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Abstract 

In our days, diabetic retinopathy (DR) is the most common cause of 

blindness in the developed countries. In this PhD thesis, which is 

meant to be an answer to the question how we can improve the 

accuracy of screening this disease which affects a huge segment of 

the society, two basic components of an automated DR screening 

system are introduced. The first one is capable of locating the optic 

disc (OD) and the second one can detect exudates in the fundus 

images.  

Exudates are one of the first signs of DR, which appear on the 

fundus of the patient’s eyes. Thus, accurate and reliable detection of 

the exudates is an important part of a state-of-the-art computer aided 

diagnostic (CAD) system. We developed a novel algorithm which 

can detect this type of lesions with high accuracy. The basic idea is 

the following: a grayscale morphology-based approach extracts 

each of the possible exudate regions as a candidate extractor, then 

an active contour-based method determines the exact contours of 

these candidates. Finally, an optimally adjusted classifier selects the 

true exudates using region-wise features. 

As exudates appear in retinal images as bright patches, it is 

highly recommended that the OD should be localized and masked 

out before the detection of exudates would be started, as exudates 

are similar to the OD concerning color and shape characteristics. 

Thus, our aim is to determine the location of the OD with high 

accuracy. For this purpose, we propose an ensemble of individual 

OD detectors to improve their precision and show how the accuracy 

increases by using more information in order to localize the OD.   
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1 Introduction 

The retina is a delicate light sensitive lining located at the back of our 

eyeball (see Figure 1) that “takes pictures” and sends the images to the 

brain. Long-term diabetes affects the eyes, resulting in a disease called 

diabetic retinopathy (DR). If DR remains undiagnosed or is treated 

inappropriately, it can lead to loss of vision. Approximately 387 million 

people were registered worldwide living with diabetes in 2014 [1]. This 

huge number is the reason why DR is the most common cause of 

blindness. 

According to the estimations [2] as the number of the patients with 

diabetes has grown rapidly in the last few years and as their number is 

expected to rise in the future, the estimated increase will be 205 million 

people till 2035. However, there are appropriate ways of treatment to 

slow down the deterioration of the eye-sight if the signs of this disease are 

recognized at an early stage. The fluorescein angiography and retinal 

 

Figure 1: Anatomical parts of the human eye. 

Source: http://www.mastereyeassociates.com/presbyopia 



 

 

3 

 

photography are the most commonly used methods to take images of the 

eyes, which provide ophthalmologists the possibility to monitor the 

progression of the disease and to make a decision for an appropriate 

treatment. Unfortunately, 77% of the people with diabetes live in low- 

and middle-income countries where 53% of the cases remain undiagnosed 

due to the fact that the medical staff is overloaded [1]. Thus, an automatic 

DR screening system would have a great importance mainly in the 

developing countries.  

The blood vessels that provide nourishment to the retina, in case of a 

person with diabetes, may weaken and leak, forming small, dot-like 

hemorrhages (see Figure 2). These leaking vessels often cause swelling or 

edema in the retina and so they cause eyesight deterioration. Exudates 

come into being when fluid exudes from tissue because of its injured 

capillaries. Since the fluid contains protein, cellular debris and white 

blood cells, exudates appear as yellowish, bright patches in the retinal 

background (see also Figure 2). A CAD system is useful if it is capable of 

detecting these first signs of DR. 
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The automated process of analyzing fundus image can be performed 

through the following steps: preprocessing, localization and segmentation 

of the optic disc (OD), segmentation of the retinal vasculature, 

localization of the macula and fovea and detection the signs of DR. So, an 

important prerequisite for automation is the accurate method of localizing 

the OD. The OD is a circular shaped anatomical structure with a bright 

appearance. It is the location where the optic nerve enters the eye. If the 

position and the radius of the OD are detected correctly, then they can be 

used as references for approximating other anatomical parts e.g., the 

macula and the fovea, as it is proposed in [3]. Furthermore, masking out 

the OD region in the image is highly recommended before the detection 

of the lesions, as lesions appear in the retinal images as bright patches 

which are similar to the OD concerning their color and shape 

characteristics. 

 

Figure 2: Anatomical parts of the retina with signs of DR. 
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In the corresponding literature, several OD detectors have been 

published in [4], [5], [6], [7], [8], [9], [10], [11], [12] and [13]. Most of 

these try to perform the extraction of the OD based on the color, size, 

shape and direction of vessels, etc. They use various methods ranging 

from filtering [4] and threshold methods [5] to kNN regression [6]. There 

is, in fact, no reason to assume that any single algorithm would be optimal 

for the detection of various anatomical parts of the retina. It is difficult to 

determine which the best approach is, because good results were reported 

for healthy retinas but weaker ones for more challenging datasets 

containing diseased retinas with variable appearance of ODs in term of 

intensity, color, contour definition and so on. 

In this thesis, to overcome the imperfectness of the individual 

detectors, we propose an ensemble of the individual algorithms. We 

propose three different approaches which combine individual algorithms 

in order to benefit from their strengths while overcoming their 

weaknesses. In the first approach, we tested a majority voting scheme 

with a circular template to detect the correct position of the OD center, 

where the individual algorithms have just a single candidate. In the 

second one, we extract more than one candidate for each algorithm to 

increase the chance of getting the OD location among them. We assign 

weight to each candidate to replace simple majority voting by a weighted 

one and treat them as weighted nodes of a weighted graph. In order to 

localize the OD center, we select that completed subgraph from the 

constructed weighted graph which meets the OD geometry constraint and 

has a maximum total weight. For this selection, we borrow a graph 

theoretical approach supplying the optimal solution in terms of a 

maximum-weighted clique. Finally, to utilize all available information 

corresponding to the possible location of the OD provided by the 

algorithms, we let them assign confidence values to each pixel of the 

input image. In this way, probability maps are composed by the member 
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algorithms and a suitable combination of these maps can be applied to 

locate the correct OD region.  

Taking advantage of more information is supposed to lead to 

improvement, which is a natural expectation validated by our experiment 

studies. Namely, in our tests, the proposed method outperformed both the 

simpler ensemble-based systems and the state-of-the-art individual 

member algorithms on publicly available datasets.  

After the OD has been localized properly, it can be used to improve 

the detection of the macula and the fovea as it is proposed in [3]. Next to 

OD and macula, CAD system also should segment the blood vessels in 

ophthalmological images because of the high similarities between the 

small vessels and the microaneurysms. Much work has been carried out in 

the field of detection of retinal vasculature [14], [15], [16]. Most of these 

approaches can detect the main and thick vessel segments with high 

precision but the detection of tiny ones is a difficult task. Since 

microaneurysms (first signs of DR) appear as small circular dark dots 

near thin vessels (see Figure 2.), the tiny non-segmented vessels cause 

many false positives at their detection [17], [18], [19]. So the reliability of 

an automatic screening system for DR can be much higher if it is also 

suitable to detecting signs of DR as exudates. 

Exudates can be distinguished more efficiently from the background 

than microaneurysms from blood vessel segments. On the other hand, the 

fluid can flow without restrain, so the exudates have various size and 

irregular shape (see Figure 3), which makes the automatic detection of 

exudates a challenging task as well. In the corresponding literature, a 

large number of exudate detection algorithms have been published. In 

general, we can divide these approaches into two main groups. The first 

group contains algorithms based on grayscale morphology [20], [21], 

[22], while the second one consists of methods considering pixel/region-
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wise classification [23], [24], [25], [26], [27]. Furthermore, we can find 

some special approaches (e.g., [28], [29]) beyond these groups. 

 
A method for exudate detection, which combines the mainstream 

approaches (morphology and classification) within a single framework, is 

proposed as the second main focus of this thesis. Our aim is to take 

advantage of several image enhancement methods for recognizing the 

precise boundaries of candidates extracted by a morphology-based 

candidate extractor. The motivation behind this objective is that the 

features extracted from the precisely segmented regions are more suitable 

to differentiate the true exudates from the false ones than the features 

extracted from the coarsely segmented ones. So, we recommend the use 

of several image enhancement algorithms to extract contour of candidates 

by an active contour method for each enhanced image. The final 

 

Figure 3: Exudates appear as yellowish, bright patches of various sizes 

and irregular shapes. 
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candidate contour is found by a combination of these extracted contours. 

Finally, a region-wise classifier is applied to decide whether the 

candidates should be considered as exudates or not. The proposed fusion 

of grayscale morphology and active contour-based segmentation with 

region-wise classification can outperform several state-of-the-art 

approaches according to our empirical results. 

The main contribution of this thesis applicable in medical science 

(including the corresponding publications as well) can be summarized as 

follows:  

I.  In connection with OD localization: 

1. Elaboration and application of a simple majority voting model 

for the localization of the OD [3], [30], [31], [32]. 

2. Elaboration of a framework for extracting several candidates 

from member algorithms and the graph-based process of 

object detection for the localization of the OD [33]. 

3. Elaboration of the technique of object detection based on the 

fusion of 2D probability maps for the localization of the OD 

[34]. 

II.  In connection with exudate detection: 

4. Elaboration of an exudate-detector developed on the basis of 

grayscale morphology and pixel-classification [35]. 

5. Elaboration of an exudate-detector algorithm based on region-

wise classification [36], [37], [38]. 



 

 

9 

 

6. Elaborating of a system applying some different image 

enhancement algorithms for achieving the most accurate 

contour detection. [39], [40]. 

Notwithstanding the thesis is written in plural form, the author has a 

principal contribution to the presented results. The models and methods 

which will be introduced in this thesis are the outcome of the 

collaboration of the author and his supervisor. The author engaged in the 

elaboration of the theoretical models, he implemented and tuned up all the 

introduced methods and finally evaluated them.  

The rest of the thesis is organized in the following way: section 2 

provides a brief summary on the basic concepts and methodology used in 

this thesis. Section 3 and 4 contain the main body of the thesis by 

describing the ensemble-based OD detection methods and the proposed 

exudate detection methods. Finally, conclusions are drawn in section 5. 
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2 Basic concepts and methodology 

In this section, we introduce the basic notations for the easier and precise 

reference in the latter parts of the thesis. As we propose image processing 

algorithms, which can detect single and multiple objects in digital images, 

first we give the commonly used definition of the 8-bit intensity digital 

images   of size      as: 

  {     }  {     }  [       ]  (1)  

where   and   denote the width and height of the image, respectively. 

The domain {     }  {     } of   will be denoted by        in the 

latter formulas. Thus,   is a 2D function which assigns for an intensity 

value to each point    of the discrete digital plane, where the coordinates 

(     ) of          and        hold. When the digital image 

is a 24-bit color image as: 

  {     }  {     }  [       ]  [       ]  [       ] (2)  

(e.g. RGB, HSI) which has three different 8-bit intensity channels, we 

denote it in subscript as     ,     . Moreover, if we use a specific channel 

of a 24-bit color image we also denote the letter of the selected channel in 

the subscript of   as          and   .  

A fundus photo is a digital image about the interior surface of the eye, 

including the retina, OD, macula, and posterior pole [41]. Fundus 

photography is used by ophthalmologists for monitoring progression of a 

disease in screening programs and epidemiology [42]. The fundus image 

is taken by a fundus camera, which basically consists of a special low 

power microscope with an attached camera providing an RGB color 
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image. So,      is the most common output of the fundus camera 

generally in use. 

A large number of papers dealing with digital fundus image 

processing propose the green channel    for image analysis [43], since it 

provides the highest contrast between the anatomical parts, lesions and 

the retinal background, as it can be seen in Figure 4. Furthermore, we can 

also consider the intensity channel    from     , where    is defined as the 

average of the   ,    and   , and we can keep some relevant information 

from the red and blue channels also (see Figure 4). 

 

 

Figure 4: Channels of a sample image of Figure 3; (a)   , (b)   , (c)   , 

(d)   . 
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The value of   and   in case of      mostly depends on the resolution 

of the applied CCD sensor in the fundus camera. Nowadays, the 

commonly used fundus cameras in practice provide at least 5 megapixel 

resolution for images, so in the images the smallest signs of DR are 

composed of sufficient number of pixels, which enables their manual or 

automated evaluation. For example, the microaneurysms usually have a 

diameter less than 125 µm [44], so one of them consists of at least 100 

pixels in image with resolution of 2500×2000.  

Fundus cameras have another essential property, namely, the angle of 

acceptance of the lens (field of view or FOV). A typical camera views 30˚ 

to 50˚ of retinal area, with a magnification of 2.5× which means that the 

anatomical parts are 2.5 times larger than in real life [45]. See Figure 5 

for visual explanation of the meaning of different FOV size. 

 
As it can be seen, the ratio between the area of OD and the area of region 

of interest (ROI) is the most significant difference between these images, 

where the ROI is the region which contains the relevant inner areas of the 

 

Figure 5: Sample fundus images with different FOV sizes; (a) 25˚ FOV, 

(b) 50˚ FOV. 
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retina and it can be extracted by standard algorithm (e.g. [46]), as it can 

be seen in Figure 6. 

The greater is the FOV, the more parts of the retina can be seen in the 

image. Thus, an automatic screening system can evaluate a fundus image 

based on much more information if it gets an input image taken by a 

camera with higher megapixel and FOV. In this thesis the proposed 

algorithms are tested on datasets which contain images with 45˚ or 50˚ 

FOV. Based on the evaluation of approximately 2000 images with 

manually segmented optic disc region (ODR), the radius of an average 

OD is 6.5% of the width of the ROI of the fundus image at the 

investigated scale of FOV. 

2.1 Fundus image datasets 

As we mentioned in section 1, basically we introduce two methods in this 

thesis. The first one is developed to detect a single object in the images 

which can be used for accurate OD detection in retinal images. The 

 

Figure 6: ROI with the boundary of OD (black circle) for the sample 

images of Figure 5. 
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second one combines grayscale morphology, precise boundary detection 

and region-wise classification approaches to decide whether the image 

contains exudates or not. In this section, we introduce some publicly 

available datasets which are supplied with manual annotations of 

ophthalmologists which data can be used for the evaluation of the 

automatic detection and segmentation methods regarding anatomical parts 

and lesions.  

2.1.1 DIARETDB0 dataset 

DIARETDB0 – Standard Diabetic Retinopathy Database [47] includes 

130 color fundus images. 20 of these are healthy and 110 of these contain 

signs of DR (exudates, microaneurysms, hemorrhages and 

neovascularization). The images were taken with a 50˚ FOV, at a 

resolution of 1500×1152 pixels and the average diameter of the ROI is 

1410 pixels. 

2.1.2 DIARETDB1 dataset 

The dataset DIARETDB1– Standard Diabetic Retinopathy Database [48] 

includes 89 fundus images. 84 of these contain microaneurysms or more 

serious signs of DR, while 5 are considered as healthy with containing no 

signs of DR according to clinical experts. The images were taken with a 

50˚ FOV, at a resolution of 1500×1152 pixels and the average diameter of 

the ROI is 1410 pixels. 

2.1.3 DRIVE dataset 

DRIVE [49] images were acquired using a Canon CR5 non-mydriatic 

3CCD camera with a 45˚ FOV. Each image is 24-bits RGB of resolution 
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768×584 pixels. The ROI of the images is circular with an average 

diameter 540 pixels. 

2.1.4 MESSIDOR dataset 

The image set MESSIDOR [50] includes 1200 fundus images which were 

acquired by 3 ophthalmologic departments using a color video 3CCD 

camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45˚ 

FOV. The images were captured using 24-bits RGB at the resolution of 

1440×960, 2240×1488 or 2304×1536 pixels. 

2.1.5 HEI-MED 

The dataset HEI-MED – Hamilton Eye Institute Macular Edema Dataset 

[51] consists of 169 images of resolution 2196×1958 pixels with a 45˚ 

FOV, among which 54 images are classified manually by an 

ophthalmologist as containing exudates. 

2.1.6 Manual annotations 

The sets DIARETDB0, DIARETDB1, DRIVE and MESSIDOR have 

been considered for performance analysis of OD detection method. For 

the measurability of the algorithm accuracies, a manually selected ODR is 

also supplied for the images of these datasets. A sample manual drawn 

ODR can be seen in Figure 7. 
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We evaluate our proposed method for exudate detection on the dataset 

DIARETDB1 and HEI-MED also. 53 images of DIARETDB1 contain 

exudates based on the labeling of four clinical experts. Each expert 

marked manually the most representative points of the exudates in these 

images, and the coordinates of these points are stored in text files. Based 

on these manually-marked anchor points, a local ophthalmologist 

precisely segmented the exudates in these images. Thus, we have gained 

53 binary masks containing the precise exudate boundaries as it can be 

seen in Figure 8. In the case of HEI-MED set, we know the labels 

(containing exudates or not) for all images but binary masks containing 

the manually segmented exudates are not available for them. 

 

Figure 7: Sample binary image for manual annotated ODR; (a) RGB 

fundus image, (b) manual drawn ODR. 



 

 

17 

 

 

2.1.7 Training sets 

The proposed approaches for detection single object and multiply objects 

require a training phase when training images are used to construct the 

applied machine learning-based models. Therefore, our private dataset 

(TR1) is used only during the training phase of the single object detection 

method. To avoid the problem of information leakage TR1 is not used for 

the evaluation of the proposed methods. The images from our dataset 

were captured with a 50˚ FOV at a resolution of 3072×2048 and 

1360×1024 pixels with the average diameter of the ROI is 2287 and 1340 

pixels, respectively. This set includes 327 images, for which manually 

drawn regions of the OD are also available. This dataset was provided by 

Moorfields Eye Hospital (London, United Kingdom) and the manual 

annotations were made by Adrienne Csutak and Tünde Pető.   

On the other hand, for the training phase of the exudate detection 

method, the dataset DIARETDB1 is divided into training (TR2) and test 

 

Figure 8: Manual annotation containing precise exudate regions; (a) 

RGB fundus image, (b) manual drawn binary mask. 
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part, because manually segmented precise exudates exist only in the case 

of these images. Separating the dataset is performed by taking the 

distribution of normal and abnormal images also into account, as 

proposed by Kauppi et al. [48]. The TR2 consists of 24 images containing 

exudates and 4 images with no such lesions. 

Table 1 contains the summary of datasets used for the training and the 

evaluation of the proposed methods. 

 

  

 
Images Normal Abnormal FOV 

ROI 

(pixels) 

Resolution 

(pixels) 

DIARETDB0  130 20 110 50˚ 1410 1500×1152 

DIARETDB1  89 5 84 50˚ 1410 1500×1152 

DRIVE  40 33 7 45˚ 540 768×584 

MESSIDOR  1200 546 654 45˚ 
908 
1374 
1450 

1440×960 
 2240×1488 
 2304×1536 

HEI-MED 169 3 166 45˚ 2193 2196×1958 

TR1 
327 241 86 50˚ 2288 

1340 
3072×2048 
1360×1024 

Table 1: Summary of the datasets 
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3 Optic disc detection by fusing the outputs of 

individual detectors 

The automatic detection of the location of the OD is an important issue in 

the automatic analysis of the retinal images. The OD is a circular shaped 

anatomical structure with a bright appearance as it has been already 

mentioned. The location is to be found where the optic nerves enter the 

eye. If the position and the radius of the OD are detected correctly, then 

they can be used as references for approximating other anatomical parts. 

Moreover, information about the OD can be used to examine the severity 

of some diseases, such as glaucoma. It is often needed to mask the OD 

out before bright lesion detection (e.g. exudates, cotton-wool spots) 

because of its similarity in brightness and color in a diseased retina. 

Several approaches have been published how the OD can be localized 

automatically. For example, Mendels et al. [4] used morphological 

filtering and active contours to find the boundary of the OD, while Sekhar 

et al. [5] applied morphological operations and Hough-transformation to 

localize it. Here, the proposed method consists of two steps: in the first 

step, a circular region of interest is found by isolating the brightest area in 

the image by means of morphological processing, and in the second step, 

the Hough-transformation is used to detect the main circular feature 

(corresponding to the OD) in the positive horizontal gradient image 

within this region of interest. Abramoff et al. [6] proposed a kNN 

regression approach to find relationship between the dependent variable 

which represents the distance from the OD center, and a feature vector 

extracted around a circular template. Shijian [7] used circular 

transformation which is capable of detecting both the OD center and its 

boundary from images of pathological retinas, as well. Lalonde et al. [8] 

proposed an algorithm which generates a pyramid with a simple Haar-
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based discrete wavelet transformation. The input image has low 

resolution after its decomposition is repeated four or five times and the 

pixel of this low-resolution image with highest intensity value is 

considered as the center of the OD. Another approach in [8] uses edge 

detection applying the Rayleigh-based CFAR threshold. This solution 

guarantees the strong edges which are associated with the border of 

anatomical structures. In the next step, the Hausdorff distance is 

calculated between the set of edge points and a circular template like the 

average OD. The lowest distance value corresponds to the center of the 

OD. Sopharak et al. [9] proposed a method which applies a median and a 

contrast-limited adaptive histogram equalization filter on the green 

intensity channel. The entropy of the intensity values in the local region 

around each pixel is calculated and the location of the highest entropy 

values is considered to belong to the OD. Niemeijer et al. [10] proposed 

feature extraction and classification steps to determine the area of the OD. 

They propose the following features: number, width, orientation and 

density of vessels segments. In the next step, a kNN classifier made a 

decision about each pixel whether they belong to the OD, or not. Hoover 

et al. [11] thinned the vessel system and each line-shape segment is 

modeled by a fuzzy segment. This model creates a voting map and the 

pixel obtaining the most votes is considered to be the center of the OD.  

Ravishankar et al. [12] proposed an algorithm which uses Hough-

transformation on the thinned vessel system. Lines which have slope less 

than 45˚ are eliminated. The intersection points of the rest of the lines 

give a voting map. Number of votes is weighted with the original 

intensity values of the intersection points in the image, and the highest 

corresponding value indicates the center of the OD. Finally, Zhu et al. 

[13] locate the border of the OD in terms of a circle with a given diameter 

using circular Hough-transformation. For this aim, edge detection is 

applied and the circle containing the most edge points is selected.  
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The majority of these algorithms are able to locate the OD center on 

healthy images. However, their accuracies decrease if the image quality is 

not sufficiently high or severe lesions appear on the image. To overcome 

the imperfectness of the individual algorithms, we study and adapt some 

of the state-of-the-art OD detectors and finally organize them into an 

ensemble framework in order to combine their strengths and maximize 

the accuracy of the localization of the OD. 

In the literature of financial, medical and social, many popular 

ensemble based methods [93] can be find as bagging, boosting, stacked 

generalization, and hierarchical mixture of experts, rules, including 

algebraic combination of outputs, voting based techniques, behavior 

knowledge space, and decision templates. These methods can be used 

when we have a second opinion before making a decision, sometimes a 

third one, and sometimes many more and when our goal is to choose one 

option from a previously defined set of options. However, in the case of 

OD localization we have to search the center point of the OD in a 2D 

discrete space where the final output is not a class label from a set of 

options. This means that these fusion methods trivially could not be 

applied for this problem.  

In this section, we introduce our three different fusion strategies, 

which are based on the majority voting scheme, finding maximum-

weighted clique and combining probability maps, respectively. We study 

and adapt some of the state-of-the-art OD detectors and finally organize 

them into a complex framework in order to maximize the accuracy of the 

localization of OD. Besides providing detailed description of these 

frameworks, we show the positive effect of exploiting more and more 

information for this issue. 

The rest of this section is organized as follows. In section 3.1, we 

introduce some concepts regarding the single object detection and we 

give a brief overview about the OD detectors involved in the ensembles in 
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section 3.2. In section 3.3, we give an overview about the proposed 

majority voting-based ensemble system. In section 3.4, we describe how 

we can extract more candidates from the member algorithms and 

determine the OD center by finding maximum-weighted clique in 

weighted graph. In section 3.5, we introduce our methodology for the 

detection of the center and region of the OD based on the combination of 

probability maps provided by the individual algorithms. Section 3.6 is 

dedicated to our experimental results also in comparison with some other 

state-of-the-art OD detectors. Finally, further technical details are 

discussed in section 3.7. 

3.1 Concepts in the fields of single object detection 

In this section, we provide some basic concepts for single object detection 

in digital image for the easier and precise reference in the latter parts of 

the section 3. As it has already been mentioned, we propose three 

different ways to combine automatically the outputs of different detectors 

to benefit from their strengths while overcoming their weaknesses.  

We can consider the problem of the localization of a single object 

knowing that the presence of the object has high confidence in the image. 

Namely, we do not have to determine whether the single object is there in 

the image or not because the input image surely contains the object. For 

making an ensemble system to localize the center of the object, we should 

have several member algorithms to combine their outputs.  

Definition 1: Let    , and    (i=1,2,…,N) be a member algorithms as 

              , which can detect the center point of the derived 

single object and provide same output to the same input image.  
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   denotes the number of the involved member algorithms,   means the 

input image and    is the output of   . 

Definition 2: Let           be the set of the outputs of    

(i=1,2,…,N) for image I. |  | denotes the number of candidates provided 

by    (i=1,2,…,N). 

Definition 3: Let         be the j-th candidate of the i-th member 

algorithm    (i=1,2,…,N), (j=1,2,…,|  |) for the center of the single 

object. 

We propose a majority voting-based ensemble of    if |  |    

(i=1,2,…,N) which means that    (i=1,2,…,N) provides only one pixel as 

a candidate of the center of the object. In case |  |   ,    (i=1,2,…,N) 

suggests more than one candidate and we apply maximum-weighted 

clique-based ensemble. Finally, when |  |  | |, we can determine the 

center and the region of the object by combining the probability maps. 

For finding maximum-weighted clique in weighted graph, we have to 

compose a weighted graph using         of     with letting    

(i=1,2,…,N) assign a confidence level to each of its candidates. Let the 

ground-truth center coordinates             of the single object be 

denoted by     . Since most of the object detection algorithms use 

various features of   and its neighborhood for localization,       

(i=1,2,…,N) denotes the set of features based on which    assign a 

confidence value to    . Here, we omit any details on the feature sets 

  , as they are completely algorithm dependent. 

Definition 4: Let       is a function generated by    (i=1,2,…,N) as 

follows: 
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      {     }  {     }      (3)  

Consequently, if      then            (      |     ), where 

 (      |     ) is the conditional probability of that        given 

      features which shows the confidence of    that   is the center of 

the object.  

If we consider              
 assigned to         by    (i=1,2,…,N), 

(j=1,2,…, |  |) then we can sort         in a priority order so that 

                        for any 1≤k<l≤|  |, (i=1,2,…,N) and assign 

weights to the candidates. 

Definition 5: Let      be a weight assigned to         as: 

     
           

           
 (4)  

for i=1,2,…,N and j=1,2,…,|  |.  

Note that, this normalization will give        (weight 1 for every first 

candidate) for i=1,2,…,N. After having defined         and     , we can 

construct a weighted graph as in [52]. 

Definition 6: Let   〈     〉 be an undirected weighted graph, where 

the set of vertices  

  ⋃  

 

   

 (5)  

  is a set of edges and   is a set of weights         for each vertex 

(i=1,2,…,N), (j=1,2,…,|  |). Edge connects two adjacent vertices 
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(           ) if ‖         ‖ 
  , where the distance      depends 

on the size of single object and  ‖ ‖  stands for Euclidean norm. 

Definition 7: For   V,      〈            〉 is the subgraph 

induced by S. A set of vertices    is called a clique if the subgraph       

is completed, namely, there is an edge between any two adjacency 

vertices in      . 

Definition 8: Let   
    

      
  denote the cliques of  .   

  is the 

maximum-weighted clique (MWC) if the total weight of the vertices of   
  

is maximal. 

For the combination of probability maps we expect the member 

algorithms to assign a confidence value to each     indicating their 

confidence that   is the center of the object. 

Definition 9:  Let     denote the probability map generated by    for I, 

where 

    ⋃           

|  |

   

  (6)  

        and |  |   | |. 

So, our aim is to localize the center of the OD with high accuracy in 

fundus image. Namely, the detected center point falls within the true OD 

region and the distance between the detected and the manually drawn 

center point should be as smallest as possible. For the measurability of the 

accuracies of the proposed ensembles, we consider three ways. First, as a 

primary error, we expect that a properly detected center falls within the 

manually drawn OD region (ODR). As a secondary measurement, we 
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check the distance of the combined output from the centroid of the ODR. 

Finally, we measure the similarity between the segmented region and the 

ODR. Let the finally localized center coordinates             of the single 

object be denoted by     . 

Definition 10:  Let            be a manually segmented region of 

OD and         . For the      on the same image regarding ODR we 

apply the following: 

      is a true positive (   ), if         . 

      is a false positive (   ), if         . 

We note that, in the case of localization of a single object which appears 

in the input image with high confidence, the definition of false negative 

and true negative are meaningless.  

Definition 11:  To measure the primary error within a given dataset we 

can calculate the precision or positive predicted value (PPV) to measure 

the primary error function as: 

     
        

                 
  (7)  

where              means the number of          in the whole test 

dataset. 

Definition 12:  As for the secondary error function       , for a fair 

comparison we exclude those images, where the detected OD center falls 

beyond the OD region: 
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∑ ‖         ‖ 

        

  (8)  

Definition 13:  Let               denotes a region of OD 

determined by the ensemble of probability maps generated by    for I. 

     function measure the overlapping between the ODR and        

regarding the same   within a given dataset as a follows:  

     
 

        
∑

          

          
  (9)  

3.2 Member algorithms for OD detection 

In this section, we give a brief overview about the OD detectors which are 

involved in the proposed ensemble systems for single object detection. As 

we show in section 3, we can find huge number of OD detectors in the 

literature [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. We 

reimplemented the next seven detectors based on different principles in 

Matlab environment by following the respective instructions given in [8], 

[9], [10], [11], [12], [13]. 

3.2.1 OD detection based on pyramidal decomposition (ODdecomp) 

This algorithm relies on three assumptions. First, the image is centered on 

the macula or OD, second, the OD represents a bright region (not 

necessarily the brightest) and finally, the form of the OD is approximately 

circular. Based on the hypothesis that the OD is roughly a circular patch 

of bright pixels surrounded by darker pixels Lalonde et al. [8] propose to 
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locate the candidate OD regions in the    by mean of pyramidal 

decomposition (Haar-based discrete wavelet transform [53]). In the low 

resolution image pixels, which have the highest intensity values compared 

with the mean pixel intensity over the search area, were selected as 

possible candidates. Next, smoothing is done within each of these regions 

and the brightest pixel is selected as a possible OD center point and its 

confidence value is computed as the ratio of average pixel intensity inside 

a circular region centered at the brightest pixel and the average intensity 

in its neighborhood. 

3.2.2 OD detection based on edge detection (ODedge) 

In this method, Lalonde et al. [8] search the area identified by the 

pyramidal decomposition (see section 3.2.2) for a circular shape. To 

reduce the number of regions of interest, contiguous regions were 

aggregated into a single zone. A binary edge map is obtained by 

performing Canny-edge detection [54] in the region of interest first, and 

then a thresholded image is obtained with a special threshold value 

computed from noisy edge map. The search for the OD contour is 

performed by using an algorithm-based on Hausdorff-distance [55]. The 

Hausdorff-distance provides a degree of mismatch between two sets of 

points. 

Several circular templates of variable sized diameters were used to 

compute the Hausdorff distance between the templates and thresholded 

image containing edges. Hence, a percentage of matches are computed, 

and if the certain proportion of the pixels template is found to overlap 

edge pixels in thresholded image then the location is retained as the center 

point of a potential OD candidate. 
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3.2.3 OD detection based on entropy measurement (ODentropy) 

Sopharak et al. [9] presented the idea of detecting the OD by entropy 

filtering. The original      image is transformed into      color space, 

median filtering is applied to remove possible noise and for contrast 

enhancement Contrast Limited Adaptive Histogram Equalization 

(CLAHE) [56] is done to the   . After preprocessing, OD detection is 

performed by probability filtering based on computed entropy value in a 

local region around each     . The local pixel intensity entropy measure 

is high when the region around a pixel is complex and low when it is 

smooth. Binarization is done with Otsu’s algorithm [57] to separate the 

complex regions from the smooth ones, and the largest connected region 

with an approximately circular shape is marked as a candidate for the OD. 

3.2.4 OD detection based on kNN classification (ODclassify) 

Niemeijer et al. [10] defines a set of features based on vessel map and 

image intensity, like number of vessels, average width of vessels, 

standard deviation, orientation, maximum width, density, average image 

intensity, measured under and around a circular template to determine the 

location of the OD. After pre-processing, each image is scaled so that the 

width of its ROI is 630 pixels. The binary vessel map obtained by [59] is 

thinned until only the centerlines of the vessels remain and all the 

centerline pixels that have two or more neighbors are removed. Next, the 

orientation of the vessels is measured by applying principal component 

analysis on each centerline pixel with its neighboring pixel on both sides. 

A two-step sampling process is launched to get the training database. 

First, by using the circular template having manually selected the OD 

center within the radius, all features are extracted for each sample 

location (a uniform grid spaced 8 pixels apart) of the template including 
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distance d to the true center. In the second step, 500 randomly selected 

locations (i.e., not on a grid) in the training image were sampled in a 

similar fashion. To locate the OD, a sample grid (grid points spaced 10 

pixels apart) is overlaid on top of the complete ROI and the feature vector 

are extracted and the rough location of the OD is found containing pixels 

having lowest value of d. The process is repeated with a 5×5 pixel grid 

centered on the rough OD location to get the more accurate OD center. 

3.2.5 OD detection based on fuzzy convergence of vessels (ODfuzzy) 

Hoover et al. [11] described a method based on a fuzzy voting mechanism 

to find the location of the OD. The method uses the convergence of the 

blood vessel network as the primary feature for detection. In the absence 

of a unique and strongly identifiable convergence, the brightness of the 

nerve is used as a secondary feature. The input to the algorithm is a binary 

segmentation of the blood vessels. The segmentation is achieved by 

thinning the vessel image and relabeling the branch points as background, 

thus, breaking up the foreground (vessel network) into segments that 

contain two end points each. Each line segment (vessel) is extended at 

both ends by Fuzzy element (15 pixels). The area of this fuzzy segment 

contributes a vote to its constituent pixels. The summation of votes at 

each pixel produces an image map where each pixel contains a value 

proportional to its strength of convergence. The map is then blurred and 

thresholded to produce one point of strongest convergence.  

3.2.6 OD detection based on Hough-transformation (ODhough) 

Ravishankar et al. [12] tried to track the OD by combining the 

convergence of the only thicker blood vessel initiating from it and high 

disk intensity properties in a cost function. On initially resized image to 
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standard resolution (768×576), a grayscale closing operation is performed 

on   . This step is followed by thresholding and median filtering to obtain 

the binary image of the blood vessels. The segments of the thicker blood 

vessels skeleton are modeled as lines found by the Hough-transformation 

[58].  The dataset of lines generated is reduced by removing those lines 

with slopes      . This reduced dataset of lines is intersected pairwise 

to generate an intersection map. The map is dilated to make the region of 

convergence more apparent. A weighted image is produced by combining 

this dilated intersection map and preprocessed   . A cost function is 

defined to obtain the optimal location of the OD that is a point which 

maximizes the cost function. 

3.2.7 OD detection based on circle detection (ODcHough) 

Zhu et al. [13] locate the border of the OD in terms of a circle with a 

given diameter using the Hough-transformation. The proposed method 

locates automatically the OD in fundus images based on its properties. 

The method includes edge detection using the Sobel method [56], and 

detection of circles using the extended Hough-transformation [60] which 

can identify circles and other parameterized geometrical shapes. The 

extended Hough-transformation assists in the detection of the center and 

radius of a circle that approximates the margin of the OD. Based on the 

feature that the OD is one of the bright areas in a fundus image, potential 

circles detected by the Hough-transformation are analyzed using intensity. 

3.3 Majority voting-based ensemble 

In this section, we propose an ensemble-based single object detection 

system based on simple majority voting which outperforms the involved 
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seven (N=7) member detectors (   ODdecomp,    ODedge, 

   ODentropy,    ODclassify,    ODfuzzy,    ODhough,    ODcHough).  

3.3.1 One member algorithm – one candidate  

In this ensemble we leave the member algorithms unaltered, so they 

function exactly as their authors proposed in [8], [9], [10], [11], [12] and 

[13]. Namely, they localize the center of the OD and finally they propose 

only one candidate (|  |   , i=1,2,…,N) per image. These single outputs 

for the object center are merged and the majority voting scheme is applied 

using a template of the shape of the object to detect its correct position. 

For an impression, see Figure 9 for the output of    (i=1,2,…,N) together 

with the manually selected center (ground-truth) pman of the OD. 

 

 

Figure 9: Results of different OD detector algorithms and the manually 

annotated OD center. 
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3.3.2 Methodology of the majority voting-based ensemble   

As it can be seen we cannot localize the right position of the OD by using 

only the result of the    or   . To overcome the imperfectness of the 

member algorithms, we devise a circular template voting scheme to 

determine the hotspot region, namely, an area in the image where 

majority of the outputs lies. A circular template    of radius     is fit 

on each     and outputs of candidate algorithms that fall within    are 

counted. The    covering the maximum number of OD detector outputs 

in its radius is considered to be a hotspot. There can be more hotspots 

covering the maximum number of detector outputs in their radius; hence 

they together define a hotspot region, the patch with highest probability. 

As we have mentioned in section 2, the value of R is set to 6.5% of the 

width of the ROI of the fundus image. 

Following the principal of the majority voting, the center of    

covering the maximum number of OD detectors output in its radius is 

considered to be the OD hotspot region. If there is a tie, such conflicts are 

handled by using an additional post processing step. Namely, a Gaussian 

filter is applied on    with a large variance parameter (σ = 300). The 

smoothed image is subtracted from    to make the OD appear as a 

brighter patch compared with the background. The average intensities 

around the output of the detectors are computed in the hotspot regions and 

the region with the highest average intensity is selected as the final OD 

hotspot region. 

To find the final center of the single object     , the centroids of the 

outputs within the finally selected hotspot region (   ) are computed. 

So, if we consider the single candidates          of    (i=1,2,…,N) and 

their coordinates as (     
      ), then the coordinates of the final OD 

center (     
      

) is computed as: 
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(     
  

 

|   |
∑      

        

      
  

 

|   |
∑      

        

)    (10)  

where |   | denotes the number of         .  

We note that the center of the final hotspot regions could be found by 

averaging algorithms outputs based on (10), however, for a more accurate 

estimation, weights can be associated with detector outputs to determine 

the final location. The principal difficulty is how to choose the ‘right’ 

weights. We investigated this problem in [3] but the results are not part of 

this thesis.  

3.3.3 Localization of the OD by majority voting 

In Figure 10, we can observe the hotspot region composed by the 

hotspots containing the maximum number of outputs. As for the specific 

example in Figure 10, with ignoring the candidates of    and   , the true 

OD location has been found based on the ensemble of the result of 

            and   . 
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However, as it can be seen in Figure 11, majority voting may fail to 

detect the correct OD center, especially, in case of a diseased retina. 

Therefore, we propose a more sophisticated method to avoid these 

shortcomings, explained in the following section. 

 

Figure 10: Locating the OD, when member algorithms have single 

candidates. Black dots indicate hotspot centers, while the bright patch is 

the hotspot region. 
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3.4 Maximum-weighted clique-based ensemble 

In this section, we examine how to improve the performance of the 

ensemble-based system in that case when the candidates of the member 

algorithms do not fall within the true single object region. We let the 

members suggest more candidates to increase the accuracy of that one of 

them falls within the true region of the object. So, our objective becomes 

to extract more candidates from the algorithms to have the appropriate 

location of the object among them. We assign weights to each candidate 

based on their priority proposed by the members. Then, these weighted 

candidates are considered as vertices of a graph, where we are looking for 

a subgraph with a maximum sum of weights constrained also by the 

geometry of the single object. 

To see the performance of the framework considering more 

candidates of the members regarding the problem of OD detection, we 

 

Figure 11: Incorrect OD localization based on simple majority voting. 
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have included the same seven member (N=7) algorithms 

(                  and   ) to make the results comparable with the 

simple majority voting scheme. 

3.4.1 One member algorithm – several candidates 

In this approach, we also preserve the basic principles of the member 

algorithms, but we have to extract more than one candidate per image. 

Since, most of the involved member algorithms are capable of assigning a 

value           
  (i=1,2,…,N) to each     to show the probability of 

being the OD center as given in definition 4. These values together 

compose the     (i=1,2,…,N) for the image as given in definition 7. See 

Figure 12 for the probability maps of the algorithms for the sample image 

of Figure 11.   

 

 

Figure 12:     of    (i=1,2,…,N) showing their confidence whether an 

image pixel corresponds to the OD center. 
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To have multiple candidates from an algorithm, we can simply select 

more pixels as OD center candidates which have large probability value. 

As a geometric constraint, the candidates of the same algorithm are not 

allowed to be closer than the average OD diameter, thus: 

‖         ‖ 
     (11)  

where              of    (i=1,2,…,N), ( j, k=1,2,…, |  |) and     . In 

this way we can assure that a possible OD region is suggested by only one 

candidate of each algorithm as it can be seen in Figure 13. 

 
In the case of algorithms which are not capable of assigning a 

          
  (i=1,2,…,N) to each    , we can also extract more than 

one candidate per image in a natural way. For this purpose, we should 

mask out the first candidate of the member algorithm by    , following 

 

Figure 13:     of    with candidates meeting the OD geometry 

constraint. 
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that the algorithm should locate the next candidate within the remaining 

image region and so on. For visual explanation of this alternative 

candidate extraction see Figure 14. In this way, we can also guarantee that 

only one candidate of each member suggests one possible OD region. 

 

3.4.2 Right number of candidates 

In this ensemble-based approach it is a key issue to determine how many 

candidates for a member we should consider. Let   
  mean that candidate 

of    which falls within the ODR. Then, on the one hand we should 

increase |  | till   
      On the other hand we have to keep |  | relatively 

small to avoid too many false positive candidates confusing the final 

combination. To solve this problem, for each algorithm, we used a 

training dataset (TR1) and checked the ratio of the images with   
     

and selected the smallest |  | as the number of candidates above which 

the increase of     
      slows down (see Figure 15 for the proper 

 

Figure 14: Visual explanation of an alternative way of the extraction of 

multiple candidates. 
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behavior). Note that, this selection is rather close to the elbow method in 

kNN clustering. 

 

3.4.3 Finding clique with maximum total weight 

After determining |  | for    (i=1,2,…,N), we assign weights to 

candidates as given in definition 5. As a generalization of simple majority 

voting, we locate the OD as the region containing candidates having 

largest weight in total. To solve this problem we build up a graph 

  〈     〉 as given in definition 6. In this graph, edge connects two 

adjacent vertices (           ) if ‖         ‖ 
  , where d=2R. We 

 

Figure 15: Number of candidates of member algorithms for the OD 

center. Red circles correspond to the chosen values (|  |  |  |  

  |  |  |  |  |  |  |  |    |  |   ). 
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note that, this OD geometry constraint ensures that exclusively candidates 

belonging to different algorithms may fall within a   . 

So, after having connected those vertices of the graph with edges 

which fall within a possible region of the object. In this graph, we look for 

the complete sub-graph (definition 7) with maximum sum of weights of 

nodes. Namely, we have to solve the problem of looking for the clique 

    
   of   with maximum weighted vertices or in other words the 

problem of looking for the maximum-weighted clique (MWC) defined in 

definition 8. The corresponding graph theoretical problem in this 

representation, namely MWC finding problem is known to be NP-hard. 

For the solution of this task, we borrow an algorithm [61] which is based 

on heuristic vertex-coloring and backtrack search. This algorithm 

provides the MWC and works quickly also on dense graphs. 

The obtained maximum-weighted clique is considered as the solution 

of the proposed ensemble-based OD detection system. The final object 

center      is determined as the centroid of the maximum-weighted 

clique, as:  

(     
  

 

|   |
∑   

     

      
  

 

|   |
∑   

     

)  (12)  

where |   | denotes the number of vertices of MWC. 

3.4.4 Localization of the OD by finding MWC 

For such a graph and the final result of the MWC-based combination of 

the members see Figure 16. Note that, the input fundus images are the 

same in Figure 11 and in Figure 16 for the better comparability of the 

ensemble-based systems. 
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Unfortunately, in some cases the maximum-weighted clique-based 

ensemble of the member algorithms still could not find the correct 

location e.g. in Figure 17. Moreover, these extracted candidates cannot be 

used for the detection of the precise region of the object. These are the 

reasons why we examine further the possibilities to take advantage of all 

the information provided by the member algorithms about the location of 

the single object. 

 

Figure 16: Localization of the OD by finding MWC. Candidates (black 

dots) are connected if their distances are less than 2R; the maximum 

weighted clique is indicated by green lines 
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3.5 Probability maps-based ensemble 

 

The basic idea is to utilize as much information as possible about the 

location of single object. Namely, we expect the member algorithms to 

assign          (i=1,2,…,N) to each     indicating their confidence 

that   is the center of the object. These confidence values together define 

probability maps for the input image. Now, we introduce some possible 

approaches to fuse these maps in order to increase the accuracy of single 

object detection.  

The fields of decision making and risk analysis, where information 

derived from several experts and aggregated by a decision maker, have a 

well-established literature [62], [63], [64]. In general, the aggregation of 

information increases the precision of the forecast. In our scenario, we 

can consider the assigned          (i=1,2,…,N) to each     as the 

 

Figure 17: The finally localized OD center lays out the true ODR. 
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opinion of the member algorithms on how probable it is that the given 

pixel is the center point of the object. Based on the fact of the positive 

effect of the ensemble, if we consider the algorithms as experts with 

voting their confidence value and apply aggregation accordingly, the 

accuracy of the single object detection should improve.  

As a short summary concerning the combination of information 

deriving from experts, basically two approaches are known in the 

corresponding literature [62]. One of them is based on clearly established 

mathematical rules, whereas the other one is entrusted to the interaction 

of an expert, also known as a behavior-based method. In a behavior-based 

model, the experts contact with the decision maker directly or indirectly 

to make him/her take their arguments and statements into consideration to 

reach consensus. In this approach, the quality of the individual experts 

and the dependencies among them are considered implicitly rather than 

explicitly. So, we examine only the applicability of strict theoretical 

approaches which are widely available in the literature from the simple 

axiomatic methods to the processes requiring different information 

aggregation models. In the case of single object detection, axiomatic 

approaches can be applied easily to each     to aggregate the 

probability values assigned by    (i=1,2,…,N) to  . Considering the more 

complex approaches, we should apply a training set to determine all the 

necessary parameters to set up the model for the ensemble. 

3.5.1 One member algorithm – one probability map 

The most of the involved algorithms (   ODdecomp,    ODedge, 

   ODentropy,    ODclassify,    ODfuzzy,    ODhough,    ODcHough) 

basically assign          (i=1,2,…,N) to each     (as it is introduced in 

section 3.4.1) but they apply a threshold to select only one location 

corresponding to the highest value. Thus, we can easily modify them by 
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omitting their final thresholding step and can consider each     as a 

        equipped with      (    ) by    (i=1,2,…,N), where |  |  | |. 

In this way    (i=1,2,…,N) provides a probability map (    as given in 

definition 9) about the possible location of the single object. 

The     (i=1,2,…,N) can also be considered as probability 

distribution function, if the following conditions hold: 

                      for all       (13)  

∑        

   

 (14)  

Condition (13) can be fulfilled by assigning a very small probability value 

    to each position, which originally has zero confidence: 

                       (15)  

Finally, to meet condition (14), we perform the following normalization 

step:  

        
       

∑           
   (16)  

In this way, the probability maps     (i=1,2,…,N) are transformed to the 

probability distribution function PDFi. After we have these PDFs, we can 

fuse them by applying standard axiomatic approaches or more complex 

aggregation models. 
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3.5.2 Aggregation based on axiomatic approaches 

The product, sum, minimum, maximum of the probability distribution 

functions are the simplest approaches of the aggregation in the 

corresponding literature [62], [63]. These techniques are realized by 

simple arithmetic operations performed between two or more PDFs 

produced by the experts. One of the most commonly used axiomatic 

approaches is the linear opinion pool published by Stone in [65]. This 

method calculates the weighted sum of the probability distribution 

functions      rendered by    (i=1,2,…,N): 

         ∑       

 

   

   (17)  

where          represents the combined probability distribution and wi 

the weights assigned to the experts provided that we have information on 

their reliability. As a natural condition, ∑       (i=1,2,…,N) must hold. 

If       , we have a simple linear combination, otherwise a weighted 

linear one. 

Multiplicative averaging (also known as logarithmic opinion pool) is 

another commonly used fusion approach [62].  In this case, probability 

distribution functions are combined as: 

          ∏    
  

 

   

  (18)  

where k is a normalizing constant and    represents the same weights as 

above. If       , (18) returns the geometric mean of the individual 

distributions. These axiomatic approaches combine the PDFs in a simple 

way with ignoring the quality of the members and the dependencies 
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among them. Now, we start discussing the Bayesian models of the 

information aggregation process, which require input regarding bias and 

dependencies of the experts. 

3.5.3 Aggregation based on Bayesian models 

In [66] and [67], Morris formally laid the foundation of the Bayesian 

paradigm to aggregate the information collected from different experts. 

The Bayesian models operate on the individual probability distribution 

functions to aggregate them. In the case of single object detection, 

according to these models the pixels can be considered as the center point 

(  ) or not (  ). Thus, using the Bayes’ theorem we assign the ensemble-

based probability to each pixel     on whether it is the object center 

through the following way based on the probability distribution functions 

     (i=1,2,…,N): 

       if  
    |                       |                    

(19)  

As only two cases are possible, we have               for each 

pixel. Thus, in our case it is sufficient to determine the probability of    

for   with the help of the Bayes’ theorem. To each     we calculate the 

posterior probability in (19) by the help of the Bayes’ rule in the 

following way: 

   |                          |        (20)  

where       Note that,   does not appear in the denominator 

              , so this term is applied only for normalization. Thus, 

it can be omitted by following the general recommendations [64]. 
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The a priori probability      in the numerator of (20) can be easily 

estimated from the training database (TR1). The calculation of the joint 

probability distribution function              |   depends on the 

fact whether the model takes the dependencies of the member algorithms 

into account or not. In this respect, there are two basic approaches in the 

relevant literature as discussed next.  

3.5.3.1 Naïve Bayes combination 

In the first Bayesian approach, let us suppose that the experts do not 

influence each other, there is no connection between them, so they give 

their opinion or forecast completely independently. That is, according to 

this naïve hypothesis, the decision maker manages the information 

collected from the experts independently. This type of aggregation is 

known as the Naïve Bayes model and the joint distribution function in 

(20) can be separated according to the conditionally independent 

assumption based on the following formula: 

             |    ∏      |  

 

   

  (21)  

Consequently, the aggregation of the probability distribution functions 

     (i=1,2,…,N) can be derived based on (20) and (21) as: 

               ∏         |   

 

   

  (22)  

where          |    (i=1,2,…,N) are estimated on the basis of the 

probability values assigned by the algorithms to the   within the manually 

segmented object in the images of the training set. Since all the terms of 
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(22) can be estimated from the training examples, the Naïve Bayes model 

can be easily constructed and adopted, as well. However, this model 

ignores the dependencies among the members although, the assumption 

on the conditional independence of the experts is fulfilled very rarely in 

practice.  

To measure up the dependencies of the member algorithms    and    

(i, j=1,2,…,N), we can calculate the Pearson's correlation coefficient      

[68].      is calculated pairwise for the member algorithms through 

comparing all the pairs (               )                as: 

     
 [              (            )]

              
   (23)  

where         stands for the mean, while         for the standard 

deviation of the probability map     , respectively. The coefficients      

describe the dependencies between    and   . Non-zero coefficients show 

dependencies suggesting that the model can be improved further as 

presented in the next section. 

3.5.3.2 Augmented Naïve Bayes combination 

In the corresponding literature [69] the problem is well-known that 

experts do not provide their opinions or forecasts entirely independently 

from each other. So, combining their input in a way that the decision 

maker considers the experts independent, have a negative effect on the 

result. In this case, a Bayesian model is required, which is able to take all 

the dependencies between the experts into account. To address this issue, 

the optimal Augmented Naïve Bayes (ANB) model has been suggested 

[70], where during the learning phase the dependencies of the members 
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are also incorporated. However, creating such an ANB model is an NP-

hard problem [71], so it is recommended to choose an alternative 

approach which takes the dependencies into consideration, however, does 

not try to disclose them entirely. One of these models is the Tree 

Augmented Naïve Bayes (TAN) [70] one, which has the disadvantage 

that only the most dependent pairs are preserved and the effect of the less 

dependent experts are omitted. As a trade-off, the complexity of the 

creation of the TAN model is significantly reduced. Contrarily, the 

Hidden Naïve Bayes (HNB) model developed by Zhang et al. [72] is 

capable of taking all the dependent experts into account collectively. 

Thus, the HNB model approximates the precision of the optimal ANB 

model better, while its time complexity for training is only polynomial. 

The basic idea of the HNB model is that a hidden expert (HE) is 

created for each expert which can affect it. Thus, the i-th expert depends 

only on the i-th HE (HEi), where HEi contains all the dependency 

relations between the i-th and the other experts. That is, the joint 

probability in the numerator of (20) can be calculated by the HNB model 

considering the dependencies among the experts as: 

             |   ∏      |      

 

   

  (24)  

where 

      |       ∑    

 

       

 (    |      ) (25)  

with ∑    
 
       =1. As it can be seen,     is the hidden expert of      

(i=1,2,…,N) and is basically a mixture of the weighted dependencies with 

other experts. The weights     (i, j=1,2,…,N, i ≠ j) are determined using 



 

 

51 

 

the training set based on the conditional mutual information (CMI) of 

     and     : 

    
   (         | )

∑    (         | )
 
       

   (26)  

where CMI is generally calculated as:  

       |    ∑            
     |  

   |    |  
 

     

  (27)  

Using the weights     (i, j=1,2,…,N, i ≠ j), the hidden experts     

(i=1,2,…,N) can be determined. Thus, the HNB model incorporates all the 

dependencies among experts similarly to the optimal ANB one. However, 

the time complexity of the training phase of HNB is             , 

where t is the number of training pixels of the training images, N is the 

number of algorithms, k is the number of classes and v is the average 

number of values for an attribute. 

After defining the weights     (i, j=1,2,…,N, i ≠ j), the aggregation of 

the probability maps      (i=1,2,…,N) can be executed via the HNB 

model on the basis of the following formula: 

                ∏         |          

 

   

  (28)  

3.5.4 Localization of the OD by the fusion of probability maps 

Till this point of this section, we introduced general, ensemble-based 

frameworks for single object detection, when we have more than one 
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member algorithms which can generate probability maps to locate the 

object. Now we show how to apply these approaches for OD detection 

and observe their performance considering the accuracy of localization. 

For visual and precise comparison of the fusion of probability maps-based 

approaches, we aggregate     of the                   and    for the 

sample image of Figure 17 (as it can be seen in Figure 18). 

 
As we have discussed in section 3.5.1, the proposed ensemble 

approaches can be applied if the PMs fulfill conditions (13) and (14). For 

this aim, the PMs are transformed to probability distribution functions 

(PDFs) by formulas (15) and (16). In Figure 19, we can see a visual 

representation of the PDFs derived from the PMs of Figure 18. 

 

Figure 18:     of    (i=1,2,…,N) for the sample image of Figure 17. 
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After constructing the PDFs, they can be fused by applying the 

standard axiomatic or Bayesian model-based approaches. For axiomatic 

ensemble of PDFs the weights    (see (17) and (18)) are calculated from 

the individual accuracies as follows: 

   
    

∑     
 
   

   (29)  

where      denotes the individual accuracy of    on the TR1 training set. 

After making tests on a training set, we adjust the following weights: 

w1=0.16, w2=0.18, w3=0.17, w4=0.16, w5=0.04, w6=0.16, w7=0.13. The 

result of the combination of      (i=1,2,…,N) by weighted linear 

opinion pool and weighted logarithmic opinion pool can be seen in Figure 

21(a) and 21(b), respectively. 

Now we turn to the Bayesian model for OD detection. During the 

training stage, we determine the probability of OD center pixels among 

all the pixels of the training images of TR1. However, there is only one 

OD center point in the image, and considering the number of all the 

 

Figure 19: The probability distribution functions of    (i=1,2,…,N). 
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image pixels, a priori       is a very small value. Since     would be 

very under-represented in this way in a training dataset, we interpret    in 

a wider sense. Namely, we let    represent not only the case when 

      , but also when   falls inside the OD region        . In 

other words, we do not restrict our attention to the center, but we accept 

any OD pixels. Note that, in this way       becomes sufficiently large, 

and from now we work in this extended context. Besides the a priori 

probability      , the conditional probabilities          |    

(i=1,2,…,N) are also calculated inside and outside the region of the OD. 

To collect the training dataset for Bayesian models, we have 

calculated      (i=1,2,…,N) for all the 327 images of TR1. Then, we 

have randomly selected 400 000 pixels from these images together with 

their corresponding      (i=1,2,…,7) values. In this way, 4% of the 

pixels belonged to OD regions in the training set. Figure 20 shows the 

distribution of the probability values inside and outside the region of the 

OD for these selected pixels. 
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As we have mentioned in section 3.5.3.1, the assumption on the 

conditional independence of the experts is fulfilled very rarely in practice. 

This assumption does not hold for the involved OD detectors either. The 

Pearson’s correlation coefficients      for all the possible pairs of member 

algorithms can be observed in Table 2. 

 

Figure 20: Distribution of probability values provided by (a)   , (b)   , 

(c)   , (d)   , (e)   , (f)    and (g)    for images of TR1. Red/Blue 

shows the values inside/outside the OD region. 
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A smaller (close to 0) correlation value corresponds to smaller 

dependency of the given algorithms. For instance, A1 and A4 seem to be 

the most diverse algorithms compared to each other regarding this 

measure. There are no zeros in Table 2 showing the trivial fact that the 

members cannot be completely independent. Thus, we can apply the HNB 

model which takes the dependencies among the detectors also into 

consideration. A sample result for the combination based on the Naïve 

Bayes model and HNB can be seen in Figure 21(c) and 21(d), 

respectively. 

 
A1 A2 A3 A4 A5 A6 A7 

A1 1.0000 0.6034 0.6339 0.1122 0.3235 0.2645 0.5634 

A2 0.6034 1.0000 0.6612 0.4070 0.6070 0.6150 0.8172 

A3 0.6339 0.6612 1.0000 0.2094 0.3934 0.3607 0.6437 

A4 0.1122 0.4070 0.2094 1.0000 0.1928 0.3733 0.2427 

A5 0.3235 0.6070 0.3934 0.1928 1.0000 0.5553 0.4733 

A6 0.2645 0.6150 0.3607 0.3733 0.5553 1.0000 0.4793 

A7 0.5634 0.8172 0.6437 0.2427 0.4733 0.4793 1.0000 

Table 2: Pearson's correlation coefficients of    (i=1,2,…,N). 
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In all the images of Figure 21, very high probability values can be 

observed in the region of the OD, so its location can be found with a 

simple extra step. Namely, the center of    is matched on each   of the 

resulted ensemble PDF image and that   is selected as     , where we 

find the maximum sum of PDF values for the pixels within the matched 

  . 

If we compare the results of the axiomatic models (Figures. 21(a) and 

21(b)) with the Bayesian ones (Figure 21(c) and 21(d)), we can see 

significant difference between the areas, where the OD is detected with 

lower probability. There are high peaks at the possible OD locations, but 

the rest of Figure 21(c) and 21(d) are flat because of the more complex 

aggregation models. Furthermore, as we consider    in a wider sense by 

letting it represent the event      , the resulted PDFs of the Bayesian 

models show high probability also at the pixels falling within the OD 

region not just at its center. Thus, the automated system can determine 

 
Figure 21: Results of combination of    s by (a) linear opinion pool, 

(b) logarithmic opinion pool, (c) Naïve Bayes model, (d) HNB model. 
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OD region (      ) if it considers the area connecting to the peak found 

by the template    matching process. If    expands this region, their 

union is considered as the segmentation of the OD region, as it can be 

seen also in Figure 22.  

 

3.6 Experimental results 

 

For the measurability of the accuracies of the introduced ensemble-based 

single object localization approaches, manually selected ODR are 

supplied for the images of DIARETDB0, DIARETDB1, DRIVE and 

MESSIDOR datasets. As we mentioned in section 3.1, we consider three 

error functions for measuring the accuracy according to the definition 11, 

12 and 13. 

The main motivation of our contributions is to see how including 

more and more information from the members can improve the 

performance of the ensemble. Tables 3, 4, 5, 6 compare the respective 

performances of the member algorithms (                  and   ), 

OD detection based on simple majority voting, finding maximal weighted 

clique, combining probability maps by the axiomatic approaches and by 

the Bayesian models on the DIARETDB0, DIARETDB1, DRIVE and 

 
Figure 22: (a)  , (b) result of the combination by HNB model, (c) 

       (white region) with marking      (green cross) and manually 

drawn ODR (black line). 
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MESSIDOR datasets. We note that,      depends on the resolution of the 

input image, which explains why the average      is lower on the DRIVE 

dataset than on the others. For simplicity, we have normalized      for 

the highest resolution (2304×1536 pixels) regarding the images of the 

MESSIDOR dataset.  

As we can see, the highest accuracy can be achieved, when the 

aggregation model uses the largest amount of information about the OD 

location provided by the algorithms and the dependencies between them. 

 

 DIRAETDB0 DIRAETDB1 

 
                  

A1 86.92% 26.45 91.01% 27.64 

A2 90.77% 20.06 91.01% 17.72 

A3 87.69% 36.91 85.39% 36.73 

A4 85.38% 20.35 80.91% 21.79 

A5 30.11% 45.80 40.45% 44.23 

A6 84.62% 42.49 84.27% 47.66 

A7 63.08% 39.04 68.54% 37.49 

Majority voting 
based ensemble 

94.62% 15.68 94.38% 17.40 

Finding MWC based 

ensemble 
95.38% 9.38 95.51% 9.19 

Combining MPs by 

weighted LinOP 
93.08% 16.76 95.51% 16.14 

Combining MPs by 

weighted LogOP 
91.54% 24.53 93.26% 24.31 

Combining MPs by 

Naïve Bayes model 
96.15% 22.36 96.63% 21.24 

Combining MPs by 

HNB model 
98.46% 16.86 98.88% 14.49 

Table 3: Comparative results on the dataset DIRAETDB0 and 

DIRAETDB1. 
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None of the member algorithms involved in the study is suitable for 

detecting the exact       . Therefore, we did not evaluate the individual 

OD detectors for     . We merely notice that the segmented OD region 

based on the combined probability maps by the NB model against the 

manually drawn OD region achieved the following corresponding 

precisions:           on DIARETDB0,           on DIARETDB1 

and           on DRIVE. When the combination was made by the 

 DRIVE MESSIDOR 

 
                  

A1 80.00% 17.05 93.49% 27.87 

A2 92.50% 11.48 93.55% 32.73 

A3 85.00% 18.7 91.04% 36.53 

A4 70.00% 9.65 64.78% 25.78 

A5 82.50% 15.41 39.49% 64.14 

A6 72.50% 17.62 90.29% 57.99 

A7 92.50% 14.79 64.57% 41.67 

Majority voting 
based ensemble 

100.00% 11.26 95.29% 14.41 

Finding MWC based 

ensemble 
100.00% 6.08 96.33% 14.78 

Combining MPs by 

weighted LinOP 
100.00% 12.12 97.33% 39.32 

Combining MPs by 

weighted LogOP 
100.00% 12.59 97.33% 36.04 

Combining MPs by 

Naïve Bayes model 
100.00% 11.62 97.65% 24.45 

Combining MPs by 

HNB model 
100.00% 9.12 98.33% 21.12 

Table 4: Comparative results on the dataset DRIVE and MESSIDOR. 
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HNB model, then we got                     for DIARETDB0, 

DIARETDB1, and DRIVE, respectively. 

Although, many state-of-the-art algorithms (e.g. [7], [73], [74]) are 

available for the segmentation of the OD boundary which can outperform 

the proposed ensemble of the algorithms regarding     , we have to take 

into consideration the fact that none of the member algorithms can detect 

the region of the OD. However, their combination is suitable for this task 

as it can be seen in Figure 23. 

In this figure, three rows contain images as a follows: sample images; the 

results of aggregation by HNB and a closer look of the finally segmented 

      . The black boundary in the third row shows the manually 

segmented OD regions, the white patch the automatically segmented 

ones, and the green cross the     . 

  

 

Figure 23: Results of the segmentation of the OD region based on 

aggregated probability maps using the HNB model.  
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3.7 Discussion 

 

As our results suggest, the precision achieved by the member algorithms 

can be increased, if an ensemble of them is computed based on majority 

voting or finding maximum-weighted clique in weighted graph. 

Furthermore, as it can be observed also in Tables 3, and 4, if all the 

information about the location of the single object is considered, the 

accuracy of the detection also increases with using the appropriate fusion 

model. The accuracy can be further increased by disclosing the dependent 

behavior of the member algorithms. Namely, if we incorporate 

information about the dependencies of the members into the model, they 

are less able to influence negatively the final result when they are wrong. 

The proposed ensemble-based methods allow the application of any 

member algorithms, so they can be considered as a general framework for 

composing ensembles. The only requirement is that any possible single 

object detector algorithm should be able to assign probability values to all 

the pixels of the input image for suggesting the center of the object. If the 

system is extended by new algorithms that are based on different 

principles, the performance of the ensemble can be expected to improve 

further. 

All the seven involved OD detector algorithms in the demonstration of 

the single object detection task were reimplemented in Matlab 

environment by following the respective instructions given in [8], [9], 

[10], [11], [12], [13] and we used a single core 2.4GHz CPU with 2GB 

memory for testing. The computational times of the original algorithms 

are the same with a negligible difference as their variants which are 

capable of assigning probability values to each pixel with producing the 

maps      (i=1,2,…,N) for an input image. The reason for the same 

demands of computations is that the original algorithms also calculate 

confidence values for each pixel and select the maximum to return the 
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center of the OD. The computational times of the member algorithms are 

ODdecomp [8] – 190 s, ODedge [8] – 237 s, ODentropy [9] – 93 s, ODclassify [10] 

– 214 s, ODfuzzy [11] – 5.57 s, ODhough [12] – 1.36 s, ODcHough [13] – 4.76 s 

per image, respectively. The majority voting-based combination of the 

outputs of individual members is done in 7.2 ms while the finding of 

maximum-weighted clique in the weighted graph is done in 57 ms per 

image. The aggregation of the maps      (i=1,2,…,N) is done in 40 ms 

per image for axiomatic approaches as Matlab is efficient in matrix 

operations. The computational times for the Naïve Bayes model-based 

aggregation approaches also depend on the size of the input image. 

Excluding the training phase, we have measured the following times: 

simple Naïve Bayes model – 220 ms, TAN – 200 ms and HNB – 250 ms 

per image. For the applied TR1 training dataset, the number of operation 

to train the HNB model is 25 972 450. 
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4 Exudate detection framework 

An automatized system developed for DR screening has to be able to 

detect the symptoms caused by DR at an early stage, beyond being able to 

localize anatomical parts of the eye such as the OD, the macula and the 

network of capillaries. Several articles have been published [20], [21], 

[22], [23], [24], [25], [26], [27], [28] and [29] in connection with the 

detection of exudates. Some of these are based on the function of the 

grayscale morphology, while others are based on classification for the 

segmentation of exudates.  

In this section, we introduce a framework created for the detection of 

objects appearing in image multiple times (e.g. exudates). This 

framework involves two approaches which are commonly applied in the 

relevant literature. Namely, it uses grayscale morphology and applies 

machine learning-based methods for classification. This complex method 

can be divided into three main stages as it can be seen in Figure 24: 

candidate extraction, relevant features extraction and the labeling of 

candidates as true or false exudates. 

 
For candidate extraction, a grayscale morphology-based method is 

applied to identify the possible regions which probably contain these 

 

Figure 24: Steps of the proposed exudate detection framework. 
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bright lesions. The result of the candidate extraction is a binary image 

which can be used for determination of the relevant pixels which may be 

in connection with exudates. Considering these parts of the fundus image, 

we extract the appropriate pixel/region-wise features and finally a 

classifier, using these features, decides whether these parts can be 

considered as exudates or not. The method is tested on publicly available 

databases to measure the accuracy of the detection of exudate regions at 

image-level. Regarding the experimental results, our complex framework 

outperformed the state-of-the-art exudate detectors involved in the study. 

In the corresponding literature, a large number of exudate detection 

algorithms have been proposed. In general, we can divide these 

approaches into two main groups. The first group contains algorithms 

based on grayscale morphology [20], [21], [22], while the second one 

consists of methods considering pixel/region-wise classification [23], 

[24], [25], [26], [27]. Furthermore, we can find some special approaches 

(e.g. [28], [29]) falling out of these groups. Walter et al. [20] proposed a 

method using morphological closing to eliminate blood vessels, and then 

the local standard deviation is calculated and thresholded to find the 

candidate regions. Finally, morphological reconstruction is applied to find 

the contours of the exudates. Sopharak et al. [21] introduced a technique 

which is based on optimally adjusted morphological operations. Since the 

OD is also a bright patch, it is eliminated and Otsu’s algorithm is used for 

thresholding to locate regions with high intensities. Welfer et al. [22] 

applied morphological operations and H-maxima transform after contrast 

enhancement on the channel L in the color space CIE 1976 L*u*v*. 

Sopharak et al. [23] proposed a method using Fuzzy C-Means Clustering 

so that it can be determined whether a pixel belongs to an exudate or not. 

Then, morphological operations are applied to refine the segmentation 

result. Sopharak et al. [24] designed an algorithm for exudate detection, 

which applies pixel-wise classification. Namely, a Naïve Bayes classifier 
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sorts out each pixel based on five extracted features. The method 

proposed in [25] also considers pixel-wise classification, but the training 

database is defined for each analyzed image separately. That is, the 

algorithm first detects small isolated exudates and uses those pixels as a 

positive training set. Then, the rest of the image pixels are classified 

based on their corresponding properties. Niemeijer et al. [26] proposed a 

multi-level classification approach for segmentation of pixels which 

belongs to bright lesions with high probability. These pixels are grouped 

into clusters and the clusters are labeled as exudates, cotton-wool spots or 

drusens. Jaafar et al. [28] proposed exudate detection based on a split-

and-merge technique. This algorithm splits the images into disjoint 

regions first, and merges them based on local variance afterwards. 

Finally, a histogram-based adaptive thresholding is applied to each 

merged region. Ali et al. [29] proposed an atlas-based method to detect 

exudates.  

The application of extracting candidates to decrease the time of 

computation, in the case of detection of another lesions caused by DR, is 

well-known technique as it is used in [17], [25]. Basic concepts of 

candidate extraction is to gain those pixels/regions by a simple and quick 

operation which connects the desired object with high probability thus, 

techniques demanding more complex operations are applied exclusively 

on these extracted parts of the image. In this manner, the computation 

time is significantly decreased. Thus, the proposed exudate detector 

framework use grayscale morphology-based algorithm as candidate 

extractor. Following this, a classifier algorithm decides whether these 

extracted candidates can be considered as true exudates or not.  

On the one hand, we use the characteristics of the extracted pixels for 

classification; a classifier makes a decision about each pixel whether 

those correspond to the pixels of the wanted object. We collected all 

characteristics of the exudate at pixel-level for the classification and we 
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selected those which were the most suitable for classification. The 

computational time of the evaluation at pixel-level is significantly 

reduced through the application of candidate extractor and the precision 

of the proposed method outperforms the state-of-the-art algorithms 

involved in the comparison regarding accuracy. The corresponding result 

is also published in [35]. 

On the other hand, the result image contained plenty of false positive 

pixels due to the fact that the evaluation is done at pixel-level. Thus, as an 

improvement, the extracted candidates are evaluated at region-level 

instead of pixel-level by the classifier. Owing to this modification, the 

algorithm assigns a label to the regions on the basis of descriptors 

extracted from them. The features used for classification can be derived, 

amongst others, from the contours of the regions. Because of this, the 

accuracy of the classifier depends on the precision of the contour of the 

regions. Thus, we examine some active contour-based algorithms and use 

them at first occasion in the literature in order to define the exact contour 

of the region for the detection of exudates. On the basis of the evaluation 

the descriptors at region-level, calculated from the precise contour, 

enabled the classifier to make more precise classifications. Furthermore, 

the number of false positive pixels in the result image is reduced as well. 

The corresponding result is also published in [36], [37] and [38]. 

As final improvement, we try to extract the most precise and 

descriptive features of exudates for classification. For this aim, we fuse 

the commonly used image enhancement algorithms in order to increase 

the precision of the segmented contour of the candidate regions. The 

features describing the regions become more reliable and the classifier 

can reach higher accuracy when it selects the true exudates from all. The 

corresponding result is also published in [39] and [40]. 

The rest of this section is organized as follows. In section 4.1, we 

introduce some concepts regarding the multiple objects detection and we 
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give a brief overview about the applied image enhancement methods, 

grayscale morphology-based method and active contour-based method in 

section 4.2. In section 4.3, we give an overview about the proposed 

exudate detection framework and show how we can use active contour-

based method for precise boundary detection and which regions-wise 

descriptors are recommended for classification. Section 4.4 is dedicated to 

comparative experimental results regarding some other state-of-the-art 

exudate detection methods. Finally, some discussions are given in section 

4.5. 

4.1 Concepts in the fields of multiple objects 

detection 

In this section, we provide some basic concepts for multiple objects 

detection in digital image for the easier and precise reference in the latter 

parts of the section 4.  

We can consider the problem of the exudate detection as a detection 

of multiple objects where the key question is the presence of the objects 

in the image. Namely, we have to determine that these objects are in the 

image or not and this way the proposed method can be integrated into an 

automatic DR screening system to detect the exudates in fundus images. 

As it can be seen in Figure 24, the proposed exudate detection 

framework starts with a candidate extractor step, which gains those parts 

of the image which probably contain exudates. We emphasize the 

similarities between the introduced terms and those used in the literature 

of image processing [75]. 

Definition 14:  Let   be a digital image. A candidate extractor algorithm 

provides a binary image    for I. The pixel values         if the   is a 

pixel of exudate candidate otherwise            
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Definition 15:  Let  ,   be any two pixels of   so that              . 

  and   are called 8-neighbors if their coordinates fulfill the following 

equation: 

   {|     | |     |}     (30)  

Definition 16:  Let  ,   be any two pixels of   so that              . 

There are path from pixel   to   if there are a sequence of points 

          where      and      and      is a 8-neighbors of    

(i=1,…,n-1). 

Definition 17:  A set of pixels can be called as region   if it contains a 

path between any pair of its pixels, all of whose pixels also belong to the 

set. 

Definition 18:  The border   (boundary, contour) of a region   is the set 

of pixels within the region that have one or more neighbors outside  . 

Definition 19:  Let    be a set which contains all of the regions contained 

by    and       is a candidate region with boundary    (i=1, 

2,…,|  |) extracted from input image   by a candidate extractor.  

To improve the descriptive nature of the pixel-wise and region-wise 

features extracted from    (i=1,2,…,|  |), we apply some image 

enhancement methods which can improve the contrast and the 

information content of the input image regarding exudates. 

Definition 20:  Let   and    be two digital images.    is an enhancement 

version of   if there are exist image enhancement method which can 

transform   to   . The set of all generated enhancement version of   is 

denoted by  . Note that, we also let    . 
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Moreover, we propose the application of an active contour method to 

determine the precise boundary of the candidate region    (i=1,2,…,|  |) 

as a proper classification is necessary, as it will be shown in section 4.3.2. 

Definition 21:  Let     be an active contour method which can 

determine a precise contour      of    (i=1,2,…,|  |) by minimizing its 

energy function regarding an enhancement version of       

(j=1,2,…,| |). 

 

After having enhanced the   and determined the precise contour of    

(i=1,2,…,|  |) we collect features into a vector by considering the 

properties of the pixels within    and region-wise attributes of    (i=1, 

2,…,| |). 

Definition 22:  Let   be a feature extractor which assigns a feature 

vector for each       (i=1,2,…,|  |). When  ,   are any two pixels of    

(i=1,2,…,|  |) and           we call the elements of vector as 

region-wise features and the region-wise feature vector is denotes by 

      (i=1,2,…,|  |) otherwise they are called pixel-wise features. 

Definition 23:  Let   be the set of labels.       (i=1,2,…,|  |) is labeled 

with         by classifier if    is a true/false exudate. 

Definition 24:  Let      be a set of regions       (i=1,2,…,|  |) which 

are labeled with      by classifier. We note that   is considered as 

healthy image if |    |   , otherwise it is unhealthy according to the 

proposed exudate detection framework.  

We evaluate our proposed exudate detection method at image-level 

which means that we consider the following classical measures used in 
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the relevant literature [20], [21], [22], [23], [24], [25], [26], [27], [28], 

[29] also.  

Definition 25:  Let      be a set of regions which are in the manually 

drawn binary image containing the exudate regions found by experts in 

image  . For the screening of   by the proposed exudate detection 

framework regarding      we apply the following: 

 I is true positive (   ) if |    |    and |    |   . 

 I is false positive (   ) if |    |    and |    |   . 

 I is true negative (   ) if |    |    and |    |   . 

 I is false negative (   ) if |    |    and |    |   . 

Definition 26:  For measuring the performance of the proposed exudate 

detector within a given dataset we can use the following descriptors: 

 sensitivity (SEN): 

    
        

                 
   (31)  

 specificity (SPE): 

    
        

                 
   (32)  
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 false positive rate (FPR): 

         , (33)  

 accuracy (ACC): 

    
                  

                                      
   (34)  

where                      means the number of                 

in a given test set. 

4.2 Applied algorithms from the relevant literature 

In this section, we give a brief overview about the applied existing 

algorithms as candidate extractor [20], image enhancement methods [11], 

[25], [56], [76], [78], [79], [80] and the active contour methods [81], [82], 

[85]. 

4.2.1 Candidate extractor 

Walter et al. [20] consider high local contrast and intensity in    as the 

most important properties of exudates. Since there is also a high contrast 

between the vessels and the background, the method eliminates the 

vascular system by a simple grayscale morphological closing. In the 

vessel-free image, the local variation is calculated at each pixel inside a 

window and the regions with low local variations are excluded. The OD is 

also eliminated from the image, because it is similar to exudates regarding 

brightness and contrast. The remaining bright regions are excluded from 
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the original image and the holes are filled in by morphological 

reconstruction. The result looks like a healthy image without bright 

lesions, so when it is subtracted from the original one, the difference 

image contains the bright exudate candidates only. Finally, thresholding is 

performed on the remaining candidates to try to eliminate false exudate 

pixels. This algorithm has three parameters: the size of the window, the 

contrast threshold and the brightness threshold, which are set as proposed 

by Walter et al. [20]. The boundaries of these extracted regions will be 

used as initial positions for the active contour segmentation method. 

4.2.2 Image enhancement methods 

4.2.2.1 Chromaticity Normalization 

Chromaticity normalization [76] can normalize the    according to the 

portion of the green among the colors as: 

    
  

        
   (35)  

where     is the enhanced intensity channel. This method is usually 

applied, when the scene is captured by a camcorder and the illumination 

of the object is not uniform in a video. In our case, it is suited to reduce 

the bright reflection of retinal images of young patients. 

4.2.2.2 Contrast Enhancement 

A robust contrast enhancement method has been proposed by Sanchez et 

al. [25]. To follow the instructions of the authors to enhance the image for 

further analysis, we convert the image from the color space RGB to the 
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YIQ and modify the channel Y by the weighted sum of the channels (Y, I, 

Q) as: 

               (36)  

where  ,   and   are parameters which depend on the characteristics of 

the image. They are selected                   to reduce the 

local luminance variability throughout      and increase the mean 

contrast levels. After this modification, we convert        back to the 

color space RGB and it causes the             .      channel of the 

resulting image is considered as the enhancement version     of the input 

image where the bright regions become brighter, while the dark ones 

darker. 

4.2.2.3 Contrast-Limited Adaptive Histogram Equalization 

Contrast-limited adaptive histogram equalization (CLAHE) [56] improves 

the contrast of the image locally. The sufficiently high contrast of the 

fundus image is very important, since besides high intensity, the contrast 

is another useful feature in exudate detection. After applying CLAHE to 

  , the exudates can be better distinguished from the background on the 

resulting image    . 

4.2.2.4 Grey-World Normalization 

Grey-world normalization [78] divides each color channel by its 

respective average intensity, so it is suitable to suppress shining along 

temporal arcades. As    contains the largest amount of information about 

the lesions and anatomical parts, we consider only the gray world 

normalization of    as: 
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  ̅
  (37)  

where     is the resulting enhanced channel and   ̅  is the average 

intensity of the green channel. 

4.2.2.5 Illumination Correction 

The illumination is usually non-uniform in retinal images due to the 

variation of the retinal tissues and the spherical shape of the eye. To 

suppress non-uniform illumination, we apply illumination correction [79]. 

To perform this image enhancement technique, a spatially large median 

filter is applied to   . To get the corrected image    , the blurred image is 

subtracted from the original one. 

4.2.2.6 Illumination Equalization 

Besides illumination correction, we also simulate uniform illumination by 

using illumination equalization [11]. The adjusted intensity values        

are derived for each pixel as: 

                
 

|    |
∑      

      

  (38)  

where   is the desired average intensity and      is the     pixels 

local neighborhood of the pixel    . 

4.2.2.7 White Top-Hat Transformation 
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White top-hat transformation [80] is a morphological operator designed 

for extracting bright regions from   . Since the opening operator realizes 

an erosion followed by a dilation, the darker regions will suppress the 

brighter ones on the opened image. When this relatively dark image is 

subtracted from the original one, the intensity peaks are enhanced and the 

exudates can be distinguished better from the background on the resulting 

image    . 

4.2.3 Active contour methods 

4.2.3.1 Gradient Vector Flow and snake model 

A traditional snake [77] is a curve       [         ]   [   ], that 

moves through the spatial domain of an image to minimize the energy 

function: 

       ∫
 

 
  |     |   |      |       (    )  

 

 

  (39)  

where   and   are weighting parameters that control the tension and 

rigidity of the snake.       and        denote the first and second derivate 

of      with respect to  . The external energy function      is derived 

from the image so that it takes its smaller values at the features of interest, 

for example boundaries. 

A snake that minimizes (39) must satisfy the following Eulerian 

equation: 

                           (40)  
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where                can be considered as an internal force      which 

discourages stretching and blending while the external potential force 

       pulls the snake towards the desired image contour.  

To find a solution for (40), the snake is made dynamic by treating   as 

also a function of time  . Then, the partial derivate of   with respect to   

can be set as the left hand side of (40) as follows: 

                                     (41)  

A solution to (41) can be found by discretizing the equation and solving 

the discrete system iteratively. 

Xu and Prince defined a new non-irrotational external force field, 

which is called the gradient vector flow (GVF) field in [81]. First, they 

define a gradient field    based on the edge map of the image having the 

property that it is larger near the image edges.    consists of vectors 

pointing toward the edges, but it has a narrow capture range, in general. 

Furthermore, in homogeneous regions, the field is zero, and therefore no 

information about nearby or distant edges are available. Finally, GVF is 

defined to be the vector field                        that minimizes 

the following energy function: 

  ∫∫    
    

    
    

   |  | |    |       (42)  

where   is a regularization parameter. This parameter should be set 

according to the amount of noise on the image. After computing       , 

the external potential force        in the dynamic snake equation (41) 

can be replaced by       . Using a force balance condition and the GVF 

potential force field in (41), a GVF snake can be defined. The GVF field 

points toward the object boundary in its close surrounding, and varies 

smoothly over homogeneous image regions.   
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4.2.3.2 Markovian Segmentation Model 

Markov Random Field (MRF) provides a robust tool to find exact 

boundaries of objects by minimizing a specific energy function. To find 

the global minimum for the usual energy function is an NP-hard problem, 

however, certain energy functions can be minimized in polynomial time 

by graph cuts. Lesko et al. [82] proposed a segmentation algorithm, 

which requires user interaction to mark an initial set of 

foreground/background pixels. Then, segmentation is performed via 

graph cut in real time. 

As a well-known approach, segmentation can be considered as a 

labeling problem, where labels      {   }   are assigned to the pixels 

    {          }     based on some of their observed features 

    . Based on the Bayesian theorem, the posterior probability can be 

factorized as    |      |      , where the optimal segmentation  ̂ is 

obtained as the Maximum a Posteriori (MAP) estimate. Based on the 

Hammersley-Clifford theorem [83],  ̂ can be found with specifying MRF 

with clique potentials and minimizing Gibbs energy.  

The main contribution of [82] is to construct the Gibbs energy 

function in a way that it can be minimized via standard max-flow/min-

cut. Namely, the full gradient information is exploited as magnitude and 

direction next to the gray-level intensity and only the pairwise 

interactions (doubleton cliques) are considered. In this way, the 

constructed Gibbs energy can be represented by a graph and an exact 

MAP solution can be determined by computing the minimum s-t-cut on 

the graph [84] in polynomial time. 
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4.2.3.3 Level-Set Method and Chan-Vese energy function 

A level-set framework considers the 2D boundary   as an embedded part 

of a 3D surface and   is represented as the zero-level-set, where the 3D 

surface is intersected by the image plane. This approach allows the 

contour to vary iteratively from pixel to pixel by modifying the 3D 

surface and the image is divided into separate regions so that the defined 

energy function is minimized.  

Whitaker proposed the sparse field method (SFM) [85] which 

represents the 3D surface by lists of points L0, L-1, L+1, L-2, L+2,… 

according to the distance of the points from the intersection image plane, 

where L0 contains the pixels of the zero-level-set, and L-1/L+1 contains the 

inner/outer adjacent pixels, respectively. The changes of the 3D surface 

are followed by moving the pixels from/to the appropriate lists. The level-

set method can determine the zero-level-set for the next iteration by 

minimizing the following Chan-Vese energy function: 

                         (43)  

The energy function (43) depends only on the difference of the pixel 

intensities      and the respective average intensities inside  ̂   and 

outside  ̂    the contour   as formulated in the following way: 

       ∑ |   ̂  |
 

           

  (44)  

       ∑ |   ̂   |
 

            

  (45)  
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The energy function (43) takes its minimum, when both the inside and 

outside regions are the most homogeneous regarding pixel intensities. 

4.3 Methodology of the exudate detection 

framework 

In this section, we introduce an automatic exudate detector framework, 

which combines the advantage of several image pre-processing methods 

and applies a novel exudate detection approach using an active contour 

method. The candidate extractor algorithm [20] is based on grayscale 

morphology which has high sensitivity, since it basically marks every 

bright region as an exudate. To preserve up its high sensitivity, next to 

increasing the specificity, we try to reduce the number of false positive 

regions. For this purpose, we exclude the non-exudate regions by 

classification and to enhance the accuracy of this classification step, we 

apply the most descriptive features of exudates.  

The method starts with rescaling the images to normalize the 

resolution to a common height of 1500 pixels. Next, a rough candidate 

extractor is applied to retrieve the possible exudate regions. Because of 

the high similarity in appearance between the exudates and the OD, we 

exclude OD region from the candidate ones. For the localization of the 

OD, we apply the ensemble-based method introduced in section 3. After 

OD removal, we use several proposed image enhancement methods to 

improve the contrast of the image and to maximize the amount of 

retrievable information content. Finally, some features are extracted from 

each candidate, and a properly adjusted Naïve Bayes classifier labels each 

candidate as an exudate or non-exudate. 
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4.3.1 Pre-processing step 

First, we use a morphological-based method for candidate extraction 

because of it can extracts candidate regions quite reliably. As we 

introduced in section 4.2.1, the candidate extractor applies morphological 

operations such as morphological closing in order to eliminate blood 

vessels. Standard deviation is calculated, and thresholding is applied to 

find the candidate regions. Next, morphological reconstruction is applied 

with a second thresholding to find the contours of the exudates. The 

partial results of the candidate extraction can be seen in Figure 25. 

 
However, this method works improperly on the retinal images of 

young patients, where shiny regions spread along the temporal arcade 

 

Figure 25: Partial results of the candidate extraction: (a)   , (b) vessel 

free image after morphological closing, (c) the local variation at each 

pixel, (d) extracting bright regions by adjusted thresholding, (e) result of 

morphological reconstruction, (f)   . 
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(main vessels). Moreover, the boundaries of the detected exudates are less 

natural due to the applied structural elements and the method detects 

several false positives, as well. For these reasons, we use the result binary 

image    (as given in definition 14) only as an initial mask for a more 

precise detection step. We also note that, based on the result of our 

proposed ensemble OD detector, the pixels in OD region are not 

considered as possible exudate candidates through the detection 

procedure. 

In the corresponding literature [11], the automatic exudate detection 

algorithms are improved by some image enhancement methods which can 

make the image more suitable for automatic evaluation. Firstly, we 

simply extract the    from the RGB fundus image and the channel    from 

the color space HSI. Besides using the intensity images    and   , we 

apply another seven image enhancement methods (introduced section 

4.2.2) which are proposed in the literature of retinal image analyses 

focusing mainly on exudate detection [20], [24], [26], [27], [30]. The 

corresponding enhancement algorithms highlight several typical features 

of exudates. The reason for selecting these specific seven methods [11], 

[25], [56], [76], [78], [79], [80] also lies in the fact that they provide 

larger image contrast compared to e.g. [88], [89], [90], [91]. The result of 

the seven enhancement method with    and    which compose together    

(as given in definition 20) can be seen in Figure 26. 
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4.3.2 Precise Boundary Detection for each Candidate  

Our aim is to determine the most precise boundary for each    

(i=1,2,…,|  |) to improve the accuracy of the region-wise classification. 

For this aim, we examine the adaptability of three different ACM [81], 

[82], [85] from the relevant literature. First, we apply a gradient vector-

 

Figure 26: Nine different variants of the input image. (a)   , (b)   , (c) 

   , (d)    , (e)    , (f)    , (g)    , (h)    , (i)    . 
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flow field based active contour model (known as snake) [81], then we 

determine the boundary of the exudates by a Markov Random Field and a 

graph cut algorithm [82]. Finally, the Chan-Vese energy function is 

minimized by an optimized level-set method [85]. 

The weaknesses of the GVF snake (introduced in section 4.2.3.1) lie 

in the hard selection of the parameters and its sensitivity for its 

initialization. Moreover, it is not an appropriate tool for exudate boundary 

detection, since the energy function prefers high image gradients and 

smooth curvature of the contour. However, high contrast may be present 

close to the vessels in fundus images and the curvature of the contour of 

the exudates varies irregularly. We applied the GVF snake for this task 

and its drawbacks can be checked on the result which can be seen in 

Figure 27.  

For the precise boundary detection of the candidates, we also apply the 

optimized MRF model (introduced in section 4.2.3.2) with a modification 

to make the method automatic. In order to eliminate user interaction, we 

define the initial foreground/background pixels as the result of candidate 

extraction. Based on our experiments, the MRF model initialized 

automatically provides near precise boundaries of candidates. The result of 

the MRF model can be seen in Figure 27. 

Finally, we apply a level-set method which minimizes the Chan-Vese 

energy function. This function is suitable for exudate segmentation 

because it depends only on the difference of the pixel intensities, as it can 

be seen in Figure 27. However, there are two main drawbacks of the 

level-set methods introduced in section 4.2.3.3. Namely, handling the 3D 

surface makes them rather slow, and the definition of the initial contour is 

also difficult. On the one hand, to reduce the computational time, 

Whitaker proposed the sparse field method (SFM) [32]. On the other 

hand, to initialize the zero-level-set, we use the boundary points of the 

extracted candidates found by the candidate extractor.  
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To segment the contours of exudates more precisely, we propose the 

following ensemble of the image enhancement methods. The 

corresponding enhancement algorithms (introduced in section 4.2.2) 

highlight several typical features of exudates and to detect the precise 

exudate boundaries, we propose the application of level-set methods with 

SFM which minimizes the energy function regarding the each variants of 

the input image. Finally, we combine the nine extracted contours. The 

motivation behind this objective is that the features extracted from the 

precisely segmented regions are more appropriate to differentiate the true 

exudates from the false ones.  

In practice, ACM minimizes their energy function regarding on each 

    . ACM is applied separately on the nine disparate enhanced images 

 

Figure 27: Results of the three different ACMs initialized by       

(i=1,2,…,|  |). 
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to produce nine different contours      for each       (i=1,2,…,|  |) 

(j=1,2,…,| |) as shown in Figure 28.  

 
The next step is to combine these boundaries      (j=1,2,…,| |) for 

the determination of the precise boundary    
   for each       

(i=1,2,…,|  |) based on. Precise boundary detection is found to be 

essential to provide appropriate features for a region-wise classification of 

true/false candidates. To let the different preprocessors take an effect on 

the final contour of a specific candidate, we fuse the corresponding 

extracted information in terms of combining the regions      

 

Figure 28: Different contours              for       (i=1,2,…,|  |). 

Set | | 

Initialization of ACM by        

 

ACM minimizes its energy function 

regarding the enhancement images 
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(i=1,2,…,|  |) (j=1,2,…,| |) in the following way. First, we create the 

union of the regions      bounded by      as   ⋃     
| |
    and to each 

pixel     we assign a score as: 

         |{                   | | }|  (46)  

where          is means the number of      (j=1,2,…,| |) containing p. 

If p falls out of all the regions      (j=1,2,…,| |) it gets score 0, whereas it 

falls inside all of them, it gets score | |. This assignment leads to nine 

new regions       (j=1,2,…,| |) as: 

      {               }          | |   (47)  

with       consisting of pixels having score greater than or equal to  . Note 

that, we have                      | |, with       =  . In this way, we 

merge the      (j=1,2,…,| |) and determine new regions       

(j=1,2,…,| |) with their respective boundaries       (j=1,2,…,| |). 

Besides fusing the regions      (j=1,2,…,| |), we have found that the final 

region should represent a stable state as well. That is, we select that       

(j=1,2,…,| |) as the final combined region (  
 ), which is the most similar 

to its neighbors         and         regarding the fusion. As extreme, less 

meaningful cases,       ⋃      
| |
    and       ⋂      

| |
    are excluded 

from this analysis. For a precise formulation of this process, we measure 

the similarities between two adjacent regions by computing their 

symmetric difference as: 

 (  
     

 
     )  

|(  
   ⋃  

     )  (  
   ⋂  

     )|

|  
   |

  (48)  
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(j=1,2,…,| |-1), where   denotes the set difference operator. The 

denominator |  
   | in (48) is applied for scale-invariance. According to 

our experimental results, that R’i,k with k {    | |   } should be 

selected as   
  for which: 

 (  
       

 
   )    (  

     
 
     )

    
       

( (  
       

 
   )    (  

     
 
     ))  (49)  

This procedure is performed for each for each        (i=1,2,…,|  |) 

separately and    is replaced with the selected   
  to have the set   

  of the 

candidates with precisely detected contours. Naturally, some candidates 

are not true exudates, but we determine the best fitting boundary for each 

candidate individually to improve the accuracy of the region-wise 

classification. An example for this procedure is also shown in Figure 29, 

where the measured similarities are also included.  

 

 

Figure 29: The boundaries       of the combined regions       and the 

boundary of a manually segmented exudate. Red arrow shows the 

selected region   
    

 . 
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4.3.3 Feature extraction  

A candidate extractor has a high sensitivity, since it finds almost all 

exudates in the input image. However, it marks almost each bright region 

(mainly the ones which are close to vessels on retinal images of 

youngsters) as exudates which lead to many false positive hits. If we 

consider all these candidates as the result of detection of exudates, the 

specificity of the automatic screening system drops. To exclude the false 

positive candidates, besides keeping up high sensitivity, we propose a 

region-wise classification step which labels each candidate region as 

exudate or non-exudate. This step can be considered as a post-processing 

step, where each candidate is classified by an optimally adjusted Naïve 

Bayes classifier based on extracted features. 

4.3.3.1 Region-wise descriptors 

For classification, we extract descriptors from each   
    

  

(i=1,2,…,|  
 |) as it is given in definition 22.     

   descriptors are based 

on the respective intensity values of pixels composing the properly 

detected candidate and are calculated from the morphological behavior 

(shape) of the precisely detected region and its boundary. In this way, for 

candidate classification initially we consider 106 region-wise descriptors 

listed in Table 5. 
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In Table 5, we enclosed all the descriptors extracted from the 

candidate regions of a training dataset     regardless of their 

classification performance, so it contains such descriptors that are less 

efficient for this task. To select the meaningful features for classification, 

we evaluate their corresponding performance by two-sample t-tests.  

We note that, we tested some commonly used classifiers (Naïve 

Bayes, k-Nearest Neighbors) with several feature selection methods like 

PCA, relative entropy, minimum attainable classification error, ROC 

analysis, Wilcoxon test, etc. based on class separability criteria. We found 

that the Naïve Bayes classifier and the two-sample t-test are the most 

 region-wise features boundary-wise features 

*Based on the intensity 

images IG, II, ICN, IGN, ICL, 

ICE, IIC, IIE, IWT. 

(9×10 features) 

 mean 

 standard deviation 

 minimum value 

 maximum value 

 range (difference of minimum 

and maximum value) 

 mean 

 standard deviation 

 minimum value 

 maximum value 

 range (difference of minimum 

and maximum value) 

Based on the magnitude of 

gradient image of the green 

channel. 

(10 features) 

 mean 

 standard deviation 

 minimum value 

 maximum value 

 range (difference of minimum 

and maximum value) 

 mean 

 standard deviation 

 minimum value 

 maximum value 

 range (difference of minimum 

and 

maximum value) 

Morphological (shape) 

descriptors. 

(6 features) 

 compactness 

 area 

 number of holes 

 elongatedness 

 eccentricity 

 perimeter 

*The intensity based descriptors extracted separately for the images IG, II, ICN, ICE, ICL, IGN, IIC, IIE, IWT. 

Table 5: The extracted     
   descriptors. 
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efficient in our case. Namely, the Naïve Bayes classifier reached the 

highest ACC value (84.37%) when it used features selected by two-

sample t-test for labeling. For the sake of completeness, we list the 

highest ACC values of Naïve Bayes, when it used features selected by 

other methods. The following feature selection methods are included 

(with highest ACC is also indicated): PCA (80.38%), minimum attainable 

classification error (Bhattacharyya) (80.44%), relative entropy (80.51%), 

ROC analysis (81.09%) and Wilcoxon test (81.61%). Now we give the 

proper description of feature selection based on the two-sample t-test. 

To rank the descriptors based on their performance obtained by the 

two-sample t-test, we used 28 training images from the    .       

were considered as input to the candidate extractor method. Then, we 

generated  , finally determined the   
  by the proposed boundary 

detection algorithm. The ∑ |  
 |     

      and we labeled manually 

the      candidates as true exudates (955 true positive) or not (284 false 

positive) according to the manually segmented binary images described in 

section 2.1.7. Based on this labeling, the t-test can be performed for each 

descriptor given in Table 5 according to the following formula: 

    
    

    
 √

         
   

√        
          

 

    (50)  

where    denotes the performance of the j-th descriptor,   is the number 

of the true exudate regions (955) and   is the number of the false ones 

(284) considering the whole set of the candidates for the training set.     

(resp.    ) denotes the mean, while     (resp.    ) denotes the standard 

deviation of the j-th descriptor of all true (      false) exudates 

respectively.  
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To find the meaningful descriptors, we ranked them according to their 

performance values   , and tried to find those k number descriptors, which 

provided highest ACC. For this aim, we divided the set of 1239 manually 

labeled regions into a training and a test parts. Then, a Naïve Bayes 

classifier was trained on the first k (k=1,…,106) region-wise features 

extracted from the training regions. Next, we observed the performance of 

the classifier on the test regions using these k features. We found that the 

Naïve Bayes classifier reached the highest ACC value, when the first 

k=29 descriptors (see them in Table 6) were selected from the ranked list 

as features (see Figure 30 (a)).  For this evaluation, we separated the 

regions into a training and test set by K-fold cross validation (K=10) and 

evaluated the performance of the classifier for a given feature set at 10 

times. For the sake of completeness, the accuracies of different 

combination of classifiers (Naïve Bayes, k-Nearest Neighbors) and 

feature selection methods regarding the numbers of features are enclosed 

in Fig. 30 (a)(b). These empirical results also serve as further proof for 

our former claim that the applied Chan-Vese energy function minimized 

by level-set method is the most appropriate tool for the detection of the 

irregularly variable contours of the exudates. As it can be observed in Fig. 

30 (c)(d)(e)(f), the accuracies of classifiers decrease if the exudate 

candidates are extracted by the MRF or the GVF snake. 
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Figure 30: Peformance of the classifiers using different feature selection 

methods. Naïve Bayes classifier with (a) level-set method, (c) MRF and 

(e) GVF snake. k-Nearest Neighbors classifier with (b) level-set method, 

(d) MRF and (f) GVF snake. 
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4.3.3.2 Pixel-wise descriptors 

We investigated also the performance of the pixel-wise features and the 

pixel-wise classification. As given in definition 22, when   assigns 

feature vector for each          (i=1,2,…,|  |) and  ,      

(i=1,2,…,|  |) then           is possible. In this way the features are 

derived from   and its local neighborhood (     . 

 As we mentioned in section 4, there is a large number of exudate 

detectors based on pixel-wise classification. The majority of them 

consider e.g., the pixel intensity, local contrast, average intensity of 

neighbors of pixels as primary features of exudate pixels for 

classification. However, the average intensity of the images depends on 

the ethnicity and the age of the patients. It means that a high intensity 

value from a dark image is not labeled as an exudate pixel by a classifier 

 region-wise features boundary-wise features 

*Based on the intensity 

images IG, ICL, ICE. 

(3×6 features) 

 standard deviation 

 maximum value 

 range (difference of minimum 

and maximum value) 

 standard deviation 

 maximum value 

 range (difference of minimum 

and maximum value) 

Based on the magnitude of 

gradient image of the green 

channel. 

(5 features) 

 mean 

 maximum value 

 mean 

 minimum value 

 maximum value 

Morphological (shape) 

descriptors. 

(6 features) 

 compactness 

 area 

 number of holes 

 elongatedness 

 eccentricity 

 perimeter 

*The intensity based descriptors extracted separately for the images IG, ICE, ICL. 

Table 6: Selected region-wise descriptors to classify exudate candidates. 
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because it is not high enough according to the model which is based on 

training dataset. To avoid this misclassification, we propose to normalize 

the intensity values by the average intensity of the OD of the analyzed 

retina image. 

To retrieve the average intensity of the OD, we cluster the pixels 

under the detected OD region using Fuzzy C-Means Clustering algorithm 

implemented in Matlab [86]. This clustering step is necessary because the 

detected OD region contains a lot of blood vessel pixels and the Fuzzy 

C-Means Clustering divides the pixels into bright and dark group 

according to their intensities. We consider the average intensity of the 

brighter cluster as the average intensity of OD and we normalize 

individually   ,   ,    and     channels.  

After this normalization step, we extract 56 descriptors which may be 

useful for a pixel-wise classification. For the enumeration of possible 

descriptors we need to mention the difference of the Gaussian (   ) 

filters. Sopharak et al. [24] proposed six     filters for exudate 

detection. We apply these filters on     and we extract the following 

descriptors from             too. We extract the mean, standard 

deviation, maximum value, range (difference of maximum and minimum) 

of the intensities in      regarding   ,   ,   ,     and             

images to each candidate pixel. Moreover, we extract some descriptors 

that are based on the strength of the edge in     . For this, we apply the 

Frei-Chen edge detector [87] on     and we retrieve the highest gradient 

value, average and standard deviation of the strength of the edge pixels. 

Finally, we take into account the number of pixels of the candidate region 

which contains the pixel and we normalize this pixel number by pixel 

number of the detected OD.  

These descriptors are retrieved for each      (i=1,2,…,|  |). Most of 

the descriptors are appropriate to be used for distinguishing between 

exudate and non-exudate pixels. However, there are some irrelevant 
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descriptors and using them can decrease the generalization performance 

of the classifier. To select the most significant descriptors we also 

evaluated the pixel-wise features by two-sample t-test. 

4.3.4 Boosted Naïve Bayes classifier  

The simple Naïve Bayes classifier reaches relatively high accuracy 

regarding the correct labeling of the exudate candidates. As for 

implementation, the built-in Matlab R2010b class of Naïve Bayes [92] is 

used. To increase further the performance of the classifier, we apply the 

adaptive boosting (AdaBoost) technique [93]. To realize the idea that the 

performance of ensemble learning is usually better than single learning, to 

set up an ensemble of classifiers, the set     is separated into two disjoint 

sets T1 and T2. The first classifier learns on T1 and classifies the elements 

of T2. In the next turn, the new classifier is trained on mainly the 

previously misclassified elements to teach it for the instances that are hard 

to classify, and so on. Finally, these classifiers make a decision about a 

label of a new instance by weighted majority voting, where the weights 

come from the individual accuracies of the classifier. In this way, an 

ensemble of several Naïve Bayes classifiers can achieve 10% higher 

accuracy in labeling the candidates as exudates or non-exudates in our 

framework. 

4.4 Experimental results 

The test part of DIARETDB1 includes 29 (from 61) and that of HEI-

MED 54 (from 169) images which contain exudates according to the 

publicly available annotation of clinical experts. Based on this 

knowledge, we measured the performance of the proposed method.  
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For the sake of completeness, we evaluate the performance of the 

proposed framework when it used pixel-wise classification based on 

pixel-wise features (introduced in section 4.3.3.2) and region-wise 

classification based on region-wise features (introduced in section 

4.3.3.1). In the case of region-wise descriptors, we considered following 

cases; when the boundary of the candidates are determined by gradient 

vector flow field and snake model (introduced in section 4.2.3.1), 

Markovian segmentation model (introduced in section 4.2.3.2) or level-set 

method (introduced in section 4.2.3.3). Finally, we used the proposed 

fusion of image enhancement method with the most precise ACM (level-

set method and Chan-Vese function) for the precise boundary detection 

and evaluate the classification of candidates based on features set 

extracted from candidates with precise segmented contours. 

Based on the measures (given in definition 26), we can compare the 

proposed exudate detector framework with some other state-of-the-art 

exudate detector algorithms quantitatively. As we can see in Table 7 and 

8, in these tests the proposed algorithms can outperform the algorithms 

[20], [21], [22], [23], [24], [25], [28] involved in our comparative study 

with respect to the ACC value. Note that, ACC can also be derived from 

SEN and SPE (as given in definition 26), so ACC is high if and only if 

both SEN and SPE are high. Moreover, it can be observed that the 

application of all the nine pre-processing methods simultaneously and the 

detection of the precise boundary of the candidates lead to a meaningful 

improvement in region-wise classification, as well. 
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 SEN SPE ACC 

Region-wise classification after  
Precise Boundary Detection 

0.92 0.68 0.82 

Sopharak et al. [21] 0.73 0.87 0.79 

Sánchez et al. [25] 0.66 0.92 0.77 

Region-wise classification  

after level-set method used 
0.90 0.54 0.75 

Region-wise classification  

after MRF used 
0.90 0.54 0.75 

Walter et al. [20] 1.00 0.32 0.72 

Region-wise classification  

after GVF snake used 
0.81 0.54 0.70 

Exudate detection by 

pixel-wise classification 
0.69 0.68 0.69 

Welfer et al. [22] 0.79 0.55 0.69 

Sopharak et al. [23] 1.00 0.14 0.64 

Jaafar et al. [28] 1.00 0.06 0.61 

Sopharak et al. [24] 1.00 0.02 0.59 

Table 7: Comparative results for image-level classification for the 

proposed method on the dataset DIARETDB1. 
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For the sake of completeness, we also enclose the receiver operating 

characteristics (ROC) results of the proposed method in Figure 31 to 

demonstrate its robustness at image level on the datasets DIARETDB1 

and HEI-MED. To create the ROC curve, we applied different threshold 

levels for the weighted majority voting result of the boosted Naïve Bayes 

classifiers to accept exudate candidates as true ones. As in [21], [22], 

[23], [24] and [28] the authors did not define an adjustable parameter, a 

complete ROC analysis cannot performed regarding them. Instead, we 

indicate only their single available (SEN, 1-SPE) figures in Figure 31. 

However, a full comparative ROC analysis with [20], [25], pixel-wise 

classification and the proposed method with/without precise boundary 

 SEN SPE ACC 

Region-wise classification after  
Precise Boundary Detection 

0.87 0.86 0.86 

Sopharak et al. [21] 0.65 0.90 0.82 

Sánchez et al. [25] 0.62 0.90 0.81 

Region-wise classification  

after level-set method used 
0.83 0.79 0.80 

Region-wise classification  

after MRF used 
0.81 0.78 0.79 

Welfer et al. [22] 0.70 0.84 0.79 

Region-wise classification  

after GVF snake used 
0.74 0.77 0.76 

Exudate detection by 

pixel-wise classification 
0.61 0.82 0.75 

Sopharak et al. [23] 0.91 0.68 0.75 

Walter et al. [20] 0.93 0.65 0.74 

Jaafar et al. [28] 0.88 0.65 0.72 

Sopharak et al. [24] 0.93 0.60 0.70 

Table 8: Comparative results for image-level classification for the 

proposed method on the dataset HEI-MED. 
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detection is included in the figure. The competitiveness of the proposed 

method can be observed regarding ROC analysis, as well. 

 

 
Figure 31: Comparative analysis for receiver operating characteristics 

(ROC) on the datasets (a) DIARETDB1, (b) HEI-MED. 
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For the sake of completeness, Figure 32 demonstrates the differences 

between the results of the proposed algorithm and the state-of-the-art 

methods involved in our comparative study. Figure 32 includes the final 

outputs of [20], [21], [22], [23], [24], [25], [28] and the proposed method 

for the same sample image. 

 

  

Figure 32: Visual comparison of state-of-the-art methods with the 

proposed one. Result of (a)Precise Boundary Detection, (b) [21], (c) [25], 

(d) [20], (e) manual segmentation, (f) [22], (g) [23], (h) [24], (i) [28]. 



 

 

102 

 

4.5 Discussion 

The proposed combined framework is dedicated to the detection of bright 

lesions caused by diabetic retinopathy, especially for exudates. That is, 

the selected pre-processing methods enhance the contrast between the 

bright lesions and their dark background. The candidate extractor method 

finds the regions which might contain these bright lesions, while the 

consequent region-wise classifier is trained to select the bright patches 

with irregular contours as exudates. Naturally, if we change the 

components of the approach appropriately, it could be applied also for the 

segmentation of expanded dark lesions like hemorrhages. 

According to Abramoff et al. [94], such screening algorithms cannot 

be recommended for clinical practice. However, our proposed 

methodology with its high ACC at image-level can be a solid component 

of a complex system to make the decision about the further clinical 

investigation of the patient.  Precise boundary detection has an implicitly 

important influence on clinical practice to increase image-level accuracy. 

The presented method was implemented in Matlab, and we used a 

single core 2.4GHz CPU with 2GB memory for testing. The applied 

candidate extractor algorithm provides a large number of candidates and 

this is the reasons for the currently relatively high computational time. 

Using the proposed level-set methods takes 31 seconds per image (17 

seconds per image by using the MRF and 51 seconds per image by using 

the GVF snake), which could be drastically decrease e.g., by parallel 

implementation. For the sake of completeness, we enclose the 

computational times of the re-implemented algorithms, which are 

involved in our comparative studies: Sopharak et al. [21] - 6.63 s, 

Sánchez et al. [25] - 27 s, Welfer et al. [22] - 9.75 s, Sopharak et al. [23] - 

86 s, Walter et al. [20] - 6.42 s, Sopharak et al. [24] – 17 s, Jaafar et al. 

[28] – 12 s per image. These times do not include the OD detection step.  
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5 Conclusion 

In this PhD thesis, we have proposed some approaches to improve the 

accuracy of single object detection by using an ensemble of individual 

algorithms. The first approach is based on simple majority voting, where 

each member algorithm has a single candidate. Even if some of the 

algorithms cannot detect the exact location of the object, a majority 

voting-based combination will be capable of detecting the center point of 

the object in most cases appropriately. In the second approach, we have 

modified the algorithms so that they produce more than one candidate. 

These candidates are ranked according to confidence values assigned by 

the algorithms. Then, a weighted graph is defined from these candidates 

by taking the geometric properties of the target object also into 

consideration. The location of the center of the object can be detected by 

finding the maximal weighted clique. Finally, the combination of the 

probability maps by the Bayesian models makes also possible the 

approximate detection of the single object region.  

In the second part of the thesis, we have presented an exudate 

segmentation approach which is based on the combination of grayscale 

morphology, active contour method and region-wise classification. The 

result of a grayscale morphology-based exudate detection method is 

considered as the initial mask for ACM. We investigated the applicability 

of three different ACMs and different image enhancement results are 

involved for minimizing the energy functions. The proposed exudate 

segmentation method finds the contours more precisely and reduces the 

number of false positive pixels and improves the reliability of the region-

wise features. The candidates are labeled as exudate or non-exudate 

through a region-wise classification step. For this task, we extract 

carefully selected descriptors for each candidate. For feature selection, we 
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used a two-sample t-test, while for classification the Naïve Bayes 

classifier is optimized by AdaBoost. 
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Appendix 

A Summary 

In this PhD dissertation two methods, which were elaborated to meet the 

demands arising from practical application, have been introduced in 

connection with the automatic detection of one or several objects in 

digital images. An automated diabetic retinopathy (DR) screening system 

has to be capable of detecting automatically the abnormalities caused by 

DR and to localize the anatomical parts of the retina in fundus image. 

Thus, the localization of the optic disc (OD) and detecting the signs of 

DR in the images taken of the fundus can be made feasible by integrating 

the elaborated methods into a DR screening system. 

In this thesis first, a complex method elaborated for locating a single 

object which appears in a digital image has been introduced. As an 

individual detector may be wrong when it localizes the object, we studied 

and adapted some of the state-of-the-art OD detectors and finally 

organized them into an ensemble framework in order to combine their 

strengths and maximize the accuracy of the localization of the OD.  

The elaborated method is the result of multi-stage development 

process, during which two further approaches have been developed based 

on different fusion techniques. These two approaches have been also 

introduced in this dissertation as well. The applicability of the fusion 

method depends on the number of possible locations given by the 

individual algorithms. Thus, we distinguished the following cases: one 

algorithm puts up one candidate, one algorithm puts up several candidates 

and one algorithm assigns a confidence value to each pixel of the image. 

In the last case, the probability value assigned to the pixel indicates the 

certainty that the given pixel can be regarded as the center point of an 

object. 
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In the three cases mentioned above, the following approaches have 

been elaborated; majority voting-based complex system, a method based 

on search of maximum weighted clique in weighted graph and a method 

based on probability maps fused by the Bayesian model, respectively. In 

this dissertation, following the detailed introduction of the elaborated 

approaches, the connection between the quantity of the information 

deriving from the individual algorithms and the accuracy of the 

localization of the object has been demonstrated. Regarding the practical 

application of the last method, the accuracy of the localization of the optic 

disc (OD) is close to the 100 percent accuracy. 

The method for the detection of objects appearing in image multiple 

times, which combines the mainstream approaches within a single 

framework, has been proposed as the second main focus of this thesis. 

The elaboration of the algorithm is justified by a practical problem which 

is the detection of a certain type of signs called exudates, which come into 

being at the early stage of diabetic retinopathy and which are visible in 

the image taken of the retina. 
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B Összefoglaló 

Ezen PhD disszertációban két módszert mutattunk be digitális képen 

történő objektum(ok) automatikus detektálásához kapcsolódóan. Ezen 

módszerek kidolgozását gyakorlati alkalmazás fejlesztése során felmerülő 

igények kapcsán dolgoztuk ki. Egy a cukorbetegség szemszövődményeit 

automatikusan szűrő rendszernek a betegség okozta szemszövődmények 

detektálásán kívül egyéb fontos funkcionalitásai is vannak, mint például a 

retina anatómiai képleteinek lokalizálása. Ezért a dolgozatban 

bemutatásra került módszerek egy ilyen szűrő rendszer felállításához, 

mint szükséges és lehetséges alkotóelemek lettek kidolgozva. A 

módszerek egyrészt alkalmasak a szemfenék felvételeken a vakfolt 

helyének meghatározása, másrészt a kapcsolódó elváltozások jelenlétének 

detektálására. 

A dolgozatban elsőként, általános terminológiát használva, egy 

egyszeres előfordulási valószínűséggel megjelenő, egyetlen objektum 

detektálására kidolgozott összetett módszer került bemutatásra. Mivel az 

egyszerű detektáló-algoritmusok hibázhatnak az objektum helyének 

meghatározása során, ezért megvizsgáltuk ezen algoritmusok 

adaptálhatóságát, és hogy milyen módszerek mentén szervezhetnénk őket 

össze egy összetett rendszerbe abból a célból, hogy kombináljuk azok 

erősségeit és maximáljuk a lokalizálás pontosságát. 

A kidolgozott módszer egy több lépcsős fejlesztés eredménye, mely 

fejlesztés során további két, különböző fúziós alapokon nyugvó 

megközelítés is született, amelyek szintén bemutatásra kerültek A 

kidolgozott fúziós módszerek alkalmazhatósága függ attól, hogy az 

egyedi algoritmusok hány lehetséges középpontot jelölnek meg a 

működésük végeztével. Így tehát a következő esetek különböztettük meg: 

1 algoritmus – 1 jelöltet, 1 algoritmus – több jelölt, 1 algoritmus – 

valószínűségi mező. Az utóbbi esetben a kép minden egyes pixeléhez 
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rendelt valószínűségi érték azt fejezi ki, hogy az adott pixel mennyire 

biztosan tekinthető az objektum középpontjának.  

A fenti esetekhez a felsorolásnak megfelelően a következő 

megközelítések kerültek bemutatásra: egyszerű többségi szavazáson 

alapuló összetett módszer, súlyozott gráfban történő maximális súlyú 

részgráf keresésén alapuló módszer, illetve valószínűségi mezők Bayesian 

modell használatával történő fuzionálásán alapuló módszer. A 

dolgozatban a kidolgozott megközelítések részletes bemutatását követően 

láthatóvá vált, hogy milyen kapcsolat van az egyedi algoritmusokból 

kinyert információmennyiség és az objektum detektálásának a pontossága 

között. A módszer gyakorlati alkalmazását tekintve, a retina képen történő 

vakfolt helyének meghatározása megközelítette a 100%-os pontosságot. 

A dolgozat másik fontos eredménye egy olyan összetett algoritmus 

megalkotása volt, amely magas pontossággal képes eldönteni egy adott 

bemeneti kép esetén, hogy olyan objektumok, amelynek előfordulása egy 

képen belül többszörös is lehet, szerepel-e a képen vagy sem. 

Amennyiben az objektumok valóban megtalálhatók a felvételen, akkor az 

algoritmus kimenete a szegmentált objektumokat a lehető legprecízebb 

kontúrral szolgáltatja.  Az algoritmus kidolgozását gyakorlati probléma 

indokolta, mégpedig a diabéteszes retinopátia korai stádiumában a retina 

felvételen megjelenő, úgynevezett exudátum típusú változások 

jelenlétének detektálása. 
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