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Chapter 1

Introduction

The standard model of particle physics (SM) is one of the most successful and well
tested theory of physics. It provides a precise description of phenomena observable
at todays collision energy scales, with a few, but important exceptions (neutrino
masses, dark matter and dark energy). The SM the quantum field theory of three
fundamental interactions: the strong, the weak and the electromagnetic. Although
all three interactions participate in collision processes, strongly interacting hadrons
appear the most frequently in final states. The largest quantum corrections usually
also come from the strong interaction due to its rather large coupling compared to
the electroweak. The strong coupling αS itself is one of the most important param-
eters of the standard model, therefore the more and more precise determination of
its value is a constant challenge for the particle physics community. Thus quantum
chromodynamics (QCD), the quantum field theory of the strong interaction in its
own requires lot of research to provide precise theoretical predictions. In high
energy physics theoretical calculations in QCD are computed with perturbative
technique, where physical quantities are expanded as a series of αS, and truncated
at some given order. A different approach is the resummation of logarithmically en-
hanced terms at all order in αS in kinematic regions, where soft-collinear radiation
dominates. The current state-of-art of research is the calculation of next-to-next-
to-leading order (NNLO) QCD corrections, and resummation of next-to-leading
logarithms in general and next-to-next-to-leading logarithms for certain processes.

In this dissertation I discuss my results in QCD perturbation theory at next-
to-next-to-leading order accuracy with resummation. After a brief introduction
about QCD I review the features of jet production at electron-positron colliders,
and present the theoretical background for making predictions in Chapter 2.

In the second part of the dissertation I present my results. In Chapter 3 I show

3



4 1. Introduction

an automated method developed to compute master integrals numerically, which is
required for the integrated subtraction terms. In Chapters 4 and 5 I make predic-
tions for the three-jet rate in e+e− annihilation at next-to-next-to-leading order in
perturbation theory matched with next-double logarithmic accurate resummation.

My personal contributions are summarized in the Summary and in the corre-
sponding thesis booklet.

1.1 Basics of QCD

Quantum chromodynamics is the quantum field theory of the strong interaction.
The theory has a local non-Abelian SU(3) gauge symmetry, the symmetry of the
color interaction. The interaction acts between colored spin-1/2 Dirac-fermions,
named quarks and it is mediated by spin-1 bosons called gluons, the gauge fields of
the theory. In contrast with electrons and photons, quarks and gluons, collectively
called partons, cannot be observed directly in nature, they are always confined in
composite particles called hadrons.

QCD involves quarks in 6 different flavors with massesmf , summarized in Table
1.1. Each quark flavor comes in 3 different colors, they transform as a color triplet

Flavour Q mf

u 2/3 2.3 MeV
d -1/3 4.8 MeV
c 2/3 1.27 GeV
s -1/3 95 MeV
t 2/3 173 GeV
b -1/3 4.2 GeV

Table 1.1. The six quarks of QCD, with their electrical charges measured in e units
and their approximate masses. The masses of the u and d quarks are based on
chiral perturbation theory, while c, s and b quark masses are defined in the MS
renormalization scheme. The top quark mass shown here is based on the pole mass
definition.

under the fundamental representation of the SU(3) group. The gluons transform
as octets under the adjoint representation of the gauge group, hence in QCD there
are 8 gluon fields with 8 different color charges. Due to the non-Abelian structure of
the symmetry group, in contrast to Abelian QFTs like quantum electrodynamics,
the gluon fields also carry the charge of the interaction and they interact with
themselves. The Casimir-operators CF in the fundamental and CA in the adjoint
representation of the gauge group (also named as color factors) has the following
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values

CF =
TR(N2

c − 1)

Nc
, CA = 2TRNc , (1.1)

where TR sets the normalization of the group generators and Nc denotes the num-
ber of colors. With three colors and choosing TR = 1/2 normalization the color
factors are CF = 4/3 and CA = 3.

The QCD is perturbatively renormalizable. In the technical aspects this means
that ultraviolet divergences emerging in quantum corrections can be removed sys-
tematically at every order in perturbation theory renormalizing only a finite num-
ber of parameters. Nevertheless, renormalization also has a physical meaning: the
physical parameters of the theory such as the coupling and the quarks masses are
dressed up with quantum corrections. The measure of this effect depends on the
energy scale where we study the system. Thus the actual measurable value of the
coupling and the quark masses changes with energy. In high energy collision, like
at Q = 91.2 GeV Z-boson peak center-of-mass energy, the first five quarks masses
become negligible, because their contributions are suppressed by m2

f/Q
2 factors,

and the production of top quarks is not kinematically possible (although they still
have some off-shell effects). Practically in QCD perturbation theory all quarks
are treated massless but the top quark. Thus below the top threshold the only
renormalizable physical parameter of the theory is the strong coupling.

The scale dependence of the coupling is set by the renormalization group equa-
tion

µ2 d

dµ2

αS(µ)

4π
= β(αS(µ)) , (1.2)

where β is the QCD beta function, which sets the functional behavior of the
running coupling. At one-loop accuracy in perturbation theory the solution of Eq.
(1.2) is

αS(µ2) =
αS(µ2

0)

1− β0/(2π)αS(µ2
0) log(µ2/µ2

0)
, (1.3)

where β0 is the first coefficient of the beta function

β0 =
11CA − 4TRnf

3
, (1.4)

and nf denotes the number of active quarks flavors at a given energy scale.
The value of αS(µ2

0) appearing Eq. (1.3) in is not given by theory, it has to
be measured in experiments. The choice of µ2

0 however is completely arbitrary,
thus we introduced a new unphysical scale µ2

0, what we call the renormalization
scale. Physical observables must be independent of unphysical parameters, in
perturbation theory it is satisfied in a perturbative sense: as we include more and
more higher order corrections, the sensibility to the renormalization scale variation
decreases.
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Up to 16 quarks flavors β0 has positive value, thus the running of αS is mono-
tonically decreasing with increasing energy scale. If we raise the energy scale, the
coupling becomes smaller and smaller, the theory behaves asymptotically free at
high energies. As a consequence in colliders at large center-of-mass energy, hadrons
can be modeled as groups of weakly interacting free partons. Thus the application
of QCD perturbation theory to calculate hadronic processes in high energy colli-
sions is justified posteriori, although we will see that higher order corrections may
have sizeable effects.

In QCD we can only make theoretical predictions for the so-called infrared safe
observables. This is due to the Kinoshita-Lee-Nauenberg theorem which assures
that measurable quantities in QCD are free of infrared singularities, provided we
use infrared safe observables. The meaning of infrared safety is that the observable
is insensitive to the inclusion of soft and collinear partons or in other words the
observable does not depend on the long-distance physics. Typical infrared safe
quantities are the total cross section, jet cross sections and event shape variables
in e+e− collisions.

In the next chapter we are going to discuss features of jet physics and how to
make predictions in QCD.



Chapter 2

Jet physics at e+e− colliders

The production of hadronic jets is a common feature of particle collisions. Jets are
groups of energetic and collimated hadrons. Jets were and are still widely studied,
they can be used to test the standard model and measure its parameters, they
can signal new physics, and they provide important background for new physics
searches. In electron-positron colliders jets provide a clean signal to test hadron
physics and the QCD part of SM, since all hadrons emerge from the final state
only. Thus jet production in e+e− collisions is the most popular choice to measure
the value of the strong coupling.

Jets can be characterized by the event shape variables, such as the thrust
[1, 2], jet broadening [3], and the C-parameter [4], etc. Besides event shapes, jets
are often described by the so called jet rate observable, the relative production
rate of n-jets compared to all hadronic events. The number of jets is determined
using jet clustering algorithms. These algorithms define a distance measure (not
necessarily in x-space) and combine final state particles in some certain way into
jets.

The n-jet rate at a given Q2 center-of-mass energy is defined as the ratio of the
n-jet cross section and the total hadronic cross section

Rn(~a) =
σn−jet(~a)

σtot
, (2.1)

where ~a denotes the set of jet resolution parameters characteristic to a given jet
algorithm. The jet algorithms can be divided into two groups: the iterative cone
algorithms and the sequential jet finding algorithms. Iterative cone algorithms are
usually preferred by experiments because the clustered jets have cone like shapes.
However most of the formulated cone algorithms are not infrared safe (except the
SISCOne algorithm [5]), therefore no theoretical predictions can be made for these

7



8 2. Jet physics at e+e− colliders

quantities. On the other hand sequential clustering algorithms, like JADE [6, 7]
, k⊥ [8], Cambridge [9], anti-k⊥ [10], etc. all satisfy infrared safety and has been
used extensively both in experimental and in theoretical research.

At leading order in perturbation theory jets are usually modeled by partons in
the first approximation, we associate one parton for each jet, as in hard scattering
process only the partons take part. Further corrections can be included with parton
showers where we dress up each hard scattered parton with additional multiple
emissions of soft and collinear partons. Finally empirical models for hadronization
can be applied to connect the parton and the hadron level physics.

In the followings we discuss how we can make theoretical predictions using
QCD perturbation theory. We start with a general overview, then we briefly go
through the main aspects of computing NNLO cross sections with the CoLoR-
FulNNLOmethod.

2.1 Jet cross sections in perturbation theory
In quantum field theory the cross section is defined as

σ(J) =
1

2Q2

∫
dΦm(p1, . . . , pm;

√
Q2)

1

S

∑

spin

〈Mm|Mm〉Jm , (2.2)

where
√
Q2 is the center-of-mass energy, J is an infrared safe observable and |Mm〉

is the renormalized matrix element, while S is a symmetry factor.
In massless QCD the renormalized amplitudes are expressed in terms of the

unrenormalized amplitudes |Am〉. The |Am〉 amplitudes containing loops have
ultraviolet (UV) singularities coming from the upper ∞ limit of the loop inte-
gral. First the divergences require regularization, to make them explicit. In QCD
the usual regularization method is dimensional regularization, which provides a
Lorentz- and gauge invariant way to handle both ultraviolet and infrared (see
later) singularities simultaneously. We generalize the expressions into an arbitrary
d spacetime dimension via analytic continuation. Then we set d = 4 − 2ε, with
|ε| << 1 being a small complex number in general. As a result the integrands are
no longer divergent and singularities appear as poles in ε after loop integration.

UV divergences in loop amplitudes can be removed systematically at every or-
der of perturbation theory with renormalization. Up to two loops the renormalized
matrix elements in the MS scheme are given as follows

|M(0)
m 〉 =

(
4παS(µ)

)q/2(
SMS
ε

)−q/2
|A(0)

m 〉 , (2.3)

|M(1)
m 〉 =

(
4παS(µ)

)q/2(
SMS
ε

)−q/2αS(µ)

4π

[(
SMS
ε

)−1

|A(1)
m 〉 −

q

2

β0

ε
|A(0)

m 〉
]
, (2.4)
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and

|M(2)
m 〉 =

(
4παS(µ)

)q/2(
SMS
ε

)−q/2(αS(µ)

4π

)2[(
SMS
ε

)−2

|A(2)
m 〉

− q + 2

2

β0

ε

(
SMS
ε

)−1

|A(1)
m 〉+

q

2

(
q + 2

4

β2
0

ε2
− β1

ε

)
|A(0)

m 〉
]
,

(2.5)

where β0 was already defined in Eq. (1.4) and β1 is the second coefficient of the
QCD β function

β1 =
34

3
C2

A −
20

3
CATRnf − 4CFTRnf . (2.6)

Besides overall factors in Eqs. (2.4) and (2.5), there are counterterms containing
unrenormalized amplitudes with less loops, which remove the ultraviolet diver-
gences from the renormalized amplitudes. The factor SMS

ε = (4π)ε exp(−εγE)
corresponds to the MS scheme and often denoted in the literature as Sε, but we
reserve the latter for the factor

Sε =
(4π)ε

Γ(1− ε) . (2.7)

The m particle phase space appearing in Eq. (2.2) is defined as

dΦm(p1, . . . , pm;Q) =

[ m∏

i=1

ddpi
(2π)d−1

δ+(p2
i −m2

i )

]
(2π)dδ(d)(pµ1 + · · ·+ pµm −Qµ) .

(2.8)
In perturbation theory the cross section is formally an expansion in the strong
coupling αS where up to NNLO accuracy it is sum of three terms

σm = σLO
m + σNLO

m + σNNLO
m + . . . . (2.9)

The leading order cross section is the integral of the m particle differential Born
cross section

σLO
m =

∫

m

dσB
mJm , (2.10)

where
dσB

m = dΦm〈M(0)
m |M(0)

m 〉 , (2.11)

and |M(0)
m 〉 is the m partonic Born matrix element. The NLO correction is com-

posed from two different contributions, the m+ 1 partonic real correction and the
m partonic virtual correction.

σNLO
m =

∫

m+1

dσR
m+1Jm+1 +

∫

m

dσV
mJm . (2.12)
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The real contribution is simply the square of the m+ 1 tree-level matrix element

dσR
m+1 = dΦm+1〈M(0)

m+1|M
(0)
m+1〉 , (2.13)

while the virtual correction is the interference of the tree-level and one-loop matrix
elements for m external partons

dσV
m = dΦm2Re〈M(0)

m |M(1)
m 〉 . (2.14)

Finally the NNLO correction is the sum of double real, the real-virtual, and the
double virtual terms

σNNLO
m =

∫

m+2

dσRR
m+2Jm+2 +

∫

m+1

dσRV
m+1Jm+1 +

∫

m

dσVV
m Jm , (2.15)

The first two terms defined in the same way as in Eqs. (2.13) and (2.14) but with
an extra particle

dσRR
m+2 = dΦm+2〈M(0)

m+2|M
(0)
m+2〉 , dσRV

m+1 = dΦm+12Re〈M(0)
m+1|M

(1)
m+1〉 ,

(2.16)
The double virtual contribution is the sum of the interference of the two-loop and
the tree level matrix element, and the one-loop squared matrix element

dσVV
m = dΦm

(
2Re〈M(0)

m+2|M(2)
m 〉+ 〈M(1)

m |M(1)
m 〉
)
. (2.17)

2.2 The rise of singularities

Naively trying to calculate the first radiative correction we quickly encounter two
serious problems. First, the loop integral in the one-loop matrix element is still
divergent in the infrared (IR) limits. Secondly the phase space integral of the real
contribution has non-integrable singularities. There are phase space configurations
when one parton becomes collinear to another or a gluon turns soft and the m+ 1
matrix element diverges in these limits. These divergences have to be regularized
and made explicit. This problem also can be handled using dimensional regular-
ization. The KLN-theorem ensures that the cross section, such as σNLO is free of
infrared divergences if the observable J is infrared safe. If we take the sum

σNLO =

[ ∫

m+1

dσR
m+1Jm+1 +

∫

m

dσV
mJm

]

d=4

, (2.18)

the infrared poles coming from loop integral cancel the poles coming from the
phase space integral of the real contribution and we can set ε = 0, removing the
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regularization. The problem is that usually the d-dimensional phase space inte-
gral cannot be done analytically for the real contribution, because the integrand
expression is too complicated (the double real even more). Numerical methods,
such as Monte Carlo integration are ill-defined in d = 4 − 2ε dimensions. There
are methods to deal with d-dimensional phase space integrals, like sector decom-
position [11] and Mellin-Barnes integrals [12]. Both ways resolve the ε poles before
integration, and pole coefficients are turned into four dimensional integrals, that
can be computed with numerical methods.

In sector-decomposition we cut the n-dimensional integration range into sectors
such that in one sector only one integration variable can have singularity, then
we remap these sectors back to the original integration range (practically the n-
dimensional unit hypercube). In addition we also has to regularize the integrals
(with a + distribution for example), if it is necessary. Using these rules iteratively
the original expression can be written as a sum of integrals, in which the integrand
can be expanded in ε before integration, and the pole coefficients are finite integrals.

Using Merlin-Barnes (MB) integrals, we can turn sums in denominators into
products introducing an extra complex contour integration. Then we can exploit
the Barnes lemmas for MB integrals and use the apparatus of complex calculus,
such as the residue theorem and contour shifting to manipulate the integrals into
forms which can be computed analytically or numerically.

The drawback of these methods is that they often generate even bigger ex-
pressions and/or require non-trivial algebraic manipulations and integral transfor-
mations of the integrand prior to the application. Therefore their direct use to
calculate complicated amplitudes is not practical, but they are really powerful on
simpler integrals as we will see in Chapter 3.

One possible solution to the problem is to introduce subtraction terms that
match the infrared limits of the integrand, and render the real matrix element
integrable in d = 4 dimensions

σNLO =

∫

m+1

[
dσR

m+1J
(m)
m+1 − dσR,A1

m+1Jm

]

d=4

+

∫

m

[
dσV

m +

∫

1

dσR,A1

m+1

]

d=4

J (m)
m ,

(2.19)
where dσR,A1

m+1 is the m + 1 particle approximate cross section. The approximate
cross section is usually defined based on the universal factorization properties of
QCD matrix elements. For example if particle i becomes collinear with particle r
the m+ 1 particle tree-level matrix element factorizes as

〈M(0)
m+1|M

(0)
m+1〉 ' 8παSµ

2ε 1

sir
〈M(0)

m |P̂ (0)
fifr
|M(0)

m 〉 , (2.20)

where sir = (pi+pr)
2 and P̂ (0)

fifr
is the tree-level Altarelli-Parisi splitting kernel de-

fined later explicitly in Eq. (6.10). Similarly, the squared matrix element factorizes
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when a gluon r becomes soft

〈M(0)
m+1|M

(0)
m+1〉 ' −8παSµ

2ε
∑

i,j 6=i

1

2
Sij(r)〈M(0)

m |TiTj |M(0)
m 〉 , (2.21)

where we sum over all external particles except r and the eikonal factor is defined as
Sij(r) =

2sij
sirsjr

. Ti is the color charge operator in the fundamental representation
of the SU(3) group if parton i is an (anti-)quark, or in the adjoint representation
if parton i is a gluon.

Subtraction terms are defined based on infrared limits, but extended over the
whole phase space using phase space mappings, such that they match the original
squared matrix element in each phase space points in d-dimensions.

The
∫

1
dσR,A1

m+1 term is the subtraction term integrated over the one-particle
unresolved phase space, which is added back to the virtual contribution to keep
the original expression unchanged. The definition of the dσR,A1

m+1 subtraction term
is not unique. At NLO accuracy there are various solutions like the dipole method
[13], the Frixione-Kunszt-Signer subtraction scheme [14, 15], the Nagy-Soper sub-
traction [16] or the Nagy-Trócsanyi subtraction scheme [17]. There are standard
automated computer programs which with [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
one can calculate a wide range of processes up to NLO accuracy.

Going one order higher in the perturbative series the complexity of the problem
grows rapidly. The state-of-the-art research is the calculation of differential cross
sections at NNLO accuracy. There are multiple subtraction methods such as the
antenna subtraction [28], the sector-improved residue subtraction [29], the q⊥ sub-
traction [30] and the CoLoRFulNNLO subtraction method. The n-jettiness slicing
method [31], based on the soft-collinear effective field theory [32] also provides a
possible way to calculate NNLO accurate cross sections. Recently none of these
methods provides a standard, fully automated way yet to compute processes at
NNLO accuracy, similarly to NLO automated programs.

2.3 Jet production in CoLoRFulNNLO
In the rest of the dissertation we will focus on the CoLoRFulNNLO (Completely
Local subtRactions for Fully differential predictions at NNLO accuracy) subtrac-
tion method, summarize its philosophy and shortly discuss how we can compute
jet cross sections at NNLO accuracy. We do not wish to go into the details, hence
we only provide a sketchy summary. If the reader is interested in the detailed
description and the precise definition of the expressions, they can be found in the
following series of publications [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

In the CoLoRFulNNLOsubtraction scheme, regularization of matrix elements
is based on local subtractions. The subtraction terms are, like dσR,A1

m+1 , constructed
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from the known factorization formulae of the QCD matrix elements in the infrared
limits, like Eqs. (2.20) and (2.21). The singular matrix elements are rendered finite
locally in each point in phase space. To fulfill this requirement, the subtraction
candidates are extended over the whole phase space using phase space mappings
in d-dimensions. The phase space mappings of the different subtraction terms in
the CoLoRFulNNLO scheme lead to exact phase space factorizations, namely

dΦm+1({p}) = dΦm({p̂})[dp(1)
r ] , (2.22)

where [dp
(1)
r ] is the single unresolved phase space. Using this property, the sub-

traction term can be integrated independently of the rest of the m partonic phase
space. ∫

1

dσR,A1

m+1 ≡
∫

1

[dp(1)
r ]dσR,A1

m+1 = dσB
m ⊗ I

(0)
1 ({p}m; ε) . (2.23)

I
(0)
1 is called the color insertion operator and it has the following structure in color
space

I
(0)
1 ({p}m; ε) = Cε

∑

i

[
C

(0)
1,i (yiQ; ε)T2

i +
∑

k 6=i

S
(0),(i,k)
1 (Yik,Q; ε)TiTk

]
, (2.24)

where summation indices i, k run over all external colored particles and the pref-
actor is

Cε =

[
αS

2π

Sε

SMS
ε

(
µ2

Q2

)ε]
. (2.25)

The insertion operator acts on the squared matrix element with inserting color
matrices

〈Mm|Mm〉 ⊗TiTj = 〈Mm|TiTj |Mm〉 ≡ |Mm,(i,j)|2 . (2.26)

The kinematic variables yiQ, Yik,Q appearing in the operator are defined as

yiQ =
2piQ

Q2
, yik =

2pipk
Q2

, Yik,Q =
yik

yiQykQ
. (2.27)

The kinematic functions C
(0)
1,i and S

(0),(i,k)
1 were computed in Ref. [34] and their

functional forms are universal and independent of the final state kinematics.
At NNLO accuracy the problem becomes more involved, since there are more

possible unresolved limits with overlappings, hence the number of subtraction
terms is largely increased. We start with rewriting Eq. (2.15) into an equiva-
lent form

σNNLO =

∫

m+2

dσNNLO
m+2 +

∫

m+1

dσNNLO
m+1 +

∫

m

dσNNLO
m+2 , (2.28)
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where the three different terms are defined as

dσNNLO
m+2 =

{
dσRR

m+2J
(m)
m+2 − dσRR,A2

m+2 J (m)
m −

[
dσRR,A1

m+2 J
(m)
m+1 − dσRR,A12

m+2 J (m)
m

]}

d=4

,

(2.29)

dσNNLO
m+1 =

{[
dσRV

m+1+

∫

1

dσRR,A1

m+2

]
J

(m)
m+1−

[
dσRV,A1

m+1 +
(∫

1

dσRR,A1

m+2

)A1
]
J (m)
m

}

d=4

,

(2.30)

dσNNLO
m =

{
dσVV

m +

∫

2

[
dσRR,A2

m+2 − dσRR,A12

m+2

]

+

∫

1

[
dσRV,A1

m+1 +
(∫

1

dσRR,A1

m+2

)A1

]}

d=4

J (m)
m .

(2.31)

The double-real squared matrix element is singular both in the double-unresolved
and in the single-unresolved limits. The subtraction term dσRR,A2

m+2 regularizes the
double-unresolved limits (e.g. triple collinear, double soft) of the m + 2 particle
squared matrix element, while dσRR,A1

m+2 matches the single-unresolved limits. Since
the double- and the single-unresolved limits overlap, the overlapping region is sub-
tracted twice. In order to avoid double counting, dσRR,A12

m+2 is present to remove the
overlap of double- and single-unresolved subtraction terms. Hence the double-real
contribution is completely regularized and can be computed in d = 4 dimensions,
removing the regularization.

The integral of dσRR,A1

m+2 subtraction terms is added back to the real-virtual
contribution, and it cancels the ε poles of dσRV

m+1, secured by the KNL theorem.
However the real-virtual squared matrix element dσRV

m+1 also has infrared singular-
ities in the single-unresolved limits. It is regularized by the dσRV,A1

m+1 counterterm.
The integrated subtraction term

∫
1

dσRR,A1

m+2 has also infrared divergences that are

subtracted by
( ∫

1
dσRR,A1

m+2

)A1

counterterm. We note that while the factoriza-
tion of squared matrix elements in the infrared limits is guaranteed by QCD, the∫

1
dσRR,A1

m+2 subtraction term does not necessarily has this property, it has to be
ensured by its definition.

Finally the integrated double-unresolved, the one-loop single unresolved and
the iterated single-unresolved counterterms are added back to the two-loop con-
tribution. The poles of the double-virtual matrix element cancel against the poles
of the integrated subtraction terms according to the KNL-theorem.

Similarly to the NLO case, the integrated counterterms can be written as
∫

2

dσRR,A2

m+2 = dσB
m ⊗ I

(0)
2 ({p}m; ε) , (2.32)
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∫

1

dσRR,A1

m+2 = dσR
m+1 ⊗ I

(0)
1 ({p}m+1; ε) , (2.33)

∫

2

dσRR,A12

m+2 = dσB
m ⊗ I

(0)
12 ({p}m; ε) , (2.34)

∫

1

dσRV,A1

m+1 = dσV
m ⊗ I

(0)
1 ({p}m; ε) + dσB

m ⊗ I
(1)
1 ({p}m; ε) , (2.35)

∫

1

(∫

1

dσRR,A1

m+2

)A1

= dσB
m ⊗

[
1

2

{
I
(0)
1 ({p}m; ε), I

(0)
1 ({p}m; ε)

}
+ I

(0,0)
1,1 ({p}m; ε)

]
,

(2.36)
where the anti-commutator is
{
I
(0)
1 ({p}m; ε), I

(0)
1 ({p}m; ε)

}
= I

(0)
1 ({p}m; ε)I

(0)
1 ({p}m; ε)+I

(0)
1 ({p}m; ε)I

(0)
1 ({p}m; ε) ,

(2.37)
and the form of color insertion operators I

(0)
2 , I

(0)
12 , I

(1)
1 and I

(0,0)
1,1 will be later

defined in Chapter 3.
The pole structure of the integrated counterterms were calculated analytically

and they cancel the poles of the two-loop squared matrix element.1 As a result
Eqs. (2.29), (2.30) and (2.31) are all free of ε poles at the integrand level and
regularization can be removed setting ε = 0. Thus the integrals can be performed
in d = 4 dimensions with usual Monte Carlo techniques.

The CoLoRFulNNLO scheme for e+e− collisions is implemented in the MCCSM
(Monte Carlo for the ColorfulNNLO Subtraction Method) partonic numerical
Monte Carlo program. The program has been used to calculate the H → b b̄
decay rate at NNLO accuracy [45], and event shapes for three-jet production in
e+e− collisions [46, 44, 47]. Recently we calculated the three-jet rate at NNLO
accuracy in e+e− annihilation matched with next-to-double logarithmic resumma-
tion (see definition in the next chapter) using the k⊥ and the anti-k⊥ jet clustering
algorithms [48, 47], which results will be later discussed in details in Chapter 4
and 5.

2.4 Resummation of logarithmic terms

Fixed-order calculations provide good description for many observables. However
there are regions in phase space where multiple soft-collinear emissions dominates
and the fixed-order prediction fails due to the presence of logarithmically enhanced

1Which is highly not trivial. In three-jet production 200000 lines of analytic expression cancels
exactly into 0.
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contributions. In these regions the small value of αS gets compensated by a log-
arithmic term L, and the effective expansion parameter αSL ≈ 1 becomes non-
perturbative. Thus all-order resummation of these contributions is needed. For
event shape variables f the resummed logarithmic terms exponentiate completely

f(L) ∼ exp(Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . . ) , (2.38)

where g1, g2, g3 and so on are functions which resums the different logarithmic
terms. The g1 function includes the leading logarithmic (LL) terms αnSL

n+1, g2

includes the next-to-leading logarithmic (NLL) terms in the exponent and so forth.
However not all kind of observables, for example jet rates, exponentiate therefore
the more general definition is [49] for the observable O

O(L) ∼ exp(Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . . )F(L) . (2.39)

The accuracy of resummation is determined by the type of logarithms included,
thus the knowledge of the g1, g2, . . . and the F(L) functions.

In the literature we can find another type of definition for the accuracy of
resummation based on the αS expansion of the resummed formula. Thus LL
accuracy means resummation of all αnSL

2n type logarithmic terms, NLL accuracy
means resummation of all aSnL2n−1 kind of logarithmic terms and so on. In order
to avoid confusion whether the (N)LL accuracy is meant for the resummed or
the expanded version, we introduce the definition of double logarithmic (DL) and
next-to-double logarithmic (NDL) accuracy, as the αnSL

2n and αnSL
2n−1 terms of

the fixed-order expansion are often called double and next-to-double logarithms.
By NDL accuracy we mean that the observable O can be written as a function
with αS expansion in the form

O(L) =

∞∑

n=1

αnS

(
Gn,2nL

2n +Gn,2n−1L
2n−1 +O(L2n−2)

)
, (2.40)

where all Gn,2n and Gn,2n−1 coefficients are known. This is a looser condition
compared to Eq. (2.39), NLL always includes NDL accuracy, but the inverse is
not necessarily true.

Analytic NLL accurate resummation has been achieved for many observables
[50, 51, 52, 53, 54, 3, 55, 56, 57, 58] in e+e− collisions. The resummation of jet
rates are available at NDL accuracy for the k⊥ and the general inclusive k⊥ algo-
rithm [8, 59]. Some event shapes have been also resummed beyond NLL accuracy
[60, 61, 62, 63, 64, 65]. The drawback of these analytic computations however
is that their derivation is based on observable dependent factorization properties,
hence the calculations have to be carried out independently for every single quan-
tity. This problem can be solved by using numerical approaches, which provide
general methods for resummation up to NLL [49] for general observables fulfilling
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the requirement of the method and recently NNLL accuracy for event shapes vari-
ables [66].

The fixed-order and resummed calculations can be matched together to provide
an enhanced theoretical prediction that describes a wider range of data for a given
observable. There are two different matching schemes which are usually used: the
R-matching and the logR-matching schemes [50].

In the R-matching scheme we add together the predictions of the resummed
and the fixed-order calculations and subtract the overlapping contributions:

Omatched(L) = Oresummed(L)−Oresummed
exp (L) +OFO(L) , (2.41)

where Oresummed
exp (L) is the fixed-order αS expansion of the resummed calculation.

In the logR-matching however we perform the matching for the logarithm of
the observable O(L):

logOmatched(L) = logOresummed(L)−
(

logOresummed(L)
)
exp

+ ÕFO(L) . (2.42)

(
logOresummed(L)

)
exp

is the αS expansion of the logarithm of the resummed pre-

diction, while ÕFO(L) is the exponentiated form of the fixed-order calculation such
that it fulfills the following requirement

exp
(
ÕFO(L)

)
αS exp−−−−→ αS

2π
A(L) +

(
αS

2π

)2

B(L) +

(
αS

2π

)3

C(L) +O(α4
S) . (2.43)

The preferred matching scheme is logR-matching, because it is less sensitive for
missing subleading logarithms. Due to these missing logarithms the difference
OFO(L) − Oresummed

exp (L) can diverge which ends in unphysical behavior in the
asymptotic region. However in the logR-matching not the difference but the ratio
of the fixed-order like contributions is used which approaches 1 in the asymptotic
region, even if the difference does not converge to 0.

For event shape observables both matching schemes are feasible but as men-
tioned usually the logR-matching scheme is preferred. For jet rates presently only
the R-matching scheme was used, but in principle one could work out the relevant
formulae for logR-matching following the general idea presented in Eq. (2.42). We
started research in this topic, however it is not completely worked out yet hence
we do not include logR-matching in this dissertation, but will be published in [47].

2.5 The importance of three-jet production
As we mentioned in the introduction the precise determination of the strong cou-
pling αS is a constantly revisited problem in high energy physics. With the de-
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velopment of experimental accuracy and new analysis methods, and availability of
improved theoretical predictions the measurement of αS becomes more precise.

Electron-positron colliders provide an ideal environment to test the strong cou-
pling of QCD with the study of the production of two or more hadronic jets. A
favorable choice is the production of three jets, because the production rate is
proportional to αS at already leading order of perturbation theory.

In the past twenty years the measurement of αS has been performed many
times using LEP and LEP2 data at various center-of-mass energies [67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77]. Some of these measurements were based on the study
of the three-jet rate using jet clustering algorithms [68, 70, 72, 75, 77].

The key of accuracy is to provide precise theoretical predictions, which are
available at NNLO accuracy for the k⊥ algorithm [78, 79, 80, 81], and for the
general inclusive k⊥ and the SISCOne algorithm [81].

Although the work of Schieck et al. [77] used NNLO accurate predictions
matched with NDL accurate resummation for the three-jet rate using the k⊥ at
various energy scales in the analysis, the

√
Q2 = 91.2 GeV center-of-mass energy

was not included, and no matched predictions has been published yet for the
three-jet rate at

√
Q2 = 91.2 GeV.

Besides this there are also three different varieties [8, 82, 83] for the three-jet
rate resummation with the k⊥ algorithm, which were not compared before. Also
the resummation for general inclusive k⊥ algorithm at NDL accuracy is available
[59].

In my dissertation I explore these uncharted territories and I make matched
predictions at NNLO+NDL accuracy for the three-jet rate including both the k⊥
and the general inclusive k⊥ algorithm. Before the discussion of the jet rates I
present my work in the development of the CoLoRFulNNLO subtraction scheme,
where I calculated the integrated subtraction terms numerically. After I presented
my results in e+e− collisions, I discuss some intermediate work done in the exten-
sion of the CoLoRFulNNLOsubtraction scheme to hadron-hadron collisions.
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Chapter 3

Numerical integration of
subtraction terms

We have seen that the double- and single-unresolved integrated subtraction terms
must be added back to the real-virtual and the double-virtual contribution in order
to keep the whole expression unchanged. These integrated subtraction terms are
known analytically up to the O(ε−1) pole. However the finite part is not exactly
known yet in full analytic form, since it is the most complicated to compute. In
this chapter we discuss the numerical calculation of the finite part of the integrated
counterterms in the three-jet kinematics. We start with the introduction of the
problem, namely the necessity of computing large number of integrals, then we
review the automated method developed to solve this problem. Finally we discuss
our results.

3.1 Statement of the problem

The integrated subtraction terms in Eq. (2.31), similarly to
∫

1
dσR,A1

m+1 can be de-
composed into an universal color insertion operator acting on the Born amplitude.
Let us start with the integrated double-unresolved counterterm that can be written
as

∫

2

dσRR,A2

m+2 = dσB
m ⊗ I

(0)
2 ({p}m; ε) . (3.1)

21
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The insertion operator I(0)
2 has the following color structure

I
(0)
2 ({p}m; ε) = C2

ε

{∑

i

[
C

(0)
2,i (yiQ; ε)T2

i +
∑

j 6=i

C
(0)
2,ij(yiQ, yjQ, Yij,Q; ε)T2

j

]
T2
i

+
∑

j,l 6=j

[
S

(0),(j,l)
2 (Yjl,Q; ε)CA +

∑

i

CS
(0),(j,l)
2,i (yiQ, Yij,Q, Yil,Q, Yjl,Q; ε)T2

i

]
TjTl

+
∑

i,k 6=i

∑

j,l 6=j

S
(0),(i,k)(j,l)
2 (Yik,Q, Yij,Q, Yil,Q, Yjk,Q, Ykl,Q, Yjl,Q; ε){TiTk,TjTl}

}
,

(3.2)

where C
(0)
2,i , C

(0)
2,ij , . . . are kinematic functions similarly the functions turning up

in I
(0)
1 and the summation indices run over all external colored particles.
The integral of the dσRR,A12

m+2 counterterm, which removes the overlap of the
single- and double-unresolved regions of the double-real contribution is

∫

2

dσRR,A12

m+2 = dσB
m ⊗ I

(0)
12 ({p}m; ε) , (3.3)

where, I(0)
12 insertion operator has the same color structure as I(0)

2 , but with different
kinematic functions, labeled with 12 subscript.

The integrated subtraction term of the real-virtual cross section is sum of two
terms ∫

1

dσRV,A1

m+1 = dσV
m ⊗ I

(0)
1 ({p}m; ε) + dσB

m ⊗ I
(1)
1 ({p}m; ε) , (3.4)

where the insertion operator is

I
(1)
1 ({p}m; ε) = C2

ε

∑

i

[
C

(1)
1,i (yiQ; ε)CAT

2
i +

∑

k 6=i

S
(1),(i,k)
1 (Yik,Q; ε)CATiTk

+
∑

k 6=i

∑

l 6=i,k

S
(1),(i,k,l)
1 (Yik,Q, Yil,Q, Ykl,Q; ε)

∑

a,b,c

fabcT
a
iT

b
kT

c
l

]
,

(3.5)

and I
(0)
1 was earlier defined in Eq. (2.24).

Finally the integral of the subtraction defined for the integrated single-unresolved
m+ 2 particle subtraction term is

∫

1

(∫

1

dσRR,A1

m+2

)A1

= dσB
m ⊗

[
1

2

{
I
(0)
1 ({p}m; ε), I

(0)
1 ({p}m; ε)

}
+ I

(0,0)
1,1 ({p}m; ε)

]
,

(3.6)
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with

I
(0,0)
1,1 ({p}m; ε) = C2

ε

∑

i

[
C

(0,0)
1,1,i (yiQ; ε)CAT

2
i +

∑

k 6=i

S
(0,0),(i,k)
1,1 (Yik,Q; ε)CATiTk

]
.

(3.7)
Similarly to I

(0)
1 , the kinematic functions present in the I

(0)
2 , I(0)

12 , I
(1)
1 and I

(0,0)
1,1

operators can be computed independently of the kinematics. Presently their func-
tional form is known fully analytically for the poles up to O(ε−1) and in the
asymptotic region for the finite part. Some functions may not show up in every
process, for example the S

(1),(i,k,l)
1 (Yik,Q, Yil,Q, Ykl,Q; ε) term only contributes in

processes with more than three hard partons.

The kinematic functions can be written as a linear combination of so-called
master integrals. Thus the computation of the insertion operators is reduced to
the calculation of the master integrals. These integrals come in high numbers,
the CoLoRFulNNLO scheme consist of around 250 different integrals, the exact
numbers are summarized in Table 3.1. The master integrals originate from the

Insertion operator No. of integrals
I
(0)
1 , I

(1)
1 , I

(0,0)
1,1 67

I
(0)
12 109
I
(0)
2 104

Table 3.1. The number of integrals appearing in the insertion operators. Since
there are some relations between certain integrals, the exact number is a bit less
but still around 250.

Altarelli-Parisi splitting kernels and the eikonal factors integrated over the un-
resolved phase space in d-dimensions. They are functions of kinematic variables
defined in Eq. (2.27).

Now let us consider an example: the master integrals I(j,k,l,m)
2C,1 of the I

(0)
2

insertion operator originating from triple-collinear limits depends on the kinematic
variable yiQ defined in Eq. (2.27). The nomenclature is the following: the first
number in the subscription refers to the insertion operator in which the master
integral turns up, the label C, S or CS shows which kinematic function the integral
belongs to. Finally there is a simple numbering of the integrals of similar kind.
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The I(j,k,l,m)
2C,1 integral has a rather complicated expression

I(j,k,l,m)
2C,1 (yiQ, ε;α0, d0) = 2−4ε Γ2(1− ε)

πΓ(1− 2ε)
yiQ

∫ α0

0

dα

∫ 1

0

dtdτ dv dw

× α−1−2ε(1− α)2d0−3+2ε(α+ (1− α)yiQ)−1−2ε(2α+ (1− α)yiQ)−m

× tk+l+1−2ε(1− t)j+l+m+1−2ετ l−ε(1− τ)j−εv−ε(1− v)−ε

× w−1/2−ε(1− w)−1/2−ε(1− τ + τt)−j−l−2+2ε(α+ (1− α)yiQv)m ,

(3.8)

where depending on the choice of j, k, l,m (= −1, 0, 1, 2) parameters of the integral
we could have 256 different integrals, however the actual number related to the
triple-collinear kernels is only 13.

The integral has singularities on the integration borders and singularities can
overlap in general. These singularities can be resolved either using the sector de-
composition method or the Mellin-Barnes integral representations as we mentioned
earlier. After resolving the divergences, the integrand can be expanded in ε up to
desired order and the series coefficients become finite integrals in d = 4 dimen-
sion. However these coefficient integrals typically have large integrands resulting
from the pole-resolving procedure, and their complexity increases as we consider
higher order terms in the ε expansion. Some of the 250 integrals are known fully
analytically, like all the integrals appearing in I

(0)
1 , but in general only the pole

coefficients are known. Thus the finite part must be computed numerically.
Since the master integrals are functions of the kinematic variables, they would

have to be evaluated in every phase space point when we perform the Monte Carlo
integration of the differential cross section. The large number of such complicated
integrals portrayed in Eq. (3.8) and the fact that the numerical calculation of the
finite parts takes minutes per integral1 make the direct use of the master integrals
in a partonic Monte Carlo code hopeless.

One possible solution is to calculate the master integrals numerically on a
sufficiently fine grid of kinematic variables, then fit the results with a simpler
analytic function. In the case of one or two kinematic variables we showed that
the master integrals can be fitted with sum of a logarithmic and a polynomial
function [84], as shown in Figs. A.1 and A.2 in Appendix A. However master
integrals depending on 3 or more kinematic variables would require a robust grid
with too many points to evaluate and the functional form of the fit becomes also
complicated.

In practical applications of the CoLoRFulNNLO scheme, like e+e− → 2 or 3
jets we can take advantage from the special final state kinematics. In the two
jet case for example the jets are back-to-back and the insertion operators depend

1Usually the decomposition part takes couple of seconds, but numerical integration is rather
expensive.
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only on the y12 kinematic variable. Due to the kinematic constraints of two-jet
production the insertion operators and the master integrals must be evaluated in
only one point. In three-jet production the insertion operators depend on only
two independent kinematic variables: y13 and y23, therefore the operators can be
fitted on a plane without any further complications.

We distributed 175 points in the y13 − y23 plane to cover the whole phase
space. We know that the insertion operators have a logarithmic dependence on yij ,
therefore points in the asymptotic regions are distributed uniformly on logarithmic
scale.

The master integrals depend directly on the yiQ = 1− ykl and Yij,Q variables
defined in Eq. (2.27) with i, j = 1, 2, 3 in the three-jet kinematics. When we
choose one point from the y13−y23 plane, we have to evaluate the master integrals
in all possible yiQ and Yij,Q combinations. For example I(j,k,l,m)

2C,1 is a function of
yiQ, therefore we have to perform the numerical integration three times using y1Q,
y2Q and y3Q respectively. The master integral I2S,2 of the I

(0)
2 operator related to

integrated double-soft limit depends on Yij,Q, Yik,Q and Yjk,Q, thus six different
possible combinations belong to one specific y13 − y23 pair. To obtain all the
insertion operators on the grid consisting 175 point pairs, we have to calculate
O(104) numerical integrals. Considering the large number of integrations and the
required time, the procedure must be automated as much as possible and one can
run the whole calculation on large computers without any further intervention.

3.2 Automated numerical calculation of integrals

The numerical integrations can be performed with already existing tools. Sector
decomposition was implemented in various programs, like SecDec [85, 86, 87, 88,
89], FIESTA [90, 91, 92, 93] and a program provided by Bogner et al [94], all three
approaches focusing mainly on multi-loop integrals. For master integrals that
we calculated via sector decomposition we chose the program SecDec , because
it provides sector decomposition for generic phase space integrals from its first
release. SecDec can take multipoint lists as an input from which it calculates the
integrals sequentially in those point. The program uses the CUBA [95] library for
integration2. Although in principle the integration can run on multiple threads,
our observation is that only one thread is used effectively by CUBA, even if there
are other forked threads. Multiple points cannot be calculated simultaneously for
the same integral, because some intermediate files could mix up during calculation
providing wrong results in the end. Also if we would like to calculate a different
type of integral, we have to set up and run the process manually again and again.
Clearly SecDecwas not designed to calculate phase space integrals in industrial

2We found the Cuhre algorithm the most suitable
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manner, but it can perfectly serve as a basis for our purpose, without any serious
modifications.3

The double soft integrals of I(0)
2 were calculated using Mellin-Barnes technique.

This technology is implemented in several Mathematica packages collectively called
MBTools [96, 97] and allows to perform numerical integration for integrals in the
Mellin-Barnes representation. In these cases the integrals are calculated by running
Mathematica package files which takes similar multipoint input lists and produces
result files in the same fashion as SecDecdoes. Thus the automation of the MB
type calculations works in the same spirit as it will be described below for SecDec ,
therefore we will not distinct between these two different type of approaches.

We built up an automated framework around SecDecwhich manages the dis-
tribution, and the calculation of the integrals and finally collects the results. The
basic idea is the following: since basically one integration uses only one core effec-
tively, regardless of the corresponding settings, we use a one core per integration
principle. Based on this we automate the whole calculation process from the be-
ginning up to the end in the following way:

• we set up SecDecN -times, where N ≤ ncores, in order to avoid any crosstalk
between intermediate files.

• We take the set of integrals wished to be calculated and distribute them
uniformly between the present SecDec setups.

• We use the advantage that SecDec can compute these integrals in multiple
points sequentially, provided the list of points.

• We write launching scripts for each SecDecused, ensuring that simultane-
ously only one integral is calculated in one thread.

• We launch N threads of SecDec calculations parallel on N CPU cores.

• If all the integrations are ready, we collect the results in two steps: first we
collect all the individual result files produced by SecDec for each point into
simple data tables for each integral separately, then we transform these data
into the desired final format.

The first point of the previous list is basically the installation process. The master
integrals have to be implemented in SecDec input format only once, the multipoint
input files are generated automatically for every integral from the y13 − y23 grid-
points with a computer program. After this has been set up we only start the
process and then wait until it is finished.

3However some minor patching was necessary.
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3.2.1 ICalc

The algorithm portrayed above is realized in a computer program called ICalc .4
ICalc is written in python 2.7 language, which provides an easy way of scripting
with very powerful tools. ICalc is built around SecDec-2.1 [86, 87], the most up-
to-date version during the time of development. Since then SecDec-3.0 [88] was
released with a completely rewritten loop part, however the general part, which we
use for our calculations was not changed, thus we did not upgrade it. Borowka et
al. also released pySecDec [89] a brand new reincarnation of the original program,
but our calculation was already done with the original ICalc setup.

During its installation process ICalc createsN identical copies of SecDec folders
and installs them. The user only needs to provide the integrand inputs in the
proper SecDec format and the multipoint list, and a simple input card for ICalc in
a predefined directory structure. Depending on the users desire, ICalc can launch
two C++ programs to collect the results. The CollectRes program scans the re-
sult files generated by SecDec and takes out the pole coefficient values with the
corresponding integration error. The results are collected into data tables for each
integral separately. Once the data files are ready, ICalc executes the MakeMath
program. The insertion operators are coded in Mathematica, and due to this rea-
son we need to define the master integrals in each calculated kinematic point as
function in this format. The MakeMath program does this job, and transform the
data sheets into SeriesData objects as a function of the kinematic variables. For
example let we have some function which is denoted by T −1

1C,0(α0, y1Q) depending
on two variables and having labels 1C, 0, −1. After numerical calculation in the
α0 = 1.0i , y1Q = 0.2 point we get the following data table

α0 y1Q ε−2 ε−1 ε0

1.0 0.2 0.5 -6.078 -21.239

which is then transformed into Mathematica format in the following way

T1C[0,1.0,0.2,-1]:=SeriesData[e,0,0.5,-6.078,-21.239,-2,1,1];

3.3 Results and application

Using the ICalc framework, we calculated the I
(0)
2 , I(0)

12 , I
(1)
1 and I

(0,0)
1,1 operators

over the grid in 175 pointpairs (partially the I
(0)
12 operator was obtained using a

different computation method). We tested our numerical accuracy on the poles,
we compared the numerical results against the analytical ones in each point and
they showed agreement as visible in Fig 3.1.

4ICalc stands for IntegralCalculator.
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In Fig. 3.1 we show the relative accuracy of ε−1 pole of the following combi-
nation of insertion operators

Isum ≡ I
(0)
2 − I

(0)
12 + I

(1)
1 + I

(0,0)
1,1 . (3.9)

The Isum combination is computed numerically from the master integrals, and is
compared to analytic result of the same quantity. Half of the phase space point
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Figure 3.1. Histogram showing the distribution of the relative accuracy of the
numerically calculated insertion operators in all 175 points.

has 10−4 or better relative accuracy, and most of the points are below in the
[−5 · 10−3, 5 · 10−4] region.

Following our original intention, we fitted the insertion operators with a log-
arithmic function which had a good agreement with the numerically calculated
results. Although the main contribution comes from logarithmic behavior, we
know that the insertion operator also contain rational functions which are finite
in the borders. Therefore we added extra polynomial terms to the logarithmic
fit function to estimate the robustness of the fit. However when we varied the
functional form, the fitted values of the logarithmic coefficients changed as well.
Physical predictions were found to be sensitive to such changes in the end regions,
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where indeed the logarithms are the dominant contributions. In order to avoid
large and overestimated systematical uncertainties, we computed the asymptotic
behavior of the master integrals analytically.

We found that the

J2 ≡ I
(0)
2 − I

(0)
12 + I

(1)
1 + I

(0,0)
1,1 +

1

4

{
I
(0)
1 , I

(0)
1

}
(3.10)

combination of insertion operators forms a relatively simple expression. Using this
definition Eq. (2.31) in the three-jet kinematics can be written as

dσNNLO
3 =

[
dσVV

3 + dσB
3 ⊗

(
J2 +

1

4

{
I
(0)
1 , I

(0)
1

})
+ dσV

3 ⊗ I
(0)
1

]
J3 , (3.11)

where only the J2 operator contains numerical pieces. The finite part of J2 can be
decomposed into an asymptotic part which contains logarithmic terms and diverges
at the edges of the phase space, and a regular part that is finite over the whole
phase space

Fin
(
J2

)
= Fin

(
Jasy

2

)
+ Fin

(
Jreg

2

)
, (3.12)

where the explicit expression of Fin
(
Jasy

2

)
can be found in Ref. [44]. We obtained

Fin
(
Jreg

2

)
by subtracting the analytic asymptotic formula from the numerical

finite part of J2. We found that the regular part can be approximated well by a
constant in the whole phase space (within uncertainties), and its value is

Fin
(
Jreg

2

)
= C2

ε (−650) . (3.13)

We implemented Eq. 3.11 as the double-virtual contribution in the MCCSM partonic
Monte Carlo code, that we used to calculate physical observables in e+e− → 3 jets
production at NNLO accuracy [46, 44, 48, 47].
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Chapter 4

The three-jet rate using the k⊥
algorithm

At the LEP collider the most common jet clustering algorithm was the k⊥ algo-
rithm [8]. The algorithm only depends on a single jet resolution parameter ycut.
The k⊥ algorithm was developed in 1991 to replace the original JADE clustering
algorithm [6, 7] which was the primarly used algorithm before the k⊥. Although
the JADE satisfies infrared safety, the algorithm prevents all order resummation
of large logarithmic contributions of log 1/ycut for small values of ycut, even at the
leading-logarithmic accuracy. This lead to the introduction of the k⊥ algorithm,
which replaces the jet invariant mass with transverse momentum as a distance mea-
sure. As a result resummation of double- and next-to-double logarithms becomes
possible.

4.1 The k⊥ algorithm
The k⊥ algorithm has an iterative clustering procedure, and depends on a sin-
gle ycut jet resolution parameter. The clustering steps of the algorithm are the
following:

1. Calculate the distance measure yij defined as

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
(4.1)

for every final state particle pair i, j and find the minimal one.

2. If the smallest ykl is smaller than ycut, combine particle k and l according to
the prescripted recombination scheme and go to Step 1.

31
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3. If the smallest ykl is bigger than ycut, stop clusterization.

The resulting objects after clusterization are considered jets. The different re-
combination schemes tell how to combine momenta of two particles into one. In
this work we use the so-called E-scheme for recombination where the resulting
momenta is simply the sum of the-four momenta of the combined particles

pµ(ij) = pµi + pµj . (4.2)

In contrast for example, in the P -scheme the energy component of the combined
momenta is rescaled to have zero invariant mass.

For the k⊥ algorithm one can uniquely define transition values. Transition
values yi−1←i are certain values of ycut, where the number of jets change from i
into i − 1 for a given final-state configuration. The distribution of the transition
value behaves as an event shape observable. Using the k⊥ algorithm every tran-
sition value yi−1←i can be computed running the clusterization only once for a
given configuration of momenta independently of ycut, such that in every clusteri-
zation step the smallest ykl value will be the corresponding yi−1←i transition value,
and we repeat the steps until all partons are clustered into two jets. Number of
jets is a monotonically decreasing function of ycut for every possible phase space
configuration.

These two properties described above connect the dσ
dyi−1←i

differential distri-
butions and the σn−jet(ycut) cross section. Using this relation the three-jet cross
section can be computed as

σ3−jet(ycut) =

∫ 1

ycut

dy2←3
dσ

dy2←3
−
∫ 1

ycut

dy3←4
dσ

dy3←4
. (4.3)

The three-jet cross section for a chosen ycut gets contributions from the dσ
dy2←3

dif-
ferential cross section for every y2←3 value which is greater than ycut. However the
resulting quantity in itself would include all events with y3←4 ∈ [0, 1]. Events with
y3←4 ∈ [0, ycut] indeed are four-jet events which cluster into three-jets, but events
with y3←4 ∈ [ycut, 1] do not cluster into three-jets. Thus we need to subtract the
integrated

∫ 1

ycut
dy3←4

dσ
dy3←4

distribution to get the correct three-jet cross section.
Eq. (4.3) provides a very useful relation to speed up numerical calculations since
one can calculate the differential cross sections, then do a simple integration with
the desired ycut according to the formula above.
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4.2 Perturbative expansion
The three-jet rate is known in perturbation theory up to NNLO accuracy as series
expansion in the strong coupling αS at an arbitrary µ renormalization scale

RFO
3 (µ) =

σ3−jet

σtot
=
αS(µ)

2π
A3(µ) +

(
αS(µ)

2π

)2

B3(µ) +

(
αS(µ)

2π

)3

C3(µ) +O(α4
S) ,

(4.4)
where the dependence on the jet algorithm parameter is implicit, but neglected in
the notation. In experiments the natural normalization is to the total hadronic
cross section σtot. In perturbation theory up to NNLO accuracy this reads as
[98, 99]

σtot = σ0

[
1 +

αS

2π
Atot +

(
αS

2π

)2

Btot +

(
αS

2π

)3

Ctot +O(α4
S)

]
. (4.5)

In theory (as in our case), cross sections are often normalized to the leading-
order hadronic cross section σ0, which is the leading-order cross section for two jet
production in e+e− collisions

σ3−jet

σ0
=
αS

2π
Ā3 +

(
αS

2π

)2

B̄3 +

(
αS

2π

)3

C̄3 . (4.6)

We can switch to the σtot normalization to obtain the three-jet rate by multiplying
Eq. (4.6) with σ0/σtot, that in perturbation theory is

σ0

σtot
= 1− αS

2π
Atot −

(
αS

2π

)2(
Btot −A2

tot

)
. (4.7)

The first two perturbative coefficients of the total hadronic cross section σtot [98,
99] are

Atot =
3

2
CF ,

Btot =
1

4

[
− 3

2
C2

F +

(
123

2
− 44ζ3

)
CFCA + (−22 + 16ζ3)CFnfTR

]
.

(4.8)

Finally the A3, B3 and C3 perturbative coefficients of the three-jet rate can be
obtained with a linear shift according to the following formulae:

A3 = Ā3 ,

B3 = B̄3 −AtotĀ3 ,

C3 = C̄3 −AtotB̄3 −
(
Btot −A2

tot

)
Ā3 .

(4.9)
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The renormalization scale dependence of the coefficients can be easily obtained
from the coefficients computed at scale µ = Q

A3(µ) = A3(Q)

B3(µ) = B3(Q) + β0 log ξRA3(Q)

C3(µ) = C3(Q) + 2β0 log ξRB3(Q) +

(
1

2
β1 log ξR + β2

0 log2 ξR

)
A3(Q) ,

(4.10)

with ξR ≡ µ/Q, while the strong coupling can be evaluated by the three-loop
running formula

αS(µ)

2π
=

2

β0t

[
1− β1

β2
0t

log t+

(
β1

β2
0t

)2(
ln2 t− ln t− 1 +

β0β2

β2
0

)]
, (4.11)

where t = ln(µ2/Λ2
QCD). The first two coefficients of the β function appearing

Eqs. (4.10) and (4.11) were defined in Eqs. (1.4) and (2.6) while β2 [100] is

β2 =
2857

54
C3

A −
(

1415

27
C2

A +
205

9
CACF − 2C2

F

)
TRnf +

(
158

27
CA +

44

9
CF

)
T 2

Rn
2
f .

(4.12)
At NNLO accuracy we use Λ2

QCD = 208 MeV corresponding to αS(mZ) = 0.118.
The A3 and B3 coefficients of the perturbative series have been computed first
in Refs. [101, 102] and were also published in Ref. [83]. The C3 coefficient for
the k⊥ algorithm was computed in Refs. [78, 79, 80] and Ref. [81] provided a
detailed study on different jet algorithms at NNLO accuracy. In this work we use
the CoLoRFulNNLOmethod to obtain the perturbative coefficients for both k⊥
and anti-k⊥. In our calculation we use the sij/Q2 > 10−8 scaled invariant mass to
cut the phase space.

In Fig. 4.1 we show our perturbative results for the three-jet rate at
√
Q2 =

91.2 GeV center-of-mass energy using the k⊥ jet algorithm and the measured data
by the OPAL experiment [103]. In the ycut ∈ (10−2, 1) region the perturbative
prediction gives a good a description of the data, however at lower values of ycut

the differences start to grow and the perturbative predictions become unphysical
as they diverge. It indicates the need of resummation in this region. We also
plot the NNLO predictions of Ref. [81] with scale uncertainty named as SW. Our
NNLO calculation shows good agreement with the predictions of SW.

4.3 Resummation of next-to-double logarithms
Using the coherent branching formalism described in Ref. [8] it is feasible to
perform resummation for the jet rates with the k⊥ algorithm. The three-jet rate
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Figure 4.1. LO, NLO and NNLO fixed-order results for the three jet rate using the
k⊥ algorithm for clustering compared with OPAL data and theoretical prediction
of Ref. [81] (SW). The bands indicate the renormalization scale variation.

at next-to-double logarithmic accuracy can be computed with the following formula
as written in Ref [8]:

RNDL
3 = 2[∆q(Q)]2

∫ Q

Q0

dQ′Γq(Q,Q
′)∆g(Q

′) , (4.13)

where Q0 =
√
ycutQ.

The so-called decay rates appearing in the resummation of three-jet rate up to
NDL accuracy are

Γq(Q
′′, Q′) =

2CF

π

αS(Q′)

Q′

[
log

Q′′

Q′
− 3

4

]
,

Γg(Q
′′, Q′) =

2CA

π

αS(Q′)

Q′

[
log

Q′′

Q′
− 11

12

]
,

Γf (Q′) =
nf

3π

αS(Q′)

Q′
.

(4.14)
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The Sudakov-factors are defined as

∆q(Q
′′) = exp

(
−
∫ Q′′

Q0

dQ′Γq(Q
′′, Q′)

)
,

∆g(Q
′′) = exp

(
−
∫ Q′′

Q0

dQ′
[
Γg(Q

′′, Q′) + Γf (Q′)
])

.

(4.15)

At NDL accuracy we express the running coupling αS(Q′) in terms of the fixed
αS(Q) coupling at the hard scale Q using the one-loop formula

αS(Q′) =
αS(Q)

1− b0αS(Q) log Q
Q′

, (4.16)

with b0 = β0/(2π). The two-loop or higher order running of αS would make
difference only in subleading terms beyond NDL.

To include scale variation in the resummed prediction we generalize the one-
loop formula expressing the running coupling in terms of fixed αS(µ), but with an
arbitrary chosen µ ∼ Q renormalization scale

αS(Q′) =
αS(µ)

1− b0αS(µ) log µ
Q′

=
αS(µ)

1− b0αS(µ)(log Q
Q′ + log ξR)

. (4.17)

The three-jet rate does not exponentiate, like the two-jet rate or event shapes do,
only in the pseudo-Abelian limit with Γg ,Γf → 0

R3 = 2[∆q(Q)]2
∫ Q

Q0

dqΓq(Q, q) +
(

Γg and Γf terms
)
. (4.18)

The formula (4.13) resums αnSL
2n and αnSL

2n−1 type logarithmic terms at all
orders, where L = log 1/ycut. It does not classify as NLL accurate in the general
definition [49], because it cannot be fully written in the form of Eq. (2.39), namely

RNLL
3 (ycut) = exp(−Lg1(αSL)− g2(αSL))F3,NLL(L) , (4.19)

since the function F3,NLL(L) is not known yet completely for the three-jet rate.
To perform integrations in the Sudakov-factors and in expression of RNDL

3 , it
is useful to do an integral transformation with introduction of the following new
variables

λ′ = log
Q′

Q0
, λ = log

Q

Q0
, λR = log ξR . (4.20)
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with λ = L/2. Using these new variables the decay rates (4.14) become

Γq(λ
′′, λ′) =

2CF

π
αS(λ′)

[
(λ′′ − λ′)− 3

4

]
,

Γg(λ
′′, λ′) =

2CA

π
αS(λ′)

[
(λ′′ − λ′)− 11

12

]
,

Γf (λ′) =
nf

3π
αS(λ′) .

(4.21)

The Sudakovs (4.15) can be written in the form of

∆q(λ
′′) = exp

(
−
∫ λ′′

0

dλ′Γq(λ
′′, λ′)

)
,

∆g(λ
′′) = exp

(
−
∫ λ′′

0

dλ′
[
Γg(λ

′′, λ′) + Γf (λ′)
])
,

(4.22)

while the one-loop running reads as

αS(λ′) =
αS(µ)

1− b0αS(µ)(λ− λ′ + λR)
. (4.23)

The integrations in the Sudakov-factors can be performed analytically and the
result has the following functional form

∆q(λ
′′) = exp

{
CF

2αSb20π

[
4αSb0λ

′′ +
[
4− αSb0

(
3 + 4(λ− λ′′ + λR)

)]

×
[

log
(
1− αSb0(λ+ λR)

)
− log

(
1− αSb0(λ− λ′′ + λR)

)]]}
,

∆g(λ
′′) = exp

{
1

6αSb20π

[
12αSCAb0λ

′′ +
[
12CA − αSCAb0

(
11 + 12(λ− λ′′ + λR)

)

+ 2αSnfb0

][
log
(
1− αSb0(λ+ λR)

)
− log

(
1− αSb0(λ− λ′′ + λR)

)]]}
.

(4.24)

where we used the shortnotation αS ≡ αS(µ).
The resummed expression of the three-jet rate

RNDL
3 (ycut) = 2[∆q(λ)]2

∫ λ

0

dλ′Γq(λ, λ
′)∆g(λ

′) (4.25)

cannot be integrated analytically in its full form, one has to use numerical methods
to calculate the integral for each different ycut value.
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In Ref. [82] it was shown that an approximate analytic solution can be found
for Eq. (4.25) using the following ansatz

RNDL,A
3 = R0

3 + β0R
′
3 , (4.26)

where

R0
3 = RNDL

3 |β0=0 , R′3 =
∂RNDL

3

∂β0

∣∣∣
β0=0

, (4.27)

and nf is expressed as nf = (11CA − 3β0)/2 in RNDL
3 . Higher order terms in β0

give contributes only beyond NDL accuracy, therefore they can be neglected. The
final solution at µ = Q scale is

RNDL
3 (ycut) = −CFαSL

2π
exp

(
CFαSL

2

2π

){
1

2

√
4π2

CAαSL2
erf

(√
CAαSL2

4π

)

×
[
3− 2L+

β0αSL
2

2π

(
CFαSL

2

3π
− 1

2

)
− 3

CFαSL
2

π
+

β0

2CA

]

+
1

CA

(
exp

(
− CAαSL

2

4π

)
− 1

)

×
[
CFβ0αSL

2

3π
− β0

6
− 4π

αSL
− 6CF

]
− β0

2CA

}
.

(4.28)

The resulting formula resums all double and next-to-double logarithmic terms, but
contains none of further subleading terms. We repeated the calculation and found
complete agreement with Eq. (4.28).

The work of Nagy et al. in Ref. [83] included the cusp-anomalous dimension
(K-term) in the decay rates, which accounts some part of subleading logarithms
beyond NDL accuracy originating from soft emissions

Γq(Q
′′, Q′) =

2CF

π

αS(Q′)

Q′

[(
1 +

K

2π
αS(Q′)

)
log

Q′′

Q′
− 3

4

]
,

Γg(Q
′′, Q′) =

2CA

π

αS(Q′)

Q′

[(
1 +

K

2π
αS(Q′)

)
log

Q′′

Q′
− 11

12

]
,

Γf (Q′) =
nf

3π

αS(Q′)

Q′
,

(4.29)

where the K-term in the MS scheme reads as

K =

(
67

18
− π2

6

)
CA −

10

18
nf . (4.30)
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Switching to integration variables defined in Eq. (4.20) yields

Γq(λ
′′, λ′) =

2CF

π
αS(λ′)

[(
1 +

K

2π
αS(λ′)

)
(λ′′ − λ′)− 3

4

]
,

Γg(λ
′′, λ′) =

2CA

π
αS(λ′)

[(
1 +

K

2π
αS(λ′)

)
(λ′′ − λ′)− 11

12

]
,

Γf (λ′) =
nf

3π
αS(λ′) .

(4.31)

The Sudakov-factors can be calculated analytically performing the integration

∆q(λ
′′) = exp

{
CF

2αSb20π

[
4αSb0λ

′′ +
[
4− αSb0

(
3 + 4(λ− λ′′ + λR)

)
− 2αSK

π

]

×
[

log
(
1− αSb0(λ+ λR)

)
− log

(
1− αSb0(λ− λ′′ + λR)

)]

− 2αSK

π

αSb0λ
′′

1− αSb0(λ+ λR)

]}
,

∆g(λ
′′) = exp

{
1

6αSb20π

[
12αSCAb0λ

′′ +
[
12CA − αSCAb0

(
11 + 12(λ− λ′′ + λR)

)

+ 2αSnfb0 −
6αSCAK

π

][
log
(
1− αSb0(λ+ λR)

)

− log
(
1− αSb0(λ− λ′′ + λR)

)]
− 6αSCAK

π

αSb0λ
′′

1− αSb0(λ+ λR)

]}
.

(4.32)

In the K → 0 limit Eq. (4.32) reduces to Eq. (4.15) as expected. The resummed
three-jet rate can be computed using Eq. (4.25) with the modified decay rates and
Sudakov-factors and evaluating the λ′ integration numerically.

Let us note although all three resummations described in this section are for-
mally equal at NDL accuracy, in fact they give different numerical results. In order
to distinguish them in the following, we named them NDL, NDL,A and NDL+K
respectively.

4.4 Matching

The most precise theoretical prediction for the three-jet rate is given by the match-
ing of the fixed-order and the resummed calculations. As we discussed in Sect. 2.4
jet rates can be matched using the R-matching scheme [50]. We recall that logR-
matching might be feasible as well, but since it is not worked out completely, we
do not include any predictions obtained in that scheme.
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The R-matching, up to NNLO fixed-order accuracy, is performed according to
the following formula

RNNLO+NDL
3 = RNDL

3 +
αS(µ)

2π
(A3 −ANDL

3 ) +

(
αS(µ)

2π

)2

(B3 −BNDL
3 )

+

(
αS(µ)

2π

)3

(C3 − CNDL
3 ) ,

(4.33)

where ANDL
3 , BNDL

3 and CNDL
3 are the coefficients of the αS expansion of the

resummed formula up to O(α3
S).

Applying the CoLoRFulNNLOmethod we calculated the three-jet rate at NNLO
accuracy with the k⊥ algorithm using the MCCSM program, what we already showed
in Fig. 4.1. We performed the matching of the fixed-order calculation at NLO and
NNLO accuracy and various resummed predictions.

In Fig. 4.2 we show our fixed-order and matched results compared to ex-
perimental data measured by the OPAL experiment [103]. The plots in Fig. 4.2
show significant difference between the three matched predictions, both using NLO
and NNLO fixed-order respectively. On the other hand including the NNLO cor-
rection narrows these differences, even between the fixed-order and the matched
results. As we mentioned before all three resummed predictions are NDL accu-
rate, they differ only in incomplete subleading contributions. However Fig. 4.2
clearly indicates that these subleading terms can still have an important effect
in the ycut ∈ [10−4, 10−2] region in matched predictions. This is also supported
by the observation that the subleading terms in BNDL

3 and CNDL
3 have the same

numerical order compared to NDL accurate terms. As the NDL,A resummation
lacks any of these subleading terms, it loses its predictive power when matched
with fixed-order calculation.

Ref. [83] showed that including theK-term into the resummation matched with
NLO calculation improves the theoretical prediction compared to data. A similar
plot can be seen in Fig. 4.2. In contrast, at NNLO+NDL+K accuracy the K term
has the opposite effect: it deviates more from the experimental data compared
to the NNLO+NDL prediction. This shows a counterintuitive behavior of the
FO+NDL+K matched results: when the accuracy of the fixed-order prediction is
increased, the matched prediction becomes worse.

Our study indicates that the improvement of the NLO+NDL+K prediction is
not a real physical effect, but a fortunate numerical artifact of the matching. It
can be seen from the comparison of the αS series coefficients of the fixed-order and
resummed computations in Fig. 4.3. The deviation between NDL and NDL+K
accuracy starts only at O(α2

S), therefore we only show the B3 and C3 coefficients.
The fixed-order computation contains all logarithmic terms and power corrections
at a given αS order, while the expanded resummation includes only αnSL

n, αnSL
n−1
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type logarithms, and some incomplete sublogarithmic terms. Therefore the fixed-
order computation serves as a reference for the resummed calculations.

As shown in Fig. 4.3 the B3 coefficient of the NDL+K prediction has worse
convergence compared to the NDL prediction. However this extra deviation has
a favorable numerical effect when the matching is performed: BFO

3 − BNDL+K
3

gives larger negative correction to RNDL
3 . The CNDL+K

3 coefficient in Fig. 4.3
shows similar properties, but in this case the overall correction to RNDL

3 has an
unfortunate larger value. Figs. 4.2 and 4.3 hint that the FO+NDL+K matching
has an alternating behavior depending on the perturbative order of the fixed-order
calculation. Sometimes it leads to nice looking matched curves, although the origin
of the improvement is not physical but an accidental numerical artifact.

While the FO+NDL+K results have a strange behavior when the perturbative
order is increased, the FO+NDL behaves consistently and becomes closer to data
and overlaps with the NNLO prediction as seen in Fig. 4.2. To make it more
enhanced in Fig. 4.4 we plotted the FO+NDL type predictions matched with the
NLO and NNLO fixed-order calculations. As we increase the perturbative order,
the matched prediction behaves as it expected and gives a better approximation
of the data. The left tail of the distribution shows still sizeable differences, which
could be decreased including higher order perturbative effects, and more likely us-
ing NLL, or NNDL accurate resummation (which are unfortunately not available
yet). Non-perturbative hadron corrections are also known to give important con-
tributions for the k⊥-algorithm, especially in the small ycut region [104]. We also
mention that in the asymptotic ycut region the matched predictions still behave
unphysical, they are divergent due to the mismatch of subleading logarithms be-
yond NDL accuracy. As discussed in Sect. 2.4 using the logR-matching scheme
would help, but it is not yet worked out for jet rates. Thus presently the most
precise theoretical prediction in perturbation theory is provided by NNLO+NDL
matching as shown in Fig 4.4.
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Figure 4.2. NLO and NNLO fixed-order results matched with NDL, NDL+K and
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data at
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Q2 = mZ center-of-mass energy. The bands indicate renormalization

scale dependence varying ξR between 0.5 and 2.
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Chapter 5

The three jet rate using the
anti-k⊥ algorithm

In proton-proton collisions the used jet algorithms nowadays are various type of
general inclusive k⊥ algorithms [105], the most popular choice is the anti-k⊥ [10],
because the clustered jets have cone-like shape, that is favored by experimentalists.
Although the algorithm was originally developed for hadron colliders it has been
adapted to e+e− collisions as well. In the literature we can find two different
versions of general inclusive k⊥ algorithms for e+e− colliders: one is defined in
the FastJet manual [105] while the other has been introduced by Stefan Weinzierl
[81].

5.1 The general inclusive k⊥ algorithm

5.1.1 Type-I definition
The FastJet adaptation of the general inclusive k⊥ algorithm in e+e− annihilation
uses the following measures [105]

dij =
min(E2p

i , E
2p
j )(1− cos θij)

1− cosR
,

diB = E2p
i ,

(5.1)

and we define ycut ≡ 1 − cosR. The dij measure is the two particle measure
playing a similar role to yij in the k⊥ algorithm, while diB is the so-called beam-
jet measure which is required in hadron-hadron collisions. Choosing p = 1, 0,−1
we get the k⊥ [8], Cambridge/Aachen [9] and anti-k⊥ [10] algorithms.

45
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The iterative clustering steps are the following:

1. Calculate diB for every particle i and dij for every particle pair i, j, and find
their minimal ones. If there are no more particles in the clustering list, go
to Step 4.

2. If dkl is the smallest measure, combine particle k, l according to the chosen
recombination scheme, (for example Eq. (4.2))then go to Step 1.

3. If dkB is the smallest measure, particle k is considered as a jet candidate,
remove it from the clustering list, then go to Step 1.

4. Apply energy cut(s), every jet candidate with Ei > Ecut is considered as a
resolved jet.

For p = 1, 0 we get the original jet algorithm with an extra energy cut on jets, but
this energy cut is crucial for p < 0 choices to make the algorithm infrared safe.

In case of the exclusive k⊥ algorithm we could define transition values, and
the number of jets was also monotonic in ycut, which simplified the numerical
calculations. Unfortunately we cannot use the same technique here, because, as
shown in Fig. 5.1, the number of jets is not always monotonic in ycut due to the
presence of Ecut. However transition values can be still defined.

We call yt ≡ ycut a transition value when the clustered particle configuration
changes. It does not necessary imply change in the number of jets, like in the k⊥
algorithm, since the final number of jets also depends on the chosen value of Ecut.
Using this definition is convenient in practice, since the transition values have to
be calculated only once, then we can apply as many different energy cuts as we
want without redoing the clusterization steps again. Nevertheless calculating the
values of yt is not straightforward. For the k⊥ algorithm the sequence of clustering
is independent of ycut, relevant information can be fully retrieved for any ycut value
from one complete clusterization. In contrast, the clusterization sequence of the
general inclusive k⊥ algorithm depends on the actual choice of ycut, because of the
two different distance measures. The same happens for the Cambridge algorithm.
Bentvelsen et al. developed an algorithm [106] which provides transition values for
the Cambridge algorithm. We realized that the same algorithm can be applied to
general inclusive k⊥ algorithms as well. The philosophy of the original algorithm
is the following [106]:

“While performing the clustering at a particular value of ycut, denoted
by yini, we keep track of the maximum value of yij , between any two
objects i and j encountered in this process, with yij being always
smaller than yini. By construction this maximum value, which we de-
note by ymax, is smaller than yini. We now note that for any value of
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Figure 5.1. The number of jets as a function of ycut with a fixed Ecut energy
cut clustering the same randomly generated 8-partonic momentum configuration
with the inclusive k⊥ (p = 1), Cambridge/Aachen (p = 0) and anti-k⊥ (p = −1)
algorithms.

ycut ∈ [ymax, yini), the Cambridge algorithm will follow the same clus-
tering sequence. Only when the cluster algorithm is performed with
a value ycut smaller than ymax, the condition yij ≥ ycut is satisfied at
least once more and the subsequent clustering sequence may change
completely. The value ymax is therefore one of the ycut transition val-
ues. Note that the clustering may also change completely for values of
ycut larger than yini.”

While the Cambridge algorithm has two different measures, only the yij is used to
decide what to do: cluster two particles, or remove the particle from the clustering
list, which has smaller energy. In the general inclusive k⊥ both measures are used
in this decision process, however they can be combined into one in the following
way

yijk ≡ ycut
mini,jdij
minkdkB

=
mini,j [min(E2p

i , E
2p
j )(1− cos θij)]

minkE
2p
k

(5.2)
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Using this measure we can reformulate the 2nd an the 3rd clusterization steps of
the general inclusive k⊥ algorithm as

2. If yijk < ycut, combine particle i, j according to a chosen recombination
scheme, then go to Step 1.

3. If yijk > ycut, particle k is considered as a jet candidate, remove it from the
clustering list, then go to Step 1.

which are equivalent to the original statements.
Now we can apply the algorithm described in Ref. [106] to find transition values

for the general inclusive k⊥ algorithm in the following way

1. Set a value for yini (practically the last bin of the histogram) and set ycut =
yini.

2. If ycut is less than some preset lower limit (first bin of the histogram), stop
the algorithm.

3. Perform the clustering with ycut, and during the process find the maximum
value of yijk.

4. Store the transition value yt = ymaxijk and apply energy cuts to get the corre-
sponding number of jets.

5. Set ycut = ymaxijk and go to Step 2.

The clusterization between two transition values is completely determined, choos-
ing two different ycut in this set will lead to the same jet configuration. It is also
worth to mention that the same algorithm can be used in hadron-hadron colliders
as well, with the hadron collider definition of dij in Eq. (5.2). The computing
cost of the algorithm scales with the number of transitional values which depends
on the number of partons. In Fig. 5.2 we compare the number of jets performing
the clusterization bin by bin and using the transition values technique. The two
different approaches give the same result, however the latter requires much less
computational time.

5.1.2 Type-II definition
An alternative adaptation of the general inclusive k⊥ algorithm for e+e− was
introduced by S. Weinzierl in his publication about jet rates [81]. In this version
the beam jet measure is dropped and we only have the two particle measure defined
as

yij =
1

2

(
Q2

4

)−p
min(E2p

i , E
2p
j )(1− cos θij) . (5.3)
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Figure 5.2. The number of jets as a function of ycut calculated with preset values
of ycut (dots) and with the transition values technique.

The clusterization follows the steps of the k⊥ algorithm described in Sect. 4.1,
with an extra 4th step:

4. Apply energy cuts, jet candidates with Ei > Ecut are called jets.

This type of general inclusive k⊥ is also non-monotonic in ycut due to the
energy cut. By now we couldn’t define transition variables in general which could
be found algorithmically for the following reasons. For p ≥ 0 transition values can
be defined in the same fashion, as for the k⊥ algorithm, but the final number of
jets also depend on the value of Ecut. When we choose p < 0, the anti-k⊥-like
algorithm, the minimal values of yij do not decrease monotonically as we resolve
more and more particles. For example it can happen that y34 > y23 as illustrated
in Table 5.1.2, which indicates that the clusterization of 3 pseudojets into 2 would
happen earlier without actually clustering 4 pseudojets into 3. This behavior is
completely independent of the energy cut and one can always find such a value
that every jet candidates fulfills Ei > Ecut. Nevertheless choosing ycut ∼ y23

and running the algorithm, the clusterization would stop at 3 jets because the
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requirement to cluster one more particle is not satisfied. Due to this property
the transition value cannot be defined based on yij and there is no other natural
candidate. The same algorithm to find transition values for the type-I version of
the general inclusive k⊥ algorithm cannot be used here because it runs in infinite
loops.

y78 0.365392
y67 0.763364
y56 0.764509
y45 0.850916
y34 0.622647
y23 0.434523

Table 5.1. Values of yij of a generated 8 partonic event clustered with the type-II
anti-k⊥.

5.2 Perturbative expansion
Using the general inclusive k⊥ algorithm (either the type-I or II definition) the
three-jet rate can be computed in perturbation theory up to NNLO accuracy in
the same way as we described in Sect. 4.2, but there is an extra dependence on
Ecut. The first calculation at such an accuracy was published in Ref. [81] for
the type-II general inclusive k⊥ with p = 1, 0,−1. With the MCCSM numerical
code we computed the three-jet rate in e+e− collision using both type-I and II
anti-k⊥ algorithm with the E-recombination scheme (see Eq. (4.2)). We used two
different energy cuts, Ecut = 0.077

√
Q2 and Ecut = 0.0385

√
Q2 with

√
Q2 =

mZ , motivated by experimental considerations. We recall that all perturbative
predictions were calculated requiring sij/Q2 > 10−8 minimal scaled invariant mass,
to make the contributions finite.

In Figs. 5.3 and 5.4 we show our fixed-order predictions at
√
Q2 = 91.2 GeV

center-of-mass energy. A general trend can be observed in both cases. If we lower
the value of the energy cut, we get less events in the smaller ycut regions. In this
region events with more than three resolved protojets can still give contribution
to the three-jet rate if the energy cut is sufficiently large and softer protojets do
not survive. However if we choose a smaller value for Ecut, these softer protojets
will be resolved and contribute to jet rates with higher multiplicities.

In Fig. 5.3 in the upper plot we compare our calculation with results taken
from Ref. [81]. The two calculations have a clear difference at NNLO accuracy,
however the next-to-leading order accurate predictions agree perfectly as shown in
Fig 5.5. Thus the difference is due to the NNLO correction, in fact a bug was found
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in the calculation of [81] for anti-k⊥ during the writing of this thesis, which affects
the double-real contribution. Since the updated results are not yet available, we
can only show the published results, however a new comparision would be required
in the future with the updated prediction.
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Figure 5.3. LO, NLO and NNLO fixed-order results using the type-I anti-k⊥ algo-
rithm, with two different energy cuts.
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Figure 5.4. LO, NLO and NNLO fixed-order results using the type-II anti-k⊥
algorithm, with two different energy cuts, compared with a previous calculation
at next-to-next-to-leading order [81] (SW).
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5.3 Resummation of next-to-double logarithms

For the general inclusive k⊥ algorithms it is possible to resum double and next-
to-double logarithms to all orders applying the coherent branching formalism [59].
It can be shown from Ref. [59] substituting Eqs. (5.7), (5.8) and (5.9) into Eq.
(5.10) and then into (5.11), then taking derivatives with respect to u according to
Eq. (4.2), that the resummation of the three-jet rate at NDL accuracy, analog to
k⊥ case, is given by

RNDL
3 = 2[∆q(κ, λ)]2

∫ κ

0

dκ′
∫ λ

0

dλ′Γq(κ
′, λ′, κ)∆g(κ

′, λ′) , (5.4)

where we use the logarithmic variables introduced in the original paper with1

κ = log
Q

Ecut
, λ = log

1

ycut
. (5.5)

As mentioned in [59], resummation at NDL accuracy is independent of the jet
distance measure, therefore it can be used for any kind of general inclusive k⊥
algorithm.

The decay rates appearing in Eq. (5.4) at NDL accuracy are

Γq(κ
′, λ′, κ′′) =

CF

π
αS(κ′, λ′)

(
1− 3

4
eκ
′−κ′′

)
,

Γg(κ
′, λ′, κ′′) =

CA

π
αS(κ′, λ′)

(
1− 11

12
eκ
′−κ′′

)
,

Γf (κ′, κ′′) =
nf

6π
αS(κ′, λ′)eκ

′−κ′′ .

(5.6)

We note that in the decay rates defined above we kept more terms compared to
the definition in Ref. [59], because we are interested not only in the expansion of
the resummed formula but in its fully resummed form.

For αS(κ′, λ′) we use the one-loop formula of Eq. (4.16) but expressed in terms
of the κ, λ variables and we include scale variation in the same way as in Eq.
(4.17)

αS(κ′, λ′) =
αS(µ)

1− b0
2 αS(µ)[2(κ− κ′ + log ξR) + λ− λ′]

, (5.7)

where ξR = µ/Q.

1The original notation uses ξR for the angular cut, which is already reserved for scale variation
in this work. Using ycut instead also keeps the notation more unified.
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The Sudakov-factors are defined as

∆q(κ
′′, λ′′) = exp

(
−
∫ κ′′

0

dκ′
∫ λ′′

0

dλ′Γq(κ
′, λ′, κ′′)

)
,

∆g(κ
′′, λ′′) = exp

(
−
∫ κ′′

0

dκ′
∫ λ′′

0

dλ′
[
Γg(κ

′, λ′, κ′′) + Γf (κ′, κ′′)
])

,

(5.8)

which can be calculated analytically. The double integral appearing in the re-
summed formula of Eq. (5.4) similarly to Eq. (4.13) can be evaluated for a given
κ and λ only numerically.

5.4 Solving R3 analytically

In the previous chapter we saw that subleading logarithms, even if they are in-
complete, have important effects when we match resummation with fixed-order
calculation. We came to this conclusion comparing different versions of resumma-
tion in matching, where the difference was the lack or the presence of subleading
terms beyond NDL accuracy. We can ask the same question for the general in-
clusive k⊥ resummation. In order to answer it we would need some approximate
analytic formula, similarly to Eq. (4.28), which resums only NDL logarithms but
none of the subleading terms. Such a formula was not published before, but it can
be computed using the same ansatz as Eq. (4.26), since it is not specific for the
k⊥ algorithm.

As we are looking for a formula specifically which has no subleading logarithms
in its αS expansion, it is sufficient to use the original definitions of the decay rates,
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the Sudakov-factors and the αS running published in Ref. [59].2 Explicitly

αS(κ′, λ′) =
αS

π
+ b′0

(
αS

π

)2

[2(κ− κ′) + λ− λ′] ,

Γq(κ
′, λ′, κ′′) = CF

(
αS(κ′, λ′)− 3

4

αS

π
eκ
′−κ′′

)
,

∆q(κ
′′, λ′′) = exp

[
− αSCFλ

′′

π

(
κ′′ − 3

4

)
− 1

2

α2
SCFb

′
0κ
′′λ′′

π2

× (4κ− 2κ′′ + 2λ− λ′′)
]
,

∆g(κ
′′, λ′′) = exp

[
− αSλ

′′

π
(CAκ

′′ − b′0)− 1

2

α2
SCAb

′
0κ
′′λ′′

π2

× (4κ− 2κ′′ + 2λ− λ′′)
]
,

(5.9)

where we use b′0 = (11CA−2nf)/12 from Ref. [59]. After substituting the formulae
(5.9) into Eq. (5.4) and expressing nf = (11CA − 12b′0)/2, we look for a solution
in the form of

RNDL,A
3 = R0

3 + b′0R
′
3 . (5.10)

In the followings we calculate the analytic formula for RNDL,A
3 .

5.4.1 The b′0 independent term
Let us start with the b′0 independent term that is a sum of two contributions

R0
3 = RNDL

3 |b′0=0 =

∫ κ

0

dκ′
∫ λ

0

dλ′(dA1 + dA2) . (5.11)

The integrals can be performed analytically, and the resulting expressions for µ =
Q are

A1 =
2CF

CA
exp

(
αSCF(3− 4κ)λ

2π

)[
γE + Γ

(
0,
αSCAκλ

π

)
+ log

(
αSCAκλ

π

)]
,

A2 =
3CF

2CA
exp

(
− κ+

αSCF(3− 4κ)λ

2π

)[
Γ(0,−κ)− Γ

(
0, κ

(
αSCAλ

π
− 1

))

+ log

(
π

π − αSCAλ

)]
,

(5.12)
2Using our extended definitions would result in the same solution in the end, however inter-

mediate steps would be more complicated.
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where Γ(a, z) is the incomplete gamma function.
A1 and A2 still include subleading logarithms beyond NDL accuracy. In order

to get rid of these contributions we have to modify the original formulae. Since
both A1 and A2 involves complicated functions, it is not obvious how to manipulate
them and keep only NDL accurate terms. It turned out however that the key is
to find infinite series representations for the various pieces and manipulate those.
As a guiding principle we have to keep in mind that the product of two double
logarithmic terms is double logarithmic as well (at higher order of αS), while
multiplying a double logarithmic term with a next-to-double logarithmic produces
a next-to-double logarithm. Thus we only need to keep terms which are in the
form of DL × DL and DL × NDL, since NDL × NDL products contribute only
beyond NDL accuracy.

Let us start with A1. Using the series expansion of Γ(0, z) in z we can write

γE + Γ

(
0,
αSCAκλ

π

)
+ log

(
αSCAκλ

π

)
= −

∞∑

n=1

1

nn!

(−αSCAκλ

π

)n
, (5.13)

which is a DL type term. However the exponential function

exp

(
αSCF(3− 4κ)λ

2π

)
=

∞∑

n=0

1

n!

(
αSCF(3− 4κ)λ

2π

)n
(5.14)

includes both DL, NDL and subleading contributions. In order to isolate DL and
NDL terms we expand the function

exp((c1κ+ c2)λ) =

∞∑

n=0

(c1κ+ c2)nλn = 1 + (c1κ+ c2)λ+
1

2
(c1κ+ c2)2λ2

+
1

3!
(c1κ+ c2)3λ3 + · · ·+ 1

n!
(c1κ+ c2)nλn + . . . .

(5.15)

We use the relation (a+ b)n = an +nan−1b+ . . . in the expansion, always keeping
the first to two terms only

(5.15) = 1 + c1κλ+ c2λ

+
1

2
c21κ

2λ2 +
1

2
2c1c2κλ

2 + . . .

+
1

3!
c31κ

3λ3 +
1

3!
3c21c2κ

2λ3 + . . .

+
1

n!
cn1κ

nλn +
1

n!
ncn−1

1 c2κ
n−1λn + . . . .

(5.16)

Rearranging the result into two groups and factoring c2λ out from the second part
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we obtain

(5.16) = (1 + c1κλ+
1

2
c21κ

2λ2 + · · ·+ 1

n!
cn1κ

nλn + . . . )

+ c2λ(1 + c1κλ+
1

2
c21κ

2λ2 + · · ·+ 1

(n− 1)!
cn−1
1 κn−1λn−1 + . . . )

+ other subleading terms .

(5.17)

After relabeling m = n − 1 in the second part and resumming to all orders we
obtain the following formula

exp((c1κ+ c2)λ) =

∞∑

n=0

1

n!
(c1κλ)n + c2λ

∞∑

m=0

1

m!
(c1κλ)m

+ other subleading terms

= (1 + c2λ) exp(c1κλ) + other subleading terms ,

(5.18)

where we isolated the DL and NDL terms. Choosing the c1 and c2 coefficients as

c1 =
−2αSCF

π
, c2 =

3αSCF

2π
, (5.19)

we find the following substitution rule for the exponential function in A1

exp

(
αSCF(3− 4κ)λ

2π

)
→
(

1 +
3αSCF

2π

)
exp

(−2αSCFκλ

π

)
, (5.20)

which contains DL and NDL logarithms only. Using this we define

Ã1 ≡
2CF

CA

(
1+

3αSCF

2π

)
exp

(−2αSCFκλ

π

)[
γE+Γ

(
0,
αSCAκλ

π

)
+log

(
αSCAκλ

π

)]
,

(5.21)
that is free of subleading logarithms.

Now we turn to A2 and we derive a formula for Ã2. Our first observation is
that

exp

(
− κ+

αSCF(3− 4κ)λ

2π

)
log

(
π

π − αSCAλ

)

contributes only beyond NDL, therefore it can be dropped completely. We saw
previously that the exponential

exp

(
αSCF(3− 4κ)λ

2π

)
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gives DL, NDL and subleading terms as well. In order to know how to manipulate
it, first we need some information about the Γ functions. The αS expansion of
those terms gives

e−κ
[
Γ(0,−κ)− Γ

(
0, κ

(
αSCAλ

π
− 1

))]
= −αSCAλ

π
+
α2

SC
2
Aλ

2(κ− 1)

2π2

− α3
SC

3
Aλ

3(κ2 − 2κ− 2)

6π3
+
α4

SC
4
Aλ

4(κ3 − 3κ2 + 6κ− 6)

24π4
+ . . . ,

(5.22)

which can be actually written as an infinite sum in the form of

e−κ
[
Γ(0,−κ)−Γ

(
0, κ

(
αSCAλ

π
−1

))]
=

∞∑

n=1

1

n!

(
− αSCAλ

π

)n n−1∑

i=0

(−1)i
diκn−1

dκi
,

(5.23)
where d0κn−1/dκ0 = κn−1. From the series representation we can see that the
first term at any n is an NDL type logarithm followed by other subleading ones.
Therefore it is sufficient to keep only the first term from the second summation

(5.23) =

∞∑

n=1

1

n!

(
− αSCAλ

π

)n
κn−1 + · · · = 1

κ

∞∑

n=1

1

n!

(
− αSCAλκ

π

)n
+ . . .

=
1

κ

[
exp

(
− αSCAλκ

π

)
− 1

]
+ . . . .

(5.24)

Since the second part of A2 contributes as NDL, we only need DL terms from the
exponential part

exp

(
αSCF(3− 4κ)λ

2π

)
→ exp

(−2αSCFκλ

π

)
, (5.25)

thus we can define

Ã2 ≡
3CF

2CAκ
exp

(−2αSCFκλ

π

)[
exp

(
− αSCAλκ

π

)
− 1

]
. (5.26)

Finally the b′0 independent part is simply

R0
3 = Ã1 + Ã2 . (5.27)

5.4.2 The linear b′0 term
The linear term in b′0 is a sum of 16 different integrals

R′3 =
∂R3

∂b′0

∣∣∣
b′0=0

∫ κ

0

dκ′
∫ λ

0

dλ′
16∑

i=1

dBi , (5.28)
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that can be also computed analytically. 7 out of the 16 integrals contributes only
beyond NDL accuracy, therefore we can neglect them. The remaining 9 integrals
are the following:

B1 = −4α2
SC

2
Fκ

2λ

CAπ2
eA+C

[
γE + Γ(0,B) + logB

]
,

B3 =
λ

2κ
B1

B5 = −4αSCFκ

CAπ
eA+C

[
e−B − 1 + γE + Γ(0,B) + logB

]
,

B7 =
2CF

C2
Aπλ

eA−B+C(αSCAκλ+ 2π + (αSCAκλ− 2π)eB) ,

B9 =
λ

2κ
B5 ,

B11 =
λ

2κ
B7 ,

B13 = − π

αSCFκλ
B1 ,

B14 = − 4CF

C2
Aπλ

eA+C(αSCAκλ− π(1− e−B)) ,

B15 = − π

2αSCFκ2
B1 ,

(5.29)

where we introduced the shortnotation

A = −2αSCFκλ

π
, B =

αSCAκλ

π
, C =

3αSCFλ

2π
. (5.30)

These integrals still contain subleading logarithms, but fortunately there is a uni-
versal way to get rid of them setting C = 0 in the expressions. Applying this rule
we define

B̃i = Bi|C=0 , (5.31)

and the linear term in b′0 becomes

R′3 = B̃1 + B̃3 + B̃5 + B̃7 + B̃9 + B̃11 + B̃13 + B̃14 + B̃15 . (5.32)
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Summing up all the contributions and doing some algebraic manipulations, the
approximate solution for RNDL

3 has a simple analytic form

RNDL,A
3 (κ, λ) =

CF

6CAπ2
eA
[
12π2 + 18αSCFπλ− α2

SCFκλ(2κ+ λ)(11CA − 2nf)
]

×
[
γE + Γ(0,B) + logB

]
− CF

12C2
Aπ

eA−B
[

4π(10CA − nf)

κ

(
eB − 1

)

− αSCA(11CA − 2nf)
(

2κ
(
eB − 1

)
+ λ
(
3eB − 1

))]
.

(5.33)

The fixed-order expansions in αS up to O(α3
S) gives back exactly the same loga-

rithmic coefficients that were published in Ref [59].
In order to compare the approximate formula with the original, we computed

the resummed three-jet rate as a function of ycut with a fix energy cut Ecut =
0.0385

√
Q2 at µ =

√
Q2 performing the integral in Eq. (5.4) numerically and

evaluating the approximate solution (5.33). The results are plotted on Fig. 5.6.
The plot shows clearly the effect of the missing subleading logarithms, which will
be much more enhanced in matched predictions (see Figs. 5.7, 5.8, 5.9 and 5.10).
At ycut ∼ 10−3 the difference reaches a factor of 2. Although it is not clearly
visible in Fig. 5.6, the NDL,A solution also approaches 0 in the small ycut limit.
This can be checked explicitly taking the λ→∞ limit of Eq. (5.33).

5.5 Matching

We performed the matching of the NDL and NDL,A accurate resummed results
with fixed-order predictions using the R-matching formula (4.33). We calculated
the resummed three-jet rate at

√
Q2 = 91.2 GeV center-of-mass energy evaluating

Eqs. 5.4 and 5.33 respectively. We used two different energy cuts previously
introduced for fixed-order calculations Ecut = 0.077

√
Q2, and Ecut = 0.0385

√
Q2,

and we chose 56 different ycut values in the (10−3, 1) region. For the matching
we used our fixed-order predictions shown in Figs. (5.3) and (5.4), with the two
different type of anti-k⊥ algorithm.

The matched predictions are shown in Figs. 5.7, 5.8, 5.9 and 5.10. Unfortu-
nately for the anti-k⊥ three-jet rate there are no data published yet, we do not
have any reference distribution. Similarly to the k⊥ case, the matched result cal-
culated with the NDL,A approximate resummation starts to diverge, and behave
unphysical at quite large values of ycut. As discussed before this is the consequence
of missing subleading logarithms and the R-matching scheme, which is known to
be sensitive to these subleading terms.
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Figure 5.6. Comparision of the full resummed three-jet rate calculated numerically
and the analytic approximate solution as function of ycut using a fixed energy cut.

In Fig. 5.7 there is clear gap between the fixed-order and the resummed
prediction, however in Fig. 5.9 on the upper panel the two coincide for the
Ecut = 0.077

√
Q2 energy cut. This suggested that fixed-order predictions cal-

culated with the type-II anti-k⊥ algorithm might be closer to the resummed pre-
diction in general, which was the main reason to calculate the three-jet rate using
this algorithm. Note that the resummed prediction is independent of the jet dis-
tance measure at NDL accuracy. In the end our expectation turned out to be not
true as visible in the lower panel of Fig. 5.9 and in both panels of Fig. 5.10, it
was just rather a random coincidence.

Finally we note that the R-matched predictions still suffer from the mismatch
of subleading terms, which could be fixed by using resummation at higher accuracy
or possibly using the logR-matching scheme. The NNLO predictions in 5.10 are
still noisy in the smaller ycut regions, the NNLO correction would require further
statistics.
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Figure 5.7. Matching of fixed-order NLO and resummed NDL and NDL,A predic-
tions using the type I. anti-k⊥ algorithm with two different energy cuts.
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Figure 5.8. Matching of fixed-order NNLO and resummed NDL and NDL,A pre-
dictions using the type I. anti-k⊥ algorithm with two different energy cuts.
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Figure 5.9. Matching of fixed-order NLO and resummed NDL and NDL,A predic-
tions using the type II. anti-k⊥ algorithm with two different energy cuts.
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Figure 5.10. Matching of fixed-order NNLO and resummed NDL and NDL,A pre-
dictions using the type II. anti-k⊥ algorithm with two different energy cuts.
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Chapter 6

Towards hadron collisions

As we mentioned the CoLoRFulNNLOscheme is worked out for processes involv-
ing colorful particles in the final state only. Recently the largest particle collider
is the LHC, hence the hot topics of contemporary particle phenomenology are
related to hadron collisions. Thus the natural step forward is to extend the CoL-
oRFulNNLOscheme onto the class of hadron-initiated processes. This work has
been started already but not finished yet. In this chapter we present our interme-
diate results related to the regularization of the real-virtual contribution, namely
the definition of the single-unresolved one-loop subtraction term.

6.1 NNLO cross section in hadron collisions
In hadron collisions the colliding particles are composite, however when hadron
A and B collide, the elementary collision process is due to hard scattering of
parton a and b originating from the hadrons. The latter can be calculated in
QCD, using the same methods we described earlier. The initial hadrons to the
hard scattering partons are related via the parton distribution functions (PDF)
fa/A(x, µ2

F ). The quantity fa/A,µ2
F

(x) gives the probability of parton a obtaining
momentum fraction x from the hadron A. In 2 → m hadron scattering the total
jet cross section (denoted by σ̃ here) is given by the convolution of the PDFs and
the partonic cross section

σ̃m(pA, pB , µ
2
F , µ

2
R) =

∑

a,b

∫ 1

0

dηadηbfa/A(ηa, µ
2
F )fb/B(ηb, µ

2
F )σa,b;m(pa, pb, µ

2
F , µ

2
R) ,

(6.1)
where we sum over all possible constituents of the colliding hadrons. A new scale
µF is introduced which separates the hadron level and the parton level physics,
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or in other words the scale where the non-perturbative effects factorize from the
perturbative region, hence it is called the factorization scale. This scale, similarly
to the renormalization scale µR is also unphysical, therefore cross sections must
be independent of µF up to the given perturbative order.

The partonic cross section can be computed in perturbation theory as in Eq.
(2.9), but σNLO

m and σNNLO
m defined as

σNLO
m =

∫

m+1

dσR
m+1Jm+1 +

∫

m

dσV
mJm +

∫
dσC,V

m Jm , (6.2)

σNNLO
m =

∫

m+2

dσRR
m+2Jm+2+

∫

m+1

(
dσRV

m+1+dσC,RV
m+1

)
Jm+1+

∫

m

(
dσVV

m +dσC,VV
m

)
Jm ,

(6.3)
where the σC terms are the collinear counterterms which cancel the remaining
collinear singularities coming from the mismatch of the real type and the loop type
contributions. At NNLO accuracy the collinear counterterm also has singularities
in the infrared limits, namely dσC,RV

m+1 is divergent in the single-unresolved limits.
Therefore the subtraction terms for the real-virtual contribution are

dσNNLO
m+1 =

{[
dσRV

m+1 + dσC,RV
m+1 +

∫

1

dσRR,A1

m+2

]
J

(m)
m+1

−
[
dσRV,A1

m+1 +
(

dσC,RV
m+1

)A1

+
(∫

1

dσRR,A1

m+2

)A1
]
J (m)
m

]}

d=4

,

(6.4)

and integral of
(

dσC,RV
m+1

)A1

is added back in the double-virtual line

dσNNLO
m =

{
dσVV

m + dσC,VV
m +

∫

2

[
dσRR,A2

m+2 − dσRR,A12

m+2

]

+

∫

1

[
dσRV,A1

m+1 +
(

dσC,RV
m+1

)A1

+
(∫

1

dσRR,A1

m+2

)A1

]}

d=4

J (m)
m .

(6.5)

In the following we will define the subtraction term dσRV,A1

m+1 including initial state
counterterms based on the infrared factorization properties of QCD matrix ele-
ments. Thus first we start with reviewing the infrared behavior of the one-loop
squared matrix element.
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6.2 The single unresolved limits of one-loop matrix
element

6.2.1 The final-final collinear limit

First we consider the limit when two final state particles i and r become collinear.
In this limit we can express the corresponding momenta with the usual Sudakov
parametrization using an auxiliary light-like vector nµ (n2 = 0)

pµi = zip
µ
ir − kµ⊥ −

k2
⊥
zi

nµ

2pirn
, pµr = zrp

µ
ir + kµ⊥ −

k2
⊥
zr

nµ

2pirn
, (6.6)

where pµir is a light-like momentum which points into the collinear direction, k⊥
is the transverse momentum component orthogonal both to pµir and nµ. zi and zr
are the momentum fractions related to particle i and r and their sum is 1 required
by momentum conservation. The collinear limit is defined by rescaling k⊥ → λk⊥
and taking the λ→ 0 limit, when the one-loop squared matrix element factorizes
in the following way [107]:

2Re〈M(0)
m+1(pi, pr, . . . )|M(1)

m+1(pi, pr, . . . )〉 '

8παSµ
2ε 1

sir
2Re

[
〈M(0)

m (pir, . . . )|P̂ (0)
fifr
|M(1)

m (pir, . . . )〉

+ 8παScΓ

( µ2

−sir

)ε
〈M(0)

m (pir, . . . )|P̂ (1)
fifr
|M(0)

m (pir, . . . )〉
]
,

(6.7)

where we only keep the leading 1/λ2 singular terms, and

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− ε) . (6.8)

Based on Eq. (6.7) we define the symbolic Cir operator which takes the the
collinear limit of the one-loop squared matrix element and keeps the leading sin-
gular terms

Cir2Re〈M(0)
m+1(pi, pr, . . . )|M(1)

m+1(pi, pr, . . . )〉 =

8παSµ
2ε 1

sir
2Re

[
〈M(0)

m (pir, . . . )|P̂ (0)
fifr
|M(1)

m (pir, . . . )〉

+ 8παScΓ

( µ2

−sir

)ε
〈M(0)

m (pir, . . . )|P̂ (1)
fifr
|M(0)

m (pir, . . . )〉
]
.

(6.9)
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The P̂
(0)
fifr

and P̂
(1)
fifr

functions in Eqs. (6.7) and (6.9) are the final state d-
dimensional tree-level and one-loop Altarelli-Parisi splitting kernels. In our no-
tation we label the splitting kernels by the flavor of the two daughter partons,
where the flavor of the mother parton are determined through the flavor summa-
tion rules: anything plus gluon gives anything, and quark plus an antiquark gives
a gluon. The tree-level kernels are defined as

〈r|P̂ (0)
qg (zi, zr, ; ε)|s〉 = δrsCF

[
1 + z2

i

zr
− εzr

]
, , (6.10)

〈µ|P̂ (0)
qq̄ (zi, zr, k

µ
⊥; ε)|ν〉 = TR

[
− gµν + 4zizr

kµ⊥k
ν
⊥

k2
⊥

]
, (6.11)

〈µ|P̂ (0)
gg (zi, zr, k

µ
⊥; ε)|ν〉 = 2CA

[
− gµν

(
zi
zr

+
zr
zi

)
− 2(1− ε)zizr

kµ⊥k
ν
⊥

k2
⊥

]
, (6.12)

while the one-loop kernels [107] are

〈r|P̂ (1)
qg (zi, zr; ε)|s〉 = rqgS,ren(zi, zr; ε)〈r|P̂ (0)

qg (zi, zr; ε)|s〉

+ δrsCFr
qg
NS

[
1− εzr

]
,

(6.13)

〈µ|P̂ (1)
qq̄ (zi, zr, k

µ
⊥; ε)|ν〉 = rqq̄S,ren(zi, zr; ε)〈µ|P̂ (0)

qq̄ (zi, zr, k
µ
⊥; ε)|ν〉 , (6.14)

〈µ|P̂ (1)
gg (zi, zr, k

µ
⊥; ε)|ν〉 = rggS,ren(zi, zr; ε)〈µ|P̂ (0)

gg (zi, zr, k
µ
⊥; ε)|ν〉

− 4CAr
gg
NS

[
1− 2εzizr

]kµ⊥kν⊥
k2
⊥

.
(6.15)

The renormalized rS,ren(zi, zr; ε) singular factors appearing in the one-loop kernels
are expressed in terms of unrenormalized ones with the relation:

rS,ren(zi, zr; ε) = rS(zi, zr; ε)−
β0

2ε

SMS
ε

(4π)2cΓ

( µ2

(−1)λi,rsir

)−ε
. (6.16)

Please note that here all momenta are in the physical region (Ei > 0), therefore
sir is always positive. The λi,r exponent takes care about the sign change of the
kinematic invariant when the final state kernels are crossed into the initial state
kinematics. λi,j = 1 if both particles are in the final or the initial state and it is 0
otherwise.

The unrenormalized singular terms can be written as [107]

rqgS (zi, zr; ε) = − 1

ε2

[
CA

( zi
zr

)ε πε

sin(πε)
+

∞∑

m=1

εm
[
(1+(−1)m)CA−2CF

]
Lim

(−zr
zi

)]
,

(6.17)



6.2. The single unresolved limits of one-loop matrix element 73

rqq̄S (zi, zr; ε) =
1

ε2
(CA − 2CF) +

CA

ε2

∞∑

m=1

εm

[
Lim

(−zi
zr

)
+ Lim

(−zr
zi

)]

+
1

1− 2ε

[
1

ε

(11

3
CA −

4TR

3
nf − 3CF

)
+ CA − 2CF +

CA + 4TRnf

3(3− 2ε)

]
,

(6.18)

rggS (zi, zr; ε) = −CA

ε2

[( zi
zr

)ε πε

sin(πε)
−
∞∑

m=1

2ε2m−1Li2m−1

(−zr
zi

)]
. (6.19)

The non-singular rNS factors appearing in the definition of the one-loop kernels
are independent of the kinematics, and they read as

rqgNS =
CA − CF

1− 2ε
, rggNS =

CA(1− ε)− 2TRnf
(1− 2ε)(2− 2ε)(3− 2ε)

. (6.20)

6.2.2 Analytic continuation of the final state one-loop ker-
nels

The
(

µ2

−sir

)ε
factor appearing in Eq. (6.7) and in Eq. (6.16) needs analytic

continuation in the final state kinematics. We will also use the final state one-loop
kernels in the initial-final collinear limit, using the crossing relation1

P̂
(i)
farfr

(x, k⊥; ε) = −(−1)F (fa)+F (far)xP̂
(f)

faf̄r

(
1

x
, k⊥; ε

)
, (6.21)

with the same flavor sum rules that we described in the final state splitting. The
F (fi) factors (F (q) = 1, F (g) = 0) take care of the crossing of fermionic lines.
When we cross the kernels into initial state kinematics zr = 1 − 1/x becomes
negative, as 0 < x < 1, which leads to negative arguments in Eqs. (6.17,6.18)
and (6.19), therefore they would require analytic continuation. To do so, first we
rewrite the unrenormalized singular terms in a slightly different form

rqgS (zi, zr; ε) = − 1

ε2

[
CAZε

πε

sin(πε)
+ Pqg

]
, (6.22)

rqq̄S (zi, zr; ε) =
1

ε2
(CA − 2CF) +

CA

ε2
Pqq̄ +

1

1− 2ε

×
[

1

ε

(11

3
CA −

4TR

3
nf − 3CF

)
+ CA − 2CF +

CA + 4TRnf

3(3− 2ε)

]
,

(6.23)

1Here we only indicated the zi dependence of the final state kernels explicitly, since zr is
related via momentum conservation zr = 1− zi.
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rggS (zi, zr; ε) = −CA

ε2

[
Zε

πε

sin(πε)
− Pgg

]
, (6.24)

where we introduced the factors that need analytic continuation as

Zε =

(
zi
zr

)ε
, (6.25)

Pqg =

∞∑

m=1

εm
[
(1 + (−1)m)CA − 2CF

]
Lim

(−zr
zi

)
, (6.26)

Pqq̄ =

∞∑

m=1

εm
[
Lim

(−zi
zr

)
+ Lim

(−zr
zi

)]
, (6.27)

Pgg =

∞∑

m=1

2ε2m−1Li2m−1

(−zr
zi

)
. (6.28)

First we expand formally the factors defined above in ε up to second order and
neglect O(ε3) and higher order terms, which is sufficient in one-loop calculations
since the leading pole starts at ε−2. In our calculations we use the sij + i0 pre-
scription for the propagator, hence the corresponding analytic continuation of the
logarithm is log(x) → log |x| − iπθ(−x), where θ is the Heaviside-function with
θ(x) = 1 if the argument is positive, 0 otherwise. We found that the same rule
can be applied for log(zi), since the ration of momentum fractions zi/zr can be
defined as ratio of kinematic invariants and therefore we can use the same pre-
scription. For momentum fraction ratios appearing in logarithms first we use the
log a/b = log a − log b identity then apply analytic continuation. After applying
these rules on the ε expansions and performing some algebra we obtain
(

µ2

−sir

)ε
= 1+

(
log

µ2

sir
+iπ

)
ε+

1

2

(
log2 µ

2

sir
−2iπ log

µ2

sir
−π2

)
ε2+O(ε3) , (6.29)

Zε = 1 +

[
log |zi| − log |zr| − iπ

(
θ(−zi)− θ(−zr)

)]
ε

+
1

2

[
(log |zi| − log |zr|)2 − 2iπ(log |zi| − log |zr|)

(
θ(−zi)− θ(−zr)

)

− π2
(
θ(−zi) + θ(−zr)− 2θ(−zi)θ(−zr)

)]
ε2 ,

(6.30)

Pqg = 2ε

[
CF

[
log |zi + zr| − log |zi| − iπ

(
θ(−zi − zr)− θ(−zi)

)]

+ ε(CA − CF)Li2
(−zr
zi

)]
+O(ε3) ,

(6.31)
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Pqq̄ = ε

[
log |zi|+ log |zr| − 2 log |zi + zr| − iπ

(
θ(−zi) + θ(−zr)

− 2θ(−zi − zr)
)

+ εLi2
(−zi
zr

)
+ εLi2

(−zr
zi

)]
+O(ε3) ,

(6.32)

Pgg = −2ε
[

log |zi + zr| − log |zi| − iπ
(
θ(−zi − zr)− θ(−zi)

)]
+O(ε3) . (6.33)

The Li2(x) function also requires analytic continuation, when the argument is
x > 1, and the real part can be computed as

ReLi2(x) =
π2

6
− log

(
|x|
)

log
(
|1− x|

)
− Li2(1− x) , (6.34)

while the imaginary part is

ImLi2(x) = − log(x) Im log(1− x) . (6.35)

6.2.3 The initial-final collinear limit

Now let us consider the initial-final collinear limit, when a final state particle r
radiated from the initial state becomes collinear to its radiator a, which splits into
ar and r. We define the collinear limit using the following parametrization

pµr = (1− xa)pµa + kµ⊥ −
k2
⊥

1− xa
nµ

2pan
, pµar = xap

µ
a , (6.36)

with k⊥ → 0.
In the initial-final collinear limit the universal factorization of the one-loop ma-

trix element is violated. However at one-loop order the terms which violate factor-
ization cancel for the 2Re〈M(0)|M(1)〉 interference term at the squared amplitude
level, and in the initial-final limit this interference term obeys strict factorization
similarly to the final-final collinear limit [108]:

2Re〈M(0)
m+1(pa, pr, . . . )|M(1)

m+1(pa, pr, . . . )〉 '

8παSµ
2ε 1

xa

1

sar
2Re

[
〈M(0)

m (par, . . . )|P̂ (0)
farfr

|M(1)
m (par, . . . )〉

+ 8παScΓ

( µ2

sar

)ε
〈M(0)

m (par, . . . )|P̂ (1)
farfr

|M(0)
m (par, . . . )〉

]
.

(6.37)

The initial state P̂ (i)
farfr

(xa, k⊥; ε) splitting kernels are related to the final state ones
by Eq. (6.21), both at tree and at one-loop level. Since we took care about the
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proper definition of the final state kernels in the crossed kinematics already, we
can simply use them in Eq. (6.37) with the crossing relation.

Based on Eq. (6.37) we define the symbolic Car operator that takes the initial-
final collinear limit and keeps only the leading singular terms

Car2Re〈M(0)
m+1(pa, pr, . . . )|M(1)

m+1(pa, pr, . . . )〉 =

8παSµ
2ε 1

xa

1

sar
2Re

[
〈M(0)

m (par, . . . )|P̂ (0)
farfr

|M(1)
m (par, . . . )〉

+ 8παScΓ

( µ2

sar

)ε
〈M(0)

m (par, . . . )|P̂ (1)
farfr

|M(0)
m (par, . . . )〉

]
.

(6.38)

6.2.4 The soft limit

We consider the soft limit of the squared one-loop matrix element. When a gluon
r either coming from the initial or the final state becomes soft, the squared matrix
element factorizes universally in both cases [109]

2Re〈M(0)
m+1(pr, . . . )|M(1)

m+1(pr, . . . )〉 ' −8παSµ
2ε
∑

i,j 6=i

1

2
Sij(r)

{
|M(0,1)

m,(i,j)(. . . )|2+

− 8παSµ
2εcΓ

[(
CA
ε2

πε

sin(πε)
cos(πε)

(1

2
Sij(r)

)ε
+

1

2

β0

(4π)2ε

Sε
µ2εcΓ

)
|M(0)

m,(i,j)(. . . )|2

+
2π

ε

∑

k 6=i,j

(1

2
Sjk(r)

)ε
(λj,k − λj,r − λk,r)|M(0)

m,(i,j,k)(. . . )|2
]}

.

(6.39)

where pr is simply dropped on the right hand side of the equation and we sum over
both initial and final state colored partons. The color correlated squared matrix
elements are defined as

|M(0,1)
m,(i,j)|2 = 2Re〈M(0)

m |TiTj |M(1)
m 〉 ,

|M(0)
m,(i,j)|2 = 〈M(0)

m |TiTj |M(0)
m 〉 ,

|M(0)
m,(i,j,k)|2 = 〈M(0)

m |TiTjTk|M(0)
m 〉 .

(6.40)

The λi,j factors in Eq. (6.39) have the same purpose as in Eq. (6.16). The
triple sum gives contribution only in processes involving four or more hard colored
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partons. We define the soft limit by introducing the Sr operator

Sr2Re〈M(0)
m+1(pr, . . . )|M(1)

m+1(pr, . . . )〉 = −8παSµ
2ε
∑

i,j 6=i

1

2
Sij(r)

{
|M(0,1)

m,(i,j)(. . . )|2+

− 8παSµ
2εcΓ

[(
CA

ε2
πε

sin(πε)
cos(πε)

(1

2
Sij(r)

)ε
+

1

2

β0

(4π)2ε

Sε
µ2εcΓ

)
|M(0)

m,(i,j)(. . . )|2

+
2π

ε

∑

k 6=i,j

(1

2
Sjk(r)

)ε
(λj,k − λj,r − λk,r)|M(0)

m,(i,j,k)(. . . )|2
]}

.

(6.41)

6.2.5 Collinear limits of the soft formula
The collinear and the soft limits overlap, a collinear particle can become soft
simultaneously and a soft gluon also can be collinear to another particle. In order
to avoid double counting in the subtraction, we have to introduce a new term to
cancel the overlapping. It can be either the soft limit of the collinear formula or
the collinear limit of the soft formula. One can check that the latter gives a more
general expression and cancel the overlapping region for both the collinear and the
soft limit. Thus we have to compute the collinear limits of the soft limit.

We start with the final-final collinear limit. When the soft parton r becomes
collinear to the final state parton i we can use the parametrization (6.6) neglecting
the k⊥,r terms. Substituting the Sudakov-parametrization into the eikonal factors
we get

CirSij(r) =
2zi

sir(1− zi)
, CirSjk(r) =

Sjk(ir)

(1− zi)2
. (6.42)

After taking the final-final limit of Eq. (6.41) and substituting the eikonals we find

CirSr2Re〈M(0)
m+1(pi, pr, . . . )|M(1)

m+1(pi, pr, . . . )〉 = 8παSµ
2εT2

i

2

sir

zi
1− zi

×
[
|M(0,1)

m (pi, . . . )|2 − 8παSµ
2εcΓ

(
CA

ε2
πε

sin(πε)
cos(πε)

( 1

sir

zi
1− zi

)ε

+
1

2

β0

(4π)2ε

Sε
µ2εcΓ

)
|M(0)

m (pi, . . . )|2
]
,

(6.43)

where we performed summation over j and we used color conservation

T2
i |M〉 = −

∑

j

TiTj |M〉 . (6.44)
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The triple color correlated squared matrix element |M(0)
m,(i,j,k)|2 is antisymmetric

in j, k, while its coefficients are symmetric, therefore the total sum over j, k gives
no contribution.

To compute the initial-final collinear limit of the soft formula we use the
parametrization of Eq. (6.36) in the eikonal factors

CarSaj(r) =
2

sar(1− xa)
, CarSjk(r) =

xa
1− xa

Sjk(ar) . (6.45)

When a soft gluon r becomes simultaneously collinear to the initial state particle
a, the squared matrix element factorizes as

CarSr2Re〈M(0)
m+1(pa, pr, . . . )|M(1)

m+1(pa, pr, . . . )〉 = 8παSµ
2εT2

b

2

sar

1

1− xa

×
[
|M(0,1)

m (pa, . . . )|2 − 8παSµ
2εcΓ

(
CA
ε2

πε

sin(πε)
cos(πε)

( 1

sar

1

1− xa

)ε

+
1

2

β0

(4π)2ε

Sε
µ2εcΓ

)
|M(0)

m (pa, . . . )|2
]
,

(6.46)

where we repeated the same steps as in the CirSr limit to obtain this expression.
Based on the single unresolved factorization properties of the one-loop squared

matrix element discussed previously we define the subtraction candidate for the
m+ 1 partonic single-unresolved one-loop contribution as

A12Re〈M(0)
m+1|M

(1)
m+1〉 =

[∑

i∈F

∑

r 6=i∈F

1

2
Cir +

∑

a∈I

∑

r∈F
Car

+
∑

r∈F

(
Sr −

∑

i 6=r∈F

CirSr −
∑

a∈I
CarSr

)]
2Re〈M(0)

m+1|M
(1)
m+1〉 .

(6.47)

6.3 The one-loop single-unresolved counterterm

The subtraction candidate A1 given in Eq. (6.47) is only valid in the strict in-
frared limits. The true subtraction term must be defined over the whole space,
therefore we have to extend the factorization formulae away from the strict limits.
Thus we introduce phase space mappings which map the m+ 1 particle momenta
configurations into the m particle phase space.
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6.3.1 The final-final collinear counterterm

For the final-final collinear counterterm we use the phase space mapping already
introduced in the CoLoRFulNNLO scheme [34]

{p}m+1
Cir→ {p̂}(ir)m , (6.48)

where {p}m+1 denotes the set of m+ 1 momenta and set of final state momenta is
{p̂}(ir) ≡ (p̂1, . . . , p̂ir, . . . , p̂m+1), pr missing from the list. The mapped final state
momenta entering the m particle squared matrix elements are

p̂µir =
1

1− αir
(pµi + pµr − αirQµ) , p̂µn =

1

1− αir
pµn , n 6= i, r , (6.49)

while the initial state momenta remains unchanged. The factor αir appearing in
the momentum mapping is set by momentum conservation

αir =
1

2

(
y(ir)Q −

√
y2

(ir)Q − 4yir

)
, (6.50)

with y(ir)Q = yiQ + yrQ. The momentum fractions zi,r and zr,i are defined as

zi,r =
yiQ
y(ir)Q

, zr,i =
yrQ
y(ir)Q

, (6.51)

while the transverse momentum is

kµ⊥,i,r = ζi,rp
µ
r − ζr,ipµi , ζi,r = zi,r −

yir
αiry(ir)Q

, ζr,i = zr,i −
yir

αiry(ir)Q
. (6.52)

We mention that the phase space mapping defined here leads to phase space fac-
torization, but we neglect the discussion of this property since we do not exploit
it in this work.

The final-final collinear counterterms are then defined as

C(0,1)
ir ({p}) = 8παSµ

2ε 1

sir
2Re〈M(0)

m ({p̂}(ir))|P̂ (0)
fifr

(zi,r, zr,i, k⊥,i,r; ε)|M(1)
m ({p̂}(ir))〉 ,

(6.53)

C(1,0)
ir ({p}) = (8παS)2µ2εcΓ

1

sir

( µ2

−sir

)ε

2Re〈M(0)
m ({p̂}(ir))|P̂ (1)

fifr
(zi,r, zr,i, k⊥,i,r; ε)|M(0)

m ({p̂}(ir))〉 .
(6.54)

The superscript (a, b) in the notation of the counterterms indicates the number of
loops present in the splitting kernel and in the squared matrix element respectively.
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6.3.2 The initial-final collinear counterterm
In the initial-final collinear limit we extend our factorization formula over the whole
space via the phase space mapping introduced in Ref. [39]

{p}m+1
Car→ {p̃}(ar)m , (6.55)

with {p̃}(ar) ≡ (p̃1, . . . , p̃m+1) and pr dropped from the list. The mapped momenta
is defined as2

p̃µar = x̃ap
µ
a , p̃µn = Λ[Q− (1− x̃a)pa, Q− pr]µνpνn , n 6= a, b, r , (6.56)

where the Lorentz-transformation matrix Λ(K, K̂)µν is

Λ(K, K̂)µν = gµν −
2(K + K̂)µ(K + K̂)ν

(K + K̂)2
+
KµK̂ν

K2
. (6.57)

This matrix is a Lorentz-boost, it maps K̂µ toKµ whenK2 = K̂2. The momentum
fraction and the transverse momentum in the mapping are given by

x̃a = 1− yrQ , k̃µ⊥,a = pµr − yrQpµa − yarQµ . (6.58)

The mapping leads to phase space convolution, similarly to Eq. (6.65).
The initial-final collinear counterterms are defined as

C(0,1)
ar ({p}, pa, pb) = 8παSµ

2ε 1

xa

1

sar

× 2Re〈M(0)
m ({p̂}(ar), p̃ar, pb)|P̂ (0)

farfr
(x̃a, k̃⊥,a; ε)|M(1)

m ({p̂}(ar), p̃ar, pb)〉 ,
(6.59)

C(1,0)
ar ({p}, pa, pb) = (8παSµ

2ε)2cΓ
1

x̃a

1

s1+ε
ar

× 2Re〈M(0)
m ({p̂}(ar), p̃ar, pb)|P̂ (1)

farfr
(x̃a, k̃⊥,a; ε)|M(0)

m ({p̂}(ar), p̃ar, pb)〉 .
(6.60)

6.3.3 The soft and soft-collinear counterterms
In the soft limit we replace the original phase space mapping of the CoLoR-
FulNNLOmethod defined in Ref. [34], because that mapping cannot be applied
for processes involving only one massive particle in the final state (e.g. Drell-Yan

2Please note that the arguments of the boost in Eq. (5.17) of Ref. [39] are exchanged compared
to here due to a typing error.
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processes). Here we introduce a new soft phase space mapping for the extended
CoLoRFulNNLO scheme3

{p}m+1
Sr→ {p̃}(r)m . (6.61)

In this mapping we simply rescale the initial state momenta

p̃µn = λrp
µ
n , n = a, b , (6.62)

with
λr =

√
1− yrQ , (6.63)

while the final state particles get boosted using the Lorentz-transformation defined
in Eq. (6.57)

p̃µi = Λ(λrQ,Q− pr)µνpνi , i 6= r , (6.64)

and pr is simply dropped. It can be shown that this mapping leads to the phase
space convolution of the m particle phase space and the one-particle unresolved
phase space

dΦm+1 =

∫ 1

0

dλ dΦm({p̃}, λQ)
[
dp

(1)
1 (pa, pb, pr, λ)

]
. (6.65)

The derivation of the formula and the definition of
[
dp

(1)
1 (pa, pb, pr, λ)

]
is given in

the Appendix B.

The soft counterterms are defined as

S(0,1)
r ({p}) = −8παSµ

2ε
∑

i,j 6=i

1

2
Sij(r)|M(0,1)

m,(i,j)({p̃(r)})|2 , (6.66)

S(1,0)
r ({p}) = (8παSµ

2ε)2cΓ
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1

2
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×
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ε2
πε

sin(πε)
cos(πε)
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2
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+

1

2

β0

(4π)2ε

Sε
µ2εcΓ

)
|M(0)

m,(i,j)({p̃(r)})|2

+
2π

ε

∑

k 6=i,j

(1

2
Sjk(r)

)ε
(λj,k − λj,r − λk,r)|M(0)

m,(i,j,k)({p̃(r)})|2
]
.

(6.67)
The final-final soft-collinear counterterms share the same soft mapping and have
the following form

CirS(0,1)
r ({p}) = 8παSµ

2εT2
i

2

sir

zi
1− zi

|M(0,1)
m ({p̃(r)})|2 , (6.68)

3A similar mapping was introduced in the work of Nagy et al. [110].
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CirS(1,0)
r ({p}) =− (8παSµ

2ε)2cΓT
2
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(6.69)

The initial-final soft-collinear counterterms are

CarS(0,1)
r ({p}) = 8παSµ

2εT2
a

2

sar

1

1− xa
|M(0,1)

m ({p̃(r)})|2 . (6.70)
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(4π)2ε
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µ2εcΓ

)
|M(0)

m ({p̃(r)})|2 ,

(6.71)

and again we use the soft mapping on the right hand side of the equations.

Finally the singly-unresolved real-virtual counterterm is

dσRV,A1

m+1 = dΦm ⊗
[
dp1

]
A12Re〈M(0)

m+1|M
(1)
m+1〉 , (6.72)

where ⊗ denotes exact factorization of the phase space in the final-final collinear
limits, and phase space convolution otherwise. The A12Re〈M(0)

m+1|M
(1)
m+1〉 sub-

traction candidate has the following form
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(
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CarS(1,0)

r

)]
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(6.73)

6.4 Numerical test of the subtraction candidate in
deeply-inelastic scattering

We implemented the subtraction candidates defined in the previous section in
a numerical program written in Fortran90 language. We chose deeply-inelastic
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scattering (DIS) as a test process, because it involves colored particles both in the
initial and in the final state. We used the Bern-Dixon-Kosower four partonic one-
loop matrix elements [111], and crossed it into DIS kinematics. To test all possible
type of initial state single-unresolved limits we used three subprocesses summarized
in Table 6.4. We computed the C25 collinear limit for the third subprocess, the C26

Type 1 2 3 4 5 6
I e− u e− u g g
II e− d e− u ū d
III e− g e− u ū g

collinear limit for all three subprocesses, the S5, S6 soft limit and finally the C26S6

soft-collinear limit for the I. and III. subprocesses. We generated 10000 unresolved
phase space configurations and plotted the ratio of the subtraction term and the
one-loop squared matrix element in the various limits. The results are shown in
Figs. 6.4, 6.4, 6.4 and 6.4 as histograms. As visible in the plots the subtraction
terms matches the squared matrix element more and more as we go deeper into
the infrared limits.

We note that soft limits shown in Fig. 6.4, have an asymmetric form, which
looks unusual compared to the other plots that are symmetric. The reason of
this behavior is not known, it might be related to some numerics or the phase
space mapping of the soft counterterms, namely final state momenta are always
boosted, which could introduce some systematic shift in the squared matrix ele-
ment. However one should not worry about this asymmetry, first of all there is
not such a requirement that the counterterms should approach the full squared
matrix element from both directions. Secondly this asymmetry could be actually
useful in integration, since the regulated squared matrix element would be either
positive or negative definite, which is easier to integrate compared to the case when
counterterms converges from both direction, which results an oscillating function.
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Figure 6.1. Spike plots with N = 10000 randomly generated phase space points in
the initial-final collinear limit q||g and q||q̄ (lower).
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Figure 6.2. Spike plots with N = 10000 randomly generated phase space points in
the initial-final collinear limit g||q (upper) and g||g (lower).
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Figure 6.4. Spike plots with N = 10000 randomly generated phase space points in
the initial-final collinear limit q||g (upper) and g||g (lower) with gluon also being
soft.
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Chapter 7

Summary and outlook

Three-jet production in electron-positron annihilation provides a clear environ-
ment to measure the αS coupling of QCD. Precise theoretical calculations are key
elements in this measurement. Presently the state-of-the-art predictions are next-
to-next-to-leading order accurate in perturbation theory for both event shape and
jet rate observables and next-to-next-to-leading logarithmic accurate resummation
of logarithmic terms for event shapes. Resummation of jet rates is only available
at next-to-double logarithmic accuracy for the k⊥ and the general inclusive k⊥
algorithm. In the literature there are no matched predictions for the three-jet rate
either using the k⊥ or the anti-k⊥ jet clustering algorithm at

√
Q2 = 91.2 GeV

center-of-mass energy. Also various versions of resummation are available formally
equal at NDL accuracy but different numerically due to subleading logarithmic
terms, which needs a comparison.

Furthermore presently new results in high energy physics are related mostly
for hadron-hadron collisions due to the operation of LHC. This requires to extend
the CoLoRFulNNLOsubtraction scheme for hadron initiated processes in order to
make predictions for hadron colliders.

In my thesis I collected my calculations and results performed in QCD per-
turbation theory using the CoLoRFulNNLOsubtraction scheme, which I shortly
summarize here again emphasizing my personal contributions.

First I calculated the finite part of integrated subtraction terms numerically,
which is necessary to make predictions with the CoLoRFulNNLOmethod at NNLO
accuracy. I developed and implemented a python and Mathematica framework
based on the program SecDec to manage calculations of integrated subtraction
terms numerically in large numbers in a fully automated way. I used my auto-
mated tools to compute master integrals numerically required for the I

(0)
1 , I(0,0)

1,1 ,
I
(1)
1 and I

(0)
2 color insertion operators appearing in the CoLoRFulNNLOmethod.
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Using the results of the master integrals I computed these operators for the three-
jet kinematics and fit the results using logarithmic and polynomial functions. I
implemented the resulting functions into the MCCSM code.

The CoLoRFulNNLOmethod was applied to three-jet production in e+e− col-
lisions to calculate event shapes at NNLO accuracy. Using the same process I
calculated the three-jet rate at NNLO accuracy using the k⊥ jet clustering al-
gorithm at

√
Q2 = 91.2 GeV center-of-mass energy. I matched the fixed-order

results with resummation at NDL accuracy available in the literature using the
so-called R-matching scheme. I compared three different resummations, all three
formally NDL accurate but different in subleading terms beyond NDL accuracy
therefore different numerically. I showed that even incomplete subleading loga-
rithms have an important effect in matched results. I also showed that although
including the cusp anomalous dimension (K-term) into the resummation improves
the matched physical prediction at NLO+NLL accuracy, this effect comes from an
unphysical numerical behavior. It is also confirmed by matched predictions using
NNLO fixed-order results. The predictions at NNLO+NDL accuracy provides bet-
ter description of the data measured by the OPAL experiment compared to pure
fixed-order prediction, however inclusion of further resummed logarithmic terms
would be still necessary, and using the logR-matching scheme would probably also
improve the results.

I also calculated the three-jet rate at NNLO accuracy using two different ver-
sions of the anti-k⊥ algorithm adapted for e+e− colliders. I calculated the fully
resummed prediction for the general inclusive k⊥ algorithm using two different
energy cuts and I made matched predictions for three-jet rate for the first time
using these algorithms. I calculated and provided an approximate analytic for-
mula for the resummed prediction, which resums all NDL type logarithms but do
not include any further subleading logarithmic terms. Using this resummed for-
mula in matching, I showed that subleading logarithms have an important effect
in matched prediction similarly to the k⊥ algorithm.

In the work of extension of the CoLoRFulNNLOmethod to hadron colliders, I
defined the single-unresolved one-loop subtraction term for the real-virtual squared
matrix element withm+1 partons, which regularizes both the initial and final state
single-unresolved singularities. The subtraction term is based on the factorization
properties of one-loop QCD amplitudes in the infrared limits. The splitting kernels
present in the initial-final collinear subtraction terms are obtained from the final
state splitting kernels using the crossing relation. For this purpose I performed
analytic continuation for the final state splitting kernel in order to use them in the
initial state kinematics. The subtraction terms are defined over the whole phase
space using phase space mappings. For the soft limit I introduced a new phase
space mapping for the CoLoRFulNNLOmethod, which can be used in Drell-Yan
processes as well. I checked the defined counterterms numerically in deeply inelas-
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tic scattering and I showed that they match the squared matrix element in the
possible infrared limits.

As I mentioned in my thesis, the use of the logR-matching scheme seems to be
feasible, however it requires more work to be finished. This would be a major step
forward, since the logR-matching scheme is less sensitive for missing subleading
logarithms, therefore our predictions would be more stable and they would provide
a physical behavior in the small ycut region, not to mention that logR-matching
was never used before for jet rates.

The regularization of the real-virtual contribution is not complete. Presently
only the single-unresolved one-loop subtraction terms is defined, and for example
the integrated single-unresolved double-real subtraction term also has infrared di-
vergences in the single unresolved limits and has to be regularized by subtraction.
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Chapter 8

Magyar nyelvű összefoglaló

A kvantum-színdinamika (QCD) az erős kölcsönhatás kvantum-térelmélete. Az
elmélet lokális nem-ábeli SU(Nc) mértékszimmetriával rendelkezik, ahol Nc a szí-
nek számát jelöli. Az elmélet a színes fermionok, a kvarkok kölcsönhatását írja le,
melyet a szintén színtöltéssel rendelkező mértékbozonok, a gluonok közvetítenek.
A QCD renormálható, ami technikai szempontból azt jelenti, hogy az elméletben
megjelenő ultraibolya divergenciák szisztematikusan eltávolíthatóak a perturbáció-
számítás minden rendjében véges számú paraméter renormálásával. A renormálás
eredményeként az elmélet fizikai paraméterei, mint például a csatolás vagy a kvark
tömegek energiafüggőek lesznek, mért értékük függ az adott ütközetési energiától.
Mivel a gluonok is rendelkeznek színtöltéssel, ezért az elméletben megjelenik a glu-
onok önkölcsönhatása is, ami az aszimptotikus szabadsághoz vezet. Ez azt jelenti,
hogy ahogyan egyre magasabb és magasabb ütközési energiákra lépünk, az elmélet
csatolása egyre kisebbé válik.

A természetben azonban nem figyelhetőek meg szabad kvarkok és gluonok
(együttes nevükön partonok), csak kötött részecskeállapotban találhatóak meg,
melyeket hadronoknak nevezünk, továbbá az ütközési kísérletekben a hadronok
energikus, közel párhuzamos záporát, az úgynevezett jeteket figyelhetjük meg.

A hadronikus jetek keletkezése az ütközési kísérletek általános sajátossága és
vizsgálatuk fontos, mivel: a jetek felhasználhatók a standard modell paramétere-
inek a mérésére és a modell tesztelésére; a jetek új fizikára utaló nyomot tartal-
mazhatnak, emiatt a standard modell típusú folyamatokban való keltésük fontos
háttérbecslésként szolgál az új fizika kereséséhez.

Mérhető mennyiségekre a nagy energiás fizikában a perturbációszámítás el-
méletében tehetünk jóslatokat. A QCD aszimptotikus szabadsága miatt a ha-
táskeresztmetszet kiszámolható az αS csatolás Taylor-soraként. Azonban az erős
csatolás még nagy energiákon sem túl kicsi, például αS(91.2 GeV) = 0.118, ezért a
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magasabb rendű sugárzási korrekciók ismerete elengedhetetlen hadronos folyama-
tok kvantitatív leírásához. Ellenben ezen sugárzási korrekciók számítása bonyolult
a számolás során megjelenő ultraibolya és infravörös szingularitások miatt. Ahogy
korábban említettem az ultraibolya divergenciák renormálás segítségével sziszte-
matikusan eltávolíthatóak a perturbációszámítás minden rendjében véges számú
paraméter újranormálásával. A Kinoshita-Lee-Nauenberg tétel kimondja, hogy a
hatáskeresztmetszet QCD-ben véges minden infravörös véges mennyiségre, azaz
olyan mennyiségekre, amelyek érzéketlenek lágy és kollineáris sugárzás jelenlétére.
Ezzel szemben a tétel nem biztosítja a számolás közbenső lépéseiben megjelenő
egyes járulékok végességét, és sajnos nincsen egy, a renormáláshoz hasonló álta-
lános módszer, amellyel szisztematikusan eltávolíthatóak lennének az infravörös
divergenciák a perturbációszámítás minden rendjében. Az első (NLO) sugárzá-
si korrekciók automatizált számítása már több éve elérhető különböző szoftverek
formájában, melyek segítségével a részecskefizikai folyamatok egy széles skálája
könnyen kiszámolható.

A jelenlegi kutatási frontvonal a QCD perturbációszámításban a második (NN-
LO) sugárzási korrekciók meghatározása, melyre több megoldás is született az el-
múlt 15 évben, azonban még egyik sem képes az NLO korrekciók számításához
hasonló fokú automatizációra.

Az egyik lehetséges megoldás az úgynevezett CoLoRFulNNLO levonási séma. A
módszer alapja az infravörös divergens mátrixelemnégyzet levonással való regula-
rizálása. A levonási tagok a QCD mátrixelemek univerzális faktorizációs tulajdon-
ságain alapulnak, és az infravörös határétékekben való viselkedésük d-dimenzióban
megegyezik az eredeti mátrixelemével. A CoLoRFulNNLOmódszer jelenleg csak
olyan részecskefizikai folyamatokra alkalmazható, amelyek csak a végállapotban
tartalmaznak színtöltött részecskéket.

Az elektron-pozitron ütköztetésekben keletkező három jetes események tiszta
laboratóriumi körülményeket kínálnak a QCD elméletének kísérleti ellenőrzésére,
mivel csak a végállapotban találhatóak színtöltéssel rendelkező részecskék. Emel-
lett a három jetes események gyakorisága már a perturbációszámítás vezető rend-
jében arányos az αS csatolással. Az ebben a folyamatban mért alakváltozó és jet
hányad mennyiségek még a mai napig az egyik legpontosabb eszközöknek számí-
tanak az erős csatolás mérésére. A csatolás meghatározásának pontossága függ
a kísérleti mérés és az elméleti jóslat pontosságától egyaránt. Az elmúlt években
megnőtt kísérleti precizitás megköveteli a hasonlóan pontos elméleti számításokat.
A CoLoRFulNNLOmódszerrel lehetőségünk nyílik differenciális hatáskeresztmet-
szetek NNLO pontosságú kiszámítására.

A CoLoRFulNNLOmódszerben azonban, több más fontos feladat mellett, szükség
van az úgynevezett integrált levonási tagok ismeretére. Ezen tagok pólusegyütt-
hatói már ismertek analitikusan, viszont a véges rész teljesen analitikus módon
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történő kiszámítása nehéz a kifejezés bonyolultsága miatt, így az ehhez kapcso-
lódó integrálokat numerikusan kell elvégezni. Ez a feladat több száz bonyolult
integrál, nagy számú pontban numerikus módszerekkel történő meghatározását
igényli, amely miatt az egész folyamat teljes fokú automatizálása szükséges.

Ennek a feladatnak az elvégzésére létrehoztam egy python és Mathematica
nyelveneken írt automatizált rendszert, amely a SecDec programot használja ala-
pul. A kifejlesztett automatizált eszköz segítségével numerikusan kiszámoltam az
I
(0)
1 , az I

(0,0)
1,1 , az I

(1)
1 és az I

(0)
2 színtéren ható operátorokhoz szükséges mester in-

tegrálokat. A mester integrálok eredményeit felhasználva, kiszámítottam a fent
említett operátorokat három jet végállapot esetén, és a numerikus eredményeket
logaritmikus és polinom függvényekkel illesztettem meg. A kapott függvényt imp-
lementáltam az MCCSM Monte Carlo programba. Végül a kész levonási módszerrel
alakváltozó mennyiségekre NNLO pontosságú jóslatokat tettünk e+e− ütközésben
keletkező három jet esetén.

Az alakváltozó mennyiségek mellett az αS csatolás mérése gyakran az úgynevezett
három jet hányad vizsgálatán alapszik. A perturbációszámítás vezető rendjében a
jeteket partonok segítségével modellezzük, minden jethez egy-egy partont rende-
lünk. Magasabb rendű sugárzási korrekciók figyelembevételével újabb partonokat
rendelünk az egyes jetekhez, azonban az egy jetben jelenlévő partonok száma még
mindig nagyságrendileg O(1). Bizonyos kinematikai tartományokban ez a közelí-
tés nem megfelelő, mivel a domináns járulék újabb és újabb lágy-kollineáris par-
tonok kibocsájtásából származik. Ez a viselkedés figyelembe vehető az ezekhez a
tartományokhoz kapcsolódó logaritmikus tagok minden rendben történő felösszeg-
zésével, vagy parton záporok alkalmazásával. A parton zápor NNLO pontosságú
rögzített rendű számolással való illesztése jelenleg még nem megoldott, azonban az
úgynevezett dupla logaritmus melletti (NDL) tagok felösszegzése több éve ismert
jet hányad esetén. A szélesebb kinematikai tartományon érvényes jóslat a rögzített
rendű és a felösszegzett számítás illesztésével kapható meg.

A k⊥ jet algoritmust használva NNLO pontosságú jóslatot tettem a három
jet hányadra

√
Q2 = 91.2 GeV ütköztetési energián. A kapott eredményt illesz-

tettem NDL pontosságú felösszegzett jóslattal az úgynevezett R-illesztési sémát
felhasználva. Összehasonlítottam három, formálisan azonos felösszegzett számí-
tást, amelyek NDL pontosságon túli logaritmikus tagokban térnek el. Megmutat-
tam, hogy ezek a logaritmikus tagok nem elhanyagolható módon befolyásolják a
kapott illesztett eredményeket. Emellett megmutattam, hogy habár az úgyneve-
zett K-tag figyelembevétele a felösszegzésben javít az NLO+NDL típusú illesztett
eredményen, ez valójában egy véletlen numerikus összjáték eredménye, amelyet az
NNLO+NDL típusú illesztett eredmények is alátámasztanak. Az NNLO+NDL il-
lesztett eredmény jobban leírja a kísérleti adatokat, mint a rögzített rendű NNLO
számolás, azonban további logaritmikus tagok felösszegzése még szükséges lenne,
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és az úgynevezett logR-illesztési séma használata is javíthat az eredményeken.
Az anti-k⊥ jet algoritmus e+e− ütköztetőkre adaptált két különböző verzióját

használva kiszámoltam a három jet hányadot ezen algoritmusokra is. Kiszámí-
tottam a teljes felösszegzett eredményt két különböző energia vágást alkalmazva
és ezeket illesztettem rögzített rendű számolásokkal. Megadtam egy analitikus
közelítő képletet a felösszegzett jóslatra, amely kizárólag csak az NDL típusú lo-
garitmusokat tartalmazza. Ezt a felösszegzett alakot felhasználva az illesztésben
megmutattam, hogy ebben az esetben is jelentős eltérést okoznak az éppen jelen
lévő vagy hiányzó NDL pontosságon túli tagok, hasonlóan a k⊥ algoritmus eseté-
hez.

A mai, új részecskefizikai eredmények döntő része, az LHC proton-proton üt-
köztetőhöz kapcsolódik, ami szükségessé teszi a CoLoRFulNNLOmódszer ilyen
típusú folyamatokra való kiterjesztését. Ebben a munkában részt véve definiál-
tam az egyszeresen feloldatlan egyhurok levonási tagot, amely az m + 1 parto-
nos egyhurok mátrixelemnégyzet kezdeti és végállapoti infravörös szingularitásait
egyaránt regularizálja. A levonási tag az egyhurok mátrixelemnégyzet infravörös
faktorizációs tulajdonságain alapszik, amely impulzus leképezések segítségével ki-
terjeszthetőek az egész fázistérre. A kezdeti-végállapoti kollineáris levonási tagban
jelen lévő Altarelli-Parisi függvények megkaphatóak a végállapoti Altarelli-Parisi
függvényekből a keresztezési összefüggés segítségével. Hogy ezt alkalmazhassam,
analitikusan elfolytattam a végállapoti Altarelli-Parisi függvények kifejezéseit, így
azok használhatóak kezdeti állapoti kinematikában is. A lágy levonási tag számá-
ra bevezettem egy új impulzus leképezést a CoLoRFulNNLOmódszerben, amely
alkalmazható Drell-Yan folyamatok számolásánál is. A definiált levonási tagokat
mélyen rugalmatlan szórás folyamatán teszteltem le numerikusan, és megmutat-
tam, hogy az egyes ellentagok infravörös viselkedése azonos az eredeti mátrixelem-
négyzetével.

Ahogy a disszertációmban is említettem a logR-illesztési séma is alkalmazha-
tónak tűnik jet hányad esetén, azonban ebben a témában még további munka
szükséges. Mindenesetre ennek a sémának a használata jelentős előrelépés lenne,
mivel a logR-illesztési séma kevésbé érzékeny a hiányzó NDL pontosságon túli
tagok hiányára, így az illesztett jóslatok stabilabbak lennének és a kis ycut tarto-
mányban is fizikai viselkedést mutatnának. Fontos még megemlíteni, hogy eddig
még senki nem használta ezt az illesztési sémát a jet hányad mennyiségre.

A valós-virtuális járulék regularizációja még nincs befejezve. Jelenleg csak egy
levonási tag, az egyszeresen feloldatlan egyhurok levonási tag definiált, azonban
a szintén m + 1 partonos járulékot adó integrált egyszeresen feloldatlan duplán
valós levonási tag is rendelkezik infravörös szingularitásokkal, amelyeket szintén
regularizálni kell levonás segítségével.



Appendix A

Auxiliary figures

In this appendix we show two examples for fitting the master integrals, referred
previously in Sect. 3.1. The first one is the I(−1,0,−1,1)

2C,1 integral which has been
defined in Eq. (3.8) and it is a function of yiQ kinematic variable, here labeled
with x. The integral was evaluated in a list of points numerically and then fitted
by the following function:

F(x) =

l∑

i=0

P
(m)
i (x) logi x , P

(m)
i (x) =

m∑

k=0

ai,k x
k , (A.1)

where l is the order of the logarithmic function determined by the pole coefficient
of the Laurent-series, while m sets the order of polynomials in x and it is a free
parameter. We found that m = 2, 3 for the polynomial order provides a good fit
in general, an example shown in Fig A.1.

The second example is the master integral I(−1,0)
2C,6 , which comes from the inte-

gration of double collinear limits. The integral depends on two kinematic variables
yiQ and yjQ, here denoted with xĩs and xj̃s. The fit function can be easily extended
into two dimensions:

F(x, y) =

l∑

i=0

l−i∑

j=0

P
(m)
i (x)P

(m)
j (y) logi x logj y , (A.2)

where we used that the function is symmetric in x and y, therefore symmetric terms
share the same coefficients. The I(−1,0)

2C,6 master integral was calculated numerically
in a list of points, then fitted with the two-dimensional fit function. Results for
the finite part are shown in Fig. A.2.
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Figure A.1. The finite part of the I(−1,0,−1,1)
2C,1 integral calculated numerically (red

crosses). The points are fitted using the functional form of Eq. (A.1) choosing
l = 4 and m = 2 (denoted by the green line). On the lower panel we show the
relative accuracy of the fit compared to the results of numerical integrations.
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fitted using the functional form of Eq. A.2 separately. On the upper panel we
show the goodness of the fit plotted as a function of only one variable (hence the
multiple points to one xj̃s value), while the lower panel shows the shape of the
function.
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Appendix B

Soft phase space mapping

In this appendix chapter we discuss the new phase space mapping in CoLoR-
FulNNLO introduced for the soft type subtractions in Chapter 6. The new map-
ping has the advantage that it can be used in Drell-Yan processes as well, in
contrast of the original soft mapping of the method.

The momenta of the incoming partons are simply rescaled

p̃µn = λrp
µ
n , n = a, b , (B.1)

while particles in the final states get boosted

p̃i = Λ(pi) , i 6= r , (B.2)

except pr which is simply dropped. The scaling factor λr can be calculated from
energy conservation:

(p̃a + p̃b)
2 = λ2

r(pa + pb)
2 = λ2

rQ
2 . (B.3)

On the other hand it is also true that

(p̃a + p̃b)
2 =

(
Λ(p1) + · · ·+ Λ(pm)

)2

=
(

Λ(p1 + · · ·+ pm)
)2

= (Q− pr)2 , (B.4)

where we used the Lorentz-invariance of the invariant mass. Combining Eqs. (B.3)
and (B.4) we get

λr =

√
1− 2prQ

Q2
=
√

1− yrQ . (B.5)

The desired boost can be omitted from the requirement of momentum conservation:

p̃a + p̃b = λr(pa + pb) = λrQ , (B.6)
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and
p̃a + p̃b =

∑

i

p̃i =
∑

i

Λ(pi) = Λ
(∑

i

pi

)
= Λ(Q− pr) , (B.7)

which gives the Λ(Q − pr) = λrQ condition for the desired boost. The Lorentz-
transformation matrix

Λ(K, K̂)µν = gµν −
2(K + K̂)µ(K + K̂)ν

(K + K̂)2
+
KµK̂ν

K2
(B.8)

maps K̂ to K if K̂2 = K2. Therefore the boost we looked for is Λ(λrQ,Q− pr)µν .
Using the mapping defined above we can rewrite the m + 1 partonic phase

space in terms of the p̂i mapped momenta. The phase space for m+ 1 partons by
definition is

dΦm+1 =

(
m∏

i=1

ddpi
(2π)d−1

δ+(p2
i )

)
ddpr

(2π)d−1
δ+(p2

r)(2π)dδ(d)
(∑

i

pi + pr − pa − pb
)
.

(B.9)
Inserting the factors

∫
ddp̃iδ

(d)(p̃i − Λ(pi)) ,

∫
dλδ(λ− 1 + yrQ) , (B.10)

into the previous equation we get

dΦm+1 =

(
m∏

i=1

∫
ddp̃i

(2π)d−1
ddpiδ

(d)(Λ−1(p̃i)− pi)δ+(p2
i )

)

×
∫

dλδ(λ− 1 + yrQ)
ddpr

(2π)d−1
δ+(p2

r)(2π)dδ(d)
(∑

i

pi + pr − pa − pb
)

=

(
m∏

i=1

ddp̃i
(2π)d−1

δ+(p̃2
i )

)∫
dλδ(λ− 1 + yrQ)

ddpr
(2π)d−1

δ+(p2
r)

× (2π)dδ(d)
(∑

i

Λ−1(pi) + pr − pa − pb
)
,

(B.11)

where we used δ(d)(p̃i−Λ(pi)) = Jδ(d)(Λ−1(p̃i)−pi) with J = 1 for proper Lorentz-
transformation and we evaluated the ddpi integral.

The argument of the d-dimensional delta function in Eq. (B.11) can be rewrit-
ten as:
∑

i

Λ−1(pi) + pr − pa − pb = Λ−1(
∑

i

p̃i)− (Q− pr) = Λ−1
(∑

i

p̃i − Λ(Q− pr)
)
.

(B.12)



103

Using this we obtain

δ(d)

(
Λ−1

(∑

i

p̃i − Λ(Q− pr)
))

= Jδ(d)
(∑

i

p̃i − λQ
)
, with J = 1 . (B.13)

Therefore the m+ 1 particle phase space becomes

dΦm+1 =

∫ 1

0

dλ

(
m∏

i=1

ddp̃i
(2π)d−1

δ+(p̃2
i )

)
(2π)dδ(d)

(∑

i

p̃i − λQ
)

× ddpr
(2π)d−1

δ+(p2
r)δ(λ− λ̃r)Θ(λ)Θ(1− λ) .

(B.14)

The Θ functions comes from changing the integration borders of λ from (−∞,∞)
to (0, 1) since λ̃r is physically limited to (0, 1).

Defining the one particle unresolved phase space as

[
dp

(1)
1 (pa, pb, pr, λ)

]
≡ ddpr

(2π)d−1
δ+(p2

r)δ(λ− λ̃r)Θ(λ)Θ(1− λ) , (B.15)

the original m+ 1 phase space expressed in terms of the mapped momenta turns
into a convolution of the mappedm partonic and the one particle unresolved phase
space

dΦm+1 =

∫ 1

0

dλdΦm({p̃}, λQ)
[
dp

(1)
1 (pa, pb, pr, λ)

]
. (B.16)
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