Deep learning for brain tumour segmentation

dc.contributor.advisorBogacsovics, Gergő
dc.contributor.authorBeishenova, Saltanat
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-26T21:15:21Z
dc.date.available2025-06-26T21:15:21Z
dc.date.created2025-04-15
dc.description.abstractDeep Learning revolutionizes brain tumour segmentation in medical imaging, enabling automatic detection with high accuracy. A lot of software with emphasis on automatic classification and segmentation in the medical field was developed with Deep Learning algorithms as their base. This thesis investigates the use of deep learning for automatic brain tumor segmentation in MRI scans, employing a 2D U-Net convolutional neural network. The model was trained on the BraTS 2020 dataset using FLAIR and T1ce modalities to classify tumor subregions, including necrotic core, edema, and enhancing tumor. Achieving an accuracy of 99.23%, a Dice coefficient of 0.6471, and a Mean IoU of 0.7134, the model demonstrated strong performance in segmenting tumor structures.
dc.description.courseProgramtervező informatikus
dc.description.degreeBSc/BA
dc.format.extent50
dc.identifier.urihttps://hdl.handle.net/2437/394807
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectDeep learning
dc.subjectImage processing
dc.subjectBrain tumour
dc.subjectSegmentation
dc.subject.dspaceInformatics::Computer Science
dc.titleDeep learning for brain tumour segmentation
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
2.42 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények