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Chapter 1

Introduction

Molecules are composed of fast moving light electrons and slow moving heavy
nuclei. This fact was exploited by Born and Oppenheimer [1] who separated the
motion of fast electrons and slow nuclei in a quantum mechanical framework.
The Born-Oppenheimer (BO) adiabatic approximation represents one of the
cornerstones of molecular physics and chemistry. It allows the calculation of
dynamical processes in molecules to be divided into two stages. In the first
stage, the electronic problem is solved keeping the atomic nuclei fixed in space.
The calculation of electronic energies and wave functions for fixed nuclei has
been developed to a high degree of sophistication and constitutes the core of
modern quantum chemistry. In the second stage, the nuclear dynamics on a
given predetermined electronic potential energy surface (PES) is treated. The
BO approximation is frequently accurate enough to allow the detailed
understanding and prediction of molecular properties and processes.

Another class of important and interesting phenomena, which is the subject of
the present thesis, is associated with dynamical processes that are not confined
to a single electronic surface. The BO approximation [1,2] is based on the fact
that the spacings of electronic eigenvalues are generally large compared to
typical spacings associated with nuclear motion. When this condition is
violated, the so-called non-adiabatic coupling terms (NACTSs) cause transitions
between the adiabatic electronic states. In this case the fast-moving electrons
can create exceptionally large forces, causing the nuclei to be strongly
accelerated so that their velocities are no longer negligibly small. Thus the
NACTs allow for the motion of nuclei to move on coupled multiple adiabatic
electronic states. In this case in order to carry out an accurate treatment of the
nuclear dynamics of the system, we must replace the ordinary BO
approximation with the Born-Huang expansion [2], in which an arbitrary
number of electronic states can be included.

Their are a large class of chemically interesting processes, where the use of
the Born-Huang coupled nuclear motion Schrodinger equations are justified,
include for instance most of the photochemical reactions in the nature (i.e.
photodissociation in which a molecule breaks up after absorbing a photon, or
bound state photoabsorption when there is no reaction).



Indeed, at the exact position of degeneracy the energy gap between two
adjacent electronic states becomes zero and the NACTs consequently may
become infinitely large. Therefore molecular systems exhibiting degeneracies
especially require the multi-state Born-Huang treatment. For a polyatomic
system involving N atoms, where N>3 (i.e. for not diatomic molecules), any
two adjacent adiabatic electronic states can be degenerate for a set of nuclear
geometries even if those electronic states have the same symmetry [3]. These
intersections occur more frequently in such polyatomic systems [4] than it was
previously believed. The reason is that these systems possess three or more
internal nuclear motion degrees of freedom, and only two independent relations
between three electronic Hamiltonian matrix elements (in a simple two
electronic state picture) are sufficient for the existence of doubly degenerate
energy eigenvalues. As a result, these relations can be easily satisfied
explaining thereby the frequent occurrence of intersections [5-8]. If the lowest
order terms in the expansion of these elements in displacement away from the
intersection geometry are linear (as it is usually the case), these intersections are
conical, the most common type of intersection [3,9]. Longuet-Higgins revealed
an interesting topological fact related to a conical intersection (denoted by ci):
assuming the adiabatic electronic wave functions of the two interesting states to
be real and continuous as possible in nuclear coordinate space if the polyatomic
system is transported around a closed loop in that space (a so-called
pseudorotation) that encircles one conical intersection geometry, these
electronic wave functions must change sign [3,10]. This change of sign requires
the adiabatic nuclear wave functions to undergo a compensatory change of sign,
known as the geometric phase (GP) effect [11-14] to keep the total wave
function to be singe valued. Longuet-Higgins’ findings were not just curiosities,
they have profound effect on nuclear dynamics as was first pointed out by
Mead and Truhlar [13]. They introduced a vector potential in the nuclear
Schrédinger equation (SE) in order to ensure a single valued and continuous
total wave function. Since the effect was analogous to that of Aharonov and
Bohm (AB) [15], the name ,,molecular Aharonov-Bohm effect” (MAB) [13,16]
was proposed for this phenomenon. Kupperman and co-workers identified this
GP effect for the first time in a chemical reaction [17]. Their theoretically
calculated integral cross-sections agreed well with experimental data at
different energies [18]. The nuclear SE equation however, which describes well
the MAB effect, essentially remains a single-state Schrodinger equation, thus it
can not account for transitions between the electronic states, i.e. does not
interpret well the so-called non-adiabatic effects. Therefore we expect that in



order the solution for high energy processes to be correct, the nuclear SE
equations should include more excited states as well.

Briefly we can say that a conical intersection has a double role in chemical
processes: on one hand it imposes a given boundary condition on the nuclear
wave function (i.e. causing the GP effect), but on the other hand it couples
adjacent electronic states, thereby allowing the system to evolve non-
adiabatically, that is, in more than one electronic states. Certainly, as we have
written above, this last feature can not be treated within the MAB theory, it
needs a rigorous quantum formalism, the Born-Huang expansion, to treat the
polyatomic systems properly.

The Born-Huang picture is based on two basic concepts: the PESs and the
NACTs, and as we have seen these later coupling terms are spiky functions of
the coordinates (it has a pole in the exact point of degeneracy [19,20]),
therefore they cause numerical instabilities when solution of the corresponding
nuclear SE is attempted. The only way to overcome this numerical difficulty is
to move from the adiabatic Born-Huang framework to a diabatic one, where the
NACTs are replaced by potential coupling terms that are smooth functions of
the coordinates [21,22]. It can be achieved by a unitary transformation called
the adiabatic-to-diabatic transformation (ADT) matrix [23]. Baer suggested the
derivation of the ADT matrix for a tri-atom system by solving an integral
equation along a two-dimensional contour [24], in addition, sufficient
conditions were derived for the existence of the solution, which are termed the
“curl-conditions’. Recently, it has been proven that in order to produce a
uniquely defined diabatic potential matrix (the matrix of the diabatic
framework) from the NACTs, the ADT matrix has to fulfill quantization-type
requirements [25]. Both of the above conditions (the quantization and the curl)
are fulfilled when the eigenfunctions of the Born-Huang equations span a full
Hilbert space [24,25].

Summing up we can claim, that any molecular system which exhibits
conical intersection (which is not very rare, as it was revealed due to numerous
ab-initio calculations and presented e.g. for two systems in Chapter 2) and is
involved in non-adiabatic process, needs the diabatic framework for the proper
quantum mechanical treatment. In this way the ADT matrix has a key role in
any non-adiabatic process. In order to have an exact solution for the ADT (and
the existence of a strictly diabatic representation) all possible adiabatic states
should be included. Certainly it can not be accomplished as it would imply an
infinite dimensional ADT matrix, but the question arises whether we can relax
the conditions and thereby substantially decrease the number of states (to



N=2...5) to form a Hilbert subspace with a good approximation in a given
region of our interest.

We note that throughout the thesis we do not use the conventional meaning
of the Hilbert subspace. We use it in the case, when a group of states is
strongly coupled to itself and, at most, weakly coupled to other states belonging
to this manifold (in the region of interest), that is they are isolated well from
“the rest of the world”.

In Chapter 3 we represent very promising results about the possibility of
reducing the complete Hilbert space to a finite Hilbert subspace, both by
choosing a model system (based on the eigenfunctions of the Mathieu
equations) and a real molecular system (H+H;) for our numerical study. Since
conical intersection lies in the confluence of two adjacent PESs, it has a
dominant role in coupling these consecutive states, and therefore we expect that
these states must be involved in the Hilbert subspace. The results will support
our expectations and the ’quality’ of the corresponding Hilbert subspaces will
be tested both by the curl and quantization conditions.

However, by making friendly in size the ADT matrix we also need to gain
from ab-inito calculations all the relevant NACTs in the whole configuration
space (CS) of our interest in order to form the ADT matrix. Although nowadays
their exist standard quantum chemistry computer packages, such as MOLPRO
[26], and COLUMBUS [27,28] which calculate non-adiabatic coupling terms, it
is still a very time consuming task, therefore our intention was to represent a
model in Chapter 4 based on either a simple vector algebra or on certain field
equations to be solved, in order to obtain the NACTs in every desired point of
the nuclear configuration space. In the heart of the model lies the assumption
that the NACTs behave like ordinary vector fields created by sources which
have the positions of conical intersections (where NACTs become singular).
The vector-algebraic model is worked out for the two-state Hilbert subspace,
while the model generated by the field equations is an extension to the three-
state case.

Since we found in Chapter 3 that the number of N states which forms a
Hilbert subspace in a quite large region of CS could be N=2 with a good quality
(especially when all the degeneracies are coupling the same two adjacent states)
we felt interesting to study in Chapter 5 theoretically the diabatic representation
of a two-state system with the aim of earning insight regarding the distribution
of conical intersections in this region of CS. In this process we revealed explicit
relationship between the diabatic potentials and the locations of conical
intersections. The study is accompanied with numerical examples as worked
out for the ab-initio potential energy surfaces of the Na+H; system. The results



are very useful, since the positions and number of cis in a given region has a
great importance in any non-adiabatic process. This method can be considered
as a generalization of Longuet-Higgins’ topological test for intersections [10],
since our new method exhausts more topological information associated with
the behavior of the eigenvectors concerning the presence of degeneracies.
However, we have to note that our method in its present form can be applied
only for a two-level system, while Longuet-Higgins’ method is applicable for
system with any dimension of Hilbert space.

In Chapters 2-5 we mostly deal with problems concerning the time-
independent framework of the Born-Huang equations to study the NACTs, the
ADT matrix and the diabatic potentials in order to infer some essential features
of the above matrices regarding to the exact description of non-adiabatic
processes. In Chapter 6, however we analyze molecular systems from an other
point of view, namely via a semi-classical framework: we assume that one of
the nuclear components of the molecular system is guided by an external
potential of the electromagnetic field. This potential forces the two parts of the
molecule to revolve with respect to one an other, and thus inducing transitions
with some oscillating probabilities to other states regarded to the initial one.
The above description of the situation is exactly the context where the use of
Berry’s phase [14] is justified: ”The phase that can be acquired by a state
moving adiabatically (slowly) around a closed path in the parameter space of
the system”. Macroscopic physical manifestations of this type of situation from
other area of physics may be found in the Aharonov-Bohm effect [15], or in
nuclear magnetic resonance (NMR) systems subject to slowly rotating magnetic
fields [29], or it has been investigated for neutron spin [30] and photons [31], as
well. In Chapter 6 we study the implementation of the Berry approach [14]
within the Born-Oppenheimer molecular systems as we described it previously.
We reveal relation between the Berry phase and the elements of the final ADT-
matrix (at the end of the closed trip in the configuration space) in the adiabatic
limit. Based upon Pancharatnam’s work [32], who has introduced already in
1956 the concept of geometric phase in his studies of interference effects of
polarized light waves, Samuel and Bhandari [33] introduced the notion of open-
path geometric phases, which phase can be applied for a non-cyclic and non-
adiabatic evolution. We extend the study to deal with this situation as well, and
will find further interesting connections between the open-path phase and the
elements of the ADT. This theoretical study will be supported by a detailed
numerical study carried out for the (Na+H;) system.

The plan of this thesis is as follows.



In Chapter 2 we introduce the Born-Huang formalism together with a brief
theoretical background of the non-adiabatic coupling terms. We also represent
the two molecular systems (Na+H;) and (H+H;), which are subject of the
numerical studies.

Chapter 3 is devoted to the subject that in what extent the relevant group of
states forms a Hilbert subspace in a polyatomic system in a given region of
configuration space.

In Chapter 4 we develop a model to calculate the non-adiabatic coupling
terms, based either on a simple vector algebra in the two-state Hilbert subspace,
or on the ’curl-divergency’ field equations in the three-state Hilbert subspace.

In Chapter 5 a method is discussed which reveals explicit connection
between the diabatic potentials and the locations of conical intersections.

In Chapter 6 we study the implementation of the geometric phase within
Born-Oppenheimer molecular systems in a semi-classical framework.

A summary of the new results are presented in Chapter 7.



Chapter 2

The Theoretical and Numerical Background

In this chapter we give a brief overview of the theory of the non-adiabatic
coupling terms (Sec. 2.1) and review (Sec. 2.2) the ab-initio treatment to obtain
these terms. In addition we represent the (Na+H;) and (H+H,) molecular
systems, which are the subject of the numerial studies in the forthcoming
chapters.

2.1 Study of the non-adiabatic coupling terms

The starting point for the theory of molecular dynamics and the basis for most
theoretical chemistry is the separation of the nuclear and electronic motion. In
the standard, adiabatic Born-Huang [2] picture this leads to the concept of
nuclei moving over PESs corresponding to the electronic states of a system.

In its Cartesian form, the Hamiltonian can be written

H(r,R)=T,(R)+ H,(R,r) (2.1)

where f"n is the nuclear kinetic energy operator and can be written in terms of
2

mass-scaled coordinates as 7, :2—hV2, where m is the mass of the system,
m

H,is the clamped nucleus electronic Hamiltonian which depends

parametrically on the nuclear coordinates, and »,R stand for the electronic and
nuclear coordinates, respectively.
Next we employ the BO expansion:

T(R,r)&l%(m;(m), 22)

where | l.(R)}f\il are the nuclear wave functions and ﬂé’ i(R)>};V1are the

electronic eigenfunctions of the electronic Hamiltonian:
Hoy(r|R)S;(r| R)=u;(R)S; (| R) (2.3)
Inserting the expansion Eq. (2.2) into the Schrodinger equation (SE) Eq. (2.1)

and after some algebraic manipulation of the resulting equation we arrive at the
coupled equations of the Born-Huang system in a matrix form:



— hz 2 hz (2)

—VY+u-EW-—\21V+1 =0 2.4
2m ( ) Zm( >XI 24
where ¥ is the column vector that contains nuclear functions § i(R)}fil ,uisa
diagonal matrix which contains the adiabatic potentials (PES), T is the non-

adiabatic (vector) matrix (NACT) with elements: T, = <{; ,~ ‘V( />, and 7 is the

second order (scalar) matrix with elementsz'sz) :<§i

V2§ j>. We note that

throughout the thesis the terms T matrix and the NACT matrix will be used
interchangeable expressing the same matrix.

It is important to emphasize that Eq. (2.4) is valid for any group of states.
Next we consider a group of N states (out of an infinite Hilbert space). The
breakup of the Hilbert space is done according to the criteria [34] |r;=0 for
i<N; j>M. In other words the NACTs between states that belong to the group
and those outside the group are all assumed to be negligibly small. If this
breakup takes place at every point in a given region we say that the N states
form a Hilbert subspace in this region.

If the group of states forms an isolated Hilbert subspace according to the
above definition then, and only then, Eq. (2.4) takes a simple form [34]:

2
L v R ) 2.5)
2m
N
i=1
P =124V, (2.6)
The NACT matrix elements t; can be evaluated analytically with the
knowledge of the |§’ l-(R)> adiabatic electronic eigenfunctions, using an off-

where we used the fact that in case of a full orthonormal set of ﬂ{ ; (R)>}

diagonal form of the Hellmann-Feynman theorem [35-37]

(& |H,¢, ¢\ Ja¢, oA,
%=<§i 8_R>+<8_R §/>+<§,~ oR

As ﬂ( i(R»};il are eigenvectors of H ,at all values of R, the lhs. of Eq. (2.7)

reduces to zero (when i#j), and finally with some algebraic operations we
obtain

1
T, = <é,z
’ l/lj —u[

A

H

el

A

H

el

;,>. 2.7)

oH
OR

;j>. (2.8)



Thus it is well noticed that when the ith and i+/th eigenvalues (between two
consequtive pairs) become degenerate the corresponding T matrix element i.e.
Tii+1 becomes singular. However, we have to realize that for molecular systems
that contain singular NACTs, Eq. (2.5) can not be solved because of the non-
analytic feature of the NACTs and therefore is of no practical use. Eq. (2.5) is
known as the nuclear SE within the adiabatic framework. Now our aim is to
eliminate the unpleasant singular NACTs from Eq. (2.5) by transforming to the
diabatic framework, and for this purpose we perform the following
transformation:

Y=AD, (2.9)
The matrix A is termed the adiabatic-to-diabatic transformation (ADT) matrix,
because of its fundamental role in transforming between the two frameworks.
Our next step is to obtain the A matrix, which is yet undetermined. Substituting
Eq. (2.9) into Eq. (2.5) then performing the usual algebra, and demanding the
elimination of the T matrix, yields the following results:

The new, diabatic SE is

2

—2h Vo +(W-E) =0, (2.102)

m
and the corresponding diabatic Hamiltonian is
Hyo=Ty+W, (2.10b)
where the diabatic potential is given in the following form:
W=A"uA, (2.11)
and the matrix A is a solution of the following first order differential equation:
VA+1A=0 (2.12)

In order to have a solution for the ADT matrix in Eq. (2.12), it is a
sufficient condition for A to be analytic, which implies that the ‘curl condition’
has to be fulfilled for the NACTs [24]: Introduce the matrix F, defined as

0 0
. _i_[rp’rq]’ (2.13)

T
Pq aq
where p and ¢ are two nuclear Cartesian coordinates, in the case the group of
states forms an isolated Hilbert subspace, according to the ‘curl condition” F=0
must be satisfied at every point in the configuration space. Writing F in a more
compact way, this means
F:curl‘r—[‘rx‘r]zO. (2.14)
In summary we can say, that the adiabatic framework (described by Eq.
(2.5)) is the standard one in quantum chemistry for the reason, that it is the one
which is used in ab-initio calculations, i.e. which solves the electronic



Hamiltonian at a particular nuclear geometry. In this case the full information
about the nuclear dynamics is carried by the adiabatic potential energy surfaces
(i.e. the u matrix) and the non-adiabatic coupling operator matrix (i.e the 7
matrix). However, in the diabatic framework (defined by Eq. (2.10a-b)) the
electronic wave functions are no longer eigenfunctions of the electronic
Hamiltonian. The aim is instead that the functions are so chosen that the
nonlocal T matrix elements, and the couplings are represented by local potential
operators, the so-called diabatic potential matrix W.

Since the elements of the diabatic PES matrix are smooth functions of the
coordinates in contrast to the NACTs, the diabatic framework is preferred for
treating the nuclear dynamics of the nuclei, and all rigorous quantum-
mechanical treatments aim at reaching it.

An elegant way to gain the diabatic potential W can be accomplished
through Eq. (2.11). In this indirect way we derive for each point in the
configuration space the adiabatic electronic eigenfunctions to calculate the
NACTs and the corresponding electronic eigenvalues. Then with the knowledge
of T we solve Eq. (2.12) for the matrix A, and substitution to Eq. (2.11) yields
the diabatic potential W. In order to calculate A at a given point R, we have to
assume a contour I' that connects the point R and the starting point Ry, and
solve Eq. (2.12) along this contour. The solution is given in the form [38]:

R
A(R,R,)=Pexp| - | rdRJA(RO), (2.15)

Ry
where Pis the path ordering operator, and A(R,) is a matrix that contains

boundary values. Closing the contour in Eq. (2.15) leads to the matrix D(F ),
namely

AR =Ry,Ry)=D(T)= Isexp(— ﬁ_‘rde _ (2.16)

Now our aim is to find a connection between the elements of the matrix
D(F)and the electronic eigenfunctions which are parallel transported on the

particular closed contour I'. To form the connection between two nearby Hilbert
spaces we consider the kth electronic ket |§ f (R)> (defined by Eq. (2.3)) at the

point R+4R:
|§k(R+AR)>:Z|§k(R)>(5ki+ARTik)- (2.17)

10



The previous equation is merely a first order expansion in R and is always
fulfilled if the set ﬂ{ ,{(R)>}?il forms a complete basis. Using Eq. (2.17) we can

write in general a displacement of the basis at Ry to R:
N

S (R) =D A" (RR,),,,|S. (R, ) (2.18)
m=1

where the numerical matrix is defined by

A’(R,R,))= Pexp[— frdRJ . (2.19)

Ry

Comparing the expression forA*(R,RO)in the above equation with the
expression for A(R,RO) in Eq. (2.15), we can realize that choosing as a
boundary A(RO): I1in Eq. (2.15) entails

A*(R,R))=A(R,R,). (2.20)
Thus closing the contour, and applying Eq. (2.18) leads to
S(r| R, IT)=D()S(r|R,), 2.21)

where { denotes the vector formed by {lé’ k>}ilil’ and I' is the particular closed
contour. This D-matrix plays an important role in the theory because it contains
all topological features of an electronic manifold in a region surrounded by the
contour I as it can be inferred from the definition contained by Eq. (2.21):

the D-matrix is diagonal and has in its diagonal numbers of norm 1. Since we
consider only real electronic eigenfunctions these numbers can be either (+1)s
or (-1)s. Moreover, the positions of the (-1)s are associated with the electronic
eigenfunctions that flip their sign.

Let us simplify our treatment and examine the two-state case. For a system
of real Hamiltonian 7 is a real, antisymmetric matrix, thus in the two-state case
the NACT matrix has one nonzero term T,=T;, and for this case one can
evaluate analytically the ordered exponential in Eq. (2.16), and yields the
following D-matrix [39]:

Ccos 3Er 1,(R)dR  sin §r 7,,(R)dR

- —siniﬁr‘ru(R)dR cosii;r‘rlz(R)dR (222)

Next we refer to the requirements to be fulfilled by the matrix D, that it is
diagonal and that it has in the diagonal numbers which are of norm 1. In order
for that happen the vector function 7,;(R) has to fulfill along a given closed path
I' the condition [25,39]:
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§7,(R)IR = n7. (2.23)

where n is an integer. Eq. (2.23) is a quantization condition on the matrix
element 112. We note that this condition must be always fulfilled whenever the
dimension of Hilbert subspace in the region encircled by the contour I' can be
considered N=2. However, excluding singularities of the NACTs the curl
condition for two-state case in Eq. (2.14) becomes curlt,, =0, which entails,

by applying Stokes’ theorem, that as a special case n=0 in Eq. (2.23).

2.2 Numerical details of H+H, and Na+H,

In the preceding section the theory required to study non-adiabatic effects on
molecular systems has been outlined. Now, we give a brief overview in
subsection (2.2.1) about the details of the ab-initio treatments, and discuss in
subsection (2.2.2) the positions of the various conical intersections in the two
tri-atomic systems the H+H; and Na+H, under investigation.

2.2.1 The ab-initio calculations

At present the best general methods for the treatment of polyatomic molecules
are the MCSCF methods, of which the CASSCF method is particularly
powerful. The MCSCF methods describe a wave function by a linear
combination of M configuration state functions (CSFs), @, with CI
coefficients, Cy,

¢(r)= fckqak . (2.24)

In practice each CSF is a Slater determinant of molecular orbitals, which are
divided into three types: inactive (doubly occupied), virtual (unoccupied), and
active (variable occupancy). The active orbitals are used to build up the various
CSFs, and so introduce flexibility into the wave function by including
configurations that can describe different situations. Approximate electronic
wave functions are then provided by the eigenfunctions of the electronic
Hamiltonian in the CSF basis. This contrasts to the standard HF theory in which
only a single determinant is used without active orbitals. The MCSCF method
then optimizes both the molecular orbitals, represented as usual in SCF
calculations by linear combinations of atomic orbitals (LCAO), and the CI
expansion coefficients to obtain the variational wave function for one state. The
optimization of the orbitals for a particular state, however, will not converge if
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a degeneracy, or a near degeneracy of states is present, as the wave function
will have problems following a single state. To overcome this, state-averaged
orbitals (SA-MCSCF) must be used [40,41]. In this case rather than optimizing
a single eigenvalue of the Hamiltonian matrix, an averaged energy function is
used so that the orbitals describe all the states of interest simultaneously to the
same accuracy. The strength and weakness of the method comes from the fact
that the orbitals involved in a particular process must be selected and included
in the captive space. Only the important orbitals are used, so accurate
calculations can be made relatively cheaply. If the active space is however,
badly chosen, this may lead to qualitatively incorrect results due to imbalances
in the basis set. Using MCSCF methods it is also possible to obtain the non-
adiabatic coupling terms using analytic procedures [41]. SA-MCSCF must
again be used in the calculation of the NACTs, as the functions for the two
states must be described to the same level of accuracy.

In the actual calculations the non-adiabatic coupling terms were calculated
employing the analytical gradient technique of the MOLPRO [40] program for
state averaged CASSCF wave functions. In both systems (H+H, and Na+H,)
the ab-initio calculations were carried out at the state-averaged CASSCF level
with the 6-311G"" basis set.

(1) In the H+H, system the basis set was extended with additional diffuse
functions. In order properly to take into account the Rydberg states it was added
to the basis set one s and one p diffuse function in an even tempered manner,
with exponents of 0.0121424 and 0.046875, respectively. The active space
included all three electrons distributed over nine orbitals. Usually five different
electronic states (depending on the case), namely, 1 °A’, 2 °A”, 3 °A’, 4 A’ and
5 A’ were computed by the state-averaged CASSCF method with equal
weights.

(i) In the Na+H, system we used the active space including all three
valence electrons distributed on 16 orbitals. Seven electronic states, including
the four studied states were computed with equal weights.

2.2.2 Revealing the position of conical intersections

Now we are particularly interested in both molecular systems of the position of
the conical intersections (cis), i.e. the points in the two-dimensional
configuration space where at least two adjacent states (j) and (j+1) become
degenerate. In order to reveal the position of cis in an unexplored system we
have to allow only two nuclear coordinates to be varied, and the rest must be
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frozen (unless the cis are not points but higher dimensional objects).
Throughout this work we merely deal with tri-atomic molecular systems, and
the nuclear configuration space we treat is formed by fixing the distances of
two (out of three) atoms and let the third atom move freely on this surface of
CS. Thus the third atom determines a plane with polar coordinates (q,¢) which
at the same time serves as a test-particle to search for cis. These conical
intersections can be explored on several ways, below we give a list of them:

(a) It can be called direct way [5], since cis are found by tracing the energy
gaps between particular states, and in this way assigning the points at which
two (or more) adiabatic states (surfaces) become degenerate. This method may
miss an existing ci or define a situation of an ”almost” degeneracy, as a ci, due
to the numerical inaccuracy in computing the potential energy surfaces.

The other methods are called topological ones, since we exploit the
topological nature of the cis:

(b) It was pointed out by Longuet-Higgins et al. that when an electronic
wave function is parallel-transported along a closed path around a conical
intersection of a PES, the sign of the wave function is changed [3]. Longuet-
Higgins also proved that when an electronic wave function changes sign after a
circular transportation along a loop in the atomic configuration space, there
must be a conical intersection within the loop [10]. We apply this theorem here
to locate conical intersections via inspecting the diagonal elements of the
topological D-matrix. Since we noticed in section (2.1) that the possible -1/+1
values are directly associated with the adiabatic eigenfunctions flipping/non-
flipping signs when traversing the contour I', we can state that when denoting
with n;j the number of cis involving state j contained in the closed loop I' entails
that

D, =(-1)" (2.25)

J
This method requires a group of N states (denoting by N the dimension of the
D-matrix) isolated from the rest, i.e. the number of N states must form a Hilbert
subspace, otherwise the diagonal elements of D will be not exactly +1.
Certainly this method can be applied as well when D, ==1only with a good

approximation, which usually can be guaranteed in many circumstances, for
instance by increasing the number of states to form the D-matrix (a topic which
will be accounted for in Chapter 3). A drawback of the Longuet-Higgins’
topological approach related to search for intersections in a given region, that
when each state involves even number of cis, according to Eq. (2.25) the
method is not capable to signal degeneracies inside the loop.
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(c) The problem with the above method can be partialy circumvented by
observing the off-diagonal form of the Hellmann-Feynman theorem in Eq.
(2.8). In the case of a conical degeneracy between states j and j+1 the numerator
in Eq. (2.8) is nonvanishing thus the element 7j;+; has a pole. This means (using

first order perturbation theroy) that close to the intersection “r

1
1| € —» where r
! r

denotes the distance from the point of intersection. Therefore in our case when
the test particle, namely the Hydrogen atom is relatively close to the degenerate
point (between j and j+1 states) the amplitude of the corresponding Tj;+1 element
becomes very large indicating a degeneracy in the neighborhood of the moving
Hydrogen’s actual position.

Summing up the features of the above (a)-(c) methods we can notice that in
a real situation when there is no previous information about the topology of cis
in a molecular system, the best working method seams to be a combination of
the above mentioned ones.

In the following we describe the revealed cis in each molecular system. We
introduce a new notation by designating a ci between the j and j+1 states as
(j,jt+1) ci. The following findings about the position of the various cis of the
H+H, and Na+H, systems have been revealed in subsequent publications of
Ref. [5,7] and paper L.

(1) The H+H, is characterized by the fact that its three lowest states namely,
the 1°A", the 2’A" and the 3”A’ states are strongly coupled to each other. In
general the type of coupling terms that dominate the interaction between the
three states depends on the nuclear configuration [7]. Here we limit ourselves to
a situation where two hydrogen atoms are at a (fixed) distance Ry = 0.74 A.In
this situation the two lower states of the H+H, system are coupled by an
equilateral (1,2) ci, labeled as a Ds, ¢i and the second and the third states are
coupled by two C,y, cis formed by the corresponding isosceles triangles. These
two (2,3) cis, sometimes termed as twin cis, are located on the two sides of the
line that combines the center-of-mass of the two bonded hydrogens and the
third (loose) hydrogen (see the schematic geometry in Fig. 2.1a).

(i1) In the Na+H, we are interested again in a situation where the distance
between the two hydrogens is fixed and in this case assumed to be 2.18 a.u. and
the sodium is allowed to move freely (in the plane). In Fig. 2.1b are shown the
positions of the various cis. It was found in paper I. that the (1,2) ci is a Cyy ci
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located on the symmetry line orthogonal to the HH axis, the (2,3) cis are Cyy cis
located on the HH axis, and out of the four (3.,4) cis two of them are C,, cis
located on the symmetry line orthogonal to the HH axis, at a distance of
r~1.145a.u. and 1.580a.u. from the HH axis and two C, twin cis located on both
sides of the just mentioned symmetry line at a distance of r = 1.533a.u. from the
HH axis and at an angle of 12.2° off this symmetry line.

| |
A%
L 2 ¢ A
. ................................ ' .
H H H H

(a) (b)
Figure 2.1: Positions of the various conical intersections: (1,2), (2,3) and (3,4) cis are

labeled with markers m,®, A, respectively. Subfigure (a) shows the topology of the
H-+H; system, while (b) shows the Na+H, system
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Chapter 3

The Quantization and the Curl Condition

In this chapter we study two features of the non-adiabatic coupling matrix T,
namely:

(i) its components fulfill the curl condition, ie. according to Eq. (2.14) the F-
matrix is a zero matrix.

(ii) it is quantized in the sense that the D-matrix presented in Eq. (2.16) is an
orthogonal diagonal matrix.

These conditions are satisfied when the group of states forms a complete
Hilbert space. However the validity of these conditions can be extended for
group of states which do not form a Hilbert space but in the region of interest
are well isolated from “the rest of the world”. The case (ii) can be derived from
Eq. (2.17) as it is intuitively clear that Eq. (2.17) is valid only when all possible
adiabatic states of the isolated Hilbert subspace are included.

It is known from perturbation theory [42] that a region surrounding a ci can
always be made small enough so that the 2x2 D-matrix (see Eq. 2.22) is an
orthogonal diagonal matrix which implies that the two relevant states form a
Hilbert subspace in this small region [8,43]. However when we extend the

region round the ci, the 2x2 D-matrix is no longer quantized (i.e. it does not
fulfill (i1)), and we have to extend the number of states and add an other state to

form a 3x3 D-matrix which will be quantized again. Thus it seems that the

larger the region the more states are required in order to make the relevant D-
matrix diagonal. Certainly we expect the same feature from the F-matrix, as
well. This chapter and the corresponding II and III papers are devoted to this
subject.

Section (3.1) is based on the paper II. We preview the main principles of
the study concerning a model system based on the Mathieu equation. Then we
discuss the feature (i) namely the fulfillment of the curl condition in subsection
(3.1.1), and quantization condition (ii) in subsection (3.1.2). Section (3.2) is
based upon paper III, which deals again with feature (i), ie. the quantization
condition for the D-matrix in the H+H, realistic system.
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3.1 The model system

The idea was to consider for this purpose a simple model for which the
‘electronic’ eigenstates can be easily produced and particularly the following
relations can be studied quantitatively: (1) for a given value of N (where N is
the dimension of the matrix ), increasing the region of configuration space A
how the fulfillment of the above quantization and curl conditions are harmed);
(2) to what extent the increase of N for a given region A improves the
fulfillment of the above conditions.

Based on previous experiences [44,45] we chose for this task the Mathieu
equation. This equation is characterized by one electronic coordinate (0) and
two nuclear coordinates (q,0):

2
(—%Eel 6‘%—chos(ze—¢)—uj(q,¢)]43(9 |4,4)=0. 3.1)
Here E, is a characteristic electronic quantity, uj(q,¢) and &;(6|q,$) are the j-th
eigenvalue and eigenfunction, respectively, which parametrically depend on the
nuclear coordinates. The term, that couples the electronic and the nuclear
motions and depends on all three of them, is written in the present application
as a product kqcos(20-¢) which yields NACTs that are independent of the polar
coordinate, ¢ - a fact which simplifies, significantly, the numerical treatment.
Next we introduce a new parameter, x defined as:

x=q(k/E,) (3.2)

In this notation the nuclear coordinate x is directly associated with the size of
the region A. Now we do not follow in detail on which way we solve Eq. (3.1)
numerically, and how we obtain the NACTs and finally the two relevant matrix
F and D (it is quite straightforward and can be find in the paper II). We merely
show some final useful results coming from the treatment of the model.

3.1.1 Study of the D-matrix

The study of the D-dependence on x and N i.e. D(N,x), is presented in terms of
the diagonal elements of the D-matrix, namely, Dj; {j=1,N}. Note, that since

the matrix elements of T do not depend on ¢, this also applies to the D-matrix.
In the converged case (namely, the case for which the group of N states forms a
Hilbert subspace in the circular region defined by x) we expect these diagonal
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elements to be -1 for our particular model when N is an even number.
Therefore, for a given N and x, a significant deviation of a diagonal term from
-1 implies that within the region defined by x the considered N states do not
form a Hilbert subspace. We observed in all cases, that the last diagonal
element along the diagonal, namely, Dan(N,x), shows, as x increases, the
largest deviations from -1.0.

1.0

O<eo
Mob oMM o
®

@B

0.0

The (N,N) element of the matrix D(N,x)

2 4 6 8 10 12 14 16
Matrix dimension N

Figure 3.1: Highest diagonal elements Dji(N,x), calculated as functions of N for various
x values.

Thus we present in Fig. 3.1 the Dyn(N,x)-matrix elements as functions of
N for different x-values. It is noticed that the various Dxn(N,x) curves decay
asymptotically towards the value -1 as N increases but the rate of decay
becomes slower the larger is x (i.e. the larger is the region in the configuration
space). Thus it is noticed that e.g. at x=4 the rate of decay is very fast (all
diagonal elements for N > 4 are already -1.0) but for x=16 the rate of decay is
so slow that we reach the value of -1.0 only when N> 16. In summary, we
showed here that the more extended is the region in the configuration space the
larger is the required size of a set of states in order to be able to become a
Hilbert subspace.

3.1.2 Study of the F-matrix

According to Eq. (2.14) the F-matrix can be written in the following form:
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F = curlt — [17 X 17]- (3.3)

With the aid of the numerically computed eigenfunctions C;(0|q,) we
calculate the NACT terms and then produce the F-matrix elements as well. In
Figs. 3.2 are presented the off-diagonal elements of the F-matrix (note the
logarithmic scales along both axes): in Fig. 3.2a are shown the results for x=1
and in Fig. 3.2b for x=10. The interesting aspect of this study is the very fast
decay of most of these matrix elements with N and the fact that they decrease to
such small values as 107'°. The only exception is the last off-diagonal element

Fx.in(x) which decreases with N but in a very slow rate.
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Figure 3.2: Off-diagonal matrix elements Fj(N,x) calculated as a function of N for two
x values. (a) x=1.0; (b) x=10.0.
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Comparing the results for x=1 and x=10 it is noticed that in both cases the
various values decrease to ~107'" but in case of x=1 the rate of decrease is
faster. The reason is that it is easier for a given group of states to become a
Hilbert subspace the smaller is the x-value, namely the smaller is the region
surrounding the ci(s).

This feature is even better seen in Fig. 3.3 where are presented the same F—
matrix elements but as a function of x calculated for a fixed value of N (=8).
The results in this figure just support what is claimed in the previous paragraph
namely that these matrix elements tend to increase as a function of x (when
calculated for a fixed N-value).

1

107
w 107
=

3
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B
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M 1w*
= T
"5 10°
g 10°®
T

10—10

10-11 e "

2 5 10l 2 5 1 2 5 10 2
x=q-(k/Ey)

Figure 3.3: Off-diagonal matrix elements Fj(N,x) calculated as a function of x for
N=S8.

In summary: we showed here (just as in the case of the study of the D-
matrix) that the more extended is the region in the configuration space the
larger is the required size of a set of states in order to be able to become a
Hilbert subspace. In addition we found that the convergence toward a Hilbert
subspace is relatively fast (both with respect to the analysis of the D and F
matrices).
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3.2 The topological D-matrix: the numerical study of the
H+H, system

We report here results according to paper IIl. The geometry and the details of
the ab-initio calculations are described in section (2.2). Four circular contours
are considered for calculating the NACTs; three of them centered at the Dsp
point and with the radii g=0.3, 0.4, 0.5 A and the fourth centered at 0.25 A
further away from the HH axis (thus, at a distance of 0.89A from the HH axis
along the symmetry line) with a radius q=0.65A. In Fig. 3.4 are presented
schematically the positions of the various cis, the circular contours and the ten
¢-dependent NACTs, namely, Tyix(0|q); j.k=1,2,3,4,5 as calculated along the
various circles. It is important to mention that the points (q,p=0) and (q,p=m)
are the 'northern' and the 'southern' poles, respectively, both located on the
symmetry line. The various figures and mainly a, d, g and j indicate that most of
the 'action' takes place around ¢ = m, the point closest to the HH axis.
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Figure 3.4: Angular non-adiabatic coupling terms, T,ij(¢|q); 1<], as calculated for the
H+H, system for Rypy=0.74 A
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The figures essentially speak for themselves, here we emphasize the large
values that are attached to the three adjacent elements Tyj+1; j=1,2,4, as
compared to T34 as well as to all the off-tridiagonal (non-adjacent) elements

Tyik Where k>j+1 (note the different scales of the sub-figures in the two lower
rows as compared to the scale of the sub-figures of the upper row). The only

exception is Tei3 which is relatively large. The reason is attributed to the
strongly overlapping (1,2) and (2,3) cis which are, essentially, the ones to

produce the values T3 (see discussion on this subject in Ref. [46]).

Table 3.1 The diagonal elements of the topological D-matrix as a function of N,
calculated for contours with different radius (q).

N |- 3 4 5
q/A
Dy -0.986 -0.810 -0.995
Dy, -0.986 -0.996 -0.996
0.3 D33 +1.000 | +0.984 +0.999
Dy - -0.798 -0.991
Dss - - -0.990
Dy, -0.966 -0.714 -0.992
Dy, -0.966 -0.993 -0.991
0.4 D3s; +0.999 | +0.963 +0.997
Dy - -0.684 -0.931
Dss - - -0.925
Dy, -0.940 -0.629 -0.986
Dy, -0.938 -0.990 -0.985
0.5 D33 +0.999 | +0.936 +0.993
Dy - -0.576 -0.931
Dss - - -0.925
Dy, -0.935 -0.614 -0.982
Dy, -0.921 -0.995 -0.982
0.65 D33 +0.986 | +0.674 +0.987
Dyy - -0.293 -0.974
Dss - - -0.961
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The various diagonal elements of the D-matrix, namely Dji(q); j=1,..N as
calculated for different N-values (i.e. different sizes of Hilbert subspaces) and
different circles (expressed in terms of g-values) are presented in Tables 3.1.
The results in the table indicate the existence of one (1,2) ci, two (2,3) cis and
one (4,5) ci in the configuration space: to demonstrate it, let us choose the
diagonals of the D-matrix by q=0.3 A and N=5. Since the contour related to
this situation surrounds all the conical intersections (see the geometry which
corresponds to the circle g=0.3 A in Fig. 3.4), applying the formula of Eq.
(2.25) we obtain the pattern (-1,-1,+1,-1,-1), namely, only the central wave
function does not change sign, which is in agreement with the corresponding
Dj; elements.

It is also noticed that adding a fourth state to the three-state Hilbert
subspace causes the relevant diagonal D-matrix elements to distance
themselves from the expected +1values (Cf. values along the N=3 column and
along the N=4 column). The main reason is that in contrast to the three lower
states that form a Hilbert subspace the four states do not form a Hilbert
subspace and adding the fourth state only increases the background noise

(formed by terms like T4 and T14). However the extension of the four states to
five states improves the situation significantly. This is well noticed by
inspecting the five diagonal elements of the D-matrix as presented in the last
column (i.e. N=5). This addition not only improved the four-state D-matrix

numbers but even the three-state D-matrix numbers became much closer to +1.
The above results clearly indicate that adding states of a 'nearby' Hilbert
subspace does not necessarily improve the quantization unless one adds a
complete nearby Hilbert subspace.
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Chapter 4

Field Theoretical Approaches to Calculate
Electronic Non-adiabatic Coupling Terms

As it turned out in the previous chapters, the singularity of the NACTs at the
position of the conical intersection adds a new dimension in the study of
molecular processes. Being singular, hints towards the possibility that the
NACTs are a kind of a field that has its origin at these singular points [46,47]
which produce non-local effects. The intriguing idea to categorize the
singularity points of the NACTs as sources for a field is somewhat reminiscent
of the fields produced by charged particles (electrons, protons etc.) and the
spatial distribution of the NACTs as the spatial intensity of the field. The aim of
this chapter is to show, applying ab-initio calculations, that a theory of this kind
is plausible. In section (4.1) a model is represented for a two-state system,
which is based on simple vector algebra, while in section (4.2) we apply ‘curl-
divergency’ equations for the three-state system to calculate the NACTs in
every desired point of its CS.

4.1. An algebraic-vectorial approach to obtain non-
adiabatic coupling field from conical intersections

From now on in this section we concentrate on the two-state systems. The two
‘axiomatic’ conditions for any molecular system of real Hamiltonian, as we saw
in the previous chapter, are the curl condition and the quantization condition.
For a two-state Hilbert space these conditions look as follows:

curlt =0, 4.1)
as the expression [t x t]in Eq. (2.14) by two-level case vanishes.
§r(R)R = nx (4.2)

which is exactly the Equation (2.23) without the index of 1, as here the NACT
matrix has only one nonzero element.

However, from Eq. (4.1) and subsequently from Stokes’ theorem follows, that
the path integral of T, when T is an analytic function, i.e. not enclosing a
singularity (namely a ci), must vanish. Thus when we encounter a ci, at this
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particular point of the configuration space, Eq. (4.1) is not valid, we have to
modify it on the following way:

curlt =2nf ((p)? , (4.3)

where the position of the c¢i was supposed to be at the origin of the coordinate
system, (q,¢) are polar coordinates, 6(q) is the Dirac delta function and f(o) is
some function of the angle ¢ chosen in such a way to satisfy the condition,
given by

[flp)o=nz. (4.4)

In what follows f(¢) is defined as the virgin angular component related to a
given ci. Now Eq. (4.3) with the additional condition in Eq. (4.4) is equivalent
with the fulfillment of the curl and quantization conditions in Eq. (4.1-2). In this
case after some algebra we obtain that

7,(q~0,0)=f(p). (4.5)

Since the above pair of Equations (4.1-2) are too general to be solved now we
have to apply our model assumption, namely that the virgin radial component,

Tq(9,q) is always identically zero. Also numerical studies show that Tq(q) is
finite as q—0 and is orders of magnitude smaller than To(9)/q (in this region),
therefore we hope that the model will describe quite well the real molecular T
field. Consequently, when we encounter one single ci in the origin of the (q,o)
configuration space, the components of the model T field read as follows:

1,(q.0)= (), (4.6a)
1,(¢.0)=0. (4.6b)

Next we consider the situation where the two states form several cis. In this
case, just like in case of electric fields, because of the linearity of the curl
equation, vector-algebra can be employed to add up the contributions of the
various cis to obtain the resultant intensity of the field at an arbitrary given
point. Let us attach to each ci a different f{(¢)-function, i.e. fj(p;) to indicate that
each such a ci may form a different virgin distribution.

The components of the model T field are given by the following formulas
[46,47]:
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N

Tq(q,(p)= _ij(wj)LSin((o_@j)

/! ’ (4.7)
t,(9.0)= Qij((Dj)L.COS((p_goj)
j=1 qj

where q and ¢ are primary coordinates, q; and ¢; are coordinates related to the
position of the j-th ci. Eq. (4.7) can be proved to satisfy Eq. (4.1) and Eq. (4.2)
provided that the functions fi(¢;) fulfill the conditions

[ 1o Mp=nz. @8

Thus Eq. (4.7) yields the two components of T(q,¢), for a distribution of
two-state cis expressed in terms of the virgin distributions of the NACTs at
their own cis. These functions (i.e. the virgin distributions fj(¢;)) have to be
obtained from ab-initio treatments; however the entire field is formed by Eq.
(4.7). Next we apply this model for the third and the fourth states of the Na+H,
system. In this case we have four cis and we sum up the contributions of all of
them (employing Eq. (4.7)) and compare with ab-inito calculations.

Fig. 4.1. The four (3,4) conical intersections of the Na+H, system labeled by A. The
three co-centric circles denoted by (1),(2),(3) with their centers at O(0,0) surrounding
different number of conical intersections and the circle (4) with its center at O(0,-
0.135a.u.) surrounding the two conical intersections located on the symmetry line.

27



The main findings for our present purpose are that the third and the fourth
states form a quasi two-state Hilbert subspace coupled by the four (3,4) cis. In
other words this system furnishes a unique opportunity to apply the vector-
algebra for a relatively complicated system with four sources (singularities).

'I'I'I'II'I'; | Rl |
W N PN P
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M BRI PRI R sl o 1, 3. .1 . .7
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¢ / rad @ / rad

Fig. 4.2. Final results for the Na+H, system: A comparison between ab-initio and
model results for the 734(¢|q) non-adiabatic coupling term as calculated along four
circles presented in Fig. 4.1. In (a), (b), (c) and (d) are presented the angular
components, T,34(¢|q) and in (e) (f), (g) and (h) are presented the radial components,
T23(¢|q). Full lines are results due to ab-initio calculations; dashed lines are results due
to vector-algebra calculations.
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The four cis and the various circles along which the calculations were done
are presented in Fig. 4.1. The positions and types of these cis have been
described in section (2.2.2). We do not show the virgin distributions here (they
can be found in paper V), but we note that all of them are of the elliptic type
[48] (in contrast to the circular Jahn-Teller type [9]).

The model results and the ab-initio ones are compared in Fig. 4.2. In fact,
like in the H+H, system (can be observed in paper IV), the results speak for
themselves. It is noticed that although the ab-initio distributions are frequently
quite complicated and show a lot of structure the vector-algebra produces
functions that are capable to follow very accurately the ab-initio wiggles.

4.2. A field theoretical approach to obtain non-adiabatic
coupling field from conical intersections

The model of the preceding section was based on the assumption that in a given
region of interest the Hilbert subspace can be considered with a good
approximation two dimensional. However, in several physical situations this
assumption does not hold. Increasing the involved region round a two-state
conical intersection, the two-level approximation breaks down, and we must
take into account more and more states so as the quantization and curl condition
are satisfied with a good quality. This feature of the Hilbert subspace can be
observed in the model based on the Mathieu equation in section (3.1).
Furthermore a conical intersection not the same type, i.e. which couples other
states, as the one situated in the origin of the encircled area, can also extend the
size of the Hilbert subspace, as we have shown in the analysis of the H+H;
system in section (3.2). That is, we had to consider at least N=3 states to obtain
in the diagonal of the D-matrix values close to +1 according to Table 3.1, when
we treated a contour involving (1,2) and (2,3) cis as well.

Therefore in the light of the previous remarks, it seems a relevant question
how to extend the analysis of section (4.1) to more than two states. In the
present section we are dealing with the extension to the case of N=3 state. We
derive and solve the molecular ‘curl-divergency’ equations to obtain the fields
produced by the NACTs. In contrast to electrodynamics (and the previous two-
state case) we usually encounter more than one field, and moreover the guiding
equations are not linear which causes additional complications comparing with
the Maxwell equations. The calculations are carried out for the three lower
states of the H+H, system and the results are compared with ab-initio
calculations.
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Let us start as in the two-state case from first principles, i.e. the equations,
which govern the behavior of the fields of NACTs:

One of the set of equations are called the Curl equations. They are coming
from the curl condition, defined by Eq. (2.14) and writing in a more explicit
form for N=3, we obtain

curlt,, =, x75], (4.92)
curlty; = [2'23 X 112], (4.9b)
curlt; = [112 X 123]_ (4.9¢)

The other set of equations is coming from Eq. (2.6). Rearranging and writing

separately the equations for each component of T we obtain the so-called
Divergency equations

divty, = 71(22) — 7303, (4.10a)
divt; =13 —1,7,5. (4.10¢)

where the scalar Tij(z) terms according to Chapter 2, are defined by
rlg.z) = <cj ; ‘Vch j>. It is noticed that the Curl-Divergence (C-D) equations (4.9-

10) in the case of a two-dimensional parameter space, contain altogether nine
unknowns (six due to the two components of T;,, Ti3, T23 and three due to the
three scalar T terms) which means that the solution is not unige unless we
introduce some model assumptions, as we did it in section (4.1) by the two-
level case. An other complication, that these C-D equations are not linear as can
be seen from the rhs. of Egs. (4.9). Although in paper VI we also deal with the
problem to find a proper model to the scalar T terms, now our aim is not so
much to guess this term but rather to form an existence theorem for the
molecular fields based on these C-D equations. Therefore, in the further
treatment we suppose that the scalar T terms are given from some way of
approximation, and in the following our purpose is to show that these equations
are solvable like in vector-field theory. To clarify the issue, let us see for
instance the pair of Equations (4.9a, 4.10a):
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It can be observed that the rhs. of the above equations do not contain T;,, and

therefore J and p can be considered as the sources of T;,. The statement that a
vector-vector function is unambiguously defined by its curl and divergency
follows from the theorem of vector calculus, and we demonstrate it below:

Let us form the curl of Eq. (4.11a), then apply the formula

VxVy=VVv—Av, we arrive at VVr7, —A7r, =V xJ, plug in the
place of V 7,,from Eq. (4.11b) the source term p, and arrange the equation,
finally we obtain

At, =Vp-VxJ (4.12)

Eq. (4.12) means indeed two scalar Poisson equations (since Tj2 is a two-
component vector for our planar CS), and the inhomogeneity on the rhs. of Eq.

(4.12) is some (not linear) functions of T»3 and T;3. Thus when we suppose that
these source terms are given we are able to solve them, and finally as a result

obtain Tj,. We can obtain the same way from the rest of the pair of Egs. (4.9-

10) T23 and T;3. Certainly we can pose the question, but where the source term
comes from, as in a real situation it is also undetermined. To solve this problem,
we put forward an iterative scheme in paper VI, starting from a first guess for

T12,T23 and T3, then solving Eq. (4.12) for T, and the similar equations for T»3

and T;3, then once completed, a new cycle can be started with the modified
values. Finally, if the convergency is reached after the nthe iteration step, we
stop, and gain the exact values for the various NACT elements.

Within the numerical study we avoid the task of series of iterations and also

the derivation of T, these issues are out of our present aims. In the numerical
study we are more interested in establishing these equations by solving each
pair, assuming that the inhomogeneous terms are produced in a straightforward
way via ab-initio calculations.

A common way of solving such partial differential equations is to expand

the two components of T, 1.e. T, and T, (working in polar coordinates) in
Fourier series with g-dependent coefficients. In the particular calculations we
treated approximately 50 terms in the Fourier expansion, which means 2x50
ordinary differential equations (for T, and T,) to be solved with appropriate
boundary conditions.

Now we report the numerical details of the calculations for the H+H,
system.
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Why do we probe the theory discussed above for the H+H, system? First of

all it is a simple “test” system which is frequently used for various studies
connected with electronic non-adiabatic transitions [5,7,17,49]. Secondly, as we
showed in section (3.2) by the analysis of this particular system, and mentioned
in the beginning of this chapter it yields a Hilbert subspace of three dimensions
with a good quality. Mostly it is due to the fact that it lacks (3,4) cis, and
therefore the fourth and above states are decoupled from the lower ones,
thereby forming the desired three-state Hilbert subspace. The ab-inito study
related to produce the NACTs is essentially similar to the one described in
subsection (2.2.1).
The Poisson equations are solved for a (circular) region centered at the
equilateral D3} ci and surrounded by a circle with a radius q = q, where q, = 0.5
A. We mention that exactly this contour is plotted in the geometry of the third
column in Figure 3.5.

However, since this region contains the two troublesome (2,3) cis located at
about a distance of q~0.29 A we divided this region into two sub regions: (1)
the internal region defined within the (radial) range 0 < q < q; where q; = 0.285
A. (2) the external region defined within the circular strip in the interval: q. <
q< qo where g. = 0.295 A. Having these two regions the two (2,3) cis are
located outside both of them (see Fig. 3.5 to identify the slightly larger contour
than g. in the first column). Now we concentrate merely on the internal region
(paper VI gives full details about the outer one, and also much more details are
found on the inner region).

One Dirichlet-type boundary condition defined along the circle with q; is
derived by ab-initio calculations. At the origin, all five NACTs 1i.e.,

T‘P23((p7q20))’ T‘PB((paq:O))’ quZ((P,q:O)), Tq23((Paq:0)) and Tq13((Paq:0)) are
assumed to be identically zero. The only exception is T412(¢,q=0) for which it is
assumed to be 0.5 Rad.™, as was verified on numerous occasions (Ref.[7,50] or
see paper III). In Figs. (4.3) and (4.4) are presented the angular and the radial

components of Tjp, T»3, respectively, as calculated along various circles
surrounding the Ds;, ci. As it is noticed the fit is essentially very promising for

the two components of the three T-matrix elements (the missing T;3 is shown in
paper VI and can be checked there).

The ability of the Poisson equations to produce such encouraging fits has to
be appreciated because of two reasons: (1) the initial integration point is the D3y,
ci point, namely, a singular point. (2) boundary conditions were attached only
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to one boundary (and not two as is usually the case) and therefore play a
relative minor role in these calculations.

Fig 4.3 Fig 4.4
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Fig. 4.3&4.4 Results for the (1,2) and (2,3) NACT 7, i.e. Tgi2,Tq2 and Tg3,Ts as
calculated along the specified co-centric circles centered at the equilateral (1,2) Dsy, ci
are presented as a function of @, the angular coordinate. All specified circles are in the
internal region. Full line: results are due to ab-initio calculations; dotted line results are
due to the Poisson equations solved for the ab-initio inhomogeneities. In the sub-
figures (a) — (d) are presented results for the angular component t,,, and sub-figures
(e)-(h) are present results for the radial component tq,. The Dirichlet (ab-initio)
boundary conditions are given along the circle with the radius q=0.285 A.
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Chapter 5

Topological Effects in the Diabatic Framework

In this chapter we investigate molecular systems via the diabatic picture, which
can be given by Eq. (2.11):

W=ATuA (5.1)
We show in section (5.1) that in the diabatic framework we can reveal the
distribution of degeneracies with the aid of various methods. We also derive
that a well defined sign can be attached to each conical intersection. In section
(5.2), the theoretical outcomes are illustrated via numerical examples for the
Na+H, system and we also explain some mysterious features of the so-called
twin cis with the aid of this theorem. This chapter is mainly based on the results
of the papers VII and VIII. It is noted that from now on we are interested in the
two-dimensional Hilbert space for the sake of simplicity.

5.1. The theory

The diabatic Hamiltonian for the two-level case in Eq. (2.10b) can be further
written as

I:Idia =fN +W:<fN +2)1+[

V(R) u(R)
0 ) oY

where Z(R):(ul +u2)/2 is the average of the lower (u;) and upper (uy)

potential energy surfaces. Thus the new diabatic potential W decoupled from a
scalar term )_ looks as follows:

\% u
W:[ j (5.3)
u -v

where the functions v, and u are identified as the diabatic potential surfaces. We
saw in Chapter 2 that the solution of the differential equation VA + TA =0 can
be expressed by Eq. (2.19). The solution in the two-level case simplifies to the
following expression:

[ cos(r(R)) sin(¥(R))
AR=( Sl i)

(5.4)
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where the y mixing angle is given in terms of the following line integral [24]:
R,

7Ry )=r(R)+ [#(R)ar. (55)
Rs

Let us denote the y mixing angle with a when the contour is closed and
eliminate the index from the NACT as we did it in sec. (4.1) (as in the two-state
case the NACT matrix has only one nonzero element). Now substituting the
expression (5.3) to the definition of the diabatic potential W in Eq. (5.1) we
obtain the functions v and u expressed by the angle y and the difference of the
adiabatic energy surfaces:
u= %(uz - ul)sin(27/),
V= %(uz —u; )cos(2y).
After some manipulation of the above set of equations (see in paper VIII), we
obtain

(5.6)

u+iv

exp(2i]/)=ﬁ=f(u,v).
u - +v

The preceding equation indicates an explicit connection between the angle y
and the u,v elements of the matrix W: let the R nuclear coordinates be varied
round a closed loop. Because of the quantization condition expressed by Eq.
(2.23), and choosing in Eq. (5.5) the arbitrary y(R5) to be equal to zero, we
obtain for the angle y after the full cycle

o=n7. (5.8)
This means regarding to Eq. (5.7) that the function on the rhs. of Eq. (5.7)
describes a number of n circles on the (,iv) complex plane. Let us label the
points on the contour I' where u(R)=0 as ‘z-points’, and where v(R)=0 as ‘p-
points’. Thus when traversing the contour I', we encounter a series of z- and p-
points. The main outcome of the Eq. (5.7) that when we inspect merely the
sequence of z- and p-points we can follow the function f (u,v) on the unit

circle of the complex (u,iv) plane. Thus after traversing the loop I', finally we
obtain the number of n circles, and the equality a=nm in Eq. (5.8) yields the
final mixing angle o.

Now let us approach the same problem from an other point of view.
According to the curl condition in Eq. (2.14) when T is an analytic function of
the coordinates R,
curlt =0. (5.9

(5.7)
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As we noted in section (4.1) the only points in the two-dimensional
configuration space R, where T could be a discontinuous function, are the
positions of the degeneracies. Thus applying Stokes’ theorem by excluding the
area of the vicinity of degeneracies we arrive at the following formula for the
mixing angle:

a=§>m’R=Zk:§m’R, (5.10)

r i=1 ¢

where the number of degeneracies are denoted by £, and the contour integral of
the rhs. of Eq. (5.10) is performed round each point of degeneracy. Next we
suppose that each degeneracy in the area of interest is formed by a conical
intersection. Now let us concentrate on one single ¢i assuming at the point of
(x=0,y=0), where x,y denotes Cartesian coordinates. Expanding W in a Taylor
expansion about the degenerate point we find W = W Wi 4 where
W collects all elements of order n in the nuclear displacements. For conical
intersections the W diabatic potential varies linearly in the function of the
nuclear coordinates near the position of the ci and only the leading n=1 term
will survive:
u:c11x+cny’ 5.11)
V=CyHX+Cp)
where the cj linear-coefficients can be represented with the elements of a
2x2 matrix C.

Eq. (5.11) represents an affine transformation C:R*(x,y)— R*(u,v),
while Eq. (5.7) represents a continuous, nonlinear function F from the
S =(u,v) plane to the circleS'. Thus F o Cmaps the circle S'in (x,y) to the
circle S'in(u,v).

In paper VIII we prove that theF oCtransformation maps the
counterclockwise moving circular path S'(x, y) to a circular path S'(u,v) with

the same orientation when detC >0, and reverses the orientation when
detC<0.

Now considering the above result we conclude, that circling round a conical
intersection with an infinitesimal radius we obtain n==1, and vy for the closed
loop according to Eq. (5.8) can take up altogether two values o=+n depending
on the sign of det C. This result means that there exist two groups of cis which
we call negative and positive ones, depending on the sign of the corresponding
a. Let us denote the number of negative cis inside the loop I with K and the
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number of positive cis with L, then we can write further Equation (5.10) and
obtain

a=§udR=(L-K)r. (5.12)

Next we summarize the two main results of the present section:

(1) For a system of 2x2 real W diabatic potential, the mixing angle a for a
closed contour I' in the two-dimensional configuration space can be
calculated by inspecting the sequence of z and p points (i.e. the zeros of
the u,v diabatic potentials).

(2) a for the same closed contour is determined by the difference of the
number of positive and negative cis.

Thus the connection between the above observations yields practical methods to
determine the distribution of conical intersections inside the loop merely by
inspecting the zeroes of the elements of the diabatic potential W.

5.2. Concrete numerical methods

In subsection (5.2.1) we give two methods on the basis of the results of section
(5.1) to yield different kinds of information regarding the existence of cis in a
given region. Then in subsection (5.2.2) we give an explanation of the observed
a mixing angle for twin cis in the C,H molecule applying again the theory of
section (5.1).

5.2.1 Numerical study of the Na+H, system

To be more specific we consider the 32A' and the 4°A’ states of the Na+H,
system, as it was found in paper I that in the near region of the group of (3,4)
cis (see Fig. 2.1.b) the states 3°A" and 4°A' form to a good approximation a
Hilbert subspace and therefore can be diabatized (almost) rigorously. In Fig 5.1
are presented the locations of the (3,4) cis and three circular contours where the
elements u,v of the diabatic potentials will be formed.

Now we give a brief description (a more detailed account can be seen in
paper VII) about the concrete procedure we obtain the o mixing angles for the
various circles in Fig. 5.1. First of all, the ab-initio calculation yields the u; and
u, adiabatic potential surfaces and the NACT elements, which in this special

two-level case means only one element of T. Then choosing a base point we
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calculate the y mixing angle according to Eq. (5.5) and substituting to Eq. (5.6)
the ab-initio u;,u; and y, we obtain the function u and v.

ey}
2)
3

Fig. 5.1 The four ab-initio (3,4) conical intersections of the Na+H, system and the
three co-centric circles with radii q=0.1, 0.25, and 0.4 a.u., surrounding different
number of conical intersections. The empty (o) and the full circles (o) are the positions
of the intersection points between the circles and the equi-u=0 and the equi-v=0 lines
respectively. These points form along each circle the sequence of ‘zp’ points discussed
in this chapter.

Fig. 5.2 shows these functions on the three co-centric circles drawn in Fig.
5.1 in the function of the angular coordinate ¢ (where ¢=0 rad denotes the
upper intersection point of the symmetry axis and the circular contour). As it is
noticed for the circle with the smallest radius g=0.1 a.u. only the v(q,p) crosses
(twice) the abscissa and as a result the (p,p) series is formed thus indicating that
no ci is surrounded by this circle, as indeed is the case (see Fig. 5.1). For
q=0.25 au. we obtain a more complex pattern, namely we have a
(p,z,p,z,p,z,p,z) sequence which means that the function f in Eq. (5.7) makes
two circles (i.e. n=2) and according to Eq. (5.8) results in a=2x. It indicates by
inspecting the positions of cis in Fig. 5.1 that this particular circle with g=0.25
a.u. surrounds two cis of the same kind, and moreover they are both positive
cis. The pattern of ‘zp’ sequence for q=0.4 a.u. is (p,p,z,z,p,p), which means
that no circle was traced out by the function f'in Eq. (5.7), thus yielding the
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value 0=0. This result indicates that the other two cis situated symmetrically on
the both sides of the symmetry line must be also of the same kind, but in this
case they are both negative cis.
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Fig. 5.2 The diabatic potentials f(q,¢)=u(q,¢) (dashed lines) and f(q,@)=v(q,) (full
lines) as calculated along the various circles in Fig 5.1: (a) Results along a circle with
g= 0.1 a.u.; (b) Results along a circle with g= 0.25 a.u.; (c) Results along a circle with
g=0.4 a.u.

In the following we show an other method, which reveals not only the
difference of the negative and positive cis inside the given contour, but can
detect the exact positions of cis as well. Let us choose now the origin of several
co-centric circles as the intersection of the two perpendicular axis (as it can be
seen in Fig. 5.3) but with different radii to cover the whole region of interest.
Calculating the same way as in Fig. 5.1 for each circle the ‘zp’ points and
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connecting the neighboring ones with each other, we obtain the contours along
which either v(q,0)=0 (full lines) or u(q,9)=0 (dashed lines).

Fig. 5.3 The equi-u=0 (dashed lines) and the equi-v=0 (full lines) as calculated for

the 3-rd and the 4-rth adiabatic states of the Na+H, system. The points (empty circles,o
and full circles, ) are the 'zp' points along the various circular contours. It is noticed
that all the intersections between the equi-u=0 lines and the equi-v=0 lines are at the
points of the cis (A).

Upon inspecting Fig. 5.3 we can notice two interesting features of the
figure: The dashed curves (equi-u=0) and full curves (equi-v=0) cross each
other only at the point of degeneracies, and on the other hand always one full
line and one dashed line intersect at these points.

We are able to explain and support these two observations based on the
results of sec. (5.1). First let us see Eq. (5.6). According to it, whenever u;=u,
(i.e. we encounter degeneracy) it zeroes both the function u and v. Conversely,
the occurrence of u=0 and v=0 at the same point of the configuration space can
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happen only when u;=u, (since cos2y and sin2y can never take up the same
value for any y). This means that indeed the two types of curves can intersect
only at a point of degeneracy. Now taking into account Eq. (5.11) in the closed
vicinity of a conical degeneracy the functions u and v are linear functions of the
coordinates, therefore it implies just one equi-u=0 line and one equi-v=0, which
cross each other. In this way we established that the degeneracies, we encounter
in Fig. 5.3 are really conical (opposite to the parabolic one [51]).

In summary, investigating the diabatic framework we concluded to a rather
elaborated procedure, which not only yields the exact positions of all cis in a
region of interest, but also we could decide whether the particular degeneracy is
conical (and can produce topological effect) or just a parabolic one (which is
actually a Renner-Teller type [52,53], and not causing topological effect).

5.2.2 Application for the annihilation of twin cis

In Section 5.1 we obtained that there exist two groups of cis, depending on the
sign of a, called as positive or negative cis. However, conical intersections are
in general not exist as isolated points but as continuous seams of dimension
N"™.2 (N™ is the number of internal coordinates) for the nonrelativistic
Coulomb Hamiltonian. A tri-atomic system is characterized by three internal
coordinates, which implies that the surface of intersection in this particular case
has a dimension 1, and is referred to it as a seam (so far we encountered only
the dimension 0, i.e. points of intersections, but it was due to freeze one internal
coordinate).

In paper VIII we proved that the sign attached to the point of c¢i can be
generalized to attach to the seam of c¢i as well, i.e. the seam has also a definite
sign (plus or minus) on a segment which is not crossed by other seam. This can
be symbolized by an arrow aligned parallel to the seam on the following way:
let us define an € unit vector parallel to the seam in the sense of the right-hand
screw rule, then if the type of the seam is plus, it should point in the same
direction as &, otherwise it would point in the opposite direction.

In the following applying the above results about the definite type of seams
we describe the phenomenon of pair-annihilation of twin cis.

Twin cis were found in AIH, between the potential energy surface of *B,
and *A; within C,, symmetry [54] and also in C,H molecule between the two
lowest 1°A” and 2°A” electronic states and between the 3*A’ and 4%A’ states
[42,55]. These later ci twins are located at relatively small distance on the two
sides of the C,, line. Here it was further found that the separation between the
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twins could be made arbitrary small by varying the CC relative positions, and
even they can be brought into coincidence at some CC position, i.e. they
annihilate each other.

When calculating the line integral of T on the contour I'j; which surrounds
both cis (see in Fig. 5.4 plane A), it was found that the circulation was
identically zero [55]. If we suppose that the area bounded by I'y, is very small
(indeed we can make it arbitrary small by tuning the CC distance just before to
the coalescence), then 1 vector-field fulfills the two-state ‘curl-condition’, i.e.
Eq. (4.1), and we can write

§TdR+§TdR=§TdR =0. (5.13)
I L I,

The second equality was due to the observation, thus according to the definition
of a mixing angle a(I, )= —a(T, ). Namely, it was obtained that in the present

case the signs attached to the twin cis are opposite [55]. In Ref. [55] the
question was arisen if it is a general or an accidental feature of cis, to arrange
themselves in such a way to be of opposite signs. It was stated there, also due to
other observations, that it looks to be typical for all merging cis.

Now, considering that the sign of seam is definite (either plus or minus),
we can give a clear explanation for it, which on the other hand support and
confirm the statement of [55]. Fig. 5.4 shows the process how two conical
intersections merge and annihilate each other, which in the three-dimensional
configuration space can be described as two approaching seams with opposite
signs (signed by the arrows pointing to opposite directions) meat at the point P.
However, an other but likewise legitimate description is that we consider it as
only one seam, which gently touch the plane B in the point P (causing a
Renner-Teller type crossing [53]) and then turn back. Notice that this
description also suits the opposite sign-directions of c¢i seams: seeing that, when
we follow the curve of seam, locally the direction of the arrow must not flip,
but globally it will change direction. Thus the arrow attached to the seam
pierces the plane A twice, once it points up and once down, which correspond
to opposite signs, hence yielding for the circulation of t round the circuit I'j»
Zero.

In conclusion we established that the pair-annihilation of cis can be
considered as a process which is formed by one seam, hence by construction
this guarantees the opposite signs of the coalescing conical intersections.
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Fig. 54 A segment of the infinite long seam of conical intersection, and two
intersecting planes (A,B). On the plane A, it is drawn contours (I'y, I';) encircling their
own cis, and a contour (I'j») encircling both of them. The seam touches the plane B in
the point P and then turns back. The sign of the seam is denoted by arrows, once
pointing up and after the ‘turning point P’ pointing down. Each I' contour is oriented
counterclockwise.

43



Chapter 6

The Geometric Open-Path Phase Revisited:
Application to Born-Oppenheimer Molecular
Systems

While dealing with the interference of light, Pancharatnam came up with a
brilliant idea regarding a general phase of the evolution for a polarized light
[32], which was then generalized to an arbitrary quantum evolution [33]. In this
chapter we analyze semi-classically the evolution of nuclei in molecular
systems thereby gaining insight in the notion of the Pancharatnam phase factor
(termed as open-path phase) and establishing various connections with the
mixing angle as well. The theoretical findings will be supported by numerical
study carried out for the (Na+H;) molecular system.

6.1. Theoretical considerations

When a system evolves from an initial state |1//(0)> to a final state
|w(t)> U (t)|l//(0)> with a unitary evolution operator U (t), we refer to vy, as the
phase of |1//(t)> relative to |l//(0)> once we have

WOl (0) = [ (o). 6.1

For an arbitrary quantum evolution, the geometric Pancharatnam phase can be
defined as [Samuel] y,, =7, — 7, , where

t

7 =) (wlo) A () 62)

is the dynamical phase, with the Hamiltonian of the system H . Let us denote
with p the magnitude of the overlap<¢(t)|¢(0)>, where |¢(t)> differs

from|y/(t)> that its dynamical phase factor, defined by Eq. (6.2) has been

removed.
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Next, our aim is to gain the y, geometric phase and the magnitude p
according to their definitions above (coming from the dynamical treatment of
the system), and then we try to find connection with the y mixing angle (coming
from the time-independent treatment of the molecular system).

From now on we restrict our attention only on two-level systems, since the
numerical example at section (6.2) will be based on the analysis of Na+H,, a
two-state system in the region of our interest. The general treatment and the
corresponding three-state numerical example for H+H, can be also found in
paper IX. We note that the generalization is straightforward, and below the two-
state case will also show the relevant results of this survey.

Consider the quantum system whose normalized state vector |1//(t)> evolves

according to the Schrodinger equation
dlylt A
z‘h"”;—f»=Hezlw(r)>, 63)

where H . Stands for the electronic Hamiltonian which parametrically depends

on the nuclear coordinates (i.e. we apply the semi-classical treatment of the
composite system). Next assuming that the Hilbert subspace is two-dimensional

in a given region A in the configuration space, we can write
w ()= G (RS (R ) + 2 (R()) 2 (Ry)), (6.4)
where EI(R(I)) and £ 5(R(t)) are coefficients which depend solely on the nuclear

. 2 L . .
coordinates and {[é’ ,-(RO )>}i:l are the electronic eigenfunctions of the electronic

Hamiltonian H . according to Eq. (2.3) in a given fixed point Ry in A. The
substitution of Eq. (6.4) into Eq. (6.3) yields the equation to be solved:

9RO () (r0), 65)

where ¢ (R(z)) is a column vector formed byfl(R(t)) and £ 5(R(2)), W(R) is the

2x2 diabatic potential matrix related to the two eigenstates of the two-level
system. Above we utilized the fact that besides the definition of Eq. (2.11)

W = ATuA there exists an other one defined in paper X, originating from the
diabatic representation of the nuclear Schrodinger equation, namely [38]

Wi = <§j(Ro)‘ﬁe1(R)|§k(Ro)>- (6.6)
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Now we recall Eq. (2.11) defining W(R) and Eq. (5.4) defining the 2x2
ADT matrix, A(R):
_( cos(y(R)) sin(y(R))
AR)=| :
—sin(y(R)) cos(y(R))
where y(R) is the mixing angle, discussed in section (5.1) and defined by Eq.
(5.5). Then further we suppose circular contours in A, thus we can switch from

R—(q,0(t)), then multiplying Eq. (6.5) by A(R), and carrying out a few other
algebraic changes yield the following two coupled equations to be solved:

a  nh e 6.7)
dmy ¢ . __ 27w '
i 7 2 =7y T ™

¢ (t)] is given as
7 (t)

n(t)z A(t)g (t) Here we supposed that the velocity of the nuclei is constant

where 1, is the angular component of the NACT, and 77(1‘) = (

along the contour, and takes a finite T time to complete the cycle (i.e. the time
period is T). To solve Eq. (6.7) we need initial conditions for n: for this purpose
we assume at t=0 the A-matrix is diagonal (i.e. Y(R(t=0))=0 and Ry=R(t=0)) and

the lower state is the initial state, so that the initial conditions for & (¢) are:

~ 1 1
¢ ( = 0)= (OJ and consequently 77(t = O)= [OJ It is noticed that in Eq. (6.7)

the coupling term is inversely proportional to T, consequently once T—oo (the
adiabatic limit) the coupling vanishes, and as a result 1,—0 which implies that

El(t) takes the form:

t

lim 51(1)—>ex —éjul(t)dt cosy . (6.8)

T—w
0

Now let us recall the definition of the open-path (Pancharatnam) phase
discussed in the beginning of this section, and let us calculate <W(t)|1//(0)> .With

the above defined initial conditions, w(t=0)= |§ (R, )> and
thus <l//(t)|w(0)> = 51(1) Thus according to Eq. (6.1) we gain y; as the argument
of El(t), 1.e. y; reads
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t

V= arg(cos(y)) - %J‘ul (t)dt (6.9)

0
Because of the definition y, =y, —y,;, and noticing that in Eq. (6.2) the

dynamical phase vyg becomes in the adiabatic (T—o) limit

t
ya =-(@/n )I uy (¢ Mt , we obtain for the open-path phase in the adiabatic
0

evolution the following expression:

Vp = arg(cos(y(¢))). (6.10a)
On the other hand the definition of p (in the beginning of this section) leads in
the adiabatic limit to

p= |cos(7(t)1 . (6.10b)
The Eq. (6.10a) means that the open-path phase becomes a step-function so that
every time the cos(y(t)) flips its sign, namely, when ;/(t) = (2n + 1)7z/ 2, the
open-path phase y, jumps by an odd number of n’s.

6.2. Applications

Eqgs. (6.10a-b) constitute the main result of the preceding section, namely in

case of the adiabatic limit, the ADT angle y(¢) (formed by BO eigenfunctions)
determines unambiguously both the magnitude p of the electronic time-
dependent eigenfunction (after the removal of the dynamical phase) and its
open-path phase y,.

In order to understand the meaning of these results we describe first a
general molecular system for which this approach is applicable and then
analyze numerical results for a specific case.

We assume a (molecular) system of electrons and nuclei which is
composed of two, relatively rigid parts but these two parts are 'floppy', the one
with regard to the other. Next, at time t=0 an external electromagnetic field is
turned on that causes the two parts to revolve, the one with respect to the other.
Assuming the molecular system to be in a given BO eigenstate this rotational
motion may induce transitions to other states with (oscillating) time dependent
probabilities. In the numerical section a time dependent semi-classical treatment
is carried out to calculate these probabilities as well as the open-path phase.
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The specific system chosen for this purpose is the Na+H,. In particular we
concentrated on the 3A' and 4°A' states which as we could see in subsections
(2.2.2) and (5.2.1) of this work are affluent with cis (altogether four) and that
these two states are only weakly coupled to the other states of the system and
therefore form, approximately, an isolated Hilbert subspace of two dimensions.
The ab-initio magnitudes required for the present numerical study to solve Eq.
(6.7) are the electronic eigenvalues of the two relevant 3°A' and 4°A' states
(ur,u2) and the corresponding 1, (the angular component of the NACT) along
the contours, the two floppy parts of the molecule (in this case Na and H,) may
trace due to the external field. To calculate the open-path phase y, we first solve
numerically the coupled differential equations in Eq. (6.7) with the aid of the
Mathematica package, then obtain 7(¢) and via the relation c (t)= AT ()(e) we
obtain 5 (t) as well. Since the components of 5 (t) determine the time-
dependent wave function w(t)through Eq. (6.4), we can use the same procedure
as in Eq. (6.1)-(6.2) to gain both the open-path phase vy, and after the removal of
the dynamical phase factor from 1//(t), the amplitude p.

The results are presented in Fig. 6.1 which is divided into three columns
and each column is further divided into three sub-figures. The upper sub-figure
contains the geometry, namely, the four (3,4) cis (labeled as A) and the
corresponding circular contours assumed to be created by an external field. In
the sub-figure below are presented the amplitudes p(t) as derived, once for a
finite T-value — to be designated Ty — namely, a value that does not yield
adiabatic limit and, once for a large T-value — to be designated T,q — namely, a
value that does yield the adiabatic limit. In addition are presented the absolute
values of the cosine function, namely, |cos(y(¢(t))| (see Eq. (6.10b)). In the third
sub-figure are presented the open-path phases, y,(t), as calculated, once for
T=Tj (the non-adiabatic case) and once for T=T,q (the adiabatic case) as well as
the mixing angle y. We add a few comments related to the presented results:

(1) In all three cases (i.e. on the three different contours in Figs. 6.1(a), (c)
and (e)) the amplitude p(t), in the non-adiabatic limit (by time period Tg), is
quite oscillatory and does not reveal any features of particular interest.
However, the amplitude p(t), in the adiabatic limit (by time period Ta.q) is
smooth and for all practical purposes is identical to |cos(y(t))| as, indeed, is
indicated by the theory (see Eq. (6.10b)).

(2) It is well noticed that in all three cases, the open-path phase y,(t) in the
non-adiabatic limit (T=Tg), forms continuous functions, oscillating to some
extent whereas in the adiabatic limit (T=T,q) one forms Heaviside-type step
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function (see Figs. 6.1(b), (d), (f)). It is obvious that these open-path phases do
not show any particular relation with the corresponding mixing angles y (which
are also shown in the respective sub-figures (b), (d) and (f)). However, the
theory tells us to look for the cosine of these functions and, indeed, a
connection exists in case of the adiabatic case (T=T,q): the discontinuous steps
for the open-path phases vy,(t) happen exactly at t-values for which cos (y(t))
changes sign or the y(t) angles are odd multiples of (7/2).
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Fig. 6.1 Results for the ab-initio Na+H, system as calculated along three circles
surrounding different number of (3,4) conical intersections (labeled as A). In subfigures
(a), (c), and (e) are presented the amplitudes p(t) as calculated for T=Ty and T=T,4, and
the absolute value of the corresponding ADT matrix element A;(p(t)I)
=[cos(y(p(t)|I))|. In sub-figures (b), (d), and (f) are presented y,(t), as calculated once
for T=Ty and once for T=T,. The periods 7, =2x 10* 3.2 % 10* 8% 10* and

T, =3x 10°,2.9x10°,1.5x10*a.u, respectively. It is noticed that the curves for p(t) as

calculated for T=T,q and the corresponding |cos(y(t))|-function as obtained from the ab-
initio treatment are overlapping so strongly that they are hardly distinguishable.
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In summary, in this study we showed theoretically (supported by numerical
calculations) that the mixing angle y formed by BO eigenfunctions determines
uniquely both the time-dependent magnitude p(t) and the open-path phase y,(t)
of the electronic functions in the adiabatic limit.
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Chapter 7

Summary of the Results

The work presented in this thesis deals with many facets of the role of conical
intersections in non-adiabatic effects and the role of producing non-local
topological effects. In the previous four chapters (Chapter 3-6) four different
aspects of the effect of conical intersections in molecular systems were

concerned:

)

D

(I1T)

Iv)

in which extent the ci determines the dimension of the isolated
Hilbert subspace in a given region of the nuclear configuration
space, which encircles various number of cis

whether it is possible to claim that the NACTs can be considered as
fields which have their sources at the points of conical intersections
whether it is possible, that the Longuet-Higgins’ sign change
theorem had a generalization for two-level systems, which could be
applied in the diabatic framework to reveal the distribution of
conical intersections in the configuration space of the molecular
systems

whether there is a relationship in a semi-classical treatment of the
molecular systems between the elements of the ADT matrix and the
open-path phase of the electronic wave functions in an adiabatic
evolution.

The main purpose of this work was to study the tasks posed above. In the
following I summarize the main achievements of my work related to this thesis,
and thereby give an answer for the above (I)-(IV) questions:

@

e [ implemented a program for calculation of the F-matrix based on Eq.
(2.13) and the D-matrix based on Eq. (2.16), suitable for any dimension.

e A numerical study is carried out applying the eigenfunctions of the
Mathieu equation to study the D- and F-dependence on the size of
configuration space parametrized by x and the number of eigenstates N.
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D

(I1T)

An ab-initio study is carried out on the H+H; system by calculating the
topological D-matrix for N=2...5 states and for various circles with radii
0.3 A <x<0.65 A.

Given the D- and F-matrix 1 examined the fulfillment of the
quantization and curl conditions for given (x,N) values

I draw the conclusion: a given group of states forms with a good
approximation an isolated Hilbert subspace in a given region, when each
state, coupled by conical intersections is involved in the group.
However, the addition of other states (which are not coupled by cis) to
the group further improves the isolation of Hilbert subspace from the
rest of the states. The extent of the isolation was measured both by the
quantization of the D-matrix, and the curl of the F-matrix.

Based on a model assumption, that the ci produces a zero radial
component of NACT I implemented a program to calculate the NACT,
when the Hilbert subspace is formed by two states. The program
employs vector-algebra to add up the contributions of the various cis to
obtain the resultant intensity of the field of NACT at an arbitrary given
point.

The comparison between the ab-inito results of the Na+H, system as
obtained from the MOLPRO and the analytical results follow from my
program undoubtedly indicates that, indeed, the field of NACT is
created by sources located at the degeneracy points formed by the Born-
Oppenheimer adiabatic states.

It is shown that the Curl-Divergence equations (Eq. (2.14) and Eq.
(2.16)) as formed within a given N=3-state Hilbert subspace can be
converted into a set of inhomogeneous coupled Poisson equations.

I solved these Poisson equations for a given set of circular boundary
conditions employing Fourier series for the three lower states of the
H+H; system and the results are compared with ab-initio calculations for
which a very encouraging fit is found like in the two-state case.

I derived that the mixing angle of the two-dimensional ADT matrix
round a two-state conical intersection can take up the values =+m,
(termed the related ci as positive or negative depending on the sign)
which supports the ab-initio results as well.
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Iv)

I found an explicit use of this fact, describing the phenomenon of pair
annihilation of twin cis.

Here I showed a method to exhaust all topological information from the
elements of the two-state diabatic potentials on a given contour in the
configuration space. This method yields the difference of the amount of
positive and negative cis inside the contour, which I illustrated via
numerical examples for the Na+H; system.

A procedure, based on results of the preceding paragraph has been
developed (and implemented for the Na+H, system), which is more
elaborate than the other method above and requires more numerical
efforts, but yields the exact positions of all the cis in the region of
interest.

I analyzed molecular systems via the semi-classical framework. My
main theoretical finding is that the mixing angle y of the ADT matrix
formed by BO eigenfunctions determines uniquely the y, open-path
phase of the electronic functions in the adiabatic limit of the evolution.

The theory predicts that the open-path phase in the adiabatic limit
becomes a step-function so that every time the cos(y(¢)) (i.e. the

diagonal element of the 2x2 ADT matrix) flips its sign, the open-path
phase v, jumps by an odd number of n’s.

I carried out a numerical study for the (Na+H;) system by exhausting
from the time-dependent wave functions the open-path phase both in
adiabatic and in non-adiabatic evolutions. The numerical results fit very
well the theoretical predictions in the adiabatic case, and also yield
useful information about the non-adiabatic case.

53



Az értekezés osszefoglalasa

A molekuladinamikai folyamatok kvantummechanikai leirdsara a fizika ¢és
kémia egyik leggyakrabban hasznalt kozelitési modszere az 1927-ben
kidolgozott Born-Oppenheimer-féle (BO) adiabatikus kozelités, amely az
elektronok és a joval nehezebb atommagok mozgasanak szétvalasztasan alapul.
Az adiabatikus kozelitésben a dinamikai jellemzdk szamitdsa két részbdl
tevodik 0Ossze: az elektron hulldmfiiggvények ¢€s energidk rogzitett
atommagokndl torténd szamitasabol (amely a modern kvantumkémia {6
feladata), valamint a magmozgés jellemzdinek szamitasabol az eldzoleg
meghatarozott potencidlis energia feliiletek (PES) segitségével. Bar a BO-
kozelités gyakran elegendd pontossagu a molekularis sajatsagok és folyamatok
kivant szintli megértéséhez, a jelenségek egy csoportja (amely ezen értekezés
targyat is képezi) nem irhat6 le egyetlen potencialfeliilet figyelembevételével. A
BO- kozelités olyan atomi konfiguracio esetén érvényes, amikor az elektron
energidk jol elkiiloniilnek egymastol. Olyan konfiguracio esetén, amikor a két
allapot energidja megegyezik, vagyis az allapotok -elfajultakkd valnak, a
kozelités nem alkalmazhatd. Ilyenkor atmenetek jonnek létre az egyes
adiabatikus elektronallapotok kozott, melyekért az ugynevezett nem-
adiabatikus csatolasi tagok (NACT) felelosek. Abban az esetben, ha a fenti
jelenség egzakt leirasat szeretnénk megkapni, a BO-kdzelités helyett annak
Born-Huang- kiterjesztését kell hasznalnunk.

Nagyon sok olyan kémiai folyamat létezik a természetben (ide tartozik a
legtdbb fotokémiai reakcid is), amikor egy molekularis rendszerben degeneralt
allapotok 1épnek fel, és ezaltal indokoltta valik a Born-Huang-egyenletek
alkalmazasa. Ezért fontos feladat ezen degenerancidk helyeinek meghatarozasa.
Longuet-Higgins 1975-ben kifejlesztett egy olyan topologiai eljarast, amellyel
ugynevezett kupszerli metszéspont (ci) tipusi degenerancidk helyei
térképezhetdk fel. Azt a meglepd eredményt talalta, hogy amikor a tobbatomos
rendszer egy zart hurkot ir le az atommagok konfiguracios terében, olyan
modon, hogy a kontur koriilvesz egy ci tipusi degeneranciat, a degenerancidhoz
tartozo elektron hullamfliggvényeknek eldjelet kell valtaniuk. Amikor majd egy
¢évtizeddel késdbb Berry bevezette a geometriai fazis fogalmat, valt vilagossa,
hogy Longuet-Higgins teszt modszere éppen egy, valds fiiggvényekre teljesiild
alesete a geometriai fazisnak. Nem sokkal Berry felfedezését kdvetden a rola
elnevezett Berry fazis, amely eredetileg a kvantumrendszer ciklikus ¢és
adiabatikus 1d6fejlédésére vonatkozott, még altalanosabb esetekre 1is
kiterjesztésre kertilt.
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Mead és Truhlar mutatott ra elészor 1980-ban, hogy Longuet-Higgins
felfedezése a hullamfiiggvény eldjelvaltdsara vonatkozolag nem csak a ci-k
felkutatasara alkalmazhat6, hanem erds hatdssal lehet az atommagok
dinamik4jara is. Az elektron hulldmfiiggény eldjelvaltasanak kompenzalasara
egy vektorpotencial taggal egészitették ki a nukleon Schrodinger-egyenletet
(SE), ezaltal biztositva a teljes hullamfiiggvény egyértékiiségét. Mivel igy az
egyenlet formailag (€s topoldgiai kovetkezményeit tekintve is) teljes analogiat
mutat az Aharonov-Bohm féle vektorpotencidlt tartalmazd Schrédinger-
egyenlettel, a jelenség a ,molekularis Aharonov-Bohm effektus” (MAB)
elnevezést kapta. Kupperman és csoportja volt az elsd, aki ezen MAB effektust
konkrét kémiai reakcioban is tetten érte. A MAB effektust is figyelembe vevo
elméletileg szamolt hatdskeresztmetszetiik bizonyos energidkon nagyon szép
egyezést mutatott a kisérleti eredményekkel. Ugyanakkor meg kell jegyezniink,
hogy az ezen MAB hatast is tartalmazo6 nukleon SE, 1ényegében egy egy-allapot
Schrédinger-egyenlet, ezért természetesen az egyes elektrondllopotok kozotti
atmeneteket nem irhatja le jol. Talan ez lehet az oka annak is, hogy az 6sszhang
a szamitott €s kisérleti értékek kozott csak bizonyos energidkon mutatkozott.
Nagy energidju kémiai folyamatok egzakt leirdsdhoz a nukleon Schrodinger-
egyenletnek szlikségszertien tobb (gerjesztett) allapotot is tartalmaznia kell,
amelyet, mint emlitettiik, a Born-Huang-kép adhat.

Osszefoglalva azt allapithatjuk meg a fenn elmondottakbél, hogy a ci-k
kémiai folyamatokban betoltott hatdsat alapvetden két kiilonalld részre
bonthatjuk. Egyfel6l a MAB hatas révén hatarfeltételt szabnak ki az atommag
hullamfliggvényére, vagyis a konfiguracios térben egy nemtrividlis topologiat
idéznek eld, masfeldl a szomszédos elektronallapotok csatoldsa révén lehetoveé
teszik, hogy a rendszer egyszerre tobb elektronéllapotban is létezhessen. A
Born-Huang-kép, mivel kozelitést nem tartalmaz, elviekben jol kell, hogy leirja
mindkét hatast. Ezen dolgozat f6 téméja, annak vizsgalata, hogy az elvileg
preciz Born-Huang-leirds milyen kényszerek ¢és korlatozdsok aran valik
alkalmazhatéva a molekularis rendszerek dinamikai vizsgalataban.

Az adiabatikus Born-Huang-kép két ab-initio mennyiségen alapszik: a
potencialis energia feliileteken és a nem-adiabatikus csatoldsi tagokon. Ezen
fenti két mennyiség egzakt ismerete elvileg teljes mértékben meghatarozza a
molekuladinamikat. Azonban régton egy nagyon stlyos gyakorlati probléma
meriil fel, amikor a Born-Huang-egyenleteket egy degeneranciakkal is
rendelkezé rendszerre szeretnénk megoldani. A NACT-nak ugyanis a
degeneranciak helyén polusa van, amely a Born-Huang differencial-egyenletek

55



megolddsaban numerikus problémakat, instabilitasokat okoz. Egy elméleti
moddszer ezen probléma kikiiszobdlésére az adiabatikus Born-Huang-képbdl a
diabatikus képbe torténd attérés egy unitér-transzformacio (ADT matrix)
segitségével.  Ezaltal a  szingularitasokkal rendelkezd6  NACT-okat
kitranszformaljuk, ¢és helyette a diabatikus képben egy potencialcsatolast
nyeriink, ami mar analitikus fliggvénye lesz a koordinatdknak. Az ezen
transzformécido véghezviteléhez sziikséges ADT matrix egy adott konturon
torténd eldallitaisdhoz Baer 1975-ben javasolt egy moddszert tobb-atomos
molekuldk esetére, egyben feltételt adva arra nézve is, hogy mikor létezhet
pontos megoldds. Ezen uUn. ’rotaciés feltétel’ a NACT-okbdl képezhetd F-
matrixra nulla értéket ir elé az adott kontir minden egyes pontjdban. Nevezziik
a zart kontirhoz tartoz6 ADT matrixot D-matrixnak. Nemrégiben Baer
megmutatta, hogy ha az ADT matrix megoldasa az egész kontur mentén 1étezik,
akkor ez a D-matrixra egy kvantalasi feltételt szab ki. Az is megmutathato,
hogy mind a rotacids, és mind a kvantélasi feltételek teljesiilnek, ha az elektron
sajatfliggvények egy teljes Hilbert teret feszitenek ki a konfiguracios tér azon
részében, ahol az ADT matrix megoldasat keressilk. Az F=0 feltétel
differencidlis (csak a konfigurdcios tér adott pontjara vonatkozd), mig a D
kvantéltsdga integralis (az egész kontir mentén teljesitendd) feltétel a teljes
Hilbert tér eldontésére vonatkozolag.

Ezen értekezés négy f0 fejezetének megfeleléen (3-6. fejezetek) négy
kiilonbozé szemszogbdl targyalom a ci-k szerepét a nem-adiabatikus és
topologiai effektusok létrehozasaban. A kovetkezOkben pontokba szedve
ismertetem ezen témakat és a hozza fiiz6d6 eredményeimet:

(I) Mint ahogy fentebb mar emlitettiilk, az ADT matrix kulcsfontossag
szerepet jatszik a diabatikus képbe valo attérés soran. A helyes
kvantummechanikai leirds pedig, ha a rendszer -elfajult allapotokkal
rendelkezik, csak a diabatikus képben torténhet. Emiatt barmilyen informéacio
az ADT matrixrol fontos lehet a nem-adiabatikus folyamatok preciz leirdsahoz.
Amennyiben az elektronéllapotok teljes Hilbert teret alkotnak, az ADT matrix
egzaktul eldallithato, és igy a nyert diabatikus kép is egzakt. Sajnos azonban a
tobbatomos molekuldk tipikusan olyan kvantumrendszerek, amelyek végtelen
bazisban ¢élnek, ami végtelen dimenzids ADT matrix-hoz vezet és ilyen
formaban a problémat kezelhetetlenné teszi. Arra keressiik a valaszt, hogy
lehetséges-e a teljes Hilbert teret mégis jo kozelitéssel kis, N=2...5 dimenzids
alterekre bontani, ugy, hogy egy adott alteren beliil az allapotok kozotti csatolds
erds legyen, de a kiilonbozo alterek kozott csak gyenge csatolddas 1épjen fel. Ez

56



esetben az egyes allapotok csoportjai egymastol elszigetelédnének, ami azt
jelenthetné, hogy numerikusan elegendd lenne az ezen allapotokhoz tartozd
Hilbert altereket egymastol fiiggetleniil kezelni, amely a probléma
komplexitasat 1ényegesen lecsokkentené. A feladatom tehat, kiilonb6zd
rendszerek numerikus vizsgalata volt, a fent megfogalmazott kérdésre keresve a
valaszt:

e Egy programot készitettem, amely alkalmas tetszéleges N dimenzids F-
¢s D-matrixok kiszdmitasara az adott rendszer NACT elemeinek
ismeretében.

e A Mathieu-egyenlet sajatfiiggvényein alapuld modellre vizsgéltam,
hogyan fiiggenek az F- és D-matrixok a konfiguracids tér nagysagat
mérd x paramétertdl, és az allapotok N szamatol.

e Ab-initio szamitast végeztem a H+H, rendszer NACT elemeinek
meghatarozasaira a MOLPRO program segitségével, amelybdl a D-
matrixot allitottam elé kiilonbozé N=2...5 allapotszamok és 0.3 A
<x<0.65 A sugarti kdrvonalak mentén.

o A fenti F- és D-matrixok ismeretében vizsgéltam mind a modell, mind a
valés molekuldris rendszerre a kvantdlasi és a rotacios feltételek
teljesiilésének mértékét.

e Az eredményekbdl a kovetkezOket allapitottam meg: Tegylik fel, hogy a
minket érdeklé atomi konfiguracids térben, kivalasztunk egy Hilbert
alteret. Ezen alteret alkot6 allapotok a fenti konfiguracios térben akkor
fognak a teljes Hilbert tér tobbi allapotatdl elszigetelt Hilbert alteret
alkotni, ha minden olyan allapot szerepel a fenti altérben, amely a
minket érdeklé tartoméanyban elfajultta valik. Ugyanakkor, ha ezen
Hilbert altérhez tovabbi olyan 4&llapotokat adunk, melyek nem
csatolodnak ci-n keresztiil az eredeti Hilbert alteret alkotd allapotokhoz,
tovabb novekszik az igy keletkezett Hilbert altér izolaltsaga a
HKilvilagtol”. Az izolaltsag mértékét a D-, és F-matrixok adjak meg.

(IT) Sikeriilt kimutatnom, hogy az ADT matrix dimenzidoszadma Iényegesen
redukalhato és egyértelmii kapcsolatban 4ll a ci tipusti degenerancidknak a
konfiguracids térbeni elhelyezkedésével, viszont még tovabbi iddigényes ab-
initio szdmitasokat igényld feladat a NACT matrix elemeinek eldallitasa. Ezért
az volt a szédndékunk, hogy a NACT-okat lehetdleg egyszerii modelleken
alapulé modszerrel, az ab-initio szamitdsokat megkeriilve kaphassuk meg jo
kozelitéssel. A modellfeltevés: a ci-k, mint pdlussal rendelkez6 szingularitasok
generaljak a NACT vektorteret, az elektrodinamika egyenleteinek forrasaihoz
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hasonlé médon. Mig N=2 esetén az analdgia szépen nyomon kdvethetd, €és egy
vektor-algebrai modellhez vezet, addig N=3 esetén csatolt, nemlinearis
téregyenletekhez jutunk a nem-Abeli vektortérnek megfelelden:

e Abbdl a modellfeltevésbdl kiindulva, hogy a ci altal generalt NACT
mez6 radidlis komponense zérus, egy programot készitettem, amely a
két-dimenzios konfiguracios tér barmely pontjaban kiszdmitja az N=2
esetén eléallo NACT komponensét.

e Osszehasonlitva az Na+H, rendszer ab-initio és a fenti model NACT
komponenseit, megallapithatjuk, hogy a ci, mint a NACT vektorteret
keltd forras jol modellezi a valds esetet N=2 allapot esetén.

e Megmutattam, hogy a NACT-ok egyes komponensei kozotti kapcsolatot
leird6 un. roticid-divergencia egyenletek N=3 allapot esetén harom
csatolt Poisson-egyenletre vezetnek.

e FEzen Poisson-egyenleteket Fourier-sorfejtésen alapuld numerikus
modszerrel oldottam meg a H+ H, rendszer harom legalso allapotara,
figyelembe véve az adott ab-initio hatarfeltételeket. Az igy kapott
NACT elemek az ab-initio eredményekkel szép egyezést mutatnak,
hasonléan az N=2 allapot esetéhez.

(ITI) Amikor a rendszerben egy viszonylag nagy méretii konfiguracios térben
eléforduld degenerancidk azonos allapotokat csatolnak Ossze, a kapcsolddod
elszeparalt Hilbert altér az elézé tanulményaink alapjan jo kozelitéssel N=2
dimenziosnak adodik. Ezt a tényt felhasznalva, hasznosnak talaltuk, hogy
behatdobban tanulméanyozzuk két-allapot rendszerek diabatikus potencialjat
abbol a célbol, hogy mélyebb ismereteket nyerhessiink a ci-k eloszldséara
vonatkozoan. Ezuton konkrét kapcsolatot talaltunk egy adott kontar diabatikus
potencidljanak viselkedése, és a konturt hatarolo konfiguracios térben taldlhato
ci-k szama ¢és elhelyezkedése kozott. Ez a modszer a Longuet-Higgins-féle
topologiai teszt altalanositdsdnak tekinthetd a diabatikus reprezentacidban.
Konkrét eredményeim a kdvetkezok:

e Levezettem, hogy a ci koriilvétele soran adodd kétdimenzios ADT-
matrix un. forgasi szoge +m értékeket vehet fel. A ci-t a m eldjelétdl
fiiggden pozitivnak, vagy negativnak nevezziik. A +r érték helyességét
konkrét valés molekularis rendszerekbdl szarmazod ab-initio eredmények
is alatdmasztjak.

e Felhaszndlva a fenti eredményt, magyarazatot adtam a ,ci parok
megsemmisitését” leiro jelenségre.
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e Megmutattam, hogy a 2x2-es diabatikus potencidlnak egy adott
konttron felvett értékeibdl kdvetkeztetni lehet a kontiron beliil talalhato
ci-k eldjeles Osszegére. Ezen eredményt az Na+tH, rendszerre
numerikusan is igazoltam.

e Egy eljarast fejlesztettem ki (és ugyancsak alkalmaztam az Na+H,
rendszerre), amely az el6z6 pont eredményeire épit, bar Iényegesen tobb
ab-initio, ¢és numerikus szamitast igényel anndl, de képes a rendszer
degeneranciainak egzakt meghatarozasara.

(IV) Mindezidaig az id6tdl fiiggetlen Born-Huang-kép eszkoztarat vizsgaltuk: a
NACT, az ADT vagy a diabatikus matrixokat, abbol a célbol, hogy a nem-
adiabatikus folyamatok dinamikajanak megoldasara (illetve megoldhatosagara)
vonatkozolag hasznos informéciokat szolgaltassanak. Most a molekuldris
rendszereket egy masik, un. félklasszikus szinten vizsgaljuk: feltételezziik,
hogy a molekulanak egyik atommagjat egy kiils6 elektromagneses potenciallal
mozgatjuk, melynek hatdsara az igy modon két részre tagolodd rendszer
egymashoz képest forgo, keringd mozgast végezhet. Ha a rendszert egy kezdeti
(mondjuk alapéllapotbdl) inditottuk el, akkor ezen fenti mozgis hatasara
gerjesztett allapotokba torténd atmenetek jonnek létre. Ha a fenti mozgatas
viszonylag lassu (Un. adiabatikus) nagy keringési id6vel, akkor ez pontosan egy
olyan szituacio, ahol értelmezheté a Berry fazis: az a fazisfaktor, amelyre egy
allapot tesz szert azaltal, hogy nagyon lassu mozgassal a rendszer
paraméterterében egy zart korutat tesz meg. 1988-ban Samuel és Bhandari
megmutatta, hogy Berry geometriai fazisa altalanosithatdé a kvantumrendszer
tetszéleges nem ciklikus €s nem adiabatikus iddéfejlédésére is. Mind a Berry, €s
mind pedig az altalanositott Uin. nyilt gérbe menti geometriai fazist vizsgaltam
molekuldk szemiklasszikus kozelitésében, és a kovetkezd eredményekre
jutottam:

e Az ADT matrix y forgasi szoge teljes mértékben meghatarozza a nagyon
lasst, adiabatikus 1d6fejlédésti molekularis rendszer y, nyilt gorbe-menti
geometriai fazisat.

e Az elmélet szerint, a nyilt gérbe-menti fazis adiabatikus idéfejlodés
soran  ugras-fiiggvényt vesz fel, ahol az ugrashelyek a
cos(y(¢))fiiggvény, azaz a 2x2-es ADT matrix diagonalis elemének
zérushelyei, és az ugrasok nagysaga m paratlan szamu tobbszordsei.

e Az elmélethez kacsoldddé numerikus szadmitasokat az (Nat+Hy)
rendszeren végeztem, kinyerve a rendszer 1d6fiiggd
hulldmfiiggvényébdl a nyilt gérbe-menti geometriai fazist mind nagyon
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lasstt adiabatikus, mind pedig nem-adiabatikus id6fejlodés soran. A
numerikus eredmények az adiabatikus esetben szinte teljes atfedésben
vannak az elméleti joslatokkal, és ugyancsak hasznos informaciot
szolgaltatnak a nem-adiabatikus id6fejlédésre nézve.
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