
Chrysin-based supramolecular
cyclodextrin-calixarene drug
delivery system: a novel approach
for attenuating cardiac fibrosis in
chronic diabetes

Maria Consiglia Trotta1†, Hildegard Herman2†, Alina Ciceu2,
Bianca Mladin2, Marcel Rosu2, Caterina Claudia Lepre2,3,
Marina Russo4,5, Ildikó Bácskay6,7, Ferenc Fenyvesi6,
Raffaele Marfella8, Anca Hermenean2,9*, Cornel Balta2‡ and
Michele D’Amico1‡

1Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy, 2“Aurel
Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania, 3PhD Course
in Translational Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy, 4PhD Course in National
Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental,
Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy, 5School of
Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, Naples, Italy,
6Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen,
Debrecen, Hungary, 7Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary,
8Department of AdvancedMedical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples,
Italy, 9Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad,
Romania

Introduction: Cardiac fibrosis is strongly induced by diabetic conditions. Both
chrysin (CHR) and calixarene OTX008, a specific inhibitor of galectin 1 (Gal-1),
seem able to reduce transforming growth factor beta (TGF-β)/SMAD pro-fibrotic
pathways, but their use is limited to their low solubility. Therefore, we formulated a
dual-action supramolecular system, combining CHR with sulfobutylated β-
cyclodextrin (SBECD) and OTX008 (SBECD + OTX + CHR). Here we aimed to
test the anti-fibrotic effects of SBECD + OTX + CHR in hyperglycemic
H9c2 cardiomyocytes and in a mouse model of chronic diabetes.

Methods: H9c2 cardiomyocytes were exposed to normal (NG, 5.5 mM) or high
glucose (HG, 33 mM) for 48 h, then treated with SBECD + OTX + CHR (containing
OTX008 0.75–1.25–2.5 µM) or the single compounds for 6 days. TGF-β/SMAD
pathways, Mitogen-Activated Protein Kinases (MAPKs) and Gal-1 levels were
assayed by Enzyme-Linked Immunosorbent Assays (ELISAs) or Real-Time
Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR). Adult
CD1 male mice received a single intraperitoneal (i.p.) administration of
streptozotocin (STZ) at a dosage of 102 mg/kg body weight. From the second
week of diabetes, mice received 2 times/week the following i.p. treatments: OTX
(5 mg/kg)-SBECD; OTX (5 mg/kg)-SBECD-CHR, SBECD-CHR, SBECD. After a 22-
week period of diabetes, mice were euthanized and cardiac tissue used for tissue
staining, ELISA, qRT-PCR aimed to analyse TGF-β/SMAD, extracellular matrix
(ECM) components and Gal-1.

Results: In H9c2 cells exposed to HG, SBECD + OTX + CHR significantly
ameliorated the damaged morphology and reduced TGF-β1, its receptors
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(TGFβR1 and TGFβR2), SMAD2/4, MAPKs and Gal-1. Accordingly, these markers
were reduced also in cardiac tissue from chronic diabetes, in which an amelioration
of cardiac remodeling and ECMwas evident. In both settings, SBECD +OTX + CHR
was the most effective treatment compared to the other ones.

Conclusion: The CHR-based supramolecular SBECD-calixarene drug delivery
system, by enhancing the solubility and the bioavailability of both CHR and
calixarene OTX008, and by combining their effects, showed a strong anti-
fibrotic activity in rat cardiomyocytes and in cardiac tissue from mice with
chronic diabetes. Also an improved cardiac tissue remodeling was evident.
Therefore, new drug delivery system, which could be considered as a novel
putative therapeutic strategy for the treatment of diabetes-induced cardiac fibrosis.
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1 Introduction

Cardiac fibrosis is a prominent outcome in heart-related
disorders, exhibited by various cardiac regions (Tian et al., 2017;
Ytrehus et al., 2018). The main cells involved in development of
cardiac fibrosis are activated myofibroblasts originating from the
epicardium (Tao et al., 2013), the endocardium (Wessels et al.,
2012), and the cardiac neural crest (Ali et al., 2014a). Other cells, like
macrophages and endothelial cells, also participate in cardiac
fibrogenesis via unique molecular pathways (Jiang et al., 2021).

The activation of cardiac myofibroblasts leads to an increased
deposition the extracellular matrix (ECM), which amplifies cardiac
dysfunction, leads to interstitial fibrosis and can consequently cause
heart failure (González et al., 2018; Jiang et al., 2021). However,
although cardiac fibrosis is frequently associated with myocardial
infarction, it characterizes also idiopathic dilated cardiomyopathy,
hypertensive heart disease, and diabetic hypertrophic
cardiomyopathy (Jellis et al., 2010; Disertori et al., 2017).
Particularly, the first asymptomatic stage of diabetic
cardiomyopathy is characterized by myocardial fibrosis, worsened
by hyperglycaemia (Jia et al., 2018).

To this regard, Galectin 1 (Gal-1) protein has recently
emerged as a promising target for treating diabetes-induced
fibrosis. Indeed, it has been found upregulated in kidneys
from mice with type 1 and type 2 diabetes (Kuo et al., 2020),
contributing to the progression of kidney fibrosis (Liu et al.,
2015). Similarly, Gal-1 increase has been shown in cardiac
disorders promoted by fibrotic processes, such as heart failure
and acute myocardial infarction (Talman and Ruskoaho, 2016;
Seropian et al., 2018). Interestingly, the Gal-1 inhibition by
OTX008 compound has been effective in counteracting the
buildup of Gal-1 under high glucose conditions. Indeed, a
previous study reproducing in vitro diabetic retinopathy
reported a reduction of Transforming Growth Factor beta 1
(TGF-β1) in human retinal pigment epithelial cells cultured in
high glucose and treated with OTX008 (Trotta et al., 2022). On
another side, we previously identified the anti-fibrotic properties
of another mediator, the flavonoid chrysin (CHR), tested in a
rodent model of carbon tetrachloride (CCl4)-induced liver
fibrosis (Balta et al., 2015; 2018). Therefore, both OTX008 and
CHR could have anti-fibrotic effects even in cardiac damage
induced by high glucose levels. However, their low solubility in

water could affect their in vivo administration (Dong et al., 2021;
Hermenean et al., 2023).

In this context, we previously formulated a dual-action
supramolecular system to improve CHR and OTX008 solubility,
aiming at reducing fibrosis in chronic diabetes. Particularly, we first
combined CHR with sulfobutylated β-cyclodextrin (SBECD) to
improve its limited solubility in water; then we integrated
calixarene OTX008, known for its Gal-1 inhibitory properties,
into our drug delivery system (Hermenean et al., 2023). This
CHR-based supramolecular cyclodextrin-calixarene delivery
system was characterized in the context of rat embryonic
cardiomyocytes (H9c2) cell viability, ascertaining its safety.
Therefore, it could be considered as a promising therapeutic
candidate for addressing cardiac fibrosis in chronic diabetes
(Hermenean et al., 2023).

To this regard, the present study aimed to explore the potential
cardioprotective benefits of the novel CHR-based supramolecular
cyclodextrin-calixarene delivery system, by hypothesizing an
amplified anti-fibrotic efficacy due to the integration of readily
soluble CHR, able to counteract fibrosis, with the selective Gal-1
inhibitor OTX008. Therefore, we investigated the effects of the new
drug delivery system in hyperglycemic H9c2 cardiomyocytes and in
a mouse model of chronic diabetes, by analyzing the main
profibrotic pathways: TGF-β1/SMAD, able to activate
myofibroblasts and to increase fibrotic genes, along with ECM
deposition (Ma et al., 2018; Saadat et al., 2021); p38, which
mediates SMAD-independent TGF-β responses leading to cardiac
remodeling, ECM deposition and metalloproteinases (MMPs)
modulation (Turner and Blythe, 2019); Erk1/2 mitogen-activated
protein kinases (MAPKs), contributing to cardiac fibrosis in diabetic
cardiomyopathy (Xu et al., 2016).

2 Materials and methods

2.1 Materials

OTX008 (Calixarene 0118) was purchased from Selleck
Chemicals GmbH, while CHR (5,7-Dihydroxyflavone) from Alfa
Aesar (by ThermoFisher Scientific, Kandel, Germany).
Sulfobutylated β-cyclodextrin sodium salt (SBECD) (DS~6) was
produced by Cyclolab Ltd. (Budapest, Hungary).
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The experimental methods used to obtain the novel CHR
complex in OTX-SBECD have been previously detailed and
established (Hermenean et al., 2023). Comprehensive phase-
solubility evaluations elucidated the mechanisms behind solubility
augmentation and complexation. Molecular associations within the
cyclodextrin-calixarene-CHR ternary system were assessed via
dynamic light-scattering, as well as nuclear magnetic resonance,
differential scanning calorimetry, and computational studies, as
documented by Hermenean et al. (2023).

2.2 In vitro setting

As previously described (Hermenean et al., 2023), embryonic rat
cardiac H9c2 (2-1) cells (ECACC, United Kingdom) were cultured
at 37°C under an atmosphere of 5% CO2, in Dulbecco’s modified
Eagle’s medium (DMEM; Aurogene, Italy). This growth medium
contained 5.5 mM D-glucose, 1% L-Glutamine (L-Glu; AU-X0550
Aurogene, Italy), 10% heat inactivated fetal bovine serum (FBS; AU-
S181H Aurogene, Italy) and 1% penicillin/streptomycin (P/S)
solution (AU-L0022 Aurogene, Italy). H9c2 cells were seeded at a
specific density for each assay before being exposed to NG, high
glucose (HG; 33 mM D-glucose) or NG + 27.5 mMmannitol (M; as
osmotic control) for 48 h (Hermenean et al., 2023). Cells were then
treated in NG or HG medium for 6 days (Hermenean et al., 2023)
with the following substances:

- CHR 0.399 mg/mL dissolved in NaCl (CHR);
- SBECD 7.3 m/m% dissolved in NaCl (SBECD);
- SBECD + 0.095 mg/mL CHR dissolved in NaCl (SBECD
+ CHR);

- as vehicle for OTX008, dimethyl sulfoxide 2.5% (DMSO);
- OTX008 (0.75–1.25–2.50 µM);
- SBECD-OTX008 (2.5–1.25–0.75 µM) dissolved in NaCl
(SBECD + OTX);

- SBECD-OTX008 (2.5–1.25–0.75 µM)-CHR dissolved in NaCl
(SBECD + OTX + CHR).

Three independent experiments were done, each performed in
triplicates (N = 3). Cell morphology was observed at the optical
microscope.

2.2.1 RNA isolation and real-time quantitative
reverse transcription polymerase chain reaction
(qRT-PCR)

H9c2 cells were seeded in 6-well plates (1 × 105 cells/well) (Liu et al.,
2020), exposed to NG or HG medium for 48 h and then treated for
6 days as previously described. Total RNA was purified from
H9c2 lysates with an appropriate isolation kit (217004 Qiagen,
Italy). RNA concentration and purity was determined by using the
NanoDrop 2000c Spectrophotometer (Thermo Fisher Scientific, Italy).
Genomic DNA (gDNA) contaminations were eliminated from RNA
samples before the Reverse Transcription (RT) step, carried out on the
Gene AMP PCR System 9700 (Applied Biosystems, Italy) by using the
QuantiTect Reverse Transcription kit (205311 Qiagen, Italy), according
to the protocol “Reverse Transcription with Elimination of Genomic
DNA for Quantitative, Real-Time PCR.” The final step for Real Time
PCR (qPCR) analysis was carried out in triplicate on the CFX96 Real-

time System C1000 Touch Thermal Cycler (Biorad, Italy). This was
performed according to the protocol “Two-Step RT-PCR (Standard
Protocol),” by using the QuantiTect SYBR Green PCR Kit
(204143 Qiagen, Italy) and specific QuantiTect Primer Assays
(249900 Qiagen, Italy) for TGF-β1 (QT00187796 Qiagen, Italy),
TGFβ receptor 1 (TGFβR1; QT00190953 Qiagen, Italy), TGFβ
receptor 2 (TGFβR2; QT00182315 Qiagen, Italy), Erk1 (or
MAPK3—QT00176330 Qiagen, Italy) and Erk2 (or
MAPK1—QT00190379 Qiagen, Italy) genes. Relative quantization of
gene expression was performed by using the 2̂−ΔΔCt method, by using rat
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
QT01082004 Qiagen, Italy) as housekeeping control gene.

2.2.2 Enzyme-linked immunosorbent assays
(ELISAs)

Cell-biased ELISA assays were performed to analyze the cellular
levels of rat p38 MAPK (phosphorylated/total) (CBEL-P38-
1 RayBiotech, GA, United States), Smad2 (LS-F1057-1 LSBio, MA,
United States) and Smad4 (LS-F2315-1 LSBio, MA, United States)
according to the manufacturer’s protocols. Competitive ELISA test was
used to quantify the cellular levels of Gal-1 (abx256936 abbexa,
United Kingdom), according to the manufacturer’s instructions.

2.3 Animals and experimental protocol

Animal experimental procedures were approved by the Ethical
Commettee of Vasile Goldis Western University of Arad (Approval
number 20, 12/06/2020) and the National Sanitary Veterinary and
Food Safety Authority (Certificate number 001/04.02.2021) and
were performed according to the guidelines of the Declaration of
Helsinki, in compliance with European and national guidelines for
research on laboratory animals.

Adult CD1 male mice sourced from the Animal facility of the
“Vasile Goldiș” Western University of Arad served as the
experimental subjects. These animals were maintained under
standardized housing conditions, in compliance with both
national and European standards and guidelines. Diabetes was
elicited in mice via a single intraperitoneal (i.p.) administration
of streptozotocin (STZ) at a dosage of 102 mg/kg body weight. The
STZ was freshly prepared in a 50 mM citrate buffer solution
(pH 4.5). Post 2 weeks of the STZ administration, fasting blood
glucose levels were ascertained. Mice registering blood glucose
concentrations exceeding 200 mg/dL were categorized as diabetic
and were maintained for a duration of 20 weeks prior to initiating
interventions. Post the 20-week period, the chronic diabetic mice,
coupled with 10 age-matched healthy counterparts, were randomly
assigned into seven distinct groups (N = 10 per group):

- Group 1 (Control): Healthy mice serving as the baseline
control.

- Group 2 (Diabetes): Chronic diabetic mice, which were
euthanized following the 22-week period.

- Group 3 (OTX-SBECD): Chronic diabetic mice at 20 weeks,
administered with 5 mg/kg of OTX complexed with SBECD

- Group 4 (OTX-SBECD-CHR): Chronic diabetic mice at
20 weeks, given 5 mg/kg of OTX complexed with SBECD,
along with chrysin.
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- Group 5 (SBECD-CHR): Chronic diabetic mice at 20 weeks,
treated with CHR complexed with SBECD.

- Group 6 (SBECD): Chronic diabetic mice at 20 weeks,
receiving the uncomplexed SBECD.

After 20 weeks of chronic diabetes, treatments were
administered 2 times/week for 2 weeks by i.p. injections. Figure 1
provides a schematic representation of the experimental protocol.

2.3.1 Histology
Cardiac specimens were promptly fixed using a 4%

paraformaldehyde solution buffered in phosphate buffered saline
(PBS) and subsequently embedded in paraffin for processing.
Following this, tissue sections were stained with Gomori’s
trichrome using the stain kit (38016SS1 Leica, United States).
The entire staining procedure adhered closely to the guidelines
specified by the Bio-Optica staining kit (Italy). Once stained, the
histological slides were examined under an Olympus
BX43 microscope (Germany). High-resolution images of the
representative sections were captured for documentation and
detailed analysis using an Olympus XC30 digital camera (Germany).

2.3.2 Immunohistochemistry
Prior to undertaking immunohistochemistry, heart sections,

embedded in paraffin and measuring 5 µm in thickness,
underwent deparaffinization and rehydration through
established techniques. For antigen detection, sections were
treated with primary antibodies—rabbit polyclonal TGF-β1

(sc-146 Santa Cruz Biotechnology, TX, United States), Smad2/
3 (sc-133098 Santa Cruz Biotechnology, TX, United States), and
α-smooth muscle actin (αSMA, ab32575 abcam,
United Kingdom), all at a 1:200 dilution. This was followed by
an overnight incubation at 4°C. The Novocastra Peroxidase/DAB
kit (Leica Biosystems, Germany) was then employed, consistent
with the manufacturer’s directives, to visualize the
immunoreactions. For negative controls, primary antibodies
were substituted with irrelevant immunoglobulins of the same
isotype, and the specimens were observed under bright-field
microscopy. Quantitative analysis was performed by
determining the ratio of the positively stained area to the total
section area using the Image J software.

2.3.3 In vivo qRT-PCR evaluations
qRT-PCR was performed to evaluate the mRNA expression

levels of TGF-β1, Smad 2/3, Smad 7, Collagen I (Col I), αSMA,
MMPs and TIMP metallopeptidase inhibitor 1 (TIMP1). The
extraction of total RNA was facilitated using the SV Total RNA
isolation kit (Promega, Italy). Following extraction, the integrity and
concentration of the RNA samples were gauged via a NanoDrop
One spectrophotometer (Thermo Scientific, MA, United States).
Subsequently, reverse transcription of the RNA was carried out
employing the First Strand cDNA Synthesis Kit (Thermo Scientific,
MA, United States). The Maxima SYBR Green/ROX qPCR Master
Mix (Life Technologies, CA, United States) was utilized for the RT-
PCR, executed on an Mx3000PTM RT-PCR system (Agilent, CA,
United States). Every sample underwent triplicate runs for accuracy.

FIGURE 1
In vivo experimental design. This figure was created with BioRender.com.
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Detailed primer sequences are presented in Table 1. Serving as a
reference gene, the expression of GAPDHwas also gauged, following
the identical experimental guidelines. The relative shifts in gene
expression were ascertained employing the 2̂−ΔΔCt methodology, as
documented in reference (Jiang et al., 2021).

2.3.4 Determination of Gal-1 protein levels
Gal-1 protein levels were assessed in mice cardiac tissues by

ELISA assay (EM1051 FineTest, China), according to the
manufacturer’s protocol.

2.4 Statistical analysis

Data analyses were performed using GraphPad Prism 9.4.0.
Results are expressed as mean ± SD. Statistical analysis was
performed by employing one-way analysis of variance (ANOVA)
with the Bonferroni correction. The strength of association between
2 factors was assessed by Pearson correlation analysis, by
determining Pearson correlation coefficient (r). For both
ANOVA and Pearson correlation analysis, a p-value of <0.05 was
considered significant.

TABLE 1 Primer sequences for in vivo RT-PCR.

Target Sense Antisense

TGF-β1 5′ TTTGGAGCCTGGACACACAGTAC 3′ 5′ TGTGTTGGTTGTAGAGGGCAAGGA 3′

α-SMA 5′ CCGACCGAATGCAGAAG GA 3′ 5′ ACAGAGTATTTGCGCTCCGAA 3′

Smad 2 5′ GTTCCTGCCTTTGCTGAGAC 3′ 5′ TCTCTTTGCCAGGAATGCTT 3′

Smad 3 5′ TGCTGGTGACTGGATAGCAG 3′ 5′ CTCCTTGGAAGGTGCTGAAG 3′

Smad 7 5′ GCTCACGCACTCGGTGCTCA 3′ 5′ CCAGGCTCCAGAAGAAGTTG 3′

Col I 5′ CAGCCGCTTCACCTACAGC 3′ 5′ TTTTGTATTCAATCACTGTCTTGCC 3′

MMP1 5′ GCAGCGTCAAGTTTAACTGGAA 3′ 5′AACTACATTTAGGGGAGAGGTGT 3′

MMP2 5′ CAG GGA ATG AGT ACT GGG TCT ATT 3′ 5′ ACT CCA GTT AAA GGC AGC ATC TAC 3′

MMP3 5′ ACCAACCTATTCCTGGTTGCTGCT 3′ 5′ ATGGAAACGGGACAAGTCTGTGGA 3′

MMP9 5′ AAT CTC TTC TAG AGA CTG GGA AGG AG 3′ 5′ AGC TGA TTG ACT AAA GTA GCT GGA 3′

Timp1 5′ GGTGTGCACAGTGTTTCCCTGTTT 3′ 5′TCCGTCCACAAACAGTGAGTGTCA 3′

GAPDH 5′ CGACTTCAACAGCAACTCCCACTCTTCC-3′ 5′ TGGGTGGTCCAGGGTTTCTTACTCCTT 3′

FIGURE 2
CHR-based supramolecular drug delivery system preserved H9c2morphology in high glucose. (A) Representative opticmicroscope observations of
H9c2 cells cultured in normal glucose (NG) for 48 h and exposed for 6 days to the highest dose (2.5 µM) ofOTX008 alone or in the different combinations
considered, or (B) cultured in high glucose (HG) for 48 h and treated for 6 days with 3 doses (0.75–1.25–2.5 µM) of OTX008 alone or in the different
combinations considered. Magnification = ×20; scale bar = 10 µm. N = 3 per group (three independent experiments, each performed in triplicate).
NG: 5.5 mM D-glucose; M: NG + 27.5 mMmannitol; DMSO: dimethyl sulfoxide 2.5%; CHR: 5,7-Dihydroxyflavone 0.399 mg/mL; SBECD: Sulfobutylated
β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD + 0.095 mg/mL CHR; OTX: calixarene OTX008—Calixarene 0118—(0.75–1.25–2.5):
OTX008 (0.75–1.25–2.5 µM); SBECD + OTX: SBECD-OTX008 (2.5–1.25–0.75 µM); SBECD + OTX + CHR: SBECD-OTX008 (2.5–1.25–0.75 µM)-CHR;
HG: 33 mM D-glucose.
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3 Results

3.1 CHR-based supramolecular drug
delivery system ameliorates the damaged
morphology in H9c2 cells exposed to high
glucose

In normal glucose (NG) condition, the physiological
elongated morphology exhibited by H9c2 cells was not
affected by the treatments with OTX (2.5 µM) alone or
combined with SBECD/SBECD + CHR (Figure 2A).
H9c2 morphology was not altered also by the single
treatments with CHR, SBECD, SBECD + CHR, DMSO or
mannitol (M) (Figure 2A). This was in accordance with our
previous data showing a normal viability of these
cardiomyocytes in normal glucose when treated with the
same compounds (Hermenean et al., 2023). Conversely,
H9c2 exposed to high glucose (HG) evidenced a markedly
reduced cell viability (Hermenean et al., 2023) and were less
elongated, showing a shrunken shape and hypertrophy

(Figure 2B). In HG, the treatments with CHR, SBECD and
SBECD + CHR did not alter cell viability (Hermenean et al.,
2023) and partially recovered the H9c2 damaged cell
morphology. This was markedly ameliorated by OTX
(0.75–1.25–2.5 µM) alone or in the different formulations
with SBECD/SBECD + CHR (Figure 2B), accordingly with
the higher increase in cell viability showed by SBECD + OTX
and SBECD + OTX + CHR (2.5 µM) (Hermenean et al., 2023).

3.2 CHR-based supramolecular drug
delivery system reduces the pro-fibrotic
pathways in H9c2 cells exposed to high
glucose

The main pro-fibrotic pathways, the canonical (involving
TGF-β1, TGFβR1/2, Smad2/4) and non-canonical one
(involving p38, Erk1/2 mitogen-activated protein kinases) were
not altered in H9c2 cells cultured in normal glucose and exposed
to the different treatments (Figure 3; Table 2). Conversely, HG

FIGURE 3
CHR-based supramolecular drug delivery system does not affect TGF-β signaling and MAPKs in H9c2 cardiomyocytes cultured in normal glucose.
TGF-β1, TGFβR1, TGFβR2, Erk1 and Erk2 mRNA levels (2̂−ΔΔCt ± SD) were determined by qRT-PCR, using GAPDH as gene control. N = 3 per group (three
independent experiments, each performed in triplicate). NG: 5.5 mM D-glucose; M: NG + 27.5 mMmannitol; DMSO: dimethyl sulfoxide 2.5%; CHR: 5,7-
Dihydroxyflavone 0.399 mg/mL; SBECD: Sulfobutylated β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD + 0.095 mg/mL CHR; OTX:
calixarene OTX008—Calixarene 0118—(2.5 µM); SBECD + OTX: SBECD-OTX008 (2.5 µM); SBECD + OTX + CHR: SBECD-OTX008 (2.5 µM)-CHR.
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exposure significantly increased both the pro-fibrotic pathways in
H9c2 cells (p < 0.0001 vs. NG) (Figures 4, 5; Table 3).
Interestingly, SBECD, CHR and SBECD + CHR were able to
significantly reduce TGF-β1 and TGFβR1/2 expression levels in
H9c2 cells exposed to HG, but not the other pro-fibrotic targets.
In HG, the three doses of OTX (0.75–1.25 and 2.5 µM) tested
alone or in combination with SBECD or SBECD + CHR were able
to significantly decrease the canonical and non-canonical fibrotic
pathways, but only the two formulations combined with OTX
2.5 µM (SBECD + OTX 2.5 and SBECD + OTX 2.5 + CHR) were
able to further decrease the pro-fibrotic pathways compared to
same dose of OTX tested alone (Figures 4, 5; Table 3).

3.3 CHR-based supramolecular drug
delivery system downregulates the main
pro-fibrotic signalling pathways in cardiac
tissues

αSMA gene expression is a marker of activated
myofibroblasts in tissue remodeling (Shinde et al., 2017). For
the diabetes group, there was a notable increase in αSMA gene
expression, as demonstrated by RT-PCR analysis, when
compared to the control group (p < 0.001). All treatments
resulted in significant decreases in this expression relative to
the Diabetes group. Among these, the SBECD + OTX + CHR
treatment yielded the most substantial decrease, as illustrated in
Figure 6. Immunohistochemical studies revealed enhanced
staining for the cardiac tissue samples from the Diabetes
group, but this expression was almost returned to control
levels after SBECD + OTX + CHR treatment.

TGF-β1 plays a crucial role in promoting tissue fibrosis,
operating primarily via the phosphorylation of Smad 2/3.
In contrast, Smad 7, a Smad inhibitor, works by
downregulating Smad 2/3 and targeting the TGF-β1 receptor
(Biernacka et al., 2011). In comparison to the control, chronic
diabetes led to a significant increase in TGF-β1 gene expression
and intense immunopositivity. Treatments with SBECD + OTX,
SBECD + OTX + CHR, and SEBCD + CHR lowered TGF-β1
levels by 1.97-fold, 19.11-fold, and 6.62-fold, respectively, when
compared to the Diabetes group. The same pattern was
obtained for Smad2 and Smad3. In contrast, the mRNA
expression of Smad7 was significantly upregulated in SBECD
+ OTX + CHR group by 12.7-fold compared to diabetes
(Figure 6).

3.4 CHR-based supramolecular drug
delivery system suppresses the secretion
and deposition of collagen in cardiac tissues

Cardiac tissue displayed an increase in collagen production and
accumulation as determined by Gomori’s Trichrome staining in
chronic Diabetes group (Figure 7). An RT-PCR examination
revealed a significant rise in the expression of Col-1 gene in the
diabetes group relative to the control group (p < 0.001). Post-
treatment, there was a marked reduction in gene expression
levels when compared to the diabetes group, with SBECD + OTX
+ CHR treatment resulting in a decrease by 23.76 times compared to
diabetic animals (Figure 7).

TIMP-1 acts as a natural inhibitor, preventing MMPs from
breaking down the ECM. To study how the CHR-based
cyclodextrin-calixarene supramolecular system affects ECM in the
fibrotic heart tissue of diabetic mice, we evaluated the mRNA levels
of TIMP-1 and MMPs using RT-PCR. The results indicated that the
diabetes group exhibited considerably elevated expression levels of
TIMP-1, MMP-2, -3, and -9 genes when contrasted with the control
group (p < 0.001). The applied treatments effectively reduced these
mRNA expressions compared to the diabetes group (p < 0.001).
However, MMP-1 mRNA expression was notably increased
following the treatments relative to the diabetes group (p <
0.001). Specifically, in the SBECD + OTX + CHR treatment
group, TIMP-1, MMP-2, MMP-3, and MMP-9 expressions
dropped approximately by about 29.04, 15.12, 58.77, and
19.41 times, respectively, compared to the diabetes
group. Conversely, MMP-1 gene expression raised significantly
after treatment with SBECD + OTX + CHR compared to
diabetes (p < 0.001) (Figure 7).

3.5 CHR-based supramolecular drug
delivery system modulates Gal-1 levels in
H9c2 cells and in cardiac tissues

Gal-1 protein levels were significantly elevated in H9c2 cells
exposed to HG (481 ± 26 pg/mL, p < 0.01 vs NG) compared to
control group (163 ± 38 pg/mL) and were not significantly
modulated by CHR (480 ± 108 pg/mL), SBECD + CHR
(420 ± 96 pg/mL) and SBECD (534 ± 79 pg/mL) in
hyperglycaemic conditions (Figure 7A). All the doses of OTX
(0.75–1.25–2.5 µM) alone or in combination with SBECD or
SBECD + CHR were able to significantly downregulate Gal-1

TABLE 2 Smad2/4 and p38 protein levels in H9c2 cells cultured in normal glucose and exposed to the different treatments.

NG CHR SBECD SBECD + CHR DMSO M OTX SBECD + OTX SBECD + OTX + CHR

Smad2 0.9 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.8 ± 0.3 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.3

Smad4 1.0 ± 0.2 1.1 ± 0.2 1.1 ± 0.2 1.0 ± 0.1 1.0 ± 0.2 1.0 ± 0.3 1.1 ± 0.1 1.2 ± 0.3 1.1 ± 0.2

P-p38/p38 1.1 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.4

Smad2, Smad4 relative protein levels and P-p38/p38 MAPK ratio (optical density values at 450 nm ± SD) were determined by cell-biased ELISA. N = 3 per group (three independent

experiments, each performed in triplicate). NG: 5.5 mM D-glucose; M: NG + 27.5 mM mannitol; DMSO: dimethyl sulfoxide 2.5%; CHR: 5,7-Dihydroxyflavone 0.399 mg/mL; SBECD:

Sulfobutylated β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD + 0.095 mg/mL CHR; OTX: calixarene OTX008—Calixarene 0118—(2.5 µM); SBECD + OTX: SBECD-OTX008

(2.5 µM); SBECD + OTX + CHR: SBECD-OTX008 (2.5 µM)-CHR.
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FIGURE 4
CHR-based supramolecular drug delivery system downregulates TGF-β signaling in H9c2 cardiomyocytes exposed to high glucose. TGF-β1,
TGFβR1 and TGFβR2 mRNA levels (2̂−ΔΔCt ± SD) were determined by qRT-PCR, using GAPDH as gene control. N = 3 per group (three independent
experiments, each performed in triplicate). HG: 33 mM D-glucose; M: NG + 27.5 mM mannitol; DMSO: dimethyl sulfoxide 2.5%; CHR: 5,7-
Dihydroxyflavone 0.399 mg/mL; SBECD: Sulfobutylated β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD + 0.095 mg/mL CHR; OTX
(0.75–1.25–2.5): calixarene OTX008—Calixarene 0118—(0.75–1.25–2.5 µM); SBECD + OTX (0.75–1.25–2.5): SBECD-OTX008 (0.75–1.25–2.5 µM);
SBECD + OTX (0.75–1.25–2.5)+ CHR: SBECD-OTX008 (0.75–1.25–2.5 µM)-CHR. ****p < 0.0001 vs. NG; #p < 0.5, ##p < 0.01, ###p < 0.001 and ####p <
0.0001 vs. HG; ^p < 0.05 and ^^p < 0.01 vs. OTX; §p < 0.05 vs. SBECD + OTX (same dose).
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protein levels (p < 0.001) in H9c2 cells exposed to high glucose
(Figure 8B). Moreover, at the doses of 1.25 and 2.5 µM, SBECD +
OTX + CHR further reduced Gal-1 protein levels in H9c2 cells
compared to OTX at the same doses (p < 0.05) (Figure 8B).

Consistent with the in vitro findings, after 22 weeks of
hyperglycaemia, the cardiac Gal-1 protein levels in chronic
diabetes animals showed a significant rise (8,068 ± 71 pg/mL, p <
0.01 vs. Control). In contrast, non-diabetic mice exhibited levels of
5,075 ± 233 pg/mL. After 2 weeks of treatments, there was a
significant decrease in its levels (p < 0.001) (Figure 8C).

4 Discussion

Cardiac fibrosis is a defining feature of diabetic cardiomyopathy.
This condition is marked by the accumulation of ECM proteins in the
cardiac interstitium, leading to perivascular fibrosis and left
ventricular (LV) hypertrophy, which frequently results in heart
failure (Russo and Frangogiannis, 2016; Jia et al., 2018).

Hyperglycaemia or diabetes has been widely documented to
impact the development of cardiac fibrosis, both in preclinical
and clinical scenarios. Specifically, rodent models mimicking
type I and type II diabetes exhibited a marked cardiomyocyte
hypertrophy and myocardial fibrosis, accompanied by the
increase of pro-fibrotic genes (Ares-Carrasco et al., 2009;
Huynh et al., 2010; 2012; Li et al., 2010; Biernacka et al., 2011;
Gonzalez-Quesada et al., 2013; Hao et al., 2015). Similarly,
diabetic patients showed extensive interstitial, perivascular and
replacement fibrosis (Regan et al., 1977; Kwong et al., 2008;
Turkbey et al., 2011), coupled with capillary basement
membrane thickening, type I and III collagen accumulation
and cardiomyocyte hypertrophy (Fischer et al., 1984; Nunoda
et al., 1985; Sutherland et al., 1989; Van Hoeven and Factor, 1990;
Shimizu et al., 1993; Kawaguchi et al., 1997; Van Heerebeek et al.,
2008; Falcão-Pires et al., 2011). These changes are underlined by
the activation of TGF-β pathway following hyperglycaemia
(Shamhart et al., 2014), as documented by TGF-β upregulation
in the hearts of diabetic rodents exhibiting cardiac fibrosis

FIGURE 5
CHR-based supramolecular drug delivery system downregulates MAPKs in H9c2 cardiomyocytes exposed to high glucose. Erk1 and Erk2 mRNA
levels (2̂−ΔΔCt ± SD) were determined by qRT-PCR, using GAPDH as gene control. N = 3 per group (three independent experiments, each performed in
triplicate). HG: 33 mM D-glucose; M: NG + 27.5 mM mannitol; DMSO: dimethyl sulfoxide 2.5%; CHR: 5,7-Dihydroxyflavone 0.399 mg/mL; SBECD:
Sulfobutylated β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD + 0.095 mg/mL CHR; OTX (0.75–1.25–2.5): calixarene
OTX008—Calixarene 0118—(0.75–1.25–2.5 µM); SBECD + OTX (0.75–1.25–2.5): SBECD-OTX008 (0.75–1.25–2.5 µM); SBECD + OTX (0.75–1.25–2.5)+
CHR: SBECD-OTX008 (0.75–1.25–2.5 µM)-CHR. ****p < 0.0001 vs. NG; #p < 0.5, ##p < 0.01, ###p < 0.001 and ####p < 0.0001 vs. HG; p̂ < 0.05 vs. OTX
(same dose).
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(Carroll and Tyagi, 2005; Westermann et al., 2007; Senador et al.,
2009; Abed et al., 2013).

It is well known that TGF-β isoforms play a central role in the
genesis of tissue fibrosis (Biernacka et al., 2011). Specifically, TGF-β1
promotes pro-fibrotic responses in cardiomyocytes through both
Smad-dependent and independent signalling (Dobaczewski et al.,
2010; Biernacka et al., 2011; Rahaman et al., 2014). Indeed, TGF-β1/
Smad pathway plays a crucial role in the activation of
myofibroblasts, stimulation of ECM deposition through Col-I
synthesis and modulation of MMP activity (Uchinaka et al.,
2014; Hanna et al., 2021). On the other hand, TGF-β1 is also
able to increasing reactive oxygen species (ROS), consequently
activating p38 and Erk1/2 MAPKs (Sano et al., 2001; Wu et al.,
2022), leading to collagen deposition in heart tissue (See et al., 2004;
Johnston and Gillis, 2022). Importantly, in our prior research, we
found a significant reduction in the TGF-β1/Smad pathway in a
mouse model of liver fibrosis when treated with CHR (Balta et al.,
2015; Balta et al., 2018). This 5,7-dihydroxyflavone was
characterized by antioxidant, antitumor, anti-
hypercholesterolemic and anti-inflammatory activities (Bae et al.,
2011; Brechbuhl et al., 2012; Ali et al., 2014b; Anandhi et al., 2014;
Samarghandian et al., 2016; Phan et al., 2021). Our data are in line
with other research that identified CHR-mediated inhibition of pro-
fibrotic pathways in rat myocardial injury, renal fibrosis and
osteoarthritis, by reducing TGF-β1/Smad3, p38, Erk1/2,
MMP2 and PERK/TXNIP/NLRP3 signalling (Rani et al., 2015;
Nagavally et al., 2021; Ding et al., 2023). Additionally, by using a
different pharmacological approach, we demonstrated that TGF-β/
Smad pathway can be reduced in human retinal pigment epithelial
cells exposed to high glucose by using calixarene OTX008, a selective

inhibitor Gal-1 (Trotta et al., 2022). This particular galectin,
expressed under normal and pathological conditions, plays a
pivotal role in the pathogenesis of fibrosis (Hermenean et al.,
2022) and is upregulated in heart failure and acute myocardial
infarction (Talman and Ruskoaho, 2016; Seropian et al., 2018).
Particularly, Gal-1 is constitutively expressed in cardiomyocytes
close to sarcomeric actin, with its expression and secretion
increased after cardiac injury promoted by hypoxia, inflammation
and fibrosis (Seropian et al., 2018). While its early upregulation can
be considered a homeostatic response to prevent cardiac remodeling
induced by inflammation, prolonged Gal-1 increase could negatively
influence cardiac structure and function (Ou et al., 2021).
Interestingly, Gal-1 blocking/silencing by OTX008 has been
shown to inhibit TGF-β in various studies, including a cell model
of hypoxia-induced pulmonary fibrosis (Kathiriya et al., 2017), a
mouse model of liver fibrosis (Jiang et al., 2018), dendritic cells
derived from patients with chronic lymphocytic leukaemia
(Kostic et al., 2021) and tumour cells (Leung et al., 2014; Koonce
et al., 2017).

Worth of note, CHR and Gal-1 have roles that extend beyond
influencing pro-fibrotic pathways; they also have implications in the
onset and progression of diabetes. Particularly, as evidenced in
preclinical studies, CHR seems to attenuate the diabetes-related
tissue damage by ameliorating blood glucose levels, insulin
resistance and inflammatory state in diabetic animals, by
reducing Vascular Endothelial Growth Factor (VEGF) in
preclinical models of diabetic retinopathy and by decreasing
advanced glycosylation end products (AGEs), TGF-β1/Smad and
Col-I deposition in diabetic hearts (Li et al., 2014; Farkhondeh et al.,
2019; Zhou et al., 2021a; Salama et al., 2022). This protective effect of

TABLE 3 Smad2/4 and p38 protein levels in H9c2 cells cultured in high glucose and exposed to the different treatments.

Smad2 Smad4 P-p38/p38

HG 1.9 ± 0.1**** 2.3 ± 0.3**** 2.5 ± 0.2****

CHR 1.9 ± 0.2 2.2 ± 0.3 2.6 ± 0.2

SBECD 1.7 ± 0.2 2.4 ± 0.4 2.7 ± 0.2

SBECD + CHR 1.8 ± 0.2 2.2 ± 0.2 2.5 ± 0.1

DMSO 1.9 ± 0.2 2.2 ± 0.2 2.4 ± 0.2

OTX (0.75) 1.4 ± 0.1# 1.6 ± 0.1## 1.6 ± 0.1##

SBECD + OTX (0.75) 1.3 ± 0.1# 1.6 ± 0.2## 1.7 ± 0.1##

SBECD + OTX (0.75) + CHR 1.9 ± 0.2#^§ 2.0 ± 0.1 2.1 ± 0.1

OTX (1.25) 1.5 ± 0.1# 1.5 ± 0.2#### 1.8 ± 0.1###

SBECD + OTX (1.25) 1.4 ± 0.1## 1.3 ± 0.2#### 1.8 ± 0.1####

SBECD + OTX (1.25) + CHR 1.5 ± 0.2# 1.7 ± 0.1## 2.3 ± 0.2^§

OTX (2.5) 1.5 ± 0.1## 1.7 ± 0.3## 1.9 ± 0.1###

SBECD + OTX (2.5) 1.1 ± 0.1####^ 1.3 ± 0.1####^^ 1.3 ± 0.1####^^

SBECD + OTX (2.5) + CHR 1.1 ± 0.1####^^ 1.7 ± 0.1####^ 1.4 ± 0.2####^

Smad2, Smad4 relative protein levels and P-p38/p38 MAPK ratio (optical density values at 450 nm ± SD) were determined by cell-biased ELISA. N = 3 per group (three independent

experiments, each performed in triplicate). HG: 33 mM D-glucose; M: NG + 27.5 mM mannitol; DMSO: dimethyl sulfoxide 2.5%; CHR: 5,7-Dihydroxyflavone 0.399 mg/mL; SBECD:

Sulfobutylated β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD + 0.095 mg/mL CHR; OTX (0.75–1.25–2.5): calixarene OTX008—Calixarene 0118—(0.75–1.25–2.5 µM);

SBECD + OTX (0.75–1.25–2.5): SBECD-OTX008 (0.75–1.25–2.5 µM); SBECD + OTX (0.75–1.25–2.5)+ CHR: SBECD-OTX008 (0.75–1.25–2.5 µM)-CHR. ****p < 0.0001 vs. NG; #p < 0.5,
##p < 0.01, ###p < 0.001 and ####p < 0.0001 vs. HG; ^p < 0.05 and ^^p < 0.01 vs. OTX; §p < 0.05 vs. SBECD + OTX (same dose).
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CHR is further highlighted by its potential in improving conditions
related to diabetes, such as fibrosis (Kang et al., 2023) and
cardiometabolic diseases (Talebi et al., 2022). On the other hand,
Gal-1 levels have been observed to be elevated in serum of diabetic
patients and associated to a reduction of renal function and insulin
resistance (Fryk et al., 2016; Drake et al., 2022). Its inhibition,
specifically with OTX008, has been proposed in preclinical
studies as a possible therapeutic target to treat diabetic renal
fibrosis (Al-Obaidi et al., 2019) and proliferative diabetic
retinopathy (Abu El-Asrar et al., 2020; Trotta et al., 2022).

Considering their individual protective effects against
diabetes-related damage, the co-administration of CHR and
calixarene OTX008 presents a potential approach for
addressing diabetic fibrosis. However, both CHR and
OTX008 showed a lower solubility in water, affecting their
bioavailability and absorption (Dong et al., 2021; Hermenean
et al., 2023). Indeed, the two compounds are soluble in organic
solvents, such as DMSO or dimethylformamide (DMF), which are
not suitable for in vivo administration at high doses due to their

hepatotoxicity (Mathew et al., 1980; Dong et al., 2021;
Hermenean et al., 2023). Therefore, we previously developed a
dual-action supramolecular drug delivery system, in order to have
a water soluble ternary complex. A key step was enhancing CHR’s
water solubility. To achieve this, CHR was combined with
SBECD, a recognized cyclodextrin derivative known for its
safety, polyanionic nature and excellent solubilization
properties (Fenyvesi et al., 2020). Then, OTX008 was
incorporated in this novel CHR-based supramolecular
cyclodextrin-calixarene drug delivery system that
synergistically combined cyclodextrin and calixarene.
Crucially, safety tests conducted on H9c2 cardiomyocytes
revealed no detrimental impacts on cell viability when exposed
to this drug delivery system (Hermenean et al., 2023). Moreover,
the drug delivery system not only was able to improve H9c2 cell
viability in high glucose, but also surpassed the performance of
OTX008 when used on its own (Hermenean et al., 2023). This
highlights the potential therapeutic promise of this combined
approach in diabetic fibrosis treatment.

FIGURE 6
CHR-based supramolecular drug delivery system downregulates the main pro-fibrotic signaling pathways in cardiac tissues. (A)
Immunohistochemical expression of α-SMA, Scale bar: 20 μm; (B) RT-PCR analysis of α-SMA gene expression. (C) RT-PCR analysis of Smad2 gene
expression; (D) RT-PCR analysis of Smad3 gene expression; (E) RT-PCR analysis of Smad7 gene expression; (F) Immunohistochemical expression of TGF-
β1, Scale bar: 20 μm; (G) RT-PCR analysis of TGF-β1 gene expression. N = 10 mice per group. Control: non-diabetic mice; Diabetes: diabetic mice;
SBECD: sulfobutylated β-cyclodextrin; OTX: calixarene OTX008 - Calixarene 0118; CHR: 5,7-Dihydroxyflavone; ***p < 0.001 vs. Control; ###p <
0.001 and ##p < 0.01 vs. Diabetes.
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In this study was characterized the anti-fibrotic effects of the CHR-
based supramolecular cyclodextrin-calixarene drug delivery system in
H9c2 cells exposed to high glucose. The system demonstrated its
strongest anti-fibrotic effects, particularly when paired with the higher
dose of OTX008. This lead to a significant reduction of Gal-1 levels,
implying a possible modulation of cardiac inflammatory process but
primarily leading to the suppression of both canonical and non-canonical
profibrotic pathways, in line with previous studies (Leung et al., 2014;
Kathiriya et al., 2017; Koonce et al., 2017; Jiang et al., 2018; Kostic et al.,
2021; Trotta et al., 2022). Of note, the inhibition of TGF-β1 and its
receptors in H9c2 cardiomyocytes could attenuate the fibrotic process by
reducing the TGF-β1-inducedmyofibroblasts activation through Smad2/
3 (Yan et al., 2018). Such findings signify the drug delivery system’s ability
to counteract the pathological changes instigated by high glucose in
cardiomyocytes, as evidenced by the restored morphology of these cells.

Although the CHR-based supramolecular SBECD-calixarene
drug delivery system showed were very similar anti-fibrotic
actions compared to the combination of OTX008 with SBECD
in vitro, its higher efficacy in counteracting Gal-1 and the fibrotic

pathways was evident in cardiac tissues from mice developing
chronic diabetes. Indeed, this dual-action supramolecular drug
delivery system led to a marked downregulation of Gal-1,
implying an amelioration of cardiac remodeling and
inflammatory state, as well as a reduction of profibrotic
pathways. To this regard, the decrement of TGF-β1/Smad2/
3 pathway in hearts from mice with chronic diabetes may lead to
a reduced myofibroblasts transformation and an attenuated cardiac
hypertrophic response, though the inhibitions of fibrosis-mediating
genes (Fiaschi et al., 2014; Khalil et al., 2017; Yan et al., 2018). Also
the increase in cardiac Smad7 levels observed in diabetic mice
treated with the SBECD-calixarene drug delivery system could
contribute to the reduction of fibrotic process, since Smad7 is a
negative regulator of TGF-β signalling in heart, as well as an
inhibitor of cardiac remodeling (Chen et al., 2009; Wei et al.,
2013). Lastly, the reduction of p38 and Erk1/2 MAPK cardiac
levels, associated to abnormal ECM deposition (Tang et al., 2007;
Aguilar et al., 2014), confirmed the anti-fibrotic effects of the new
drug delivery system treatment.

FIGURE 7
CHR-based supramolecular drug delivery system suppresses the secretion and deposition of collagen in cardiac tissues. (A) Collagen staining with
Gomori’s Trichrome kit; green—collagen deposition; (B) RT-PCR analysis of Col-I gene expression; (C) RT-PCR analysis of Timp-1 gene expression; (D)
RT-PCR analysis of MMP1 gene expression; (E) RT-PCR analysis of MMP2 gene expression; (F) RT-PCR analysis of MMP3 gene expression; (G) RT-PCR
analysis of MMP9 gene expression. N = 10 mice per group. Control: non-diabetic mice; Diabetes: diabetic mice; SBECD: sulfobutylated β-
cyclodextrin; OTX: calixarene OTX008—Calixarene 0118; CHR: 5,7-Dihydroxyflavone; ***p < 0.001 compared to control; #p < 0.05 and ###p < 0.001 vs.
Diabetes.
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Along with reduced TGF-β/Smad pathway, a decrease in αSMA
levels was observed in diabetic hearts treated with the new drug
delivery system. This marker of activated myofibroblasts (Shinde
et al., 2017) is higher in cardiomyocytes exposed to high glucose and

underwent to myofibroblast conversion, followed by subsequent
changes and remodeling in the extracellular matrix (Levick and
Widiapradja, 2020). Accordingly, Timp1, an MMP inhibitor
stimulated by high glucose levels (Mclennan et al., 2000), was

FIGURE 8
CHR-based supramolecular drug delivery system reduces Gal-1 in H9c2 cells exposed to high glucose and in cardiac tissues. (A)Gal-1 protein levels
(pg/mL ± SD), determined by ELISA, in H9c2 cells cultured in normal glucose (NG) or high glucose (HG) for 48 h and exposed to CHR, SBECD + CHR and
SBECD for 6 days in HG; (B)Gal-1 protein levels (pg/mL ± SD) in H9c2 cells cultured in HG for 48 h and treated with OTX008 (0.75–1.25–2.5 µM) alone or
combined with SBECD/SBECD + CHR; N = 3 per group (three independent experiments, each performed in triplicate). NG: 5.5 mM D-glucose; HG:
33 mM D-glucose; CHR: 5,7-Dihydroxyflavone 0.399 mg/mL; SBECD: Sulfobutylated β-cyclodextrin sodium salt 7.3 m/m%; SBECD + CHR: SBECD +
0.095 mg/mL CHR; OTX: calixarene OTX008—Calixarene 0118—(0.75–1.25–2.5): OTX008 (0.75–1.25–2.5 µM); SBECD + OTX: SBECD-OTX008
(2.5–1.25–0.75 µM); SBECD + OTX + CHR: SBECD-OTX008 (2.5–1.25–0.75 µM)-CHR; **p < 0.01 vs. NG; ^̂^p < 0.001 vs. HG; §p < 0.05 vs. OTX; (C) Gal-1
protein levels (pg/mL ± SD) determined by ELISA in cardiac tissues. N = 10 mice per group. Control: non-diabetic mice; Diabetes: diabetic mice; SBECD:
sulfobutylated β-cyclodextrin; OTX: calixarene OTX008—Calixarene 0118; CHR: 5,7-Dihydroxyflavone. **p < 0.01 vs. Control; ^̂ ^p < 0.001 vs. Diabetes.
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reduced by the treatment with the novel drug delivery system, along
with MMP2, 3 and 9 genes, which are typically elevated in diabetic
disorders (Zhou et al., 2021b). Under normal physiological
circumstances in the heart, MMP1 plays a crucial role in
breaking down collagen types I, II, and III, as well as basement
membrane proteins (Fan et al., 2012). Our research revealed a
decline in MMP1 expression in cardiac tissue subjected to
prolonged exposure to high glucose concentrations. This aligns
with prior findings where patients with end-stage dilated
cardiomyopathy exhibited reduced MMP1 levels in their left
ventricular myocardial tissue samples (Thomas et al., 1998). The
therapeutic interventions succeeded in elevating MMP1 gene
expression, thereby aiding in restoring balance to the matrix
components and reverting the cardiac normal architecture.
Moreover, the CHR-based supramolecular SBECD-calixarene
drug delivery system was the most effective in reducing cardiac
Col-I expression and tissue deposition. It is well known that fibrotic
heart exhibits Col-I deposition in the cardiac interstitial space,
associated with heart dysfunction, dynamic alterations and
cardiac remodeling (Kong et al., 2014). Its accumulation induced
by high glucose is known to be a factor in myocardial fibrosis,
impaired relaxation and mitochondrial degeneration in patients
with diabetic cardiomyopathy (Sakakibara et al., 2011; Levick and
Widiapradja, 2020). Therefore, Col-I inhibition obtained with the
new drug delivery system could be considered a novel strategic
therapeutic tool to counteract cardiac fibrosis.

Overall, the CHR-based supramolecular SBECD-calixarene drug
delivery system enhanced the solubility and the bioavailability of both
CHR and calixarene OTX008. By combining the effects of the two
drugs, it showcased a strong anti-fibrotic response in rat
cardiomyocytes, as well as in cardiac tissue from mice with chronic
diabetes. These evidenced also an improved cardiac tissue remodeling
after the treatment with the dual-action supramolecular drug delivery
system, which could be considered as a novel putative therapeutic
strategy for the treatment of diabetes-induced cardiac fibrosis.
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