From Newton’s fluxions to virtual microscopes
dc.contributor.author | Bair, Jacques | |
dc.contributor.author | Henry, Valerie | |
dc.date.accessioned | 2024-09-04T09:45:44Z | |
dc.date.available | 2024-09-04T09:45:44Z | |
dc.date.issued | 2007-12-01 | |
dc.description.abstract | The method of fluxions was originally given by Newton among others in order to determine the tangent to a curve. In this note, we will formulate this method by the light of some modern mathematical tools: using the concept of limit, but also with hyperreal numbers and their standard parts and with dual numbers; another way is the use of virtual microscopes both in the contexts of classical and non standard analysis. | en |
dc.format | application/pdf | |
dc.identifier.citation | Teaching Mathematics and Computer Science, Vol. 5 No. 2 (2007) , 377-384 | |
dc.identifier.doi | https://doi.org/10.5485/TMCS.2007.0168 | |
dc.identifier.eissn | 2676-8364 | |
dc.identifier.issn | 1589-7389 | |
dc.identifier.issue | 2 | |
dc.identifier.jatitle | Teach. Math. Comp. Sci. | |
dc.identifier.jtitle | Teaching Mathematics and Computer Science | |
dc.identifier.uri | https://hdl.handle.net/2437/379615 | |
dc.identifier.volume | 5 | |
dc.language | en | |
dc.relation | https://ojs.lib.unideb.hu/tmcs/article/view/14805 | |
dc.rights.access | Open Access | |
dc.rights.owner | Jacques Bair and Valerie Henry | |
dc.subject | fluxions | en |
dc.subject | tangent lines | en |
dc.subject | hyperreal numbers | en |
dc.subject | dual numbers | en |
dc.subject | virtual microscopes | en |
dc.subject | non standard analysis | en |
dc.title | From Newton’s fluxions to virtual microscopes | en |
dc.type | folyóiratcikk | hu |
dc.type | article | en |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)