Detection of safety vests and face recognition

dc.contributor.advisorTaleb Abdullah Abdo, Mayar
dc.contributor.authorDanabek, Magzhan
dc.contributor.departmentDE--Műszaki Kar
dc.date.accessioned2025-09-04T15:41:35Z
dc.date.available2025-09-04T15:41:35Z
dc.date.created2024-12-16
dc.description.abstractIn this paper, we describe a real-time detection system that utilizes a live feed through a camera to identify workers and detect protective safety vests using algorithms based on deep learning. Due to large and complex sites the proposed project will automate the process by providing real-time alerts to safety supervisors by email to ensure corrective action of the violation. The system combines FaceNet, a facial recognition model to identify workers, and YOLOv8n, technology that can analyse real-time video footage to identify personnel and assess safety compliance protocols. The proposed dual functioning system coded with Python and developed in Jupyter Notebook is designed to adapt to a variety of industrial environments. Custom dataset of 15 individual worker images in varying light conditions, different poses, occlusions and with labelled PPE data were made to meet specific algorithmic training requirements. Testing phases have effectively demonstrated positive results of the system, where it recognises faces and detects safety vests with high accuracy of 0.81 for both facial recognition and PPE detection.
dc.description.courseMechatronical Engineeringen
dc.description.degreeBSc/BA
dc.format.extent69
dc.identifier.urihttps://hdl.handle.net/2437/397260
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectPersonal Protective Equipment
dc.subjectYOLOv8n
dc.subjectFaceNet
dc.subjectReal-time Object Detection
dc.subjectFace Recognition;
dc.subjectDeep Learning
dc.subjectComputer Vision
dc.subjectCompliance Monitoring
dc.subject.dspaceInformatics::Computer Science
dc.titleDetection of safety vests and face recognition
dc.title.translatedBiztonsági mellények észlelése és arcfelismerés
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
DEA_Thesis_FI3F99.pdf
Méret:
2.06 MB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.69 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: