Szerző szerinti böngészés "Odeibat, Ayat Sami Ali"
Megjelenítve 1 - 5 (Összesen 5)
Találat egy oldalon
Rendezési lehetőségek
Tétel Szabadon hozzáférhető Tétel Szabadon hozzáférhető Integrated environmental management and GPS-X modelling for current and future sustainable wastewater treatment: A case study from the Middle East(2024) Odeibat, Ayat Sami Ali; Mohammad, Reham; Abu-Zreig, MajedTétel Szabadon hozzáférhető The effect of technology evolution on the future of jobs(2021) Odeibat, Ayat Sami AliTétel Szabadon hozzáférhető The impacts of artificial intelligence on the future of marketing and customer behaviour(2024) Odeibat, Ayat Sami AliTétel Szabadon hozzáférhető The Influence of the Expected Factors for Adopting Artificial Intelligence Applications in Firms’ Management(2025) Odeibat, Ayat Sami Ali; Matkó, Andrea Emese; Ihrig Károly gazdálkodás- és szervezéstudományok doktori iskola; Gazdaságtudományi KarThis study investigates the key factors influencing Artificial Intelligence (AI) adoption within the telecommunications sector, aiming to identify the most effective drivers of adoption and underscore the role of top management in facilitating AI integration with human intelligence. Utilizing a mixed methods approach, primary data were collected through an online questionnaire, supplemented by personally administered surveys. Drawing upon the Diffusion of Innovation (DOI) theory and the Technology-Organization-Environment (TOE) framework, the study framework comprises eleven latent variables. Reliability was confirmed via Cronbach’s alpha, and the dataset’s suitability for multiple regression analysis was assessed through normality and multicollinearity checks using SPSS. The findings reveal six key factors with a direct influence on AI adoption: Compatibility, Technical Capabilities, Managerial Support, Competitive Pressure, Market Uncertainty, and Vendor Partnership. Additionally, Managerial Capability was found to have an indirect effect, emphasizing its critical role in resource coordination and strategic alignment. This research validates the TOE and DOI frameworks as effective tools for understanding AI adoption dynamics in firms and offers practical insights for enhancing AI integration strategies.