Szerző szerinti böngészés "Csonka, É."
Megjelenítve 1 - 2 (Összesen 2)
Találat egy oldalon
Rendezési lehetőségek
Tétel Szabadon hozzáférhető Chemical communication with volatile semiochemicals in Phyllotreta species (Coleoptera, Chrysomelidae): a minireview(2005-05-18) Csonka, É.; Tóth, M.Phyllotreta species (Coleoptera, Chrysomelidae, Halticinae) rank among the most important horticultural pests in the Northern Hemisphere. Leaf damage caused by flea beetles upsets the water balance, blocks plant growth and sometimes causes a high level of mortality of seedlings. Several species are known to act as vectors of numerous pathogens as well. Chemical communication plays an important role in the host finding, feeding and oviposition behaviour of flea beetles. In the first phase volatile mustard oils (isothiocyanates and thiocyanates) are released from the host plants through the decomposition of non-volatile glucosinolates (chemicals specific to Cruciferae) by myrosinase, and beetles are attracted to the source of release from a distance. Among the isothiocyanates, allyl isothiocyanate is the longest known and widespread compound utilized in the host-plant location of Phyllotreta species, but some species may have a stronger preference to other isothiocyanates or thiocyanates. The attractive effect of the plant volatiles is enhanced by the emission of a male-produced aggregation pheromone. The presence of such a pheromone was first demonstrated in Phyllotreta cruciferae Goeze. In this species R5R,5aS)-1,1,5,8-tetramethy1-1,2,3,4,5,6,5a-heptahydrobenzo[1,2-a][7]annulene] was found to be the main pheromone component. Significant attraction by the pheromone was recorded only in the presence of ALLYL ITCN. The biological activity of the pheromone compound was connected to the plus (+) chirality. The same component seems to be occurring also in the pheromones of several other Phyllotreta spp. as well, suggesting a wider occurence in the genus. Once attracted by the joint effect of plant volatiles and aggregation pheromone, the presence of the non-volatile glucosinolates in the plant tissues is necessary for continuous feeding. Aggregations of flea beetles on suitable host plants, which result from the joint effects of plant-derived and pheromonal chemical cues detailed above may also be good rendez-vous occasions, increasing the probability of encounters with the opposite sex and mating in the vicinity of the optimal oviposition site. Due to the horticultural importance of Phyllotreta spp., deciphering details of their chemical communication has considerable significance in the development of new methods of integrated control.Tétel Szabadon hozzáférhető The KLP+ ("hat") trap, a non-sticky, attractant baited trap of novel design for catching the western corn rootworm (Diabrotiea v. virgifera) and cabbage flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae)(2006-02-08) Tóth, M.; Csonka, É.; Szarukán, I.; Vörös, G.; Furlan, L.; Imrei, Z.; Vuts, J.In the course of research aimed at the development of non-sticky, easy-to-use alternative trap designs for the capture of selected beetle pests, a newly designed "hat" trap, codenamed CSALOMON® KLP+, was compared with conventional trap designs. In the case of the western corn rootworm (WCR) Diabrotica v. virgifera (Coleoptera, Chrysomelidae) the new KLP+ traps baited with pheromonal or floral baits were equally sensitive as the former PAL or PALs sticky "cloak" designs, but the KLP+ traps catch capacity and selectivity was much higher. When baited with the floral WCR bait, the KLP+ trap proved to be more sensitive in capturing female \VCR, than the former sticky PALs trap design. In capturing cabbage flea beetles (Phyllotreta spp., Coleoptera, Chrysomelidae), the new KLP+ trap design baited with allyl isothiocyanate performed better than the previously used VARL+ funnel traps in all respects studied. In conclusion, the new KLP+ trap design, baited with the respective attractants, appears to be advantageous to use for the trapping of both WCR and cabbage flea beetles, and can be recommended for use as a trapping tool in plant protection practice in the detection and monitoring of these pest Coleoptera.