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Abstract. Let P be a finite set of at least two prime numbers, and A the
set of positive integers that are products of powers of primes from P . Let
F (k) denote the smallest positive integer which cannot be presented as sum
of less than k terms of A. In a recent paper Nathanson asked to determine
the properties of the function F (k), in particular to estimate its growth rate.
In this paper we derive several results on F (k) and on the related function
F±(k) which denotes the smallest positive integer which cannot be presented
as sum of less than k terms of A ∪ (−A).
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1. Introduction

Let P be a nonempty finite set of at least two prime numbers, and A the set of pos-
itive integers that are products of powers of primes from P . Put A± = A ∪ (−A).
Then there does not exist an integer k such that every positive integer can be
represented as a sum of at most k elements of A±. This follows e.g. from Theorem
1 of Jarden and Narkiewicz [6], cf. [4, 1]. At a conference in Debrecen in 2010
Nathanson announced the following stronger result (see also [7]):

For every positive integer k there exist infinitely many integers n such that k
is the smallest value of l for which n can be written as

n = a1 + a2 + · · ·+ al (a1, a2, . . . , al ∈ A±).
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Let F (k) be the smallest positive integer which cannot be presented as a sum of
less than k terms of A and F±(k) the smallest positive integer which cannot be
presented as a sum of less than k terms of A±. Problem 2 of [7] Nathanson is to
give estimates for F (k). (The notation in [7] is different from ours.) Problem 1 is
the corresponding question for F±(k) in case A consists of the pure powers of 2
and of 3.

In [5] two of the authors considered Problem 1 in the more general setting
of powers of any finite set of positive integers. They gave lower and upper bounds
for F (k) and F±(k). In the present paper we consider Problem 2. We give lower
and upper bounds for F (k) and F±(k) for A as defined above.

We show that there exists an effectively computable number c depending only
on P , an effectively computable number C depending only on ε and an effectively
computable constant C± such that kck < F (k) < C(kt)(1+ε)kt and kck < F±(k) <
exp((kt)C±). The method of proof is an adaptation of that in [5], but in the case
of the lower bound an additional argument is needed. For the upper bound we
need an extended version of a theorem of Ádám, Hajdu and Luca [1] in which a
result of Erdős, Pomerance and Schmutz [2] plays an important part. We state the
result of Erdős, Pomerance and Schmutz and its refinement in Section 2 and our
generalization of the result of Ádám, Hajdu and Luca in Section 3. In Section 4
we derive the lower and upper bounds for F (k) and F±(k). In Section 5 we apply
the Qualitative Subspace Theorem to prove that for some number c∗ depending
only on P, k and ε the inequality F±(k) ≤ (kt)(1+ε)kt holds for k > c∗.

2. An extension of a theorem of Erdős, Pomerance and Schmutz

Let λ(m) be the Carmichael function of the positive integer m, that is the least
positive integer for which

bλ(m) ≡ 1 (mod m)

for all b ∈ Z with gcd(b,m) = 1. Theorem 1 of [2] gives the following information
on small values of the Carmichael function.

For any increasing sequence (ni)
∞
i=1 of positive integers, and any positive constant

C1 < 1/ log 2, one has

λ(ni) > (log ni)
C1 log log logni

for i sufficiently large. On the other hand, there exist a strictly increasing sequence
(ni)

∞
i=1 of positive integers and a positive constant C2, such that, for every i,

λ(ni) < (log ni)
C2 log log logni .

This nice result does not give any information on the size of ni. For our
purposes the following quantitative version will be needed.
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Lemma 1 ([5], Theorem 1). There exist positive constants C3, C4 such that for
every large integer i there is an integer m with

logm ∈ [log i, (log i)C3 ] and λ(m) < (logm)C4 log log logm.

3. An extension of a theorem of Ádám, Hajdu and Luca

Let k be a positive integer. Put

HP,k = {n ∈ Z : n =

l∑
i=1

ai with l ≤ k}

where ai ∈ A (i = 1, 2, . . . , k). For H ⊆ Z and m ∈ Z,m ≥ 2, we write ♯H for the
cardinality of the set H and

H(mod m) = {i : 0 ≤ i < m, h ≡ i (mod m) for some h ∈ H}.

The next theorem is a generalization of a result from [1].

Theorem 1. Let C3, P and k be given as above. There is a constant C5 such
that for every sufficiently large integer i there exists an integer m with logm ∈
[log i, (log i)C3 ] and

♯HP,k (mod m) < (logm)C5kt log log logm.

In the proof of Theorem 1 the following lemma is used.

Lemma 2. ([1], Lemma 1). Let m = qα1
1 · · · qαz

z where q1, . . . , qz are distinct primes
and α1, . . . , αz positive integers, and let b ∈ Z. Then

♯{bu (mod m) : u ≥ 0} ≤ λ(m) + max
1≤j≤z

αj .

Proof of Theorem 1. Let i be a large integer. Choose m according to Lemma 1.
Write m as a product of powers of distinct primes as in Lemma 2. Lemma 2 implies
that

♯{h (mod m) : h ∈ HP,k} ≤
(
λ(m) + max

1≤j≤z
αj + 1

)kt

.

On the other hand, with the constant C4 from Lemma 1,

λ(m) + max
1≤j≤z

αj < (logm)C4 log log logm +
logm

log 2
.

The combination of both inequalities yields the theorem. �
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4. Effective results on combinations of power products

Suppose we want to express the positive integer n as a finite sum of elements of A.
For this we apply the greedy algorithm. If we subtract the largest element of A not
exceeding n from n, we are left with a rest which is less than n/(log n)c1 for some
number c1 > 0 depending only on the two smallest elements of P according to [8].
We can iterate subtracting the largest element of A not exceeding the rest from
the rest and as long as the rest exceeds exp(

√
log n) reduce the rest each time by

a factor at least (log n)c1/2. If the rest is smaller than exp(
√
log n) we can reduce

the rest each step by a factor larger than some constant c2 > 1, with c2 depends
only on the smallest prime from P . Thus we find that the sum of

k ≤ 2 log n

c1 log log n
+

√
log n

log c2

elements of A suffices to represent n. This implies the lower bound kck for F (k)
in Theorem 2(i) below. Of course, F (k) ≤ F±(k) for all k.

For an upper bound for F (k) we study the number of representations of pos-

itive integers up to n as
∑l

j=1 aj with aj ∈ A, l ≤ k. Since the number of elements

of A ∪ {0} not exceeding n is at most (C6 log n)
t, the number of represented in-

tegers is at most (C6 log n)
kt. If this number is less than n, then we are sure that

some positive integer ≤ n is not represented. This is the case if

kt <
log n

log log n+ logC6
.

Suppose n > (kt)(1+ε)kt. Then it follows from the monotonicity of the function
log x/(log log x+ C6) for large x that

log n

log log n+ C6
>

(1 + ε)kt log kt

log(kt) + log((1 + ε) log(kt)) + C6
> kt

for kt sufficiently large. By choosing C7 suitably for the smaller values of kt, it
suffices for all values of kt that n ≥ C7(kt)

(1+ε)kt. Thus

F (k) ≤ C7(kt)
(1+ε)kt.

Next we consider representations by sums of elements from A±. We write

H∗
P,k = {n ∈ Z : n =

∑l
j=1 aj with aj ∈ A±, l ≤ k}. Choose the smallest

positive integer i > 10 such that j > (log j)C5kt log log log j for j ≥ i. Then i <
2(log i)C5kt log log log i. It follows that

log i < C8kt(log log i)(log log log i)

for some constant C8. Hence log i < C9kt(log(kt))(log log(kt)) for some constant
C9. According to Theorem 2 there exists an integerm with log i ≤ logm ≤ (log i)C3

such that all representations in H∗
P,k are covered by at most (logm)C5kt log log logm

residue classes modulo m. By the definition of i and the inequality i ≤ m, we see
that this number of residue classes is less than m, therefore at least one positive
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integer n ≤ m has no representation of the form
∑k

j=1 aj with aj ∈ A ∪ {0} for
j = 1, . . . , k. Hence

log n ≤ logm ≤ (log i)C3 < (C9kt(log kt)(log log kt))
C3 < (kt)C10

for some constant C10. Thus F±(k) < exp((kt)C10).
So we have proved the following result.

Theorem 2. Let P = {p1, . . . , pt} be a finite set of primes with t ≥ 2. Let A be the
set of integers composed of numbers from P . Let k be a positive integer. Denote by

F (k) the smallest positive integer which cannot be represented in the form
∑k

i=1 ai
with ai ∈ A∪{0} for all i and by F±(k) the smallest positive integer which cannot

be represented in the form
∑k

i=1 ai with ai ∈ A± ∪ {0} for all i. Then, for every
ε > 0 there are a number c depending only on the two smallest elements of P , a
number C depending only on ε and an absolute constant C± such that
(i) F (k) > kck for all k > 1,
(ii) F (k) ≤ C(kt)(1+ε)kt for all k > 1,
(iii) F±(k) < exp((kt)C±) for all k > 1.

Remark 1. In Section 5 we shall use an ineffective method to show that C± = 16
suffices.

Remark 2. Following the proof of Theorem 3(iv) of [5] it can be shown that there
are infinitely many positive integers k for which F±(k) ≤ exp(C∗

±kt log(kt) log log(kt))
for some suitable effectively computable constant C∗. In Section 5 we derive the
better upper bound (kt)(1+ε)kt for F±(k) for all but finitely many k. However, it
cannot be deduced from the proof from which value of k on this bound holds.

Remark 3. Using the above methods similar bounds can be derived if P is re-
placed by any finite set of positive integers.

5. Application of the ineffective Subspace theorem

By applying another version of the Subspace Theorem we derive an estmate for
F±(k) which is much better than the bound in Theorem 2(iii) and holds for all
but finitely many k’s.

Theorem 3. Under the conditions of Theorem 2 for every ε > 0 there is a number
c∗± depending only on P, k and ε such that

F±(k) ≤ (kt)(1+ε)kt

whenever k > c∗±.

In the proof we apply the following result of Evertse. Here the p-adic value |x|p is
defind as |x|p−r where pr||x.
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Lemma 3 ([3], Corollary 1). Let c, d be constants with c > 0, 0 ≤ d < 1. Let S0 be
a finite set of primes and let l be a positive integer. Then there are only finitely
many tuples (x0, x1, . . . , xl) of rational integers such that

x0 + x1 + · · ·+ xl = 0;

xi0 + xi1 + . . . xis ̸= 0

for each proper, non-empty subset {i0, i1, . . . , is} of {0, 1, . . . , l};
gcd(x0, x1, . . . , xl) = 1;

l∏
j=0

|xj |
∏
p∈S0

|xj |p

 ≤ c

(
max
0≤j≤l

|xj |
)d

.

Proof of Theorem 4. Let n be an integer which is not divisible by any prime from
P . Suppose n = a1+a2+· · ·+al with aj ∈ A± for j = 1, 2, . . . , l with l ≤ k. Without
loss of generality we may assume that l is minimal, hence a1 + a2 + · · · + al has
no proper subsums which vanish. Moreover, we know that gcd(a1, a2, . . . , al) = 1.
We apply Lemma 3 with c = 1, d = 1/2, S0 = P to the equation a0 + a1 +
· · · + al = 0 with a0 = −n. It follows that given k, P there only finitely many
tuples (n, a1, a2, . . . , al) with gcd(n, p1, . . . , pt) = 1 and l ≤ k such that n =
a1 + a2 + · · ·+ al with aj ∈ A± for j = 1, 2, . . . , l and

n ≤
(
max
0≤j≤l

|aj |
)1/2

,

hence
n2 ≤ max

1≤j≤l
|aj |.

Let N0 be the maximum of |n| for all such tuples, where N0 = 0 if there are no
such tuples.

Next consider positive integers n > N0 which are not divisible by any prime
from P . Then, for any representation n = a1 + a2 + · · ·+ al with aj ∈ A± for j =
1, 2, . . . , l and l ≤ k, we have |aj | < n2 for j = 1, 2, . . . , l. Writing aj = ±ps11 · · · pstt
we obtain maxj sj ≤ 3 log n− 1. The number of possible tuples (a1, . . . , al) for l is
therefore at most 2l(3 log n)lt. Then the number of all possible tuples (a1, ..., aj)
with j ≤ k is at most 2 · 2k(3 log n)kt. Thus for N > N0 there are at most
N0 + 2 · 2k(3 logN)kt integers n ≤ N coprime to P such that n is representable
as sum of at most k integers from A±. The number of positive integers n ≤ N
coprime to P is at least N

∏
p∈P (1− 1/p)− 2t > 2−tN − 2t. Hence for finding an

n with n ≤ N such that n is not representable in the desired form, it suffices that

2−tN − 2t > N0 + 2 · 2k(3 logN)kt.

As in the proof of Theorem 2(ii) it follows that for every ε > 0 there is an unspec-
ified number c∗± depending only on k, P and ε such that

F±(k) ≤ (kt)(1+ε)kt

whenever k > c∗±. �
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Remark 4. Theorem 4 is also an improvement of Theorem 3.4(iv) of [5] where,
only for sums of perfect powers, a weaker bound is given.
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[1] Zs. Ádám, L. Hajdu and F. Luca, Representing integers as linear combinations of
S-units, Acta Arith. 138 (2009), 101–107.
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