L(1,a9+byp—1) = L(a,b) and E(a;, b)) < E(1,ap+by—1) =1
are valid (i = 1,2). Thus we have also proved that S, ;, < S, 5,. Therefore, (a, b)
is indeed a reversed-Minkowski-separator.

Case 2: ag + bp < 3 and min{ag,bp} < 1.
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Due to Theorem 9.A, one can see that (ag, by) is an appropriate reversed-Min-
kowski-separator.
Case 3: 3 < apg+bpand L(1,2) < L(ao, bo).

Again, by Theorem 9.A, it can be obtained that (1, 2) is a reversed-Minkowski-
separator.
Case 4: 3 < ap + bo and L(ap, by) < L(1,2).

We consider two subcases. If min{ag, bp} > 0 then define the function ¢(t)
L(t,3 — t). By the assumptions of the case, 0 = ¢(0) < L(ag,by) < L£(1,2) =
©(1). Thus, by the continuity of , there exists a number 0 < ¢ < 1 such that

(10.15) L(ag,by) = L(c,3 —¢).
Clearly, we also have
(10.16) E(ap,bp) = E(¢,3 —¢)

(because both sides are equal to 1).

In the case min{ag, bp} < 0 define the function ¢(¢) = &(¢,3 — t). Then
¥(0) = 1and lim;_,_ 9(¢) = 0. On the other hand, due to the conditions of this
case, we have 0 < &(ap,bp) < 1. Thus, there exists a number ¢ < 0 such that
(10.16) holds. Then, trivially, (10.15) is also valid (because both sides are equal to
0).

Define now (a,b) = (¢, 3 — ¢). We are going to show that (a, b) is a reversed-
Minkowski-separator.

Since ¢ < 1, we get that (a, b) € M*. Applying the conditions of this case, it
is clear that

a+b=c+(3—c)=3<ag+ bo.
This inequality, together with (10.15) and (10.16) implies that S, ;, < Su 5, -

Furthermore, by the first condition of (10.13) and (10.15), (10.16),

a; +b; <3=a-+0b,
and
L(ai,bi) S L(ao,bo) = L(a, b), S(Gi,bi) S 8(@0,50) = 8(&, b)

for i = 1,2. Therefore, we get that the inequality S,, ;, < S, is also valid, i.e.,
(¢,3 — ¢) is the desired reversed Minkowski separator. O






Summary

The Gini and Stolarsky means have an extended literature. These means are
defined for two variables, in the most general case, by

xa_|_ya ﬁ
$b+yb)

Gap(T,y) = (

and )
b(z® — y®)\ a-?
Sa,b(xvy) = (a((xb _Zbii) >
respectively. (The complete definitions, covering all cases can be read in Chapter
1.)

In this thesis I tried to collect and systematize the results of the previous years,
obtained under the supervision of Professor Zsolt Pales. (The order of the chapters
does not correspond to the chronological order of the results involved — looking
backwards, hidden interconnections became known.)

I put in the center of my studies the various comparison theorems for the
Gini and/or Stolarsky means, and the generalized Minkowski inequalities regard-
ing them. To handle (state and prove) these propositions, some preparations were
needed. In Chapter 2 | collected some well-known, but important identities. More-
over, for sake of the organic treatment, | introduced the functions &, M and L,
which play the key roles in the comparison theorems, defined by

la| — |b] . min{a,b}, ifa,b>0,
, ifa#0b, .
E(a,b):==¢ a—1» _ M(a,b) := <0, if ab < 0,
sign(a), ifa =", max{a,b}, ifa,6<0
and ;
a— .
W’ |f0<abanda%b,
L(a,b) =9 g, if0 < aband a = b,
0, if ab < 0.

Their basic properties (for example, continuity, convexity, monotonicity) were
also examined here.

Many of the inequalities for the Gini and Stolarsky means can be deduced
from certain asymptotic properties. For, in Chapter 3 | listed some of the more

73
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important asymptotic properties. A few of them could be formulated in a uniform
way. (Throughout this thesis, I used the notation M for the means in the formulae,
valid both for the Gini and the Stolarsky means.) In this field we obtained that for
any real numbers a and b the following statements hold:

THEOREM.
Y, ifmin{a, b} > 0,
. —71 -
xli%lJr Gap(z,y) = y -2 max{ed} - ifmin{a, b} = 0& max{a,b} > 0,
0, ifmin{a, b} < 0or (a,b) = (0,0),
S
lim S, ,(z, _ y-e £@b jfmin{a,b} > 0,
i, Sap(2,y) { 0, ifmin{a, b} <0,
. Tty
lim (Myp(z+z,y+2)—2) = 5 (r,y € Ry),
lim (Gabx Y+ 2) —z) v, (z,y € Ry),
Ma b(t 1) t-l—l %b_l, if M = G,
lim =
t—1 (t — 1) a+211;37 if M = S,
1 Ma t —t
lim o8 ’bt<e ) glah),
t + log G, b(etv e_t)
log t—logG ’ (et,e7t)
lim b1 = M(a,b),

t—o0 2t
moreover, if a,b > 1, then

lim (Gap(,y+2)—2)=y.  (z,y €Ry).

As an other big unit of the preliminary results, in Chapter 4 some versions of
the Hermite-Hadamard inequality were presented. We introduced the concept of
the odd and even functions with respect to a point. Namely, we say a function
f: I — R to be odd with respect to the point m, if ¢t — f(m +¢) — f(m) is odd,
that is,

fm=t)+ fm+1t)=2f(m)  (te(d—m)n(m=7),
while it is said to be even with respect to the point m, if t — f(m +1t) is even, that
is,
fm—1t)=f(m+1t) (te(@—m)n(m-=7).

The main ”Hermite-Hadamard-type” result is involved in the following theorem:

THEOREM. Let the function f : J — R be odd with respect to the element
m €7, 0 : 3 — Rapositive, locally integrable weight function, which is even with
respect to m, and let [a, b] be a subinterval of J with non-empty interior. Then the
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following statement is valid:
If f is convex over the interval J N (—oo, m| and concave over I N [m, co), then

FO1a) 2 bld%/f

<) [ oz
> b— My(a, My(a,b) —a
— ———— b
= ) lay 4 MdBO 20
La+b > . . e g .
if — (2) m. The reversed inequalities are valid if f is concave over the inter-

val I N (—oo, m] and convex over J N [m, c0).)

If, in particular, o(x) = 1, we obtain the “un-weighted” version of the previous
theorem. As it turns out, this statement can perfectly be applied for the function

RNV R — R’ t— log Mt,t(x’y)'
In this way, we can provide the following estimate for Ma,b:

THEOREM. Let a, b be real numbers so that a + b 0. Then

(_)
MGTM7GT%(QZ,y) (i) Ma7b($,y) (i) \/Ma,a(x’y)Mb,b(xay)

holds for any positive numbers z, y.

This inequality could be improved by means of the following version of the
Hermite-Hadamard inequality:

THEOREM. Let f : J — R be symmetric with respect to an element m € J,
furthermore, suppose that f is increasing. Then, for any interval [a b] C I,

(b= m)* — (a—m)*) () + ((a —m)~ — (b—m /f
a+b >
holds if —— (<) m.

Consequently,

> .
THEOREM. Ifb<aanda+b (2) 0, then, for all positive z, ¥,

at bt b” —a—

(Maa(z,y)) == (Myy(a,y)) ="

Ma,b(xa y)7

AV

therefore, we get the following estimates:

THEOREM. For all real a,b with b < a, (a,b) # (0,0) and for all positive
L5 Ys
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(I) (Ma,a<x7 y))% (Mb,b(xyy))% < Ma,b(xyy) < Ma,a<x7 y), if O <b<a,
(") (Ma,a (l’, y)) 2 (Mb,b(xa y)) 2 < -Zwl;a,b(x7 y)
< (Ma,a(x, y))ﬁ (Mbl,(x,y)) b if 0< —b<a,
(i) (Maa(z,9))? (Myp(z,y))? > Mba,b(x,y)
> (Maa(@,9)) ™ (Myp(,y)) =, if 0 < a < b,

Z Ma,b(x7y) Z Mb,b(x7y)! if b S a S 0.

After these preparations, we were able to reformulate the known comparison
theorems, both for the Gini and the Stolarsky means.
For the Gini means, the main result is the following:

THEOREM. Leta,b,c,d € R be arbitrary parameters. Then the comparison
inequality
Ga,b(xv y) < Gc,d(xv y)

holds for all positive = and y if and only if a, b, ¢, d satisfy the following three
conditions:

a+b<c+d, &(a,b)<E(c,d), Ma,b) <M(c,d).

Nevertheless originally we proved this theorem in a completely different way,
in my thesis | presented a method, builded on the above-mentioned preliminaries.
(In the case of the Stolarsky means, however, the “original” way was followed.)
Having introduced the function

Goy :R® =R, (a,b) = Gryla,b) := Gapl,y),
we had the following

THEOREM. Suppose that b < « and let the positive numbers = and y be
fixed. The directional derivative of the function G, , in direction d = (dy, ds) is
nonnegative at the point (a, b) if and only if

d —d di—d .
(Ga,a(xa y)) ' (Gb,b(l‘a y)) ’ > (Ga,b(l‘a y)) ' 2a if a 7é ba
di+dy >0, if a=0.

As a consequence of the previous statement, we obtain the following corollary:

THEOREM. For b < a with (a,b) # (0,0), define the vectors u,, and v,y in
the following way:

(1,0), f0<b<a, (-1,1), if0<b<a,

) @Y, ifo<-b<a, (-1,1), if0< —-b<a,
Yt TN (1,-1), ifo<a<—b T (81), f0<a<-b,
(1,-1), ifb<a<0, (0,1), ifb<a<o.
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Then the maps (a,b) +— u,yp and (a,b) — v, are continuous on the domain
indicated, furthermore, the directional derivative of the function G, ,, at the point
(a, b) is nonnegative in the directions u,; and v, for all fixed positive numbers
T,y.

After this, the sufficiency of the conditions of the comparison theorem for Gini
means can quickly be completed by means of the following statement:

THEOREM. Let the positive numbers x and y be fixed and let (a,b), (¢, d)
be two arbitrary points in R2. Suppose that the directional derivative of G, , is
nonnegative in the direction (c — a, d — b) at any point of the segment

[(a,b),(c,d)] = {(a+t(c—a), b+t(d—1))|te][0,1]}.
Then
Ga,b(‘T’y) < Gc,d(xay)'

For sake of completeness, we presented a new proof also for the necessity of
the conditions. This part of Chapter 5 can easily be deduced from the asymptotic
properties, listed above.

Unfortunately, this method, builded on the behavior of the directional deriva-
tives, could not be followed in the case of Stolarsky means. We had to apply
appropriate sequences instead to obtain the reformulated comparison theorem:

THEOREM. Leta,b,c,d € R be arbitrary parameters. Then the comparison
inequality
Sa,b(xv y) < Sc,d(xu y)
holds for all positive = and y if and only if a, b, ¢, d satisfy the following three
conditions:
a+b<c+d, ¢&(a,b)<E&(c,d), L(a,b)<L(cd).

(The necessity, however, could similarly be proven as that of the theorem,
concerning the Gini means.)

The third — and last — chapter on the comparison problem is Chapter 7. Ap-
plying the appropriate asymptotic properties, we can easily obtain the following
necessary conditions:

THEOREM. Suppose that the inequality

Ga,b(xa y) < Sc,d(xv y)
holds for any positive x, y. Then

3(a+b) < c+d,
E(a,b) < E&(c,d),
min{a,b} < min{c,d},
if min{a,b} =0 < max{a,b} then max{a,b} < log2-L(c,d).
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To obtain sufficient conditions, we apply three propositions:

THEOREM. The inequality

Ga,b(xv y) < S3a,3b(xv y)

holds for all positive z, y if and only if a + b < 0, while the reversed inequality
holds if and only if a + b > 0. Moreover, the inequality

Ga,b(z’ y) < S2a+b,a+2b(xa y)

holds for all positive x, y if and only if ab(a+b) < 0, while the reversed inequality
holds if and only if ab(a + b) > 0. Finally, for any positive variables x, y the
following holds:

G -2 (ﬂf7y) < S_37_3(957y).

2
-1+3,-1-%

Applying these statements, we obtain that

THEOREM. (i) Let a,b be positive numbers. Then there are no parameters
¢, d so that the Gini-Stolarsky comparison inequality be valid for all positive

T

(i) Let a,b be real numbers so that min{a,b} = 0 < max{a,b}. Then the
Gini-Stolarsky comparison inequality is valid for all positive x, y if and only
if
(@) 3a <c+d,

(b) a <log2-L(c,d).

(iii) Let a,b be real numberssothatab <0anda+b > 0. If
(@ 3(a+b) <c+d,
(b) L{a + 2b,2a + b} < L(c,d),
(€) €(2a+b,a+2b) < E(c,d),
then the Gini-Stolarsky comparison inequality is valid for all positive z, y.

(iv) Let a,b be real numbers so that ab < 0 and a + b < 0. Then the Gini-
Stolarsky comparison inequality is valid for all positive x, y if and only if
@ 3(a+0b) <c+d,
(b) E(a,b) < E(c,d).

(v) Let a, b be real numbers, a,b < 0. If
(@) 3(a+b) <c+d,
(b) L(2a+b,a+2b) < L(c,d),
then the Gini-Stolarsky comparison inequality is valid for all positive z, y
(vi) Let a,b be real numbers, a,b < 0, a/b € [9 — 4/5,9 + 4/5]. Then the
Gini-Stolarsky comparison inequality is valid for all positive x, y if and only
if
3(a+0b) <c+d.
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In the last three chapters we dealt with the generalized Minkowski inequality,
both for the Gini and the Stolarsky means. First, in Chapter 8, we give a general
approach to the problem: under what conditions will the inequality

My b (21 + 22, Y1 + Y2) (;) Mg, v (21, y1) + Moy by (22, Y2)

be valid for all positive x1, z2, y1, y2?
The first step towards the answer was the observation that the ”Minkowski-
property” can be translated into the language of convexity:

THEOREM. Let M : R?2 — R be a two variable homogeneous mean. Then

<
M(z1 + x2,9y1 + y2) (;) M(z1,y1) + M(z2,y2)

holds for all 1, y1, 22,2 € R if and only if the function
m(t) = M(t, 1) (teR4y,i=0,1,2).
is convex (resp. concave) on R

Moreover, we have the following necessary conditions for the generalized
Minkowski inequality:

THEOREM. Let My, My, M : R2 — R be two variable homogeneous means
such that My is symmetric on R?, and differentiable at the point (1,1). Assume
that

<
Moy(z1 + 2,91 + y2) (;) M (z1,y1) + Ma(z2,y2)

holds for all T1,Y1,T2,Y2 € R+. Then

My M; and A M; (Z =1, 2),

IV A

<
(=)

where A denotes the arithmetic mean.

(=)

The crucial point of Chapter 8 is the concept of the Minkowski-separator. This
is defined as follows:

Let Mo, My, M : R — R be two variable means. A mean M : R2 — R is
called a Minkowski-separator (resp. reversed-Minkowski-separator) for
(Mo, My, My) if M satisfies the (reversed) Minkowski inequality, furthermore,

< <
M and M T, M; (i=1,2).
) () M =12)
Namely, the existence of the separator guarantees the validity of the general-
ized Minkowski inequality, as it can be read in the next statement:

My

THEOREM. Let My, My, Ms : Ri — R be two variable means. Suppose
that there exists a (reversed-)Minkowski-separator for (My, M, Msy). Then the
(reversed) Minkowski inequality holds for all positive 1, 2, y1, y2.
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In the rest of the thesis we study this generalized Minkowski inequality for
the Gini and Stolarsky means. The two cases show a relevant difference: it turns
out that the existence of the Minkowski-separator — that is, the sufficiency of the
generalized Minkowski-inequality — coincides the necessity. For Stolarsky means,
however, this equivalence does not hold.

For the Gini means, in Chapter 9 we can state the following:

THEOREM. Letag, a1, as, by, b1,bs € R. Then
Gap,bo (T1,91) + (22, 92)) < Gay oy (21, 41) + Gy py (T2, Y2)
holds if and only if
(i)  a1,a2,b1,b2 >0,
(i)  max{l,a0+ bo} < min{aj + by, as + b2},
(ili)  min{ag,bo} < min{l,a1,b1,as,bs}.

In Chapter 10 we collect the necessary conditions both for the Minkowski and
the reversed-Minkowski inequality to hold:

THEOREM. Let ag, by, a1, b1, az,ba € R. If the Minkowski inequality
Saobo (X1 + 22, y1 + y2) < Say by (21,Y1) + Saspe (T2, Y2)
holds for all 1, y1, 22,52 € Ry, then
max{ag + bp, 3} min{a; + b1, a2 + by}
{ max{L(ao,bo),L(1,2)} < min{L(al,bl),L(ag,bg)}.

IN

If the reversed Minkowski inequality
Sao.bo (@1 + 2,51 +y2) = Say b (X1, Y1) + Sag,be (T2, y2)
holds for all 1, y1, x2,y2 € Ry, then
min{ag + bp,3} > max{a; + bi,as + ba}
min {£(ao, bo), £(1,2)} > max{L(a1,b1),L(az,b2)}
&(ap,bo) > max{&(a1,b),E(az,b2)}.

The existence of the Minkowski and the reversed Minkowski separator, how-
ever, holds under different conditions:

V

THEOREM. For (ag, by, a1, b1, az, by) € RE there exists a Minkowski-separa-
tor if and only if

max{ag + bp,3} < min{a; + by, a2 + b2},
max { L (ao,bo),L(1,2), L(1,a0+by—1)}
S min {L(al,bl),ﬁ(ag,bg)}
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For (ag, bo, a1, b1, as, ba) € RY there exists a reversed-Minkowski-separator if and
only if

v

min{ag + by, 3}

min {L(ao,bo),L(1,2)}
E(ap, bo)

finally, if min{ag, bp} > 1 then
L(l,a94+byp—1) > max {L(al, b1), L(aq, bg)}.

These conditions are sufficient for the Minkowski inequality and the reversed
Minkowski inequality, respectively.

max{ai + by, as + ba},
max {L(al, b1), L(aq, b2)}7
max {&(ar,br), &(az, b2) },

Vv

AV







Osszefoglalas

A Gini- és Stolarsky-kdzepekrél szamtalan értekezés késziilt. Ezeket a kdzépértékeket
két valtozo esetén — a legaltalanosabb esetben —a

1

.Z.CL +ya a—>b
Gap(z,y) = (M)
és )
_ (b —y)\ e
Sa,b(I'? y) - <a(xb — yb)> )

formulékkal definidljuk. (Az dsszes esetet lefedd teljes definicio az 1. fejezetben
talalhatd.)

Dolgozatomban megkiséreltem 0sszegy(jteni és rendszerezni az elmult évek-
ben, Péles Zsolt professzor Ur irdnyitasaval kapott eredményeket. (A fejezetek
sorrendje nem felel meg a bennuk foglalt eredmények kronologiai sorrendjének,
mivel utélag visszatekintve rejtett kapcsolatokra derlt fény.)

Vizsgalataim kozéppontjaba a Gini és/vagy Stolarsky-kozepekrdl sz616 0ssze-
hasonlitési tételeket és a veliik kapcsolatos altalanositott Minkowski-egyenl6tlen-
ségeket helyeztem. Ahhoz, hogy ezen allitasokat formaba Onteni és bizonyitani
lehessen, némi el6késziletekre volt szilkség. A 2. fejezetben 6sszegyjtottem
néhany jél ismert, de fontos dsszefiiggést. Tovabb4, a kdvetkezetes targyalasmod
érdekében bevezettem az

la| — |b] min{a,b}, haa,b>0,
haa # b
&(a,b) = a—>b"’ ’ M(a,b) := <0, haab < 0,
sign(a), haa=b, max{a,b}, haa,b<0
és ;
a—
———, ha0<abé b,
log(a/b)’ a0 <abésa#
L(a,b) =9 q, ha0 < abésa = b,
0, ha ab < 0.

Osszefliggések altal definialt £, M és L fliggvényeket, amelyek az dsszehasonlitasi
tételekben kulcsszerepet jatszanak. Itt vizsgaltam ezek alapveté tulajdonsagait is
(folytonossag, konvexitas, monotonitas).

83



84 OSSZEFOGLALAS

Tobb, Gini- és Stolarsky-kozepekkel kapcsolatos egyenl&tlenség szarmaztathat6
bizonyos aszimptotikus tulajdonsagokbdl. Ezért a 3. fejezetben 6sszegy(jtottem
ezek kozil a legfontosabbakat. Némelyik allitast egységes szerkezetben lehetett
talalni, oly médon, hogy azok mind a Gini-, mind a Stolarsky-kdzepekre érvénye-
sek legyenek. (Dolgozatomban M all minden olyan helyen, ahol valamely dssze-
fliggés mindkét kozépérték-tipusra fennall.) A kovetkezbkre jutottam:

TETEL. Barmely a, b valos paraméter esetén

Y, hamin{a,b} > 0,
. _ 1
xli%h_ Gaplz,y) = y -2 max{ed} - hamin{a, b} = 0& max{a,b} > 0,
0, hamin{a, b} < Ovagy(a,b) = (0,0),
1 ,
lim S ’ _ y-e £@b  hamin{a,b} > 0,
i ao(@:y) { 0, hamin{a, b} <0,
. Tty
zlLr{olo (Ma,b(x+zay+z) _Z) = 9 (xvy €R+),
zlingo (Ga,b(xuy+z) _Z) = Y (xay € R-‘r)v
M, (1) — L1 atb=l’ haM =G,
PH} ’(t ’ 1)2 == +b-3
QT, ha M - S,

log M,Lb(et, e )

lim = &(a,b),
t—o0 t
t + log G p(et, e)
log t—logG | (et,e7t)
lim LA, = M(a,b),

t—o00 2t

tovabba, ha a,b > 1, Ggy

Zlggo (Ga,b($7y+z) _Z) =Y. (xay € R+)

Az elbkésziletek egy masik nagy egységét a Hermite-Hadamard egyenlétlen-
ség kulénboz6 valtozatai alkotjak. Ezekr6l a 4. fejezetben esik sz6. Megje-
lenik a pontra nézve paratlan, illetve péros fliggvény fogalma. Nevezetesen, akkor
mondjuk, hogy az f : J — R flggvény paratlan az m pontra nézve, ha a
t— f(m+t)— f(m) fliggvény pératlan, azaz,

fm=t)+ flm+t)=2f(m)  (te(d—m)n(m-7),
mig f-et m-re nézve parosnak hivjuk, ha ¢t — f(m + t) is paros, vagyis
fm—1t)=f(m+1) (te(@—m)n(m-=7).

A legfontosabb "Hermite-Hadamard-tipusi” eredményt a kdvetkez6 tétel tar-
talmazza:
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TETEL. Legyen az f : J — R fliggvény paratlan az m < J pontra nézve,
o : J — R pedig egy pozitiv, lokalisan integralhat6 sulyfiiggvény, amely paros
m-re nézve, és legyen [a, b] egy nemires belsej részintervalluma J-nek. Ekkor a
kovetkezd allitas érvényes:
Ha f konvex az J N (—oo, m] intervallumon és konkav J N [m, co) folott, akkor

f (Myfab / fla
(My(a, b)) < ) Fowyis
> b— My(a, M,(a,b) —a
(S) b—a f(CL)+ b—a f(b>7
a+b > e, . . . .
ha o (<) m. A forditott irdny( egyenlétlenségek igazak, ha f konkav J N

(—o0, m]-n és konvex I N [m, co)-n.)
Specidlisan, ha o(z) = 1, Ugy az el6z0 tétel sulyozatlan verziéjat kapjuk. Mint
kiderul, ez az allitas kitlinéen alkalmazhat6 a

Poy: R =R, t—log M(z,y).
fliggvényre. 1ly modon a kdvetkez6 becslést kapjuk M, ,-re:

TETEL. Legyenek az a, b val6s szamok olyanok, melyekre a + b ( 0. Ekkor

IN IV

)
M%H’7GT+”('T7y) (i) Ma,b(xay) (i) \/Ma,a(x>y)Mb,b(xay)

érvényes minden pozitiv x, y szamra.

Ezt az egyenl6tlenséget a Hermite-Hadamard egyenl6tlenség kovetkez6 val-
tozataval javitani lehet:

TETEL. Legyen f : J — R paratlan az m € J pontra nézve, tovabba, tegyuk
fel, hogy f ndvekszik. Ekkor barmely [a, b] C J intervallum esetén
/ fa

(b=m)" = (a=m)")f(b) + ((a—m)” = (b—

I/\ v

a+b >
(<)

Kovetkezéskeppen,

érvényes, ha —— m.

, . > . o
TETEL. Hab<aésa+b 2) 0, akkor minden pozitiv x, y-ra

(
at—pt b” —a—

(Ma,a(xvy)) ot (A]\4b,b(1:ay))ﬁ (i) Ma,b(l‘ay)a

igy a kovetkezd becslésekhez jutunk:
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TETEL. Minden a,b valds szdmra, melyre b < a, (a,b) # (0,0), és minden
pozitiv z, y esetén

(i) (Maa(z,y) )%(Mb,b (w,y ))% < Myp(x,y) < Myo(z,y),ha0 <b<a,
(i) (M, )%(z{b, 2.9))* < May(r.9)
S( y) 7 (Myp(z,y)) P, ha 0 < —b < q,
(iii) (Ma )%(Z\{ (2.9))? > Ma,(,)
2( aazpy)“b(Mbb(:U,y))?,haO<a§—b,
(iv) (Mg,a(z, y))%(Mb,b(x’y))% > Myp(z,y) > Myy(z,y),ha b<a<0

Ezek utan az el6késziletek utan atfogalmazhatok a Gini- és Stolarsky-ko-
zepekre érvényes 0sszehasonlitasi tételek. Gini-kozepekre a f6 eredményink a
kovetkezd:

TETEL. Legyenek a,b, c,d € R tetsz6leges paraméterek. A

Ga,b(fﬁy y) < Gc,d('xa y)

Osszehasonlitasi egyenl6tlenség pontosan akkor all fenn minden x és y esetén, ha
a, b, c, d-re fennall a kdvetkez6 harom feltétel:

a+b<c+d, €&(a,b)<E&(c,d), M(a,b) <M(c,d).
Béar ezt a tételt eredetileg teljesen mas mddszerrel is bizonyitottuk, dolgo-

zatomban a bizonyitasra egy, a fentiekre épiild modszert hasznaltam. (A Stolarsky-
kozepek esetén viszont az ,,eredeti” eljarast a alkalmaztam.) Bevezetve a

Goy :R* =R, (a,0) = Guy(a,b) := Gay(a,y),
fuggvényt, a kovetkez6t kapjuk:

TETEL. Tegylk fel, hogy b < a és rogzitsik az = és y be pozitiv szamokat.
A G, , fuggvény irany menti derivaltja a d = (di, d2) iranyban pontosan akkor
nemnegativ az (a, b) pontban, ha

{ (Caal@, )" (Gop(2,9) ™ > (Gap(z,9)" ™, ha a#b,

di+dy >0, ha a=0.
A tétel kdvetkezményeként adodik az alabbi allitas:

TETEL. Az b < q, (a,b) # (0,0) szamokra definialjuk az wu,; €s v, vek-
torokat a kovetkez6képpen

(1,0), ha0<b<a, (-1,1), ha0o<b<a,

(1,2), hao<-b<a, (-1,1), ha0< —b<a,
YT (1,-1), ha0<a<—b T (41), ha0<a<-b

(1,—-1), hab<a<0, (0,1), hab<a<o0,
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Ekkor az (a,b) — uqp €s (a,b) — v, leképezések folytonosak értelmezési tar-
tomanyukon, tovabba a G, , fiiggveny irany menti derivaltja az (a,b) pontban
nemnegativ az u, , €s v, iranyokban barmely x,y pozitiv szamok rogzitése es-
etén.

Ezek utan a Gini-kdzepek dsszehasonlitési tételében a feltételek elégségessége
hamar megkaphat6 a kdvetkez6 allitas segitségevel:

TETEL. Rogzitsik az x és y pozitiv szamokat és legyen (a,b), (c,d) R? két
tetszGleges pontja. Tegyik fel, hogy a G, ,, fliggvény irany menti derivaltja nem-
negativ az (¢ — a,d — b) irdnyban az

[(a,b), (¢,d)] = {(a +t(c—a), b+t(d—b)) | t€0,1]}.
szakasz minden pontjaban. Ekkor
Ga,b(x7 y) S Gc,d(xv y)

A teljesség kedvéért a feltételek szlikségességét is Uj modszerrel bizonyitot-
tam. Az 5. fejezetnek ez a része kdnnyen levezethetd a fent dsszegy(ijtétt aszimp-
totikus tulajdonsagokhbdl.

Sajnos ez a madszer, amelyet az irdny menti derivaltak viselkedésére épitet-
tink, a Stolarsky-kozepekre nem bizonyult alkalmazhaténak. Ehelyett alkalmas
sorozatokat lehetett felhasznalni a kdvetkezd 6sszehasonlitasi tétel bizonyitasahoz:

TETEL. Legyenek a,b, ¢, d € R tetsz6leges paraméterek. Ekkor az

Sap(,y) < Sealz,y)

Osszehasonlitasi egyenlétlenség pontosan akkor teljestll minden pozitiv x és y
szamra, ha a, b, ¢, d eleget tesz a kdvetkez6 harom feltételnek:

a+b<c+d, ¢&(a,b)<E(c,d), L(a,b)<L(cd).
(A szlikségességet viszont a Gini-kdzepekre vonatkozo analég tételé mintajara
lehet bizonyitani.)
Az 6sszehasonlitasi tétellel foglalkozé harmadik és egyben utolso fejezet a 7.

fejezet. Alkalmazva a megfeleld aszimptotikus tulajdonsagokat, kdnnyen megkapjuk
az alabbi sziikséges feltételeket:

TETEL. Tegyuk fel, hogy a

Gap(z,y) < Sealz,y)
egyenlétlenség fennall minden z, y pozitiv szamra. Ekkor

3(a+b) < c+d,
E(a,b) < E(e,d),
min{a,b} < min{c,d},
és ha min{a, b} = 0 < max{a, b} akkor max{a,b} < log2-L(c,d).
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Elégséges feltételek megalkotasahoz a kdvetkezd harom allitast hasznalhatjuk
fel:

TETEL. A
Ga,b(mvy) < S3a,3b($ay)

egyenl6tlenség pontosan akkor érvényes minden pozitiv z, y esetén, ha a + b < 0,
mig a forditott egyenl6tlenség pontosan akkor igaz, ha a + b > 0. Tovabba, a

Ga,b(xy y) S 52a+b,a+2b(xa y)
egyenl6tlenség pontosan akkor érvényes minden pozitiv x, y esetén, ha ab(a+b) <
0, mig a forditott egyenl6tlenség pontosan akkor igaz, ha ab(a + b) > 0. Végil,
minden pozitiv z, y szamra fennall, hogy
G—l-‘,—%,—l— 2 (.’L’,y) < S_37_3(3;‘,y).

%

Ezen allitdsok felhasznalasaval kapjuk, hogy

TETEL. (i) Legyenek a,b pozitiv szamok. Ekkor nem léteznek olyan ¢, d
paraméterek,melyekre a Gini-Stolarsky ésszehasonlitasi egyenl6tlenség min-
den pozitiv x, y-ra teljestlne.

(i) Legyenek a, b olyan valds szdmok, melyekre min{a,b} = 0 < max{a,b}.
Ekkor a Gini-Stolarsky 6sszehasonlitasi egyenl6tlenség pontosan akkor tel-
jesiil minden pozitiv z, y-ra, ha
(@ 3a <c+d,

(b) a <log2-L(c,d).

(iii) Legyenek a, b olyan valds szamok, melyekre ab < 0 ésa + b > 0. Ha
(@ 3(a+0b) <c+d,
(b) L{a+ 2b,2a + b} < L(c,d),
(€) €(2a+b,a+2b) < E(c,d),
akkor a Gini-Stolarsky 6sszehasonlitasi egyenl&tlenség minden pozitiv z, y
estén érvényes.

(iv) Legyenek a,b olyan valds szamok, melyekre ab < 0 és a + b < 0. Ekkor a
Gini-Stolarsky dsszehasonlitasi egyenl6tlenség pontosan akkor teljesil min-
den pozitiv x, y-ra, ha
@ 3(a+b) <c+d,

(b) E(a,b) < E(c,d).

(v) Legyenek a, b valés szdmok, a,b < 0. Ha
(@ 3(a+b) <c+d,
(b) L(2a +b,a + 2b) < L(c,d),
akkor a Gini-Stolarsky 6sszehasonlitasi egyenl&tlenség minden pozitiv z, y
estén érvényes.



OSSZEFOGLALAS 89

(vi) Legyenek a,b valos szamok, a,b < 0, a/b € [9 — 45,9 + 4\/5]. Ekkor a
Gini-Stolarsky dsszehasonlitasi egyenl6tlenség pontosan akkor teljesil min-
den pozitiv z, y-ra, ha

3(a+b) <c+d.
Az utolsé harom fejezet a Gini-, illetve Stolarsky-kdzepekre felirhatd Min-
kowski-tipusu egyenl8tlenséggel foglalkozik. A 8. fejezetben altalanosan kozelitjiik
meg a kérdést: milyen feltételek mellett teljesiil az

<
Moy b (21 + 22, Y1 + Y2) (;) My, by (z1,y1) + Moy, (22, y2)

egyenl6tlenség minden pozitiv x1, z2, y1, y2 €setén?
Az elst |épést az az észrevétel jelenti, mely szerint a "Minkowski-tulajdonsag”
a konvexitas nyelvén a kdvetkez6képpen fogalmazhaté meg:

TETEL. Legyen M : R% — R egy kétvaltozés, homogén kdzép. Ekkor

<
M(z1 + x2,9y1 + y2) ( M(z1,y1) + M(z2,y2)

>)

pontosan akkor all fenn minden pozitiv z1, y1, x2, y2 € R esetén, ha az
m(t) = M(t,1) (teRy,1=0,1,2).
fliggvény konvex (konkév) R -en.

Tovabba, az altalanositott Minkowski-egyenl6tlenséghez az alabbi szlikséges
feltételek teljestilnek:

TETEL. Legyenek My, My, M : R2 — R olyan kétvaltozés homogén kdzepek,
melyekre M, szimmetrikus R -n és differencialhaté az (1, 1) pontban. Tegytik fel,
hogy

<
Mo (z1 + 22,91 + y2) (;) M (z1,y1) + Ma(z2,y2)

fennall minden z1, y1, x2, y2 € R, esetén. Ekkor

< <
\ M; és A T, M; 1=1,2),
(>) (i=12)

M,
’ (=)
ahol A a szamtani kodzepet jeldli.

A 8. fejezet kozépponti fogalma a Minkowski-szeparator fogalma. Ezt a
kovetkezdképpen definialjuk:

Legyenek Mo, My, My : R2 — R kétvaltozos kozepek. Egy M : R2 —
R kozepet Minkowski-szeparatornak (illetve forditott Minkowski-szeparatornak)
hivunk
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(Mo, My, My)-re nézve, ha M eleget tesz a (forditott) Minkowski-egyenl6tlenség-
nek, valamint

<
My M és M T, M; (221,2)

<
(=) (=)

A szeparator létezése az altalanositott Minkowski-egyenl6tlenség teljesiilését
vonja maga utan, amint az a kdvetkezd allitasbol kidertl:

TETEL. Legyenek My, My, My : Ri — R kétvaltozos kdzepek. Tegyuk fel,
hogy létezik (forditott)Minkowski-szeparator az (M, M;, M) harmasra nézve.
Ekkor a (forditott) Minkowski-egyenl8tlenség minden pozitiv z1, x2, y1, yo €setén
fennall.

Dolgozatom hatralevé részében az altalanositott Minkowski-egyenlétlenséget
a Gini- és a Stolarsky-kdzepekre vizsgalom. E két eset kozott Iényeges eltérés mu-
tatkozott: kiderilt, hogy a Gini-kézepek esetén a Minkowski-szeparator létezése
—vagyis az altalanositott Minkowski-egyenl6tlenség elégségességi feltétele — egy-
beesik a sziikségességgel. A Stolarsky-kozepek esetén azonban ez az ekvivalencia
nem teljesul.

Gini-kozepekre a 9. fejezetben a kdvetkezét allitjuk:

TETEL. Legyen ag, a1, as, by, b1, by € R. Ekkor

Gagypo (11 + 2,91 + Y2) < Gay by (T1,91) + Gay by (T2, Y2)
akkor és csak akkor teljesiil, ha
(i)  a1,a2,b1,b2 >0,
(ii) max{1,ag + bp} < min{aj + b1, as + ba},
(ili)  min{ag,bo} < min{l,a1,b1,as,bs}.

A 10. fejezetben mind a Minkowski-, mind a forditott Minkowski-egyenl6t-
lenség sziikséges feltételeit 6sszegyijtottik:

TETEL. Legyen ag, by, a1,b1,a9,by € R. Haa

Sao,bo (X1 + T2, y1 +y2) < Say by (21, Y1) + Sag by (T2, Y2)
Minkowski-egyenl&tlenség fennall minden x1, y1, x2, y2 € R, esetén, akkor
max{ag + bp,3} < min{a; + b1, as + b}
{ max {L(ag, bo),£(1,2)} < min{L(a1,b1),L(az, bs)}.

Haa
Saol’o (1’1 + 2, y1 + yQ) > Sal:bl ($1,y1) + 502152(1’27?/2)
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forditott Minkowski-egyenl&tlenség &ll fenn minden z1, y1, x2,y2 € R, esetén,
akkor

min{ao + bo, 3} > max{a1 + b1,a0 + b2}
min{&(ao,bo),ﬁ(lﬂ)} > maX{L(al,bl),L(ag,bg)}

E(ao, b()) Z max {8((11, bl), 8(&2, bg)}

A Minkowski, illetve forditott Minkowski-szeparator létezése azonban mas
feltételek mellett garantalhato:

TETEL. Az (ag, by, a1, b1, az,bs) € RS szdm-hatoshoz pontosan akkor létezik
Minkowski-szeparator, ha

max{ag + bo, 3} < min{a1 + b1,a0 + bz},
max { L (ao,bo), £(1,2), L(1,a0+by—1)}
< min{L(al,bl),L(ag,bg)}

Az (ag, by, a1, by, asz,bs) € RS szam-hatoshoz pedig pontosan akkor létezik fordi-
tott Minkowski-szeparator, ha

min{ag + bo, 3}

min {L(ao,bg),ﬁ(l,Q)}

&(ao, bo)

végul, ha min{ap, by} > 1, akkor
L(1l,a94+by—1) max {L(al,bl),ﬁ(ag,bz)}.

Ezek a feltételek elégségesek a Minkowski- (illetve forditott Minkowski-) e-
gyenl6tlenség teljesiiléséhez.

max{a; + by, az + b2},
max {L(al, b1), L(az, b2)}7
max { &(a1,b1), E(az, b2) },

AV,

v

v
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