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Chapter 1 

Introduction 

Molecules are composed of fast moving light electrons and slow moving heavy 
nuclei. This fact was exploited by Born and Oppenheimer [1] who separated the 
motion of fast electrons and slow nuclei in a quantum mechanical framework. 
The Born-Oppenheimer (BO) adiabatic approximation represents one of the 
cornerstones of molecular physics and chemistry. It allows the calculation of 
dynamical processes in molecules to be divided into two stages. In the first 
stage, the electronic problem is solved keeping the atomic nuclei fixed in space. 
The calculation of electronic energies and wave functions for fixed nuclei has 
been developed to a high degree of sophistication and constitutes the core of 
modern quantum chemistry. In the second stage, the nuclear dynamics on a 
given predetermined electronic potential energy surface (PES) is treated. The 
BO approximation is frequently accurate enough to allow the detailed 
understanding and prediction of molecular properties and processes.  
Another class of important and interesting phenomena, which is the subject of 
the present thesis, is associated with dynamical processes that are not confined 
to a single electronic surface. The BO approximation [1,2] is based on the fact 
that the spacings of electronic eigenvalues are generally large compared to 
typical spacings associated with nuclear motion. When this condition is 
violated, the so-called non-adiabatic coupling terms (NACTs) cause transitions 
between the adiabatic electronic states. In this case the fast-moving electrons 
can create exceptionally large forces, causing the nuclei to be strongly 
accelerated so that their velocities are no longer negligibly small. Thus the 
NACTs allow for the motion of nuclei to move on coupled multiple adiabatic 
electronic states. In this case in order to carry out an accurate treatment of the 
nuclear dynamics of the system, we must replace the ordinary BO 
approximation with the Born-Huang expansion [2], in which an arbitrary 
number of electronic states can be included.  

Their are a large class of chemically interesting processes, where the use of 
the  Born-Huang coupled nuclear motion Schrödinger equations are justified, 
include for instance most of the photochemical reactions in the nature (i.e. 
photodissociation in which a molecule breaks up after absorbing a photon, or 
bound state photoabsorption when there is no reaction).  
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Indeed, at the exact position of degeneracy the energy gap between two 
adjacent electronic states becomes zero and the NACTs consequently may 
become infinitely large. Therefore molecular systems exhibiting degeneracies 
especially require the multi-state Born-Huang treatment. For a polyatomic 
system involving N atoms, where N≥3 (i.e. for not diatomic molecules), any 
two adjacent adiabatic electronic states can be degenerate for a set of nuclear 
geometries even if those electronic states have the same symmetry [3]. These 
intersections occur more frequently in such polyatomic systems [4] than it was 
previously believed. The reason is that these systems possess three or more 
internal nuclear motion degrees of freedom, and only two independent relations 
between three electronic Hamiltonian matrix elements (in a simple two 
electronic state picture) are sufficient for the existence of doubly degenerate 
energy eigenvalues. As a result, these relations can be easily satisfied 
explaining thereby the frequent occurrence of intersections [5-8]. If the lowest 
order terms in the expansion of these elements in displacement away from the 
intersection geometry are linear (as it is usually the case), these intersections are 
conical, the most common type of intersection [3,9]. Longuet-Higgins revealed 
an interesting topological fact related to a conical intersection (denoted by ci): 
assuming the adiabatic electronic wave functions of the two interesting states to 
be real and continuous as possible in nuclear coordinate space if the polyatomic 
system is transported around a closed loop in that space (a so-called 
pseudorotation) that encircles one conical intersection geometry, these 
electronic wave functions must change sign [3,10]. This change of sign requires 
the adiabatic nuclear wave functions to undergo a compensatory change of sign, 
known as the geometric phase (GP) effect [11-14] to keep the total wave 
function to be singe valued. Longuet-Higgins’ findings were not just curiosities, 
they have profound effect on nuclear dynamics as was first pointed out by 
Mead and Truhlar [13]. They introduced a vector potential in the nuclear 
Schrödinger equation (SE) in order to ensure a single valued and continuous 
total wave function. Since the effect was analogous to that of Aharonov and 
Bohm (AB) [15], the name „molecular Aharonov-Bohm effect” (MAB) [13,16] 
was proposed for this phenomenon. Kupperman and co-workers identified this 
GP effect for the first time in a chemical reaction [17]. Their theoretically 
calculated integral cross-sections agreed well with experimental data at 
different energies [18]. The nuclear SE equation however, which describes well 
the MAB effect, essentially remains a single-state Schrödinger equation, thus it 
can not account for transitions between the electronic states, i.e. does not 
interpret well the so-called non-adiabatic effects. Therefore we expect that in 
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order the solution for high energy processes to be correct, the nuclear SE 
equations should include more excited states as well. 

Briefly we can say that a conical intersection has a double role in chemical 
processes: on one hand it imposes a given boundary condition on the nuclear 
wave function (i.e. causing the GP effect), but on the other hand it couples 
adjacent electronic states, thereby allowing the system to evolve non-
adiabatically, that is, in more than one electronic states. Certainly, as we have 
written above, this last feature can not be treated within the MAB theory, it 
needs a rigorous quantum formalism, the Born-Huang expansion, to treat the 
polyatomic systems properly. 

The Born-Huang picture is based on two basic concepts: the PESs and the 
NACTs, and as we have seen these later coupling terms are spiky functions of 
the coordinates (it has a pole in the exact point of degeneracy [19,20]), 
therefore they cause numerical instabilities when solution of the corresponding 
nuclear SE is attempted. The only way to overcome this numerical difficulty is 
to move from the adiabatic Born-Huang framework to a diabatic one, where the 
NACTs are replaced by potential coupling terms that are smooth functions of 
the coordinates [21,22]. It can be achieved by a unitary transformation called 
the adiabatic-to-diabatic transformation (ADT) matrix [23]. Baer suggested the 
derivation of the ADT matrix for a tri-atom system by solving an integral 
equation along a two-dimensional contour [24], in addition, sufficient 
conditions were derived for the existence of the solution, which are termed the 
’curl-conditions’. Recently, it has been proven that in order to produce a 
uniquely defined diabatic potential matrix (the matrix of the diabatic 
framework) from the NACTs, the ADT matrix has to fulfill quantization-type 
requirements [25]. Both of the above conditions (the quantization and the curl) 
are fulfilled when the eigenfunctions of the Born-Huang equations span a full 
Hilbert space [24,25]. 

Summing up we can claim, that any molecular system which exhibits 
conical intersection (which is not very rare, as it was revealed due to numerous 
ab-initio calculations and presented e.g. for two systems in Chapter 2) and is 
involved in non-adiabatic process, needs the diabatic framework for the proper 
quantum mechanical treatment. In this way the ADT matrix has a key role in 
any non-adiabatic process. In order to have an exact solution for the ADT (and 
the existence of a strictly diabatic representation) all possible adiabatic states 
should be included. Certainly it can not be accomplished as it would imply an 
infinite dimensional ADT matrix, but the question arises whether we can relax 
the conditions and thereby substantially decrease the number of states (to 
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N=2…5) to form a Hilbert subspace with a good approximation in a given 
region of our interest.  

We note that throughout the thesis we do not use the conventional meaning 
of the Hilbert subspace. We use it in the case, when a group of states is  
strongly coupled to itself and, at most, weakly coupled to other states belonging 
to this manifold (in the region of interest), that is they are isolated well from 
“the rest of the world”. 

In Chapter 3 we represent very promising results about the possibility of 
reducing the complete Hilbert space to a finite Hilbert subspace, both by 
choosing a model system (based on the eigenfunctions of the Mathieu 
equations) and a real molecular system (H+H2) for our numerical study. Since 
conical intersection lies in the confluence of two adjacent PESs, it has a 
dominant role in coupling these consecutive states, and therefore we expect that 
these states must be involved in the Hilbert subspace. The results will support 
our expectations and the ’quality’ of the corresponding Hilbert subspaces will 
be tested both by the curl and quantization conditions. 

However, by making friendly in size the ADT matrix we also need to gain 
from ab-inito calculations all the relevant NACTs in the whole configuration 
space (CS) of our interest in order to form the ADT matrix. Although nowadays 
their exist standard quantum chemistry computer packages, such as MOLPRO 
[26], and COLUMBUS [27,28] which calculate non-adiabatic coupling terms, it 
is still a very time consuming task, therefore our intention was to represent a 
model in Chapter 4 based on either a simple vector algebra or on certain field 
equations to be solved, in order to obtain the NACTs in every desired point of 
the nuclear configuration space. In the heart of the model lies the assumption 
that the NACTs behave like ordinary vector fields created by sources which 
have the positions of conical intersections (where NACTs become singular). 
The vector-algebraic model is worked out for the two-state Hilbert subspace, 
while the model generated by the field equations is an extension to the three-
state case.  

Since we found in Chapter 3 that the number of N states which forms a 
Hilbert subspace in a quite large region of CS could be N=2 with a good quality 
(especially when all the degeneracies are coupling the same two adjacent states) 
we felt interesting to study in Chapter 5 theoretically the diabatic representation 
of a two-state system with the aim of earning insight regarding the distribution 
of conical intersections in this region of CS. In this process we revealed explicit 
relationship between the diabatic potentials and the locations of conical 
intersections. The study is accompanied with numerical examples as worked 
out for the ab-initio potential energy surfaces of the Na+H2 system. The results 
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are very useful, since the positions and number of cis in a given region has a 
great importance in any non-adiabatic process. This method can be considered 
as a generalization of Longuet-Higgins’ topological test for intersections [10], 
since our new method exhausts more topological information associated with 
the behavior of the eigenvectors concerning the presence of degeneracies. 
However, we have to note that our method in its present form can be applied 
only for a two-level system, while Longuet-Higgins’ method is applicable for 
system with any dimension of Hilbert space.     

In Chapters 2-5 we mostly deal with problems concerning the time-
independent framework of the Born-Huang equations to study the NACTs, the 
ADT matrix and the diabatic potentials in order to infer some essential features 
of the above matrices regarding to the exact description of non-adiabatic 
processes. In Chapter 6, however we analyze molecular systems from an other 
point of view, namely via a semi-classical framework: we assume that one of 
the nuclear components of the molecular system is guided by an external 
potential of the electromagnetic field. This potential forces the two parts of the 
molecule to revolve with respect to one an other, and thus inducing transitions 
with some oscillating probabilities to other states regarded to the initial one. 
The above description of the situation is exactly the context where the use of 
Berry’s phase [14] is justified: ”The phase that can be acquired by a state 
moving adiabatically (slowly) around  a closed path in the parameter space of 
the system”. Macroscopic physical manifestations of this type of situation from 
other area of physics may be found in the Aharonov-Bohm effect [15], or in 
nuclear magnetic resonance (NMR) systems subject to slowly rotating magnetic 
fields [29], or it has been investigated for neutron spin [30] and photons [31], as 
well. In Chapter 6 we study the implementation of the Berry approach [14] 
within the Born-Oppenheimer molecular systems as we described it previously. 
We reveal relation between the Berry phase and the elements of the final ADT-
matrix (at the end of the closed trip in the configuration space) in the adiabatic 
limit. Based upon Pancharatnam’s work [32], who has introduced already in 
1956 the concept of geometric phase in his studies of interference effects of 
polarized light waves, Samuel and Bhandari [33] introduced the notion of open-
path geometric phases, which phase can be applied for a non-cyclic and non-
adiabatic evolution. We extend the study to deal with this situation as well, and 
will find further interesting connections between the open-path phase and the 
elements of the ADT. This theoretical study will be supported by a detailed 
numerical study carried out for the (Na+H2) system. 

The plan of this thesis is as follows. 
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In Chapter 2 we introduce the Born-Huang formalism together with a brief 
theoretical background of the non-adiabatic coupling terms. We also represent 
the two molecular systems (Na+H2) and (H+H2), which are subject of the 
numerical studies. 

Chapter 3 is devoted to the subject that in what extent the relevant group of 
states forms a Hilbert subspace in a polyatomic system in a given region of 
configuration space.  

In Chapter 4 we develop a model to calculate the non-adiabatic coupling 
terms, based either on a simple vector algebra in the two-state Hilbert subspace, 
or on the ’curl-divergency’ field equations in the three-state Hilbert subspace. 

 In Chapter 5 a method is discussed which reveals explicit connection 
between the diabatic potentials and the locations of conical intersections. 

In Chapter 6 we study the implementation of the geometric phase within 
Born-Oppenheimer molecular systems in a semi-classical framework. 

A summary of the new results are presented in Chapter 7. 
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Chapter 2 

The Theoretical and Numerical Background  

In this chapter we give a brief overview of the theory of the non-adiabatic 
coupling terms (Sec. 2.1) and review (Sec. 2.2) the ab-initio treatment to obtain 
these terms. In addition we represent the (Na+H2) and (H+H2) molecular 
systems, which are the subject of the numerial studies in the forthcoming 
chapters. 
 
2.1 Study of the non-adiabatic coupling terms 
 
The starting point for the theory of molecular dynamics and the basis for most 
theoretical chemistry is the separation of the nuclear and electronic motion. In 
the standard, adiabatic Born-Huang [2] picture this leads to the concept of 
nuclei moving over PESs corresponding to the electronic states of a system. 

In its Cartesian form, the Hamiltonian can be written 
( ) ( ) ( )rRHRTRrH eln ,ˆˆ,ˆ +=     (2.1) 

where nT̂ is the nuclear kinetic energy operator and can be written in terms of 

mass-scaled coordinates as 2
2

2
ˆ ∇

−
=

m
Tn

h , where m is the mass of the system, 

elĤ is the clamped nucleus electronic Hamiltonian which depends 
parametrically on the nuclear coordinates, and r,R stand for the electronic and 
nuclear coordinates, respectively.  

Next we employ the BO expansion: 

( ) ( ) ( )∑
=

=Ψ
N

i
ii RrRrR

1
|, ζψ ,         (2.2) 

where ( ){ }N
ii R 1=ψ  are the nuclear wave functions and ( ){ }N

ii R 1=ζ are the 
electronic eigenfunctions of the electronic Hamiltonian: 

( ) ( ) ( ) ( )RrRuRrRrH iiiel |||ˆ ζζ =         (2.3) 
Inserting the expansion Eq. (2.2) into the Schrödinger equation (SE) Eq. (2.1) 
and after some algebraic manipulation of the resulting equation we arrive at the 
coupled equations of the Born-Huang system in a matrix form: 
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( ) ( )( ) 02
22

2
2

2
2

=+∇−−+∇
− ΨττΨuΨ

m
E

m
hh        (2.4) 

where Ψ is the column vector that contains nuclear functions ( ){ }N
ii R 1=ψ , u is a 

diagonal matrix which contains the adiabatic potentials (PES), τ is the non-
adiabatic (vector) matrix (NACT) with elements: jiij ζζ ∇=τ , and τ(2) is the 

second order (scalar) matrix with elements jiij ζζτ 2)2( ∇= . We note that 

throughout the thesis the terms τ matrix and the NACT matrix will be used 
interchangeable expressing the same matrix.  

It is important to emphasize that Eq. (2.4) is valid for any group of states. 
Next we consider a group of N states (out of an infinite Hilbert space). The 
breakup of the Hilbert space is done according to the criteria [34] |τij|≈0 for 
i≤N; j>M. In other words the NACTs between states that belong to the group 
and those outside the group are all assumed to be negligibly small. If this 
breakup takes place at every point in a given region we say that the N states 
form a Hilbert subspace in this region. 

 If the group of states forms an isolated Hilbert subspace according to the 
above definition then, and only then, Eq. (2.4) takes a simple form [34]: 

( ) ( ) 0
2

2
2

=−++∇
− ΨuΨτ E

m
h ,        (2.5) 

where we used the fact that in case of a full orthonormal set of ( ){ }N
ii R 1=ζ  

( ) τττ ∇+= 22 .                     (2.6) 
The NACT matrix elements τij can be evaluated analytically with the 

knowledge of the ( )Riζ  adiabatic electronic eigenfunctions, using an off-
diagonal form of the Hellmann-Feynman theorem [35-37]  

j
el

ijel
ij

eli
jeli

R
HH

RR
H

R

H
ζζζζζ

ζ
ζζ

∂
∂

+
∂
∂

+
∂
∂

=
∂

∂ ˆˆˆ
ˆ

.     (2.7) 

As ( ){ }N
ii R 1=ζ are eigenvectors of elĤ at all values of R, the lhs. of Eq. (2.7) 

reduces to zero (when i≠j), and finally with some algebraic operations we 
obtain 

j
el

i
ij

ij R
H

uu
ζζ

∂
∂

−
=

ˆ1τ .           (2.8) 
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Thus it is well noticed that when the ith and i+1th eigenvalues (between two 
consequtive pairs) become degenerate the corresponding τ matrix element i.e. 
τi,i+1 becomes singular. However, we have to realize that for molecular systems 
that contain singular NACTs, Eq. (2.5) can not be solved because of the non-
analytic feature of the NACTs and therefore is of no practical use. Eq. (2.5) is 
known as the nuclear SE within the adiabatic framework. Now our aim is to 
eliminate the unpleasant singular NACTs from Eq. (2.5) by transforming to the 
diabatic framework, and for this purpose we perform the following 
transformation: 

AΦΨ = ,            (2.9) 
The matrix A is termed the adiabatic-to-diabatic transformation (ADT) matrix, 
because of its fundamental role in transforming between the two frameworks. 
Our next step is to obtain the A matrix, which is yet undetermined. Substituting 
Eq. (2.9) into Eq. (2.5) then performing the usual algebra, and demanding the 
elimination of the τ matrix, yields the following results: 
The new, diabatic SE is 

( ) 0
2

2
2

=−+∇
− ΦWΦ E

m
h ,                (2.10a) 

and the corresponding diabatic Hamiltonian is 
W+= Ndia TH ˆˆ ,                 (2.10b) 

where the diabatic potential is given in the following form: 
uAAW T= ,         (2.11) 

and the matrix A is a solution of the following first order differential equation: 
0τAA =+∇           (2.12) 

In order to have a solution for the ADT matrix in Eq. (2.12), it is a 
sufficient condition for A to be analytic, which implies that the ‘curl condition’ 
has to be fulfilled for the NACTs [24]: Introduce the matrix F, defined as 

[ ]qp
p

qp
pq q

F ττ
τ
ττ

,−
∂
∂

−
∂
∂

= ,       (2.13) 

where p and q are two nuclear Cartesian coordinates, in the case the group of 
states forms an isolated Hilbert subspace, according to the ‘curl condition’ F=0 
must be satisfied at every point in the configuration space. Writing F in a more 
compact way, this means     

[ ] 0=×−= τττF curl .       (2.14) 
In summary we can say, that the adiabatic framework (described by Eq. 

(2.5)) is the standard one in quantum chemistry for the reason, that it is the one 
which is used in ab-initio calculations, i.e. which solves the electronic 
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Hamiltonian at a particular nuclear geometry. In this case the full information 
about the nuclear dynamics is carried by the adiabatic potential energy surfaces 
(i.e. the u matrix) and the non-adiabatic coupling operator matrix (i.e the τ 
matrix). However, in the diabatic framework (defined by Eq. (2.10a-b)) the 
electronic wave functions are no longer eigenfunctions of the electronic 
Hamiltonian. The aim is instead that the functions are so chosen that the 
nonlocal τ matrix elements, and the couplings are represented by local potential 
operators, the so-called diabatic potential matrix W.  

Since the elements of the diabatic PES matrix are smooth functions of the 
coordinates in contrast to the NACTs, the diabatic framework is preferred for 
treating the nuclear dynamics of the nuclei, and all rigorous quantum-
mechanical treatments aim at reaching it. 

An elegant way to gain the diabatic potential W can be accomplished 
through Eq. (2.11). In this indirect way we derive for each point in the 
configuration space the adiabatic electronic eigenfunctions to calculate the 
NACTs and the corresponding electronic eigenvalues. Then with the knowledge 
of τ we solve Eq. (2.12) for the matrix A, and substitution to Eq. (2.11) yields 
the diabatic potential W. In order to calculate A at a given point R, we have to 
assume a contour Г that connects the point R and the starting point R0, and 
solve Eq. (2.12) along this contour. The solution is given in the form [38]: 

( ) ( )00

0

expˆ, RdRPRR
R

R

AτA 









−= ∫ ,      (2.15) 

where P̂ is the path ordering operator, and ( )0RA  is a matrix that contains 
boundary values. Closing the contour in Eq. (2.15) leads to the matrix ( )ΓD , 
namely 

( ) ( ) 




−=Γ== ∫Γ dRPDRRRA τexpˆ, 00 .     (2.16) 

Now our aim is to find a connection between the elements of the matrix 
( )ΓD and the electronic eigenfunctions which are parallel transported on the 

particular closed contour Г. To form the connection between two nearby Hilbert 
spaces we consider the kth electronic ket ( )Rkζ  (defined by Eq. (2.3)) at the 
point R+∆R: 

( ) ( ) ( )∑
=

∆+=∆+
N

i
ikkikk RRRR

1
τδζζ .     (2.17) 
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The previous equation is merely a first order expansion in R and is always 
fulfilled if the set ( ){ }N

ik R
1=

ζ forms a complete basis. Using Eq. (2.17) we can 
write in general a displacement of the basis at R0 to R: 

( ) ( ) ( )∑
=

∗=
N

m
mkmk RRRR

1
00, ζζ A ,      (2.18) 

where the numerical matrix is defined by 

( ) 









−= ∫∗

R

R

dRPRR
0

expˆ, 0 τA .       (2.19) 

Comparing the expression for ( )0, RR∗A in the above equation with the 
expression for ( )0, RRA  in Eq. (2.15), we can realize that choosing as a 
boundary ( ) IR =0A in Eq. (2.15) entails 

( ) ( )00 ,, RRRR AA =∗ .        (2.20)  
Thus closing the contour, and applying Eq. (2.18) leads to 
( ) ( ) ( )00 ||| RrRr ζζ Γ=Γ D ,       (2.21) 

where ζ denotes the vector formed by { }N

ik 1=
ζ , and Γ is the particular closed 

contour. This D-matrix plays an important role in the theory because it contains 
all topological features of an electronic manifold in a region surrounded by the 
contour Г as it can be inferred from the definition contained by Eq. (2.21): 
the D-matrix is diagonal and has in its diagonal numbers of norm 1. Since we 
consider only real electronic eigenfunctions these numbers can be either (+1)s 
or (-1)s. Moreover, the positions of the (-1)s are associated with the electronic 
eigenfunctions that flip their sign. 

Let us simplify our treatment and examine the two-state case. For a system 
of real Hamiltonian τ is a real, antisymmetric matrix, thus in the two-state case 
the NACT matrix has one nonzero term τ12=τ21, and for this case one can 
evaluate analytically the ordered exponential in Eq. (2.16), and yields the 
following D-matrix [39]: 

( ) ( )
( ) ( ) 














−
=

∫∫
∫∫
ΓΓ

ΓΓ

dRRdRR

dRRdRR
D

1212

1212

cossin

sincos

ττ

ττ
     (2.22) 

Next we refer to the requirements to be fulfilled by the matrix D, that it is 
diagonal and that it has in the diagonal numbers which are of norm 1. In order 
for that happen the vector function τ21(R) has to fulfill along a given closed path 
Г the condition [25,39]: 
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( )∫ = πndRR12τ ,        (2.23) 
where n is an integer. Eq. (2.23) is a quantization condition on the matrix 
element τ12. We note that this condition must be always fulfilled whenever the 
dimension of Hilbert subspace in the region encircled by the contour Г can be 
considered N=2. However, excluding singularities of the NACTs the curl 
condition for two-state case in Eq. (2.14) becomes 012 =τcurl , which entails, 
by applying Stokes’ theorem, that as a special case n=0 in Eq. (2.23). 
 
2.2 Numerical details of H+H2 and Na+H2 
 
In the preceding section the theory required to study non-adiabatic effects on 
molecular systems has been outlined. Now, we give a brief overview in 
subsection (2.2.1) about the details of the ab-initio treatments, and discuss in 
subsection (2.2.2) the positions of the various conical intersections in the two 
tri-atomic systems the H+H2 and Na+H2 under investigation. 
 
2.2.1 The ab-initio calculations 
 
At present the best general methods for the treatment of polyatomic molecules 
are the MCSCF methods, of which the CASSCF method is particularly 
powerful. The MCSCF methods describe a wave function by a linear 
combination of M configuration state functions (CSFs), Фk, with CI 
coefficients, Ck, 

( ) ∑
=

Φ=
M

k
kkCr

1

ζ .        (2.24) 

In practice each CSF is a Slater determinant of molecular orbitals, which are 
divided into three types: inactive (doubly occupied), virtual (unoccupied), and 
active (variable occupancy). The active orbitals are used to build up the various 
CSFs, and so introduce flexibility into the wave function by including 
configurations that can describe different situations. Approximate electronic 
wave functions are then provided by the eigenfunctions of the electronic 
Hamiltonian in the CSF basis. This contrasts to the standard HF theory in which 
only a single determinant is used without active orbitals. The MCSCF method 
then optimizes both the molecular orbitals, represented as usual in SCF 
calculations by linear combinations of atomic orbitals (LCAO), and the CI 
expansion coefficients to obtain the variational wave function for one state. The 
optimization of the orbitals for a particular state, however, will not converge if 
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a degeneracy, or a near degeneracy of states is present, as the wave function 
will have problems following a single state. To overcome this, state-averaged 
orbitals (SA-MCSCF) must be used [40,41]. In this case rather than optimizing 
a single eigenvalue of the Hamiltonian matrix, an averaged energy function is 
used so that the orbitals describe all the states of interest simultaneously to the 
same accuracy. The strength and weakness of the method comes from the fact 
that the orbitals involved in a particular process must be selected and included 
in the captive space. Only the important orbitals are used, so accurate 
calculations can be made relatively cheaply. If the active space is however, 
badly chosen, this may lead to qualitatively incorrect results due to imbalances 
in the basis set. Using MCSCF methods it is also possible to obtain the non-
adiabatic coupling terms using analytic procedures [41]. SA-MCSCF must 
again be used in the calculation of the NACTs, as the functions for the two 
states must be described to the same level of accuracy.  

In the actual calculations the non-adiabatic coupling terms were calculated 
employing the analytical gradient technique of the MOLPRO [40] program for 
state averaged CASSCF wave functions. In both systems (H+H2 and Na+H2) 
the ab-initio calculations were carried out at the state-averaged CASSCF level 
with the 6-311G** basis set. 

(i) In the H+H2 system the basis set was extended with additional diffuse 
functions. In order properly to take into account the Rydberg states it was added 
to the basis set one s and one p diffuse function in an even tempered manner, 
with exponents of 0.0121424 and 0.046875, respectively. The active space 
included all three electrons distributed over nine orbitals. Usually five different 
electronic states (depending on the case), namely, 1 2A’, 2 2A’, 3 2A’, 4 2A’ and 
5 2A’ were computed by the state-averaged CASSCF method with equal 
weights.  

(ii) In the Na+H2 system we used the active space including all three 
valence electrons distributed on 16 orbitals. Seven electronic states, including 
the four studied states were computed with equal weights. 

 
2.2.2 Revealing the position of conical intersections 
 
Now we are particularly interested in both molecular systems of the position of 
the conical intersections (cis), i.e. the points in the two-dimensional 
configuration space where at least two adjacent states (j) and (j+1) become 
degenerate. In order to reveal the position of cis in an unexplored system we 
have to allow only two nuclear coordinates to be varied, and the rest must be 
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frozen (unless the cis are not points but higher dimensional objects). 
Throughout this work we merely deal with tri-atomic molecular systems, and 
the nuclear configuration space we treat is formed by fixing the distances of 
two (out of three) atoms and let the third atom move freely on this surface of 
CS. Thus the third atom determines a plane with polar coordinates (q,φ) which 
at the same time serves as a test-particle to search for cis. These conical 
intersections can be explored on several ways, below we give a list of them: 

(a) It can be called direct way [5], since cis are found by tracing the energy 
gaps between particular states, and in this way assigning the points at which 
two (or more) adiabatic states (surfaces) become degenerate. This method may 
miss an existing ci or define a situation of an ”almost” degeneracy, as a ci, due 
to the numerical inaccuracy in computing the potential energy surfaces.  

The other methods are called topological ones, since we exploit the 
topological nature of the cis: 

(b) It was pointed out by Longuet-Higgins et al. that when an electronic 
wave function is parallel-transported along a closed path around a conical 
intersection of a PES, the sign of the wave function is changed [3]. Longuet-
Higgins also proved that when an electronic wave function changes sign after a 
circular transportation along a loop in the atomic configuration space, there 
must be a conical intersection within the loop [10]. We apply this theorem here 
to locate conical intersections via inspecting the diagonal elements of the 
topological D-matrix. Since we noticed in section (2.1) that the possible -1/+1 
values are directly associated with the adiabatic eigenfunctions flipping/non-
flipping signs when traversing the contour Г, we can state that when denoting 
with nj the number of cis involving state j contained in the closed loop Г entails 
that  

( ) jn
jj 1−=D          (2.25)   

This method requires a group of N states (denoting by N the dimension of the 
D-matrix) isolated from the rest, i.e. the number of N states must form a Hilbert 
subspace, otherwise the diagonal elements of D will be not exactly ±1. 
Certainly this method can be applied as well when  1±=iiD only with a good 
approximation, which usually can be guaranteed in many circumstances, for 
instance by increasing the number of states to form the D-matrix (a topic which 
will be accounted for in Chapter 3). A drawback of the Longuet-Higgins’ 
topological approach related to search for intersections in a given region, that 
when each state involves even number of cis, according to Eq. (2.25) the 
method is not capable to signal degeneracies inside the loop.  
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(c) The problem with the above method can be partialy circumvented by 
observing the off-diagonal form of the Hellmann-Feynman theorem in Eq. 
(2.8). In the case of a conical degeneracy between states j and j+1 the numerator 
in Eq. (2.8) is nonvanishing thus the element τjj+1 has a pole. This means (using 

first order perturbation theroy) that close to the intersection 
rjj
1

1 ∝+τ , where r 

denotes the distance from the point of intersection. Therefore in our case when 
the test particle, namely the Hydrogen atom is relatively close to the degenerate 
point (between j and j+1 states) the amplitude of the corresponding τjj+1 element 
becomes very large indicating a degeneracy in the neighborhood of the moving 
Hydrogen’s actual position.  

Summing up the features of the above (a)-(c) methods we can notice that in 
a real situation when there is no previous information about the topology of cis 
in a molecular system, the best working method seams to be a combination of 
the above mentioned ones.   

  
In the following we describe the revealed cis in each molecular system. We 

introduce a new notation by designating a ci between the j and j+1 states as 
(j,j+1) ci. The following findings about the position of the various cis of the 
H+H2 and Na+H2 systems have been revealed in subsequent publications of 
Ref. [5,7] and paper I.   
 

(i) The H+H2 is characterized by the fact that its three lowest states namely, 
the 12A', the 22A' and the 32A' states are strongly coupled to each other. In 
general the type of coupling terms that dominate the interaction between the 
three states depends on the nuclear configuration [7]. Here we limit ourselves to 
a situation where two hydrogen atoms are at a (fixed) distance RHH = 0.74 Å. In 
this situation the two lower states of the H+H2 system are coupled by an 
equilateral (1,2) ci, labeled as a D3h ci and the second and the third states are 
coupled by two C2v cis formed by the corresponding isosceles triangles. These 
two (2,3) cis, sometimes termed as twin cis, are located on the two sides of the 
line that combines the center-of-mass of the two bonded hydrogens and the 
third (loose) hydrogen (see the schematic geometry in Fig. 2.1a).  

 
(ii) In the Na+H2 we are interested again in a situation where the distance 

between the two hydrogens is fixed and in this case assumed to be 2.18 a.u. and 
the sodium is allowed to move freely (in the plane). In Fig. 2.1b are shown the 
positions of the various cis. It was found in paper I. that the (1,2) ci is a C2v ci 
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located on the symmetry line orthogonal to the HH axis, the (2,3) cis are C2v cis 
located on the HH axis, and out of the four (3,4) cis two of them are C2v cis 
located on the symmetry line orthogonal to the HH axis, at a distance of 
r~1.145a.u. and 1.580a.u. from the HH axis and two Cs twin cis located on both 
sides of the just mentioned symmetry line at a distance of r = 1.533a.u. from the 
HH axis and at an angle of 12.2° off this symmetry line.  

 
Figure 2.1: Positions of the various conical intersections: (1,2), (2,3) and (3,4) cis are 
labeled with markers ■,♦,▲, respectively. Subfigure (a) shows the topology of the 
H+H2 system, while (b) shows the Na+H2 system 
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Chapter 3 

The Quantization and the Curl Condition 

In this chapter we study two features of the non-adiabatic coupling matrix τ, 
namely: 
(i)  its components fulfill the curl condition, ie. according to Eq. (2.14) the  F-
matrix is a zero matrix.  
(ii)  it is quantized in the sense that the D-matrix presented in Eq. (2.16) is an 
orthogonal diagonal matrix.  

These conditions are satisfied when the group of states forms a complete 
Hilbert space. However the validity of these conditions can be extended for 
group of states which do not form a Hilbert space but in the region of interest 
are well isolated from “the rest of the world”. The case (ii) can be derived from 
Eq. (2.17) as it is intuitively clear that Eq. (2.17) is valid only when all possible 
adiabatic states of the isolated Hilbert subspace are included.   

It is known from perturbation theory [42] that a region surrounding a ci can 
always be made small enough so that the 2x2 D-matrix (see Eq. 2.22) is an 
orthogonal diagonal matrix which implies that the two relevant states form a 
Hilbert subspace in this small region [8,43]. However when we extend the 
region round the ci, the 2x2 D-matrix is no longer quantized (i.e. it does not 
fulfill (ii)), and we have to extend the number of states and add an other state to 
form a 3x3 D-matrix which will be quantized again. Thus it seems that the 
larger the region the more states are required in order to make the relevant D-
matrix diagonal. Certainly we expect the same feature from the F-matrix, as 
well. This chapter and the corresponding II and III papers are devoted to this 
subject.  

Section (3.1) is based on the paper II. We preview the main principles of 
the study concerning a model system based on the Mathieu equation. Then we 
discuss the feature (i) namely the fulfillment of the curl condition in subsection 
(3.1.1), and quantization condition (ii) in subsection (3.1.2). Section (3.2) is 
based upon paper III, which deals again with feature (ii), ie. the quantization 
condition for the D-matrix in the H+H2 realistic system. 
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3.1 The model system 
 
The idea was to consider for this purpose a simple model for which the 
‘electronic’ eigenstates can be easily produced and particularly the following 
relations can be studied quantitatively: (1) for a given value of N (where N is 
the dimension of the matrix τ), increasing the region of configuration space Λ 
how the fulfillment of the above quantization and curl conditions are harmed); 
(2) to what extent the increase of N for a given region Λ improves the 
fulfillment of the above conditions. 

Based on previous experiences [44,45] we chose for this task the Mathieu 
equation. This equation is characterized by one electronic coordinate (θ) and 
two nuclear coordinates (q,φ): 

 ( ) ( ) ( ) 0,|,2cos
2
1

2

2

=







−−−

∂
∂

− φθζφφθ
θ

qqukqE jjel .     (3.1) 

Here Eel is a characteristic electronic quantity, uj(q,φ) and ζj(θ|q,φ) are the j-th 
eigenvalue and eigenfunction, respectively, which parametrically depend on the 
nuclear coordinates. The term, that couples the electronic and the nuclear 
motions and depends on all three of them, is written in the present application 
as a product kqcos(2θ-φ) which yields NACTs that are independent of the polar 
coordinate, φ - a fact which simplifies, significantly, the numerical treatment. 
Next we introduce a new parameter, x defined as: 

( )elEkqx /=             (3.2) 
In this notation the nuclear coordinate x is directly associated with the size of 
the region Λ. Now we do not follow in detail on which way we solve Eq. (3.1) 
numerically, and how we obtain the NACTs and finally the two relevant matrix 
F and D (it is quite straightforward and can be find in the paper II). We merely 
show some final useful results coming from the treatment of the model. 
 
3.1.1 Study of the D-matrix 
 
The study of the D-dependence on x and N i.e. D(N,x), is presented in terms of 
the diagonal elements of the D-matrix, namely, Djj; {j=1,N}. Note, that since 
the matrix elements of τ do not depend on φ, this also applies to the D-matrix. 
In the converged case (namely, the case for which the group of N states forms a 
Hilbert subspace in the circular region defined by x) we expect these diagonal 
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elements to be -1 for our particular model when N is an even number. 
Therefore, for a given N and x, a significant deviation of a diagonal term from  
-1 implies that within the region defined by x the considered N states do not 
form a Hilbert subspace. We observed in all cases, that the last diagonal 
element along the diagonal, namely, DNN(N,x), shows, as x increases, the 
largest deviations from -1.0. 

 
Figure 3.1: Highest diagonal elements Djj(N,x), calculated as functions of N for various 
x values.  

Thus we present in Fig. 3.1 the DNN(N,x)-matrix elements as functions of 
N for different x-values. It is noticed that the various DNN(N,x) curves decay 
asymptotically towards the value -1 as N increases but the rate of decay 
becomes slower the larger is x (i.e. the larger is the region in the configuration 
space). Thus it is noticed that e.g. at x=4 the rate of decay is very fast (all 
diagonal elements for N ≥ 4 are already -1.0) but for x=16 the rate of decay is 
so slow that we reach the value of -1.0 only when N≥ 16. In summary, we 
showed here that the more extended is the region in the configuration space the 
larger is the required size of a set of states in order to be able to become a 
Hilbert subspace.  

 
3.1.2 Study of the F-matrix 
 
According to Eq. (2.14) the F-matrix can be written in the following form: 
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[ ]τττF ×−= curl .          (3.3) 
With the aid of the numerically computed eigenfunctions ζj(θ|q,φ)  we 

calculate the NACT terms and then produce the F-matrix elements as well. In 
Figs. 3.2 are presented the off-diagonal elements of the F–matrix (note the 
logarithmic scales along both axes): in Fig. 3.2a are shown the results for x=1 
and in Fig. 3.2b for x=10. The interesting aspect of this study is the very fast 
decay of most of these matrix elements with N and the fact that they decrease to 
such small values as 10-10. The only exception is the last off-diagonal element 
FN-1N(x) which decreases with N but in a very slow rate. 
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Figure 3.2: Off-diagonal matrix elements Fjk(N,x) calculated as a function of N for two 
x values. (a) x=1.0; (b) x=10.0. 
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Comparing the results for x=1 and x=10 it is noticed that in both cases the 
various values decrease to ~10-10 but in case of x=1 the rate of decrease is 
faster. The reason is that it is easier for a given group of states to become a 
Hilbert subspace the smaller is the x-value, namely the smaller is the region 
surrounding the ci(s). 

This feature is even better seen in Fig. 3.3 where are presented the same F–
matrix elements but as a function of x calculated for a fixed value of N (=8). 
The results in this figure just support what is claimed in the previous paragraph 
namely that these matrix elements tend to increase as a function of x (when 
calculated for a fixed N-value). 

 
Figure 3.3: Off-diagonal matrix elements Fjk(N,x) calculated as a function of x for 
N=8. 

In summary: we showed here (just as in the case of the study of the D-
matrix) that the more extended is the region in the configuration space the 
larger is the required size of a set of states in order to be able to become a 
Hilbert subspace. In addition we found that the convergence toward a Hilbert 
subspace is relatively fast (both with respect to the analysis of the D and F 
matrices). 
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3.2 The topological D-matrix: the numerical study of the 
H+H2 system 
 
We report here results according to paper III. The geometry and the details of 
the ab-initio calculations are described in section (2.2). Four circular contours 
are considered for calculating the NACTs; three of them centered at the D3h 
point and with the radii q=0.3, 0.4, 0.5 Å and the fourth centered at 0.25 Å 
further away from the HH axis (thus, at a distance of 0.89Å from the HH axis 
along the symmetry line) with a radius q=0.65Å. In Fig. 3.4 are presented 
schematically the positions of the various cis, the circular contours and the ten 
ϕ-dependent NACTs, namely, τϕjk(ϕ|q); j,k=1,2,3,4,5 as calculated along the 
various circles. It is important to mention that the points (q,ϕ=0) and (q,ϕ=π) 
are the 'northern' and the 'southern' poles, respectively, both located on the 
symmetry line. The various figures and mainly a, d, g and j indicate that most of 
the 'action' takes place around  ϕ = π, the point closest to the HH axis. 

 
Figure 3.4: Angular non-adiabatic coupling terms, τϕij(φ|q); i<j, as calculated for the 
H+H2 system for RHH=0.74 Å 



 23

The figures essentially speak for themselves, here we emphasize the large 
values that are attached to the three adjacent elements τϕjj+1; j=1,2,4, as 
compared to τϕ34 as well as to all the off-tridiagonal (non-adjacent) elements 
τϕjk where k>j+1 (note the different scales of the sub-figures in the two lower 
rows as compared to the scale of the sub-figures of the upper row). The only 
exception is τϕ13 which is relatively large. The reason is attributed to the 
strongly overlapping (1,2) and (2,3) cis which are, essentially, the ones to 
produce the values τϕ13 (see discussion on this subject in Ref. [46]).    

 
Table 3.1 The diagonal elements of the topological D-matrix as a function of N, 
calculated for contours with different radius (q).  
 

 
        N 
 
 q /Å 

 
- 

 
3 

 
4 

 
5 

D11 -0.986 -0.810 -0.995 
D22 -0.986 -0.996 -0.996 
D33 +1.000 +0.984 +0.999 
D44 - -0.798 -0.991 

 
 
0.3 

D55 - - -0.990 
D11 -0.966 -0.714 -0.992 
D22 -0.966 -0.993 -0.991 
D33 +0.999 +0.963 +0.997 
D44 - -0.684 -0.931 

 
 
0.4 

D55 - - -0.925 
D11 -0.940 -0.629 -0.986 
D22 -0.938 -0.990 -0.985 
D33 +0.999 +0.936 +0.993 
D44 - -0.576 -0.931 

 
 
0.5 

D55 - - -0.925 
D11 -0.935 -0.614 -0.982 
D22 -0.921 -0.995 -0.982 
D33 +0.986 +0.674 +0.987 
D44 - -0.293 -0.974 

 
 
0.65 

D55 - - -0.961 
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The various diagonal elements of the D-matrix, namely Djj(q); j=1,..N as 
calculated for different N-values (i.e. different sizes of Hilbert subspaces) and 
different circles (expressed in terms of q-values) are presented in Tables 3.1. 
The results in the table indicate the existence of one (1,2) ci, two (2,3) cis and 
one (4,5) ci in the configuration space: to demonstrate it, let us choose the 
diagonals of the D-matrix by q=0.3 Å and N=5. Since the contour related to 
this situation surrounds all the conical intersections (see the geometry which 
corresponds to the circle q=0.3 Å in Fig. 3.4), applying the formula of Eq. 
(2.25) we obtain the pattern (-1,-1,+1,-1,-1), namely, only the central wave 
function does not change sign, which is in agreement with the corresponding 
Djj elements.  

It is also noticed that adding a fourth state to the three-state Hilbert 
subspace causes the relevant diagonal D-matrix elements to distance 
themselves from the expected ±1values (Cf. values along the N=3 column and 
along the N=4 column). The main reason is that in contrast to the three lower 
states that form a Hilbert subspace the four states do not form a Hilbert 
subspace and adding the fourth state only increases the background noise 
(formed by terms like τ24 and τ14). However the extension of the four states to 
five states improves the situation significantly. This is well noticed by 
inspecting the five diagonal elements of the D-matrix as presented in the last 
column (i.e. N=5). This addition not only improved the four-state D-matrix 
numbers but even the three-state D-matrix numbers became much closer to ±1. 
The above results clearly indicate that adding states of a 'nearby' Hilbert 
subspace does not necessarily improve the quantization unless one adds a 
complete nearby Hilbert subspace.     
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Chapter 4 

Field Theoretical Approaches to Calculate 
Electronic Non-adiabatic Coupling Terms 
 
As it turned out in the previous chapters, the singularity of the NACTs at the 
position of the conical intersection adds a new dimension in the study of 
molecular processes. Being singular, hints towards the possibility that the 
NACTs are a kind of a field that has its origin at these singular points [46,47] 
which produce non-local effects. The intriguing idea to categorize the 
singularity points of the NACTs as sources for a field is somewhat reminiscent 
of the fields produced by charged particles (electrons, protons etc.) and the 
spatial distribution of the NACTs as the spatial intensity of the field. The aim of 
this chapter is to show, applying ab-initio calculations, that a theory of this kind 
is plausible. In section (4.1) a model is represented for a two-state system, 
which is based on simple vector algebra, while in section (4.2) we apply ‘curl-
divergency’ equations for the three-state system to calculate the NACTs in 
every desired point of its CS. 
   
4.1. An algebraic-vectorial approach to obtain non-
adiabatic coupling field from conical intersections 
 
From now on in this section we concentrate on the two-state systems. The two 
‘axiomatic’ conditions for any molecular system of real Hamiltonian, as we saw 
in the previous chapter, are the curl condition and the quantization condition. 
For a two-state Hilbert space these conditions look as follows: 

0=τcurl ,            (4.1) 
as the expression [ ]ττ× in Eq. (2.14) by two-level case vanishes. 

( )∫ = πndRRτ           (4.2) 
which is exactly the Equation (2.23) without the index of τ, as here the NACT 
matrix has only one nonzero element. 
However, from Eq. (4.1) and subsequently from Stokes’ theorem follows, that 
the path integral of τ, when τ is an analytic function, i.e. not enclosing a 
singularity (namely a ci), must vanish. Thus when we encounter a ci, at this 
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particular point of the configuration space, Eq. (4.1) is not valid, we have to 
modify it on the following way: 

( ) ( )
q
qfcurl δϕπ2=τ ,           (4.3) 

where the position of the ci was supposed to be at the origin of the coordinate 
system, (q,ϕ) are polar coordinates, δ(q) is the Dirac delta function and f(ϕ) is 
some function of the angle ϕ chosen in such a way to satisfy the condition, 
given by 

( )∫ =
π

πϕϕ
2

0

ndf .          (4.4) 

In what follows f(ϕ) is defined as the virgin angular component related to a 
given ci. Now Eq. (4.3) with the additional condition in Eq. (4.4) is equivalent 
with the fulfillment of the curl and quantization conditions in Eq. (4.1-2). In this 
case after some algebra we obtain that  
( ) ( )ϕϕτϕ fq =,0~ .          (4.5) 

Since the above pair of Equations (4.1-2) are too general to be solved now we 
have to apply our model assumption, namely that the virgin radial component, 
τq(ϕ,q) is always identically zero. Also numerical studies show that τq(q) is 
finite as q→0 and is orders of magnitude smaller than τϕ(ϕ)/q (in this region), 
therefore we hope that the model will describe quite well the real molecular τ 
field. Consequently, when we encounter one single ci in the origin of the (q,ϕ) 
configuration space, the components of the model τ field read as follows: 

( ) ( )ϕϕϕ fq =,τ ,          (4.6a) 

( ) 0, =ϕqqτ .             (4.6b) 

Next we consider the situation where the two states form several cis. In this 
case, just like in case of electric fields, because of the linearity of the curl 
equation, vector-algebra can be employed to add up the contributions of the 
various cis to obtain the resultant intensity of the field at an arbitrary given 
point. Let us attach to each ci a different f(ϕ)-function, i.e. fj(ϕj) to indicate that 
each such a ci may form a different virgin distribution.  

The components of the model τ field are given by the following formulas 
[46,47]: 
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( ) ( ) ( )

( ) ( ) ( )∑

∑

=

=

−=

−−=
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j
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j
j

j
jjq

q
fqq

q
fq

1

1

cos1,

sin1,

ϕϕϕϕ

ϕϕϕϕ

ϕτ

τ

       (4.7) 

where q and φ are primary coordinates, qj and φj are coordinates related to the 
position of the j-th ci. Eq. (4.7) can be proved to satisfy Eq. (4.1) and Eq. (4.2) 
provided that the functions fj(ϕj) fulfill the conditions 

( )∫ =
π

πϕϕ
2

0
jjj ndf .          (4.8) 

Thus Eq. (4.7) yields the two components of τ(q,ϕ), for a distribution of 
two-state cis expressed in terms of the virgin distributions of the NACTs at 
their own cis. These functions (i.e. the virgin distributions fj(ϕj)) have to be 
obtained from ab-initio treatments; however the entire field is formed by Eq. 
(4.7). Next we apply this model for the third and the fourth states of the Na+H2 
system. In this case we have four cis and we sum up the contributions of all of 
them (employing Eq. (4.7)) and compare with ab-inito calculations. 

 
Fig. 4.1. The four (3,4) conical intersections of the Na+H2 system labeled by ▲. The 
three co-centric circles denoted by (1),(2),(3) with their centers at O(0,0) surrounding 
different number of conical intersections and the circle (4) with its center at O(0,-
0.135a.u.) surrounding the two conical intersections located on the symmetry line. 
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The main findings for our present purpose are that the third and the fourth 
states form a quasi two-state Hilbert subspace coupled by the four (3,4) cis. In 
other words this system furnishes a unique opportunity to apply the vector-
algebra for a relatively complicated system with four sources (singularities).  

        
Fig. 4.2. Final results for the Na+H2 system: A comparison between ab-initio and 
model results for the τ34(ϕ|q) non-adiabatic coupling term as calculated along four 
circles presented in Fig. 4.1. In (a), (b), (c) and (d) are presented the angular 
components, τϕ34(ϕ|q) and in (e) (f), (g) and (h) are presented the radial components, 
τq23(ϕ|q). Full lines are results due to ab-initio calculations; dashed lines are results due 
to vector-algebra calculations. 
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The four cis and the various circles along which the calculations were done 
are presented in Fig. 4.1. The positions and types of these cis have been 
described in section (2.2.2). We do not show the virgin distributions here (they 
can be found in paper V), but we note that all of them are of the elliptic type 
[48] (in contrast to the circular Jahn-Teller type [9]).  

The model results and the ab-initio ones are compared in Fig. 4.2. In fact, 
like in the H+H2 system (can be observed in paper IV), the results speak for 
themselves. It is noticed that although the ab-initio distributions are frequently 
quite complicated and show a lot of structure the vector-algebra produces 
functions that are capable to follow very accurately the ab-initio wiggles.  

 
4.2. A field theoretical approach to obtain non-adiabatic 
coupling field from conical intersections 
 
The model of the preceding section was based on the assumption that in a given 
region of interest the Hilbert subspace can be considered with a good 
approximation two dimensional. However, in several physical situations this 
assumption does not hold. Increasing the involved region round a two-state 
conical intersection, the two-level approximation breaks down, and we must 
take into account more and more states so as the quantization and curl condition 
are satisfied with a good quality. This feature of the Hilbert subspace can be 
observed in the model based on the Mathieu equation in section (3.1). 
Furthermore a conical intersection not the same type, i.e. which couples other 
states, as the one situated in the origin of the encircled area, can also extend the 
size of the Hilbert subspace, as we have shown in the analysis of the H+H2 
system in section (3.2). That is, we had to consider at least N=3 states to obtain 
in the diagonal of the D-matrix values close to ±1 according to Table 3.1, when 
we treated a contour involving (1,2) and (2,3) cis as well.  

 Therefore in the light of the previous remarks, it seems a relevant question 
how to extend the analysis of section (4.1) to more than two states. In the 
present section we are dealing with the extension to the case of N=3 state. We 
derive and solve the molecular ‘curl-divergency’ equations to obtain the fields 
produced by the NACTs. In contrast to electrodynamics (and the previous two-
state case) we usually encounter more than one field, and moreover the guiding 
equations are not linear which causes additional complications comparing with 
the Maxwell equations. The calculations are carried out for the three lower 
states of the H+H2 system and the results are compared with ab-initio 
calculations. 
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Let us start as in the two-state case from first principles, i.e. the equations, 
which govern the behavior of the fields of NACTs: 

One of the set of equations are called the Curl equations. They are coming 
from the curl condition, defined by Eq. (2.14) and writing in a more explicit 
form for N=3, we obtain 

[ ]132312 τττ ×=curl ,       (4.9a) 

[ ]122323 τττ ×=curl ,       (4.9b) 

[ ]231213 τττ ×=curl .       (4.9c) 
The other set of equations is coming from Eq. (2.6). Rearranging and writing 
separately the equations for each component of τ we obtain the so-called 
Divergency equations  

1323
)2(

1212 ττττ −=div ,                      (4.10a) 

1213
)2(

2323 ττττ −=div ,                 (4.10b) 

2312
)2(

1313 ττττ −=div .                   (4.10c) 
where the scalar τij

(2) terms according to Chapter 2, are defined by 

jiij ζζτ 2)2( ∇= . It is noticed that the Curl-Divergence (C-D) equations (4.9-

10) in the case of a two-dimensional parameter space, contain altogether nine 
unknowns (six due to the two components of τ12, τ13, τ23 and three due to the 
three scalar τ(2) terms) which means that the solution is not uniqe unless we 
introduce some model assumptions, as we did it in section (4.1) by the two-
level case. An other complication, that these C-D equations are not linear as can 
be seen from the rhs. of Eqs. (4.9). Although in paper VI we also deal with the 
problem to find a proper model to the scalar τ(2) terms, now our aim is not so 
much to guess this term but rather to form an existence theorem for the 
molecular fields based on these C-D equations. Therefore, in the further 
treatment we suppose that the scalar τ(2) terms are given from some way of 
approximation, and in the following our purpose is to show that these equations 
are solvable like in vector-field theory. To clarify the issue, let us see for 
instance the pair of Equations (4.9a, 4.10a): 

[ ] Jcurl =×= 132312 τττ ,               (4.11a) 

ρττττ =−= 1323
)2(

1212div .               (4.11b) 
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It can be observed that the rhs. of the above equations do not contain τ12, and 
therefore J and ρ can be considered as the sources of τ12. The statement that a 
vector-vector function is unambiguously defined by its curl and divergency 
follows from the theorem of vector calculus, and we demonstrate it below: 

Let us form the curl of Eq. (4.11a), then apply the formula 
vvv ∆−∇∇=∇×∇ , we arrive at J×∇=∆−∇∇ 1212 ττ , plug in the 

place of 12τ∇ from Eq. (4.11b) the source term ρ, and arrange the equation, 
finally we obtain 

J×∇−∇=∆ ρτ12         (4.12) 

Eq. (4.12) means indeed two scalar Poisson equations (since τ12 is a two-
component vector for our planar CS), and the inhomogeneity on the rhs. of Eq. 
(4.12) is some (not linear) functions of τ23 and τ13. Thus when we suppose that 
these source terms are given we are able to solve them, and finally as a result 
obtain τ12. We can obtain the same way from the rest of the pair of Eqs. (4.9-
10) τ23 and τ13. Certainly we can pose the question, but where the source term 
comes from, as in a real situation it is also undetermined. To solve this problem, 
we put forward an iterative scheme in paper VI, starting from a first guess for 
τ12,τ23 and τ13, then solving Eq. (4.12) for τ12 and the similar equations for τ23 
and τ13, then once completed, a new cycle can be started with the modified 
values. Finally, if the convergency is reached after the nthe iteration step, we 
stop, and gain the exact values for the various NACT elements.    

Within the numerical study we avoid the task of series of iterations and also 
the derivation of τ(2), these issues are out of our present aims.  In the numerical 
study we are more interested in establishing these equations by solving each 
pair, assuming that the inhomogeneous terms are produced in a straightforward 
way via ab-initio calculations.  

A common way of solving such partial differential equations is to expand 
the two components of τ, i.e. τϕ and τq (working in polar coordinates) in 
Fourier series with q-dependent coefficients. In the particular calculations we 
treated approximately 50 terms in the Fourier expansion, which means 2x50 
ordinary differential equations (for τϕ and τq) to be solved with appropriate 
boundary conditions.    

Now we report the numerical details of the calculations for the H+H2 
system. 
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Why do we probe the theory discussed above for the H+H2 system? First of 
all it is a simple “test” system which is frequently used for various studies 
connected with electronic non-adiabatic transitions [5,7,17,49]. Secondly, as we 
showed in section (3.2) by the analysis of this particular system, and mentioned 
in the beginning of this chapter it yields a Hilbert subspace of three dimensions 
with a good quality. Mostly it is due to the fact that it lacks (3,4) cis, and 
therefore the fourth and above states are decoupled from the lower ones, 
thereby forming the desired three-state Hilbert subspace. The ab-inito study 
related to produce the NACTs is essentially similar to the one described in 
subsection (2.2.1).  
The Poisson equations are solved for a (circular) region centered at the 
equilateral D3h ci and surrounded by a circle with a radius q = q0 where q0 = 0.5 
Å. We mention that exactly this contour is plotted in the geometry of the third 
column in Figure 3.5.   

However, since this region contains the two troublesome (2,3) cis located at 
about a distance of q~0.29 Å we divided this region into two sub regions: (1) 
the internal region defined within the (radial) range 0 ≤ q ≤ qi where qi = 0.285 
Å. (2) the external region defined within the circular strip in the interval: qe ≤ 
q≤ q0 where qe = 0.295 Å. Having these two regions the two (2,3) cis are 
located outside both of them (see Fig. 3.5 to identify the slightly larger contour 
than qe in the first column). Now we concentrate merely on the internal region 
(paper VI gives full details about the outer one, and also much more details are 
found on the inner region).  

One Dirichlet-type boundary condition defined along the circle with qi is 
derived by ab-initio calculations. At the origin, all five NACTs i.e., 
τϕ23(ϕ,q=0)), τϕ13(ϕ,q=0)), τq12(ϕ,q=0)), τq23(ϕ,q=0)) and τq13(ϕ,q=0)) are 
assumed to be identically zero. The only exception is τϕ12(ϕ,q=0) for which it is 
assumed to be 0.5 Rad.-1, as was verified on numerous occasions (Ref.[7,50] or 
see paper III). In Figs. (4.3) and (4.4) are presented the angular and the radial 
components of τ12, τ23, respectively, as calculated along various circles 
surrounding the D3h ci. As it is noticed the fit is essentially very promising for 
the two components of the three τ-matrix elements (the missing τ13 is shown in 
paper VI and can be checked there). 

The ability of the Poisson equations to produce such encouraging fits has to 
be appreciated because of two reasons: (1) the initial integration point is the D3h 
ci point, namely, a singular point. (2) boundary conditions were attached only 
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to one boundary (and not two as is usually the case) and therefore play a 
relative minor role in these calculations.  
Fig 4.3                                     Fig 4.4 

 
Fig. 4.3&4.4 Results for the (1,2) and (2,3) NACT τ, i.e. τϕ12,τq12 and τϕ23,τq23 as 
calculated along the specified co-centric circles centered at the equilateral (1,2) D3h ci 
are presented as a function of ϕ, the angular coordinate. All specified circles are in the 
internal region. Full line: results are due to ab-initio calculations; dotted line results are 
due to the Poisson equations solved for the ab-initio inhomogeneities. In the sub-
figures (a) – (d) are presented results for the angular component τϕ12 and sub-figures 
(e)-(h) are present results for the radial component τq12. The Dirichlet (ab-initio) 
boundary conditions are given along the circle with the radius q=0.285 Å. 
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Chapter 5 

Topological Effects in the Diabatic Framework 

In this chapter we investigate molecular systems via the diabatic picture, which 
can be given by Eq. (2.11): 

uAAW T=            (5.1) 
We show in section (5.1) that in the diabatic framework we can reveal the 
distribution of degeneracies with the aid of various methods. We also derive 
that a well defined sign can be attached to each conical intersection. In section 
(5.2), the theoretical outcomes are illustrated via numerical examples for the 
Na+H2 system and we also explain some mysterious features of the so-called 
twin cis with the aid of this theorem. This chapter is mainly based on the results 
of the papers VII and VIII. It is noted that from now on we are interested in the 
two-dimensional Hilbert space for the sake of simplicity.   
   
5.1. The theory 
 
The diabatic Hamiltonian for the two-level case in Eq. (2.10b) can be further 
written as  

( ) ( ) ( )
( ) ( )






−

+Σ+=+=
RvRu

RuRv
TTH NNdia 1ˆˆˆ W  ,      (5.2) 

where ( ) ( ) 2/21 uuR +=Σ  is the average of the lower (u1) and upper (u2) 
potential energy surfaces. Thus the new diabatic potential W decoupled from a 
scalar term ∑ looks as follows: 









−

=
vu

uv
W  ,          (5.3) 

where the functions v, and u are identified as the diabatic potential surfaces. We 
saw in Chapter 2 that the solution of the differential equation 0τAA =+∇  can 
be expressed by Eq. (2.19). The solution in the two-level case simplifies to the 
following expression: 

( ) ( )( ) ( )( )
( )( ) ( )( )






−

=
RR
RR

R
γγ
γγ

cossin
sincos

A ,        (5.4) 
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where the γ mixing angle is given in terms of the following line integral [24]: 

( ) ( ) ( )∫+=
fR

Rs
f dRRRR τγγ s .           (5.5) 

Let us denote the γ mixing angle with α when the contour is closed and 
eliminate the index from the NACT as we did it in sec. (4.1) (as in the two-state 
case the NACT matrix has only one nonzero element). Now substituting the 
expression (5.3) to the definition of the diabatic potential W in Eq. (5.1) we 
obtain the functions v and u expressed by the angle γ and the difference of the 
adiabatic energy surfaces: 

( ) ( )

( ) ( ).2cos
2
1

,2sin
2
1

12

12

γ

γ

uuv

uuu

−=

−=
          (5.6) 

After some manipulation of the above set of equations (see in paper VIII), we 
obtain  

( ) ( )vuf
vu

ivui ,2exp
22
=

+

+
=γ .        (5.7) 

The preceding equation indicates an explicit connection between the angle γ 
and the u,v elements of the matrix W: let the R nuclear coordinates be varied 
round a closed loop. Because of the quantization condition expressed by Eq. 
(2.23), and choosing in Eq. (5.5) the arbitrary γ(Rs) to be equal to zero, we 
obtain for the angle γ after the full cycle  
α=nπ.             (5.8) 
This means regarding to Eq. (5.7) that the function on the rhs. of Eq. (5.7) 
describes a number of n circles on the (u,iv) complex plane. Let us label the 
points on the contour Г where u(R)=0 as ‘z-points’, and where v(R)=0 as ‘p-
points’. Thus when traversing the contour Г, we encounter a series of z- and p-
points. The main outcome of the Eq. (5.7) that when we inspect merely the 
sequence of z- and p-points we can follow the function ( )vuf ,  on the unit 
circle of the complex (u,iv) plane. Thus after traversing the loop Г, finally we 
obtain the number of n circles, and the equality α=nπ in Eq. (5.8) yields the 
final mixing angle α. 

Now let us approach the same problem from an other point of view. 
According to the curl condition in Eq. (2.14) when τ is an analytic function of 
the coordinates R,  

0=τcurl .                            (5.9) 
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As we noted in section (4.1) the only points in the two-dimensional 
configuration space R, where τ could be a discontinuous function, are the 
positions of the degeneracies. Thus applying Stokes’ theorem by excluding the 
area of the vicinity of degeneracies we arrive at the following formula for the 
mixing angle: 

∫ ∑∫
Γ =

==
k

i ci

dRdR
1

ττα ,       (5.10) 

where the number of degeneracies are denoted by k, and the contour integral of 
the rhs. of Eq. (5.10) is performed round each point of degeneracy.  Next we 
suppose that each degeneracy in the area of interest is formed by a conical 
intersection. Now let us concentrate on one single ci assuming at the point of 
(x=0,y=0), where x,y denotes Cartesian coordinates. Expanding W in a Taylor 
expansion about the degenerate point we find ( ) ( ) K++= +1nn WWW , where 

( )nW  collects all elements of order n in the nuclear displacements. For conical 
intersections the W diabatic potential varies linearly in the function of the 
nuclear coordinates near the position of the ci and only the leading n=1 term 
will survive: 

ycxcv
ycxcu

2221

1211

+=
+=

,        (5.11) 

where the cij linear-coefficients can be represented with the elements of a 
22x matrix C.  

Eq. (5.11) represents an affine transformation ( ) ( )vuyxC ,,: 22 ℜ→ℜ , 
while Eq. (5.7) represents a continuous, nonlinear function F from the 

( )vuS ,=  plane to the circle 1S . Thus CF o maps the circle 1S in ( )yx,  to the 
circle 1S in ( )vu, . 

In paper VIII we prove that the CF o transformation maps the 
counterclockwise moving circular path ( )yxS ,1  to a circular path ( )vuS ,1  with 
the same orientation when 0det >C , and reverses the orientation when 

0det <C . 
Now considering the above result we conclude, that circling round a conical 
intersection with an infinitesimal radius we obtain n=±1, and  γ for the closed 
loop according to Eq. (5.8) can take up altogether two values α=±π depending 
on the sign of det C. This result means that there exist two groups of cis which 
we call negative and positive ones, depending on the sign of the corresponding 
α. Let us denote the number of negative cis inside the loop Г with K and the 
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number of positive cis with L, then we can write further Equation (5.10) and 
obtain 

( )∫
Γ

−== πτα KLdR .       (5.12) 

Next we summarize the two main results of the present section: 
(1) For a system of 2x2 real W diabatic potential, the mixing angle α for a 

closed contour Г in the two-dimensional configuration space can be 
calculated by inspecting the sequence of z and p points (i.e. the zeros of 
the u,v diabatic potentials). 

(2) α for the same closed contour is determined by the difference of the 
number of positive and negative cis. 

Thus the connection between the above observations yields practical methods to 
determine the distribution of conical intersections inside the loop merely by 
inspecting the zeroes of the elements of the diabatic potential W. 
   
5.2. Concrete numerical methods    
 
In subsection (5.2.1) we give two methods on the basis of the results of section 
(5.1) to yield different kinds of information regarding the existence of cis in a 
given region. Then in subsection (5.2.2) we give an explanation of the observed 
α mixing angle for twin cis in the C2H molecule applying again the theory of 
section (5.1). 
 
5.2.1 Numerical study of the Na+H2 system  
 
To be more specific we consider the 32A' and the 42A' states of the Na+H2 
system, as it was found in paper I that in the near region of the group of (3,4) 
cis (see Fig. 2.1.b) the states 32A' and 42A'   form to a good approximation a 
Hilbert subspace and therefore can be diabatized (almost) rigorously. In Fig 5.1 
are presented the locations of the (3,4) cis and three circular contours where the 
elements u,v of the diabatic potentials will be formed. 

 Now we give a brief description (a more detailed account can be seen in 
paper VII) about the concrete procedure we obtain the α mixing angles for the 
various circles in Fig. 5.1. First of all, the ab-initio calculation yields the u1 and 
u2 adiabatic potential surfaces and the NACT elements, which in this special 
two-level case means only one element of τ. Then choosing a base point we 
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calculate the γ mixing angle according to Eq. (5.5) and substituting to Eq. (5.6) 
the ab-initio u1,u2 and γ, we obtain the function u and v.  

 

 

Fig. 5.1 The four ab-initio (3,4) conical intersections of the Na+H2 system and the 
three co-centric circles with radii q=0.1, 0.25, and 0.4 a.u., surrounding different 
number of conical intersections. The empty (○) and the full circles (•) are the positions 
of the intersection points between the circles and the equi-u=0 and the equi-v=0 lines 
respectively. These points form along each circle the sequence of ‘zp’ points discussed 
in this chapter. 

Fig. 5.2 shows these functions on the three co-centric circles drawn in Fig. 
5.1 in the function of the angular coordinate φ (where φ=0 rad denotes the 
upper intersection point of the symmetry axis and the circular contour). As it is 
noticed for the circle with the smallest radius q=0.1 a.u. only the v(q,φ) crosses 
(twice) the abscissa and as a result the (p,p) series is formed thus indicating that 
no ci is surrounded by this circle, as indeed is the case (see Fig. 5.1). For 
q=0.25 a.u. we obtain a more complex pattern, namely we have a 
(p,z,p,z,p,z,p,z) sequence which means that the function f in Eq. (5.7) makes 
two circles (i.e. n=2) and according to Eq. (5.8) results in α=2π. It indicates by 
inspecting the positions of cis in Fig. 5.1 that this particular circle with q=0.25 
a.u. surrounds two cis of the same kind, and moreover they are both positive 
cis. The pattern of ‘zp’ sequence for q=0.4 a.u. is (p,p,z,z,p,p), which means 
that no circle was traced out by the function f in Eq. (5.7), thus yielding the 



 39

value α=0. This result indicates that the other two cis situated symmetrically on 
the both sides of the symmetry line must be also of the same kind, but in this 
case they are both negative cis.  

 

Fig. 5.2 The diabatic potentials f(q,ϕ)=u(q,ϕ) (dashed lines) and f(q,ϕ)=v(q,ϕ) (full 
lines) as calculated along the various circles in Fig 5.1: (a) Results along a circle with 
q= 0.1 a.u.; (b) Results along a circle with q= 0.25 a.u.; (c) Results along a circle with 
q= 0.4 a.u. 

In the following we show an other method, which reveals not only the 
difference of the negative and positive cis inside the given contour, but can 
detect the exact positions of cis as well. Let us choose now the origin of several 
co-centric circles as the intersection of the two perpendicular axis (as it can be 
seen in Fig. 5.3) but with different radii to cover the whole region of interest. 
Calculating the same way as in Fig. 5.1 for each circle the ‘zp’ points and 
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connecting the neighboring ones with each other, we obtain the contours along 
which either v(q,φ)=0 (full lines) or  u(q,φ)=0 (dashed lines).     

 
Fig. 5.3 The equi-u=0 (dashed lines) and the equi-v=0 (full lines) as calculated for 
the 3-rd and the 4-rth adiabatic states of the Na+H2 system. The points (empty circles,○  
and full circles, •) are the 'zp' points along the various circular contours. It is noticed 
that all the intersections between the equi-u=0 lines and the equi-v=0 lines are at the 
points of the cis (▲). 

Upon inspecting Fig. 5.3 we can notice two interesting features of the 
figure: The dashed curves (equi-u=0) and full curves (equi-v=0) cross each 
other only at the point of degeneracies, and on the other hand always one full 
line and one dashed line intersect at these points. 

We are able to explain and support these two observations based on the 
results of sec. (5.1). First let us see Eq. (5.6). According to it, whenever u1=u2 
(i.e. we encounter degeneracy) it zeroes both the function u and v. Conversely, 
the occurrence of u=0 and v=0 at the same point of the configuration space can 
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happen only when u1=u2 (since cos2γ and sin2γ can never take up the same 
value for any γ). This means that indeed the two types of curves can intersect 
only at a point of degeneracy. Now taking into account Eq. (5.11) in the closed 
vicinity of a conical degeneracy the functions u and v are linear functions of the 
coordinates, therefore it implies just one equi-u=0 line and one equi-v=0, which 
cross each other. In this way we established that the degeneracies, we encounter 
in Fig. 5.3 are really conical (opposite to the parabolic one [51]).  

In summary, investigating the diabatic framework we concluded to a rather 
elaborated procedure, which not only yields the exact positions of all cis in a 
region of interest, but also we could decide whether the particular degeneracy is 
conical (and can produce topological effect) or just a parabolic one (which is 
actually a Renner-Teller type [52,53], and not causing topological effect). 
 
5.2.2 Application for the annihilation of twin cis  
 
In Section 5.1 we obtained that there exist two groups of cis, depending on the 
sign of α, called as positive or negative cis. However, conical intersections are 
in general not exist as isolated points but as continuous seams of dimension 
Nint-2 (Nint is the number of internal coordinates) for the nonrelativistic 
Coulomb Hamiltonian. A tri-atomic system is characterized by three internal 
coordinates, which implies that the surface of intersection in this particular case 
has a dimension 1, and is referred to it as a seam (so far we encountered only 
the dimension 0, i.e. points of intersections, but it was due to freeze one internal 
coordinate).  

In paper VIII we proved that the sign attached to the point of ci can be 
generalized to attach to the seam of ci as well, i.e. the seam has also a definite 
sign (plus or minus) on a segment which is not crossed by other seam. This can 
be symbolized by an arrow aligned parallel to the seam on the following way: 
let us define an ε unit vector parallel to the seam in the sense of the right-hand 
screw rule, then if the type of the seam is plus, it should point in the same 
direction as ε, otherwise it would point in the opposite direction.        

In the following applying the above results about the definite type of seams 
we describe the phenomenon of pair-annihilation of twin cis.  

Twin cis were found in AlH2 between the potential energy surface of 2B2 
and 2A1 within C2v symmetry [54] and also in C2H molecule between the two 
lowest 12A’ and 22A’ electronic states and between the 32A’ and 42A’ states 
[42,55]. These later ci twins are located at relatively small distance on the two 
sides of the C2v line. Here it was further found that the separation between the 
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twins could be made arbitrary small by varying the CC relative positions, and 
even they can be brought into coincidence at some CC position, i.e. they 
annihilate each other. 

When calculating the line integral of τ on the contour Γ12 which surrounds 
both cis (see in Fig. 5.4 plane A), it was found that the circulation was 
identically zero [55]. If we suppose that the area bounded by Γ12 is very small 
(indeed we can make it arbitrary small by tuning the CC distance just before to 
the coalescence), then τ vector-field fulfills the two-state ‘curl-condition’, i.e. 
Eq. (4.1), and we can write 

.0
1 122

∫ ∫∫
Γ ΓΓ

==+ dRdRdR τττ                              (5.13) 

The second equality was due to the observation, thus according to the definition 
of α mixing angle ( ) ( )21 Γ−=Γ αα . Namely, it was obtained that in the present 
case the signs attached to the twin cis are opposite [55]. In Ref. [55] the 
question was arisen if it is a general or an accidental feature of cis, to arrange 
themselves in such a way to be of opposite signs. It was stated there, also due to 
other observations, that it looks to be typical for all merging cis.       

Now, considering that the sign of seam is definite (either plus or minus), 
we can give a clear explanation for it, which on the other hand support and 
confirm the statement of [55]. Fig. 5.4 shows the process how two conical 
intersections merge and annihilate each other, which in the three-dimensional 
configuration space can be described as two approaching seams with opposite 
signs (signed by the arrows pointing to opposite directions) meat at the point P. 
However, an other but likewise legitimate description is that we consider it as 
only one seam, which gently touch the plane B in the point P (causing a 
Renner-Teller type crossing [53]) and then turn back. Notice that this 
description also suits the opposite sign-directions of ci seams: seeing that, when 
we follow the curve of seam, locally the direction of the arrow must not flip, 
but globally it will change direction. Thus the arrow attached to the seam 
pierces the plane A twice, once it points up and once down, which correspond 
to opposite signs, hence yielding for the circulation of τ round the circuit Γ12 
zero.  

In conclusion we established that the pair-annihilation of cis can be 
considered as a process which is formed by one seam, hence by construction 
this guarantees the opposite signs of the coalescing conical intersections.         
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Fig. 5.4 A segment of the infinite long seam of conical intersection, and two 
intersecting planes (A,B). On the plane A, it is drawn contours (Γ1, Γ2) encircling their 
own cis, and a contour (Γ12) encircling both of them. The seam touches the plane B in 
the point P and then turns back. The sign of the seam is denoted by arrows, once 
pointing up and after the ‘turning point P’ pointing down. Each Γ contour is oriented 
counterclockwise.  
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Chapter 6 

The Geometric Open-Path Phase Revisited: 
Application to Born-Oppenheimer Molecular 
Systems 
 
While dealing with the interference of light, Pancharatnam came up with a 
brilliant idea regarding a general phase of the evolution for a polarized light 
[32], which was then generalized to an arbitrary quantum evolution [33]. In this 
chapter we analyze semi-classically the evolution of nuclei in molecular 
systems thereby gaining insight in the notion of the Pancharatnam phase factor 
(termed as open-path phase) and establishing various connections with the 
mixing angle as well. The theoretical findings will be supported by numerical 
study carried out for the (Na+H2) molecular system. 
 
6.1. Theoretical considerations 
 
When a system evolves from an initial state ( )0ψ to a final state 

( ) ( ) ( )0ˆ ψψ tUt = with a unitary evolution operator ( )tÛ , we refer to γt as the 

phase of ( )tψ relative to ( )0ψ once we have  

( ) ( ) ( ) ( )00 ψψψψ γ tet ti= .         (6.1) 
For an arbitrary quantum evolution, the geometric Pancharatnam phase can be 
defined as [Samuel] dtp γγγ −= , where  

( ) ( ) ( ) dttHt
t

d ∫−=
0

ˆ/1 ψψγ h          (6.2) 

is the dynamical phase, with the Hamiltonian of the system Ĥ . Let us denote 
with ρ the magnitude of the overlap ( ) ( )0φφ t , where ( )tφ differs 

from ( )tψ that its dynamical phase factor, defined by Eq. (6.2) has been 
removed.  
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Next, our aim is to gain the γp geometric phase and the magnitude ρ 
according to their definitions above (coming from the dynamical treatment of 
the system), and then we try to find connection with the γ mixing angle (coming 
from the time-independent treatment of the molecular system).  

From now on we restrict our attention only on two-level systems, since the 
numerical example at section (6.2) will be based on the analysis of Na+H2, a 
two-state system in the region of our interest. The general treatment and the 
corresponding three-state numerical example for H+H2 can be also found in 
paper IX. We note that the generalization is straightforward, and below the two-
state case will also show the relevant results of this survey. 

Consider the quantum system whose normalized state vector ( )tψ  evolves 
according to the Schrödinger equation  

( ) ( )tH
dt

td
i el ψ

ψ ˆ=h ,         (6.3) 

where elĤ stands for the electronic Hamiltonian which parametrically depends 
on the nuclear coordinates (i.e. we apply the semi-classical treatment of the 
composite system). Next assuming that the Hilbert subspace is two-dimensional 
in a given region Λ in the configuration space, we can write 
( ) ( )( ) ( ) ( )( ) ( )022011

~~ RtRRtRt ζζζζψ += ,       (6.4) 

where ( )( )tR1
~ζ and ( )( )tR2

~ζ  are coefficients which depend solely on the nuclear 

coordinates and ( ){ }2 10 =ii Rζ are the electronic eigenfunctions of the electronic 

Hamiltonian elĤ according to Eq. (2.3) in a given fixed point R0 in Λ. The 
substitution of Eq. (6.4) into Eq. (6.3) yields the equation to be solved: 

( )( ) ( )( ) ( )( )tRtR
dt

tRdi ζζ ~~
W=h ,        (6.5) 

where ( )( )tRζ~  is a column vector formed by ( )( )tR1
~ζ  and ( )( )tR2

~ζ , W(R) is the 
2x2 diabatic potential matrix related to the two eigenstates of the two-level 
system. Above we utilized the fact that besides the definition of Eq. (2.11) 

uAAW T= there exists an other one defined in paper X, originating from the 
diabatic representation of the nuclear Schrödinger equation, namely [38] 

( ) ( ) ( )00
ˆ RRHR keljjk ζζ=W .         (6.6) 
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Now we recall Eq. (2.11) defining W(R) and Eq. (5.4) defining the 2x2 
ADT matrix, A(R): 

( ) ( )( ) ( )( )
( )( ) ( )( )






−

=
RR
RR

R
γγ
γγ

cossin
sincos

A , 

where γ(R) is the mixing angle, discussed in section (5.1) and defined by Eq. 
(5.5). Then further we suppose circular contours in Λ, thus we can switch from 
R→(q,φ(t)), then multiplying Eq. (6.5) by A(R), and carrying out a few other 
algebraic changes yield the following two coupled equations to be solved: 

122
2

211
1

2

2

ηπτηη

ηπτηη

ϕ

ϕ

T
ui

dt
d

T
ui

dt
d

−−=

+−=

h

h  ,         (6.7) 

where τφ is the angular component of the NACT, and ( ) ( )
( )






=

t
t

t
2

1

η
η

η is given as  

( ) ( ) ( )ttAt ζη ~
= . Here we supposed that the velocity of the nuclei is constant 

along the contour, and takes a finite T time to complete the cycle (i.e. the time 
period is T). To solve Eq. (6.7) we need initial conditions for η: for this purpose 
we assume at t=0 the A-matrix is diagonal (i.e. γ(R(t=0))=0 and R0=R(t=0)) and 
the lower state is the initial state, so that the initial conditions for ( )tζ~  are: 

( ) 







==

0
1

0~ tζ  and consequently ( ) 







==

0
1

0tη . It is noticed that in Eq. (6.7) 

the coupling term is inversely proportional to T, consequently once T→∞ (the 
adiabatic limit) the coupling vanishes, and as a result η2→0 which implies that 
( )t1

~ζ  takes the form: 

( ) ( ) γζ cosexp~lim
0

11 












−→ ∫∞→

t

T
dttuit

h
.       (6.8) 

Now let us recall the definition of the open-path (Pancharatnam) phase 
discussed in the beginning of this section, and let us calculate ( ) ( )0ψψ t .With 

the above defined initial conditions, ( ) ( )010 Rt ζψ == and 

thus ( ) ( ) ( )tt 1
~0 ζψψ = . Thus according to Eq. (6.1) we gain γt as the argument 

of ( )t1
~ζ , i.e. γt reads 
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( )( ) ( )∫−=
t

t dttu
0

1
1cosarg
h

γγ          (6.9) 

Because of the definition dtp γγγ −= , and noticing that in Eq. (6.2) the 
dynamical phase γd becomes in the adiabatic (T→∞) limit 

( ) ( )dttu
t

d ∫−=
0

1/1 hγ , we obtain for the open-path phase in the adiabatic 

evolution the following expression: 

( )( )( )tp γγ cosarg= .                 (6.10a) 
On the other hand the definition of ρ (in the beginning of this section) leads in 
the adiabatic limit to  

( )( )tγρ cos= .                 (6.10b) 
The Eq. (6.10a) means that the open-path phase becomes a step-function so that 
every time the ( )( )tγcos  flips its sign, namely, when ( ) ( ) 2/12 πγ += nt , the 
open-path phase γp jumps by an odd number of π’s. 
 
6.2. Applications 
 
Eqs. (6.10a-b) constitute the main result of the preceding section, namely in 
case of the adiabatic limit, the ADT angle γ(ϕ) (formed by BO eigenfunctions) 
determines unambiguously both the magnitude ρ of the electronic time-
dependent eigenfunction (after the removal of the dynamical phase) and its 
open-path phase γp.  

In order to understand the meaning of these results we describe first a 
general molecular system for which this approach is applicable and then 
analyze numerical results for a specific case.  

We assume a (molecular) system of electrons and nuclei which is 
composed of two, relatively rigid parts but these two parts are 'floppy', the one 
with regard to the other. Next, at time t=0 an external electromagnetic field is 
turned on that causes the two parts to revolve, the one with respect to the other. 
Assuming the molecular system to be in a given BO eigenstate this rotational 
motion may induce transitions to other states with (oscillating) time dependent 
probabilities. In the numerical section a time dependent semi-classical treatment 
is carried out to calculate these probabilities as well as the open-path phase.  
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The specific system chosen for this purpose is the Na+H2. In particular we 
concentrated on the 32A' and 42A' states which as we could see in subsections 
(2.2.2) and (5.2.1) of this work are affluent with cis (altogether four) and that 
these two states are only weakly coupled to the other states of the system and 
therefore form, approximately, an isolated Hilbert subspace of two dimensions.  
The ab-initio magnitudes required for the present numerical study to solve Eq. 
(6.7) are the electronic eigenvalues of the two relevant 32A' and 42A' states 
(u1,u2) and the corresponding τφ (the angular component of the NACT) along 
the contours, the two floppy parts of the molecule (in this case Na and H2) may 
trace due to the external field. To calculate the open-path phase γp we first solve 
numerically the coupled differential equations in Eq. (6.7) with the aid of the 
Mathematica package, then obtain ( )tη  and via the relation ( ) ( ) ( )ttAt T ηζ =

~  we 
obtain ( )tζ~  as well. Since the components of ( )tζ~  determine the time-
dependent wave function ( )tψ through Eq. (6.4), we can use the same procedure 
as in Eq. (6.1)-(6.2) to gain both the open-path phase γp and after the removal of 
the dynamical phase factor from ( )tψ , the amplitude ρ. 

The results are presented in Fig. 6.1 which is divided into three columns 
and each column is further divided into three sub-figures. The upper sub-figure 
contains the geometry, namely, the four (3,4) cis (labeled as ▲) and the 
corresponding circular contours assumed to be created by an external field. In 
the sub-figure below are presented the amplitudes ρ(t) as derived, once for a 
finite T-value – to be designated Tfi – namely, a value that does not yield 
adiabatic limit and, once for a large T-value – to be designated Tad – namely, a 
value that does yield the adiabatic limit. In addition are presented the absolute 
values of the cosine function, namely, |cos(γ(ϕ(t))| (see Eq. (6.10b)). In the third 
sub-figure are presented the open-path phases, γp(t), as calculated, once for 
T=Tfi (the non-adiabatic case) and once for T=Tad (the adiabatic case) as well as 
the mixing angle γ. We add a few comments related to the presented results: 

(1) In all three cases (i.e. on the three different contours in Figs. 6.1(a), (c) 
and (e)) the amplitude ρ(t), in the non-adiabatic limit (by time period Tfi), is 
quite oscillatory and does not reveal any features of particular interest. 
However, the amplitude ρ(t), in the adiabatic limit (by time period Tad) is 
smooth and for all practical purposes is identical to |cos(γ(t))| as, indeed, is 
indicated by the theory (see Eq. (6.10b)).  

(2) It is well noticed that in all three cases, the open-path phase γp(t) in the 
non-adiabatic limit (T=Tfi), forms continuous functions, oscillating to some 
extent whereas in the adiabatic limit (T=Tad) one forms Heaviside-type step 
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function (see Figs. 6.1(b), (d), (f)). It is obvious that these open-path phases do 
not show any particular relation with the corresponding mixing angles γ (which 
are also shown in the respective sub-figures (b), (d) and (f)). However, the 
theory tells us to look for the cosine of these functions and, indeed, a 
connection exists in case of the adiabatic case (T=Tad): the discontinuous steps 
for the open-path phases γp(t) happen exactly at t-values for which cos (γ(t)) 
changes sign or the γ(t) angles are odd multiples of (π/2). 

 
Fig. 6.1 Results for the ab-initio Na+H2 system as calculated along three circles 
surrounding different number of (3,4) conical intersections (labeled as ▲). In subfigures 
(a), (c), and (e) are presented the amplitudes ρ(t) as calculated for T=Tfi and T=Tad, and 
the absolute value of the corresponding ADT matrix element A11(ϕ(t)|Γ) 
=|cos(γ(ϕ(t)|Γ))|. In sub-figures (b), (d), and (f) are presented γp(t), as calculated once 
for T=Tfi and once for T=Tad. The periods 444 108,102.3,102 ×××=adT and 

433 105.1,109.2,103 ×××=fiT a.u, respectively. It is noticed that the curves for ρ(t) as 

calculated for T=Tad and the corresponding |cos(γ(t))|-function as obtained from the ab-
initio treatment are overlapping so strongly that they are hardly distinguishable.  
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In summary, in this study we showed theoretically (supported by numerical 
calculations) that the mixing angle γ formed by BO eigenfunctions determines 
uniquely both the time-dependent magnitude ρ(t) and the open-path phase γp(t) 
of the electronic functions in the adiabatic limit.  



 51

Chapter 7 

Summary of the Results 

The work presented in this thesis deals with many facets of the role of conical 
intersections in non-adiabatic effects and the role of producing non-local 
topological effects. In the previous four chapters (Chapter 3-6) four different 
aspects of the effect of conical intersections in molecular systems were 
concerned: 
  

(I) in which extent the ci determines the dimension of the isolated 
Hilbert subspace in a given region of the nuclear configuration 
space, which encircles various number of cis  

(II) whether it is possible to claim that the NACTs can be considered as 
fields which have their sources at the points of conical intersections 

(III) whether it is possible, that the Longuet-Higgins’ sign change 
theorem had a generalization for two-level systems, which could be 
applied in the diabatic framework to reveal the distribution of 
conical intersections in the configuration space of the molecular 
systems   

(IV) whether there is a relationship in a semi-classical treatment of the 
molecular systems between the elements of the ADT matrix and the 
open-path phase of the electronic wave functions in an adiabatic 
evolution.  

 
 
The main purpose of this work was to study the tasks posed above.  In the 
following I summarize the main achievements of my work related to this thesis, 
and thereby give an answer for the above (I)-(IV) questions:  
(I) 

• I implemented a program for calculation of the F-matrix based on Eq. 
(2.13) and the D-matrix based on Eq. (2.16), suitable for any dimension. 

• A numerical study is carried out applying the eigenfunctions of the 
Mathieu equation to study the D- and F-dependence on the size of 
configuration space parametrized by x and the number of eigenstates N. 
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• An ab-initio study is carried out on the H+H2 system by calculating the 
topological D-matrix for N=2…5 states and for various circles with radii 
0.3 Å ≤x≤0.65 Å.  

• Given the D- and F-matrix I examined the fulfillment of the 
quantization and curl conditions for given (x,N) values  

• I draw the conclusion: a given group of states forms with a good 
approximation an isolated Hilbert subspace in a given region, when each 
state, coupled by conical intersections is involved in the group. 
However, the addition of other states (which are not coupled by cis) to 
the group further improves the isolation of Hilbert subspace from the 
rest of the states. The extent of the isolation was measured both by the 
quantization of the D-matrix, and the curl of the F-matrix.    

 
(II) 

• Based on a model assumption, that the ci produces a zero radial 
component of NACT I implemented a program to calculate the NACT, 
when the Hilbert subspace is formed by two states. The program 
employs vector-algebra to add up the contributions of the various cis to 
obtain the resultant intensity of the field of NACT at an arbitrary given 
point. 

• The comparison between the ab-inito results of the Na+H2 system as 
obtained from the MOLPRO and the analytical results follow from my 
program undoubtedly indicates that, indeed, the field of NACT is 
created by sources located at the degeneracy points formed by the Born-
Oppenheimer adiabatic states.  

• It is shown that the Curl-Divergence equations (Eq. (2.14) and Eq. 
(2.16)) as formed within a given N=3-state Hilbert subspace can be 
converted into a set of inhomogeneous coupled Poisson equations.  

• I solved these Poisson equations for a given set of circular boundary 
conditions employing Fourier series for the three lower states of the 
H+H2 system and the results are compared with ab-initio calculations for 
which a very encouraging fit is found like in the two-state case. 

 
(III) 

• I derived that the mixing angle of the two-dimensional ADT matrix 
round a two-state conical intersection can take up the values ±π,  
(termed the related ci as positive or negative depending on the sign) 
which supports the ab-initio results as well. 
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• I found an explicit use of this fact, describing the phenomenon of pair 
annihilation of twin cis. 

• Here I showed a method to exhaust all topological information from the 
elements of the two-state diabatic potentials on a given contour in the 
configuration space. This method yields the difference of the amount of 
positive and negative cis inside the contour, which I illustrated via 
numerical examples for the Na+H2 system.  

• A procedure, based on results of the preceding paragraph has been 
developed (and implemented for the Na+H2 system), which is more 
elaborate than the other method above and requires more numerical 
efforts, but yields the exact positions of all the cis in the region of 
interest. 

 
(IV) 

• I analyzed molecular systems via the semi-classical framework. My 
main theoretical finding is that the mixing angle γ of the ADT matrix 
formed by BO eigenfunctions determines uniquely the γp open-path 
phase of the electronic functions in the adiabatic limit of the evolution.  

• The theory predicts that the open-path phase in the adiabatic limit 
becomes a step-function so that every time the ( )( )tγcos  (i.e. the 
diagonal element of the 2x2 ADT matrix) flips its sign, the open-path 
phase γp jumps by an odd number of π’s. 

• I carried out a numerical study for the (Na+H2) system by exhausting 
from the time-dependent wave functions the open-path phase both in 
adiabatic and in non-adiabatic evolutions. The numerical results fit very 
well the theoretical predictions in the adiabatic case, and also yield 
useful information about the non-adiabatic case. 
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Az értekezés összefoglalása 

A molekuladinamikai folyamatok kvantummechanikai leírására a fizika és 
kémia egyik leggyakrabban használt közelítési módszere az 1927-ben 
kidolgozott Born-Oppenheimer-féle (BO) adiabatikus közelítés, amely az 
elektronok és a jóval nehezebb atommagok mozgásának szétválasztásán alapul. 
Az adiabatikus közelítésben a dinamikai jellemzők számítása két részből 
tevődik össze: az elektron hullámfüggvények és energiák rögzített 
atommagoknál történő számításából (amely a modern kvantumkémia fő 
feladata), valamint a magmozgás jellemzőinek számításából az előzőleg 
meghatározott potenciális energia felületek (PES) segítségével.  Bár a BO-
közelítés gyakran elegendő pontosságú a molekuláris sajátságok és folyamatok 
kívánt szintű megértéséhez, a jelenségek egy csoportja (amely ezen értekezés 
tárgyát is képezi) nem írható le egyetlen potenciálfelület figyelembevételével. A 
BO- közelítés olyan atomi konfiguráció esetén érvényes, amikor az elektron 
energiák jól elkülönülnek egymástól. Olyan konfiguráció esetén, amikor a két 
állapot energiája megegyezik, vagyis az állapotok elfajultakká válnak, a 
közelítés nem alkalmazható. Ilyenkor átmenetek jönnek létre  az egyes 
adiabatikus elektronállapotok között, melyekért az úgynevezett nem-
adiabatikus csatolási tagok (NACT) felelősek. Abban az esetben, ha a fenti 
jelenség egzakt leírását szeretnénk megkapni, a BO-közelítés helyett annak 
Born-Huang- kiterjesztését kell használnunk.  

Nagyon sok olyan kémiai folyamat létezik a természetben (ide tartozik a 
legtöbb fotokémiai reakció is), amikor egy molekuláris rendszerben degenerált 
állapotok lépnek fel, és ezáltal indokolttá válik a Born-Huang-egyenletek 
alkalmazása. Ezért fontos feladat ezen degeneranciák helyeinek meghatározása. 
Longuet-Higgins 1975-ben kifejlesztett egy olyan topológiai eljárást, amellyel 
úgynevezett kúpszerű metszéspont (ci) típusú degeneranciák helyei 
térképezhetők fel. Azt a meglepő eredményt találta, hogy amikor a többatomos 
rendszer egy zárt hurkot ír le az atommagok konfigurációs terében, olyan 
módon, hogy a kontúr körülvesz egy ci típusú degeneranciát, a degeneranciához 
tartozó elektron hullámfüggvényeknek előjelet kell váltaniuk. Amikor majd egy 
évtizeddel később Berry bevezette a geometriai fázis fogalmát, vált világossá, 
hogy Longuet-Higgins teszt módszere éppen egy, valós függvényekre teljesülő 
alesete a geometriai fázisnak. Nem sokkal Berry felfedezését követően a róla 
elnevezett Berry fázis, amely eredetileg a kvantumrendszer ciklikus és 
adiabatikus időfejlődésére vonatkozott,  még általánosabb esetekre is 
kiterjesztésre került. 
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Mead és Truhlar mutatott rá először 1980-ban, hogy Longuet-Higgins 
felfedezése a hullámfüggvény előjelváltására vonatkozólag nem csak a ci-k 
felkutatására alkalmazható, hanem erős hatással lehet az atommagok 
dinamikájára is. Az elektron hullámfüggény előjelváltásának kompenzálására 
egy vektorpotenciál taggal egészítették ki a nukleon Schrödinger-egyenletet 
(SE), ezáltal biztosítva a teljes hullámfüggvény egyértékűségét. Mivel így az 
egyenlet formailag (és topológiai következményeit tekintve is) teljes analógiát 
mutat az Aharonov-Bohm féle vektorpotenciált tartalmazó Schrödinger-
egyenlettel, a jelenség a „molekuláris Aharonov-Bohm effektus” (MAB) 
elnevezést kapta. Kupperman és csoportja volt az első, aki ezen MAB effektust 
konkrét kémiai reakcióban is tetten érte. A MAB effektust is figyelembe vevő 
elméletileg számolt hatáskeresztmetszetük bizonyos energiákon nagyon szép 
egyezést mutatott a kísérleti eredményekkel. Ugyanakkor meg kell jegyeznünk, 
hogy az ezen MAB hatást is tartalmazó nukleon SE, lényegében egy egy-állapot 
Schrödinger-egyenlet, ezért természetesen az egyes elektronállopotok közötti 
átmeneteket nem írhatja le jól. Talán ez lehet az oka annak is, hogy az összhang 
a számított és kísérleti értékek között csak bizonyos energiákon mutatkozott. 
Nagy energiájú kémiai folyamatok egzakt leírásához a nukleon Schrödinger-
egyenletnek szükségszerűen több (gerjesztett) állapotot is tartalmaznia kell, 
amelyet, mint említettük, a Born-Huang-kép adhat. 

Összefoglalva azt állapíthatjuk meg a fenn elmondottakból, hogy a ci-k 
kémiai folyamatokban betöltött hatását alapvetően két különálló részre 
bonthatjuk. Egyfelől a MAB hatás révén határfeltételt szabnak ki az atommag 
hullámfüggvényére, vagyis a konfigurációs térben egy nemtriviális topológiát 
idéznek elő, másfelől a szomszédos elektronállapotok csatolása révén lehetővé 
teszik, hogy a rendszer egyszerre több elektronállapotban is létezhessen. A 
Born-Huang-kép, mivel közelítést nem tartalmaz, elviekben jól kell, hogy leírja 
mindkét hatást. Ezen dolgozat fő témája, annak vizsgálata, hogy az elvileg 
precíz Born-Huang-leírás milyen kényszerek és korlátozások árán válik 
alkalmazhatóvá a molekuláris rendszerek dinamikai vizsgálatában.             

Az adiabatikus Born-Huang-kép két ab-initio mennyiségen alapszik: a 
potenciális energia felületeken és a nem-adiabatikus csatolási tagokon. Ezen 
fenti két mennyiség egzakt ismerete elvileg teljes mértékben meghatározza a 
molekuladinamikát. Azonban rögtön egy nagyon súlyos gyakorlati probléma 
merül fel, amikor a Born-Huang-egyenleteket egy degeneranciákkal is 
rendelkező rendszerre szeretnénk megoldani. A NACT-nak ugyanis a 
degeneranciák helyén pólusa van, amely a Born-Huang differenciál-egyenletek 
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megoldásában numerikus problémákat, instabilitásokat okoz. Egy elméleti 
módszer ezen probléma kiküszöbölésére az adiabatikus Born-Huang-képből a 
diabatikus képbe történő áttérés egy unitér-transzformáció (ADT mátrix) 
segítségével. Ezáltal a szingularitásokkal rendelkező NACT-okat 
kitranszformáljuk, és helyette a diabatikus képben egy potenciálcsatolást 
nyerünk, ami már analitikus függvénye lesz a koordinátáknak. Az ezen 
transzformáció véghezviteléhez szükséges ADT mátrix egy adott kontúron 
történő előállításához Baer 1975-ben javasolt egy módszert több-atomos 
molekulák esetére, egyben feltételt adva arra nézve is, hogy mikor létezhet 
pontos megoldás. Ezen ún. ’rotációs feltétel’ a NACT-okból képezhető F-
mátrixra nulla értéket ír elő az adott kontúr minden egyes pontjában. Nevezzük 
a zárt kontúrhoz tartozó ADT mátrixot D-mátrixnak. Nemrégiben Baer 
megmutatta, hogy ha az ADT mátrix megoldása az egész kontúr mentén létezik, 
akkor ez a D-mátrixra egy kvantálási feltételt szab ki. Az is megmutatható, 
hogy mind a rotációs, és mind a kvantálási feltételek teljesülnek, ha az elektron 
sajátfüggvények egy teljes Hilbert teret feszítenek ki a konfigurációs tér azon 
részében, ahol az ADT mátrix megoldását keressük. Az F=0 feltétel 
differenciális (csak a konfigurációs tér adott pontjára vonatkozó), míg a D 
kvantáltsága integrális (az egész kontúr mentén teljesítendő) feltétel a teljes 
Hilbert tér eldöntésére vonatkozólag.     

        
Ezen értekezés négy fő fejezetének megfelelően (3-6. fejezetek) négy 
különböző szemszögből tárgyalom a ci-k szerepét a nem-adiabatikus és 
topológiai effektusok létrehozásában. A következőkben pontokba szedve 
ismertetem ezen témákat és a hozzá fűződő eredményeimet: 
 
(I)  Mint ahogy fentebb már említettük, az ADT mátrix kulcsfontosságú 
szerepet játszik a diabatikus képbe való áttérés során. A helyes 
kvantummechanikai leírás pedig, ha a rendszer elfajult állapotokkal 
rendelkezik, csak a diabatikus képben történhet. Emiatt bármilyen információ 
az ADT mátrixról fontos lehet a nem-adiabatikus folyamatok precíz leírásához. 
Amennyiben az elektronállapotok teljes Hilbert teret alkotnak, az ADT mátrix 
egzaktul előállítható, és így a nyert diabatikus kép is egzakt. Sajnos azonban a 
többatomos molekulák tipikusan olyan kvantumrendszerek, amelyek végtelen 
bázisban élnek, ami végtelen dimenziós ADT mátrix-hoz vezet és ilyen 
formában a problémát kezelhetetlenné teszi. Arra keressük a választ, hogy 
lehetséges-e a teljes Hilbert teret mégis jó közelítéssel kis, N=2…5 dimenziós 
alterekre bontani, úgy, hogy egy adott alteren belül az állapotok közötti csatolás 
erős legyen, de a különböző alterek között csak gyenge csatolódás lépjen fel. Ez 
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esetben az egyes állapotok csoportjai egymástól elszigetelődnének, ami azt 
jelenthetné, hogy numerikusan elegendő lenne az ezen állapotokhoz tartozó 
Hilbert altereket egymástól függetlenül kezelni, amely a probléma 
komplexitását lényegesen lecsökkentené. A feladatom tehát, különböző 
rendszerek numerikus vizsgálata volt, a fent megfogalmazott kérdésre keresve a 
választ: 

• Egy programot készítettem, amely alkalmas tetszőleges N dimenziós F- 
és D-mátrixok kiszámítására az adott rendszer NACT elemeinek 
ismeretében. 

•  A Mathieu-egyenlet sajátfüggvényein alapuló modellre vizsgáltam, 
hogyan függenek az F- és D-mátrixok a konfigurációs tér nagyságát 
mérő x paramétertől, és az állapotok N számától. 

• Ab-initio számítást végeztem a H+H2 rendszer NACT elemeinek 
meghatározására a MOLPRO program segítségével, amelyből a D-
mátrixot állítottam elő különböző N=2…5 állapotszámok és 0.3 Å 
≤x≤0.65 Å sugarú körvonalak mentén. 

• A fenti F- és D-mátrixok ismeretében vizsgáltam mind a modell, mind a 
valós molekuláris rendszerre a kvantálási és a rotációs feltételek 
teljesülésének mértékét. 

• Az eredményekből a következőket állapítottam meg: Tegyük fel, hogy a 
minket érdeklő atomi konfigurációs térben, kiválasztunk egy Hilbert 
alteret. Ezen alteret alkotó állapotok a fenti konfigurációs térben akkor 
fognak a teljes Hilbert tér többi állapotától elszigetelt Hilbert alteret 
alkotni, ha minden olyan állapot szerepel a fenti altérben, amely a 
minket érdeklő tartományban elfajulttá válik. Ugyanakkor, ha ezen 
Hilbert altérhez további olyan állapotokat adunk, melyek nem 
csatolódnak ci-n keresztül az eredeti Hilbert alteret alkotó állapotokhoz, 
tovább növekszik az így keletkezett Hilbert altér izoláltsága a 
„külvilágtól”. Az izoláltság mértékét a D-, és F-mátrixok adják meg.  

 
(II) Sikerült kimutatnom, hogy az ADT mátrix dimenziószáma lényegesen 
redukálható és egyértelmű kapcsolatban áll a ci típusú degeneranciáknak a 
konfigurációs térbeni elhelyezkedésével, viszont még további időigényes ab-
initio számításokat igénylő feladat  a NACT mátrix elemeinek előállítása. Ezért 
az volt a szándékunk, hogy a NACT-okat lehetőleg egyszerű modelleken 
alapuló módszerrel, az ab-initio számításokat megkerülve kaphassuk meg jó 
közelítéssel. A modellfeltevés: a ci-k, mint pólussal rendelkező szingularitások 
generálják a NACT vektorteret, az elektrodinamika egyenleteinek forrásaihoz 
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hasonló módon. Míg N=2 esetén az analógia szépen nyomon követhető, és egy 
vektor-algebrai modellhez vezet, addig N=3 esetén csatolt, nemlineáris 
téregyenletekhez jutunk a nem-Abeli vektortérnek megfelelően:    

• Abból a modellfeltevésből kiindulva, hogy a ci által generált NACT 
mező radiális komponense zérus, egy programot készítettem, amely a 
két-dimenziós konfigurációs tér bármely pontjában kiszámítja az N=2 
esetén előálló NACT komponensét. 

• Összehasonlítva az Na+H2 rendszer ab-initio és a fenti model NACT  
komponenseit, megállapíthatjuk, hogy a ci, mint a NACT vektorteret 
keltő forrás jól modellezi a valós esetet N=2 állapot esetén. 

• Megmutattam, hogy a NACT-ok egyes komponensei közötti kapcsolatot 
leíró ún. rotáció-divergencia egyenletek N=3 állapot esetén három 
csatolt Poisson-egyenletre vezetnek. 

• Ezen Poisson-egyenleteket Fourier-sorfejtésen alapuló numerikus 
módszerrel oldottam meg a H+ H2 rendszer három legalsó állapotára, 
figyelembe véve az adott ab-initio határfeltételeket. Az így kapott 
NACT elemek az ab-initio eredményekkel szép egyezést mutatnak, 
hasonlóan az N=2 állapot esetéhez.   

 
(III) Amikor a rendszerben egy viszonylag nagy méretű konfigurációs térben 
előforduló degeneranciák azonos állapotokat csatolnak össze, a kapcsolódó 
elszeparált Hilbert altér az előző tanulmányaink alapján jó közelítéssel N=2 
dimenziósnak adódik. Ezt a tényt felhasználva, hasznosnak találtuk, hogy 
behatóbban tanulmányozzuk két-állapot rendszerek diabatikus potenciálját 
abból a célból, hogy mélyebb ismereteket nyerhessünk a ci-k eloszlására 
vonatkozóan. Ezúton konkrét kapcsolatot találtunk egy adott kontúr diabatikus 
potenciáljának viselkedése, és a kontúrt határoló konfigurációs térben található 
ci-k száma és elhelyezkedése között. Ez a módszer a Longuet-Higgins-féle 
topológiai teszt általánosításának tekinthető a diabatikus reprezentációban. 
Konkrét eredményeim a következők: 

• Levezettem, hogy a ci körülvétele során adódó kétdimenziós ADT-
mátrix ún. forgási szöge ±π értékeket vehet fel. A ci-t a π előjelétől 
függően pozitívnak, vagy negatívnak nevezzük. A ±π érték helyességét 
konkrét valós molekuláris rendszerekből származó ab-initio eredmények 
is alátámasztják. 

• Felhasználva a fenti eredményt, magyarázatot adtam a „ci párok 
megsemmisítését” leíró jelenségre. 
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• Megmutattam, hogy a 2x2-es diabatikus potenciálnak egy adott 
kontúron felvett értékeiből következtetni lehet a kontúron belül található 
ci-k előjeles összegére. Ezen eredményt az Na+H2  rendszerre 
numerikusan is igazoltam.   

• Egy eljárást fejlesztettem ki (és ugyancsak alkalmaztam az Na+H2  
rendszerre), amely az előző pont eredményeire épít, bár lényegesen több 
ab-initio, és numerikus számítást igényel annál, de képes a rendszer 
degeneranciáinak egzakt meghatározására.   

 
(IV) Mindezidáig az időtől független Born-Huang-kép eszköztárát vizsgáltuk: a 
NACT, az ADT vagy a diabatikus mátrixokat, abból a célból, hogy a nem-
adiabatikus folyamatok dinamikájának megoldására (illetve megoldhatóságára) 
vonatkozólag hasznos információkat szolgáltassanak. Most a molekuláris 
rendszereket egy másik, ún. félklasszikus szinten vizsgáljuk: feltételezzük, 
hogy a molekulának egyik atommagját egy külső elektromágneses potenciállal 
mozgatjuk, melynek hatására az így módon két részre tagolódó rendszer 
egymáshoz képest forgó, keringő mozgást végezhet. Ha a rendszert egy kezdeti 
(mondjuk alapállapotból) indítottuk el, akkor ezen fenti mozgás hatására 
gerjesztett állapotokba történő átmenetek jönnek létre. Ha a fenti mozgatás 
viszonylag lassú (ún. adiabatikus) nagy keringési idővel, akkor ez pontosan egy 
olyan szituáció, ahol értelmezhető a Berry fázis: az a fázisfaktor, amelyre egy 
állapot tesz szert azáltal, hogy nagyon lassú mozgással a rendszer 
paraméterterében egy zárt körutat tesz meg. 1988-ban Samuel és Bhandari 
megmutatta, hogy Berry geometriai fázisa általánosítható a kvantumrendszer 
tetszőleges nem ciklikus és nem adiabatikus időfejlődésére is. Mind a Berry, és 
mind pedig az általánosított ún. nyílt görbe menti geometriai fázist vizsgáltam 
molekulák szemiklasszikus közelítésében, és a következő eredményekre 
jutottam:        

• Az ADT mátrix γ forgási szöge teljes mértékben meghatározza a nagyon 
lassú, adiabatikus időfejlődésű molekuláris rendszer γp nyílt görbe-menti 
geometriai fázisát. 

• Az elmélet szerint, a nyílt görbe-menti fázis adiabatikus időfejlődés 
során ugrás-függvényt vesz fel, ahol az ugráshelyek a 

( )( )tγcos függvény, azaz a 2x2-es ADT mátrix diagonális elemének 
zérushelyei, és az ugrások nagysága π páratlan számú többszörösei. 

• Az elmélethez kacsolódó numerikus számításokat az (Na+H2) 
rendszeren végeztem, kinyerve a rendszer időfüggő 
hullámfüggvényéből a nyílt görbe-menti geometriai fázist mind nagyon 
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lassú adiabatikus, mind pedig nem-adiabatikus időfejlődés során. A 
numerikus eredmények az adiabatikus esetben szinte teljes átfedésben 
vannak az elméleti jóslatokkal, és ugyancsak hasznos információt 
szolgáltatnak a nem-adiabatikus időfejlődésre nézve.       
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