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Abstract

Purpose

Many studies of MRI radiomics do not include the discretization method used for the analy-

ses, which might indicate that the discretization methods used are considered irrelevant.

Our goals were to compare three frequently used discretization methods (lesion relative

resampling (LRR), lesion absolute resampling (LAR) and absolute resampling (AR)) applied

to the same data set, along with two different lesion segmentation approaches.

Methods

We analyzed the effects of altering bin widths or bin numbers for the three different sampling

methods using 40 texture indices (TIs). The impact was evaluated on brain MRI studies

obtained for 71 patients divided into three different disease groups: multiple sclerosis (MS,

N = 22), ischemic stroke (IS, N = 22), cancer patients (N = 27). Two different MRI acquisition

protocols were considered for all patients, a T2- and a post-contrast 3D T1-weighted MRI

sequence. Elliptical and manually drawn VOIs were employed for both imaging series.

Three different types of gray-level discretization methods were used: LRR, LAR and AR.

Hypothesis tests were done among all diseased and control areas to compare the TI values

in these areas. We also did correlation analyses between TI values and lesion volumes.

Results

In general, no significant differences were reported in the results when employing the AR

and LAR discretization methods. It was found that employing 38 TIs introduced variation in

the results when the number of bin parameters was altered, suggesting that both the degree

and direction of monotonicity between each TI value and binning parameters were charac-

teristic for each TI. Furthermore, while TIs were changing with altering binning values, no

changes correlated to neither disease nor the MRI sequence. We found that most indices
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correlated weakly with the volume, while the correlation coefficients were independent of

both diseases analyzed and MR contrast. Several cooccurrence-matrix based texture

parameters show a definite higher correlation when employing the LRR discretization

method However, with the best correlations obtained for the manually drawn VOI. Hypothe-

sis tests among all disease and control areas (co-lateral hemisphere) revealed that the AR

or LAR discretization techniques provide more suitable texture features than LRR. In addi-

tion, the manually drawn segmentation gave fewer significantly different TIs than the ellip-

soid segmentations. In addition, the amount of TIs with significant differences was

increasing with increasing the number of bins, or decreasing bin widths.

Conclusion

Our findings indicate that the AR discretization method may offer the best texture analysis in

MR image assessments. Employing too many bins or too large bin widths might reduce the

selection of TIs that can be used for differential diagnosis. In general, more statistically dif-

ferent TIs were observed for elliptical segmentations when compared to the manually drawn

VOIs. In the texture analysis of MR studies, studies and publications should report on all

important parameters and methods related to data collection, corrections, normalization,

discretization, and segmentation.

Introduction

Magnetic resonance imaging (MRI) is widely used in neurology to obtain differential diagno-

ses, characterize and confirm multiple types of lesions, tumor staging and therapy planning,

and evaluate therapy response [1–6]. Using MRI, various anatomical lesions, pathological pro-

gressing, and functional changes can be characterized based on visual appearance and underly-

ing texture analyses [7–11]. However, quantitative measures have been shown to improve the

diagnostic outcome for patients when compared to standard qualitative assessments. In the

clinical setting, the lesion volume is the most common quantitative measurement used to

assess neurological disorders; however, there is a growing body of interest to employ radiomics

features for quantitative assessments (intensity, texture, or shape). Previous studies have

shown promising results when employing texture (heterogeneity), hereunder that texture fea-

tures might outperform conventional measures (VOI size and mean value) and visual inspec-

tion [12–18]. Despite promising results, the use of texture indices is sensitive to factors such as

acquisition protocols and physical parameters of the imaging systems [19–21]. In addition,

texture indices are also sensitive to the tumor segmentation method and the discretization

steps [22, 23]. Regardless of the types of texture indices used, the discretization (binning or

resampling) is always applied, converting the original voxel values of the volume of interest

into a predefined range of values. Thus, the discretization method will inherently influence the

value of the TIs tailored to characterize the texture of the lesion. The impact of image discreti-

zation has already been investigated in numerous studies in nuclear medicine and CT [24–27],

however, the discretization methods and their impact has not been explored thoroughly in

MRI [28, 29]. In brief, two distinct discretization methods have been proposed for MRI: rela-

tive and absolute resampling. The relative method discretizes the voxel-values into a fixed

number of bins, in contrast, the absolute resampling employs fixed bin sizes. The most recent

guidelines released by the Image Biomarker Standardization Initiative (IBSI) [30] recommend

relative discretization techniques for MRI. Despite the recommendations, recent studies have
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shown that the relative discretization method might not be the optimal technique [29, 31].

IBSI uses the abbreviations FBN and FBS for the above two methods, however, since two types

of FBS discretizations exist, the following abbreviations are also used: LRR instead of FBN, and

AR and LAR as two subtypes of FBS [26, 32]. Recently, Carré et al. analyzed the impact of the

normalization and discretization methods on radiomics features with T1 and T2 weighted

MRI images [33]. Interestingly, they proposed different discretization schemas for different

texture index groups, namely, the FBS for model-based first- and second-order features, and

in the case of the second-order feature-based signatures the FBN is recommended. Neverthe-

less, in recent studies it is not uncommon that the discretization method used remains undis-

closed [34–37]. Because of these contradictory results reported in studies, it is important to

investigate the role of discretization methods in the radiomic features obtained for MRI

images. Moreover, radiomics parameters can also be influenced by the applied segmentation

method, including manual, semi-automatic or automatic delineation of the ROI or VOI. The

accuracy of the calculated radiomics data may be affected by how the external tissue areas are

excluded from the selected VOI, which ensures that pathological and intact tissue areas do not

mix nor overlap during the evaluation [38–40]. In this work, we aimed to investigate the effect

of three different discretization methods and their impact on the parameters obtained for tex-

ture calculation in a cohort of 71 patients with clinical brain studies employing MRI. For this

study, three different neurological diseases were considered: multiple sclerosis (MS), ischemic

stroke (IS), and tumor (TU). Applying manually defined VOIs and in addition 3D ellipsoidal

VOIs placed on the inner area of the lesions, we also studied how the pixels at the lesion

boundary could modify the results of the radiomics calculations.

Methods

MRI scanning

This retrospective study was approved by the institutional ethics committee (Regional and

Institutional Ethics Committee. University of Debrecen. Clinical Center) and did not require

informed consent. In addition, all patient data were fully anonymized before we accessed for

image processing and data evaluation. The study comprised 71 patients who underwent con-

trast-enhanced 3D T1- and T2-weighted axial scans on a 1.5 Tesla Siemens Magnetom Essenza

scanner. The patients were acquired in three subgroups including patients with ischemic

stroke (N = 22), multiple sclerosis (N = 22), and neurological tumors (N = 27). In the oncologi-

cal group, ten patients were presented with primary tumors, while 17 had metastatic disease.

All MRI were performed in 2019 at the MRI imaging facility of the Kenézy Gyula University

Hospital, University of Debrecen. Both T2-weighted axial and post-contrast 3D T1-weighted

axial measurements were performed according to the local standard protocols of the diseases.

Representative MRI images and the corresponding scan protocols are shown in Fig 1A and

Table 1, respectively.

Image processing and statistical tests

The same anatomical regions were scanned for all patients who had imaging fields positioned

parallel to the bicommissural line, which links the anterior to the posterior commissure. We

used the Carimas 2.10 software for VOI definition (Turku Pet Centre (http://turkupetcentre.fi/

carimas/), Turku, Finland). Segmentation of the pathological areas was performed separately

for the respective disease groups. Two different segmentation methods were applied in this

study, a) an elliptical VOI and b) manually drawn VOIs, drawn by expert radiologists. For

both segmentation methods, two VOIs were placed, one in the pathological area and one in

the corresponding center on the co-lateral side of the brain. For patients with either MS or IS,
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it is common that multiple lesions are present in one patient. To optimize feature extraction,

all lesions were used for these types of diseases. For patients with IS, the areas with recent

ischemia, previous vascular lesions, and healthy brain parts were considered. For these cohorts,

the VOIs were enclosed using volumes of at least 1 cm3. Similarly, VOIs were placed on active

and inactive foci and corresponding healthy brain areas of the MS patients. The VOI related

voxel data were saved by the Carimas program to a.txt file, and all further texture analysis and

plotting were performed in Matlab (version 2018b, MathWorks Inc., Natick, MA). To com-

pare the TIs between the healthy and diseased areas, non-parametric Wilcoxon rank-sum tests

were also performed with the ‘ranksum’ Matlab function. In addition, Spearman’s correlation

coefficient (R) was calculated between each TI and the related lesion volumes for all diseased

and healthy VOI groups and both MRI contrasts.

Texture calculation and discretization

TIs were extracted by using the Matlab implementation of GLCM, GLSZM and GLRLM based

algorithms [26], employing a total of 40 radiomics features from each VOI. The selected fea-

tures were the following: 18 GLCM, 11 GLSZM, and 11 GLRLM based TIs calculated accord-

ing to the IBSI guideline [30] (S1 Table in S1 File). Currently, three different methods of

discretization are used for heterogeneity analyses.

The LAR method is defined by

ILAR ið Þ ¼
IðiÞ
B

� �

�
Imin

B

� �

þ 1

where ILAR(i) is the resampled intensity value of the i-th voxel, I(i) is the original i-th voxel

intensity, Imin is the original minimum voxel intensity of a particular lesion, and B is the bin

width. The {} brackets imply using the floor operation.

The AR method is defined by

IAR ið Þ ¼
IðiÞ
B

� �

� 1

where IAR(i) is the new intensity value of the i-th voxel after applying the AR discretization.

The [] brackets stand for the ceil operation. The following B values were considered:

{1; 5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100}. LAR and AR

methods both belong to the fixed bin size IBSI definition. Since we did not intend to introduce

Fig 1. a. Representative 3D T1 post-contrast (upper row) and T2-weighted axial (lower row) MR images for the selected disease groups.

1A-1B: Glioblastoma brain tumors, 2A-2B: Ischemia, 3A-3B: MS. b. Visualization steps of discretization workflow in radiomics. First,

images are acquired. The next step is the segmentation of the region of interest, from which texture features are extracted. Then the

discretization pre-processing steps are performed on the images, namely LRR, AR and LAR. The texture characteristics are then

subtracted from the area of interest. The AR and LAR discretizations smooth the contrast much better within the segment, which is most

easily observed at lower values (blue color).

https://doi.org/10.1371/journal.pone.0253419.g001

Table 1. Parameters of the sequences used in this work.

Sequence FOV (mm) Slice Thickness (mm) Gap (%) Phase encoding direction TR (ms) TE (ms) Reconstruction

T2_TSE_tra 230 3 10 R-L 3760 86 -

Matrix size: 230x180

3D_T1_tra _postCM 240 0,9 50 R-L 1540 4,73 MPR sag/cor

Matrix size: 256x256x166

R = right, L = left, TR = repetition time, TE = echo time, Sag = sagittal, Cor = coronal, MPR = multi planar reconstruction, FOV = field of view

https://doi.org/10.1371/journal.pone.0253419.t001

PLOS ONE Grey-level discretization on MRI images

PLOS ONE | https://doi.org/10.1371/journal.pone.0253419 June 18, 2021 5 / 18

https://doi.org/10.1371/journal.pone.0253419.g001
https://doi.org/10.1371/journal.pone.0253419.t001
https://doi.org/10.1371/journal.pone.0253419


image normalization in this work, the data was discretized to the 10th and 90th percentile of the

values observed in the volume of interests [41].

Finally, the LRR method is defined by

ILRR ið Þ ¼
1

Dx
IðiÞ � Imin
Imax � Imin

� � IðiÞ ¼ Imin

otherwise

8
<

:

9
=

;

where ILRR(i) is the new intensity value of the i-th voxel intensity after the LRR discretization,

Imax is the maximum original voxel intensity of the particular lesion and D is the number of

bin parameter. We used D = {8; 16; 32; 64; 128; 256; 512; 1024}. The difference between the dis-

cretization methods are presented in Fig 1B.

Results

In Fig 2A the representative box-and-whisker subplots show the distribution of the TIs for var-

ious discretization parameter values, and how the discretization method influences the numer-

ical value of the investigated textural indices when employing 3D elliptical segmentations. The

four presented indices presented in Fig 2A all belong to GLCM (JMax, JVar, JEntropy and Dis-

sim); all indices are obtained from T1-weighted MRI and presented at cohort level. No differ-

ences were observed for the healthy and IS groups when comparing the bin width and bin

number against TI tendencies. Furthermore, we did not find any substantial difference (>3%)

between the results of AR and LAR-based discretizations or between the manual and 3D ellip-

tical delineation methods (data are not presented).

Similar plots are presented in Fig 2B based on the T2-weighted images for 3D elliptical

segmentations.

Fig 2. a The distribution of TIs for four selected GLCM based parameters for the IS lesions in T1-weighted images is illustrated in box plots. Each of the individual

boxes represent the value of a given textural parameter extracted from the lesion dataset. The subplots are organized in a 2x2 column way, where the two columns on the

left and right refer to VOIs of the healthy and pathological areas, respectively. The applied discretization parameter sets are shown on the horizontal axes and were the

following: bin widths from 1 to 100 in 20 steps at the AR, and 8, 16, 32, 64, 128, 256, 512 and 1024 number of bins at the LRR method. The name of the appropriate

discretization method is labeled on the top of each column. All box plots have a logarithmic scale on the y-axis. b. The distribution of TIs for the four selected GLCM

based parameters evaluating the IS lesions and control areas in T2-weighted images is illustrated using box plots. The definitions and organizations of the charts are

identical with Fig 2A.

https://doi.org/10.1371/journal.pone.0253419.g002
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No differences in the trends obtained for the TIs for T1- and T2-weighted images were

observed. Of importance, the absolute measurements were dependent on the number of bins

employed. Only the parameters Correlation and NormInvDiff seem to be independent of the

binning parameters as shown in Fig 3.

All 18 GLCM based TIs and the related box plots for each patient group (IS, MS, tumor)

can be found in S1, S2 Figs of S1 File. Similar findings were obtained for the GLRLM and

GLSZM based TIs: the T1- and the T2-weighted images do not differ in the interrelationships

among the TIs and bin parameters. Representative plots of GLRLM TIs for tumor and MS

areas are shown in Fig 4A and 4B respectively. All plots were based on elliptical VOI seg-

mented data.

A similar statement can be drawn in all the other 22 TI (11 GLRLM and 11 GLSZM based

TI) cases including the IS, TU, and MS groups. The corresponding 264 box plots are presented

in S1 File (S3-S6 Figs). We also analyzed the correlation between all TIs and the lesion vol-

umes, since a smaller degree of correlation is more advantageous for proper texture analysis.

Altogether 480 correlation plots and the related Spearman’s correlation coefficients (R2) were

calculated. Fig 5 shows some representative correlation scatter plots for the 3D elliptical VOIs.

All 480 correlation plots can be found in S7-S12 Figs of S2 File. The related R2 measures are

shown in the form of color-coded maps in Fig 6A and in 6B, the earlier corresponding to ellip-

tical VOIs and the latter corresponding to manual segmentation. The figures suggest that sev-

eral parameters have a higher correlation to the segmentation volume when LRR

discretization and manual segmentation are applied.

Fig 3. The distribution of NormInvDiff and correlation GLCM type indices including all tumor VOIs is illustrated with box plots and applying elliptical

VOIs. The subplots are organized in a 4 columns way, where the two columns on the left and right refer to the T1- and T2-weighted images.

https://doi.org/10.1371/journal.pone.0253419.g003
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As a final step, we performed Wilcoxon rank-sum hypothesis tests among all disease and

control areas (Figs 7 and 8). For these calculations, we used data obtained with both segmenta-

tion methods. The assessments were obtained using fixed bin widths (B) and number of bin

(D) values to 50 and 64, respectively. AR and LRR had 192 and 158 textural parameters with

significant differences (p< 0.05) when employing elliptical segmentations, respectively, while

the corresponding numbers were 179 and 119 for the manual segmentation. For higher D

and/or lower B values, the number of TIs giving significant difference decreased slightly. At

D = 1024 and B = 1, the number of texture parameters showing significant difference

(p< 0.05) was 176 and 145 for the AR and LRR methods, respectively (S2 File), meaning that

fewer TIs could be used in differential diagnosis when using these binning parameters.

If we compare the two VOI placing methods, we can see that the elliptical VOIs provide

more statistically significant TIs than manual VOIs, and this is especially true in the case of

LRR discretization.

Discussion

In this work, a detailed evaluation of the image voxel discretization procedure’s influence on

the calculated textural features in T1- and T2-weighted MR studies for three different types of

neurological diseases was performed. This is the first study that compares all three discretiza-

tion methods for MRI and their reliability to the best of our knowledge. Our study revealed

that the majority of the selected TIs varied greatly when the discretization parameters (bin

width or the number of bins) were changed within a predefined range. In this study, we

focused on 18 GLCM, 11 GLSZM, and 11 GLRLM based texture features. Of 12 discretization

methods only two (NormInvDiff and Correlation GLCM) were not dependent on the binning

parameters for all disease groups and MRI acquisition protocols (an example of this can be

Fig 4. a. The distribution of TIs for four selected GLRLM based parameters in case of tumor and the control lesions at T1-weighted images. The definitions and

arrangement of the charts are identical to Fig 2A. b. The distribution of TIs for selected four GLSZM based parameters for MS and the control lesions in the case of

T2-weighted images.

https://doi.org/10.1371/journal.pone.0253419.g004
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Fig 5. Pairwise scatter plots of four calculated texture parameters with the lesion volumes including all tumor VOIs employing a bin width of 50 (AR

method) and a bin number of 64 (LRR method). The four TIs shown here are GLCM-based parameters: JMax, Jvar, JEntropy and Dissim. The subplots are

PLOS ONE Grey-level discretization on MRI images

PLOS ONE | https://doi.org/10.1371/journal.pone.0253419 June 18, 2021 9 / 18

https://doi.org/10.1371/journal.pone.0253419


seen in Fig 3). While volume independent and acquisition independent parameters are

desired, the independence also suggests that their use does not serve as identifiers for disease.

In addition, it is important to underline that all the other TIs (N = 38) vary with several orders

of magnitude monotonically depending on the binning values. However, the direction of the

monotonicity and the span of the values are characteristic for any given TI. These characteris-

tic properties may fundamentally depend on the mathematical expression defining the texture

indices, so their analytical examination would greatly assist in examining the applicability of

each TI. However, the analyses of the mathematical expressions are yet to be performed. It is

often of keen interest to compare TI performance in cohort analyses obtained at different cen-

ters and studies. These comparisons, however, are often challenged by the inherent depen-

dency between the TIs performance and the discretization parameters (bin number and sizes).

Owing to the dependency between performance and discretization parameters, it is crucial

that studies only compare directly to other studies using the same number of bins and discreti-

zation techniques. Often times this is not the case; recent studies have been based on a variety

of different D values (LRR technique, D = 256, 128, 32) [42–44] and B values (LAR technique,

B = 5, 10) [45]. Furthermore, the orders of magnitude do not depend on disease groups (IS,

MS, and TU) or imaging sequences analyzed (T1 or T2 image contrast). It is also noticeable,

that AR and LRR discretization present the same range span of values for each TI, although the

binning values often span several orders of magnitude. The attributes (monotonicity, the span

of the TIs) observed for each box plot in Figs 1–3 and S1-S6 Figs in S1 File are concordant with

our previous results obtained using PET images [26]. In our previous study on PET data, the

organized in a 4column way, where the two columns on the left and right refer to the T1- and T2-weighted images. The scatter plots have a logarithmic scale on

both axes.

https://doi.org/10.1371/journal.pone.0253419.g005

Fig 6. a. The R2 values for each correlation analysis between the TIs and the lesion volumes. The predefined bin width (for AR method) and bin number (for LRR

method) were 50 and 64, respectively. Data here are obtained using ellipsoid VOIs. b. comparison of R2 values for correlation analyses between the TIs and the lesion

volumes, after applying manual lesion delineation.

https://doi.org/10.1371/journal.pone.0253419.g006
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AR, LAR, and LRR discretization methods were thoroughly analyzed based on 27 texture

parameters. In this context, the same box-plot characteristics are observed for the TIs extracted

from our previous PET study and the current study on MRI-based features, although different

imaging modalities and diseases were evaluated. Moreover, the variations of the mean values

of TIs based on LAR and AR quantification are similar in the current and the previous work.

The only one explanation is: that each texture index has a general but highly dependent

Fig 7. Comparison of statistical tests for TIs computed with elliptical VOIs (left panel) and manually drawn VOIs (right panel), applying the LRR

discretization method.

https://doi.org/10.1371/journal.pone.0253419.g007
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behavior to the discretization technique and the specific bin parameters. However, the imaging

modality, the type of tissue, and the method of segmentation do not have a significant role in

this dependence. This finding is in concordance with other studies [29, 31].

The correlation between VOI size and the TIs is another inherent problem relating to per-

formance comparisons of studies [31, 46, 47]. Orlhac et al. proposed the AR resampling

Fig 8. Comparison of statistical tests of TIs computed with elliptical VOIs (left panel) and manually drawn VOIs (right panel), applying the AR discretization

method.

https://doi.org/10.1371/journal.pone.0253419.g008
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scheme at PET imaging which omits this problem and enables the calculation of TIs without

introducing a large bias associated with the tumor volume [32]. In concordance with their

study, we analyzed the dependency of the VOI volume and TIs using 426 correlation analyses

(Fig 5 and S7-S12 Figs in S2 File). The correlation plots of the TIs obtained for the AR and

LRR revealed that most indices are weakly correlated with the tumor volume. Of note, no cor-

relation between the TIs and the disease nor imaging sequence used was observed. For better

visualization, we calculated Spearman’s correlation coefficients (R) and created a color-coded

image representing the R values of all diseases studied with and without the use of MRI con-

trast. These color-coded images for the cases of ellipsoid and manual segmentation are shown

in Fig 6A and 6B, respectively. The R2 > 0.5 (|R| > 0.71) cases were considered highly corre-

lated, corresponding to the light green, orange, and even lighter colors. Thus, it is clear from

the colormaps that these values are related mainly to the GLRLM and GLSZM groups of the

AR and LRR discretization method for both segmentations. Besides the presented parameters,

several GLCM parameters are also affected when employing the LRR method and elliptical

segmentation, and there will be even more highly correlated GLCM data for LRR discretiza-

tion and manual segmentation. This effect is unwanted in most cases, as the changes in TIs

should depend on the texture, and not the volume. In other words, the LRR discretization is

disadvantageous when evaluating the lesion volume—TI correlations, a finding that is in con-

cordance with previous studies [41, 46]. Of note, the R2 value for a given TI does not change

substantially as a function of the disease or the T1 or T2 contrast as visualized by the color

schemes in Fig 6A and 6B. Some exceptions are RP, LZE, LZLGE, LZHGE, and ZP indices,

which belong to both the GLRLM and GLSZM groups. An additional feature of LRR discreti-

zation is that the R2 values for the T1 or the T2 contrast in each disease group are slightly but

characteristically different for most TIs.

Figs 7 and 8 show the color-coded p-values for the LRR and AR discretizations from the

hypothesis tests for among all disease and control areas. Both figures clearly show the different

effects of the two distinct segmentations. The assumed hypothesis was that TI values from the

healthy areas differ from those obtained from the disease areas. An increased number of suit-

able texture features (cold color areas, p-value < 0.05) was observed when employing the AR

technique instead of the LRR in both delineation methods. In addition, the manual segmenta-

tion gave fewer significantly different TIs, and this was even more pronounced for LRR discre-

tization. A possible explanation for this phenomenon might be that by applying manual

segmentation, tissues outside of the lesion affect the calculation of TIs, compared to the case of

elliptical VOIs where only tissues inside the lesions get selected. Based on AR discretization

and both segmentations (Fig 8) the following TIs are the most promising in MR images: Jvar,

Dissim, SumVar, Contrast, NormInvDiff, ClusterProm, LGRE. Another interesting finding is

that the TIs that correlated with the volume as shown in Fig 6A and 6B have no noticeable

interrelationship with how well they can be used in the hypothesis test.

In general, only a few studies in the literature have evaluated the effect of the grey level dis-

cretization methods for MRI acquisitions. Molina et al. (2016) analyzed how the preselected

number of bins for the LRR method changes the texture features when using sixteen heteroge-

neity measures. In their study, the main conclusion was that none of the considered TIs were

robust with changing bin parameters. Goya-Outi et al. (2018) evaluated the impact of the AR

and LRR methods in a study including 30 patients with diffuse intrinsic pontine gliomas, using

4 MR contrasts/sequences. They showed that the textural measures obtained with the AR dis-

cretization were more consistent with the visual assessments than the same comparison of the

visual assessment and the LRR method. Further studies also support that the IBSI recom-

mended MRI related LRR discretization should be changed to the absolute method (AR or

LAR) [29, 31]. Recently, Carré et al. also investigated the impact of the discretization methods
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on radiomics features with T1- and T2-weighted MRI images [33]. They found that the selec-

tion of optimal D or B is not trivial. Their results showed that a high D value might increase

feature robustness for most radiomics parameters, but interestingly their classification perfor-

mance decreased in the case of the T2-flair sequence. This was in good agreement with our

observations (Figs 7 and 8).

The superior soft tissue contrast of MR images renders the automatic segmentation of

lesions and pathological tissues a challenge. Consequently, labor-intensive manual delineations

are often employed for texture analyses. However, several semi-automatic or automatic algo-

rithms are available which might be beneficial for future studies [31]. In general, the semi-

automatic and automatic algorithms employ different approaches that aid the segmentation of

3D volumes when evaluating MR images. Besides the more advanced lesion delineation

method, the use of squares or circles is a possible alternative [41, 48]. The resulted segmenta-

tion is influenced by several factors: partial volume effect, intensity inhomogeneity, artifacts,

proximity and overlap of the gray and white level pixels. In this study, we compared the effects

of two basic segmentation strategies, the manual and the 3D elliptical delineation. To compare

healthy tissue and tissue with disease, two VOIs were used. One VOI was inserted within the

pathological area, while a volume matched VOI was inserted in healthy tissue on the co-lateral

side. Our analyses show that fewer statistically significant texture parameters could be obtained

when manual VOI segmentation was applied. This can be explained by the fact that the voxels

in the border area, due to the inadequate spatial resolution, might contain a mixture of the sur-

rounding tissue and the tissue from the given lesion. Accordingly, the calculated texture indi-

ces will also be distorted. The 3D ellipsoid segmentation method yielded the most significantly

different TIs for any discretization, these are illustrated in Figs 7 and 8.

We report three main limitations to this study. First, we did not analyze how the different

image normalization strategies would affect our results. Several normalization techniques have

been proposed [31, 49, 50], and at this point, it is uncertain which proposed method is optimal.

Secondly, the spatial resolution parameter is also a determinant factor in the texture analysis

[26, 51] that we did not include its evaluation in our study. However, the scope of this study

and the evaluations required for it are already beyond the scope of this study. Last, we focused

only on the group of GLCM, GLSZM, and GLRLM based TIs without considering other fea-

tures already published to highlight the impact of the three discretization methods evaluated.

We are planning to further extend our study to analyze the effect of image normalization and

automatic lesion segmentation on the image discretization step.

Conclusions

We compared the effects of three discretization methods in brain MRI images of three differ-

ent types of diseases. We found that the values of TIs characteristically depend on the applied

binning parameters, making the choice of these parameters non-trivial, therefore it is critical

that comparative studies only compare directly to other studies using the same number of bins

and discretization techniques. However, the characteristic dependence does not change with

the type of disease, nor the applied MR-sequence. In general, it can even be stated that the

same discretization dependence is observed for MRI and PET modality. The AR and LAR

methods provide more significantly different TI values than LRR, when comparing calcula-

tions on control and pathological brain areas. We also found that in general the TIs weakly

correlate with the volume of lesions, but several GLCM based texture parameters showed a

higher correlation when the LRR discretization method was selected. Therefore, we recom-

mend using AR or LAR discretization instead of LRR in the case of brain MRI images. Apply-

ing manual segmentation instead of elliptical VOIs, fewer statistically significantly different
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TIs can be obtained between control and diseased areas, and the level of correlation between

TIs and volume of lesions tend to increase. In the texture analysis of MR studies, studies and

publications should report on all important parameters and methods related to data collection,

corrections, normalization, discretization, and segmentation.

Supporting information

S1 File. Box-and-whisker plot and hypothesis test results for all radiomics features.

(XLSX)

S2 File. Data and results of the correlation analysis.

(XLSX)

Author Contributions

Conceptualization: Gergő Veres, Ervin Berényi, László Balkay.
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