Medical Image Processing with Deep Learning

dc.contributor.advisorHajdu, András
dc.contributor.authorKoichumanova, Milana
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-30T11:12:38Z
dc.date.available2025-06-30T11:12:38Z
dc.date.created2025
dc.description.abstractThis thesis explores the application of deep learning, specifically Convolutional Neural Networks (CNNs), for medical image processing, focusing on chest X-ray classification using the NIH Chest X-ray dataset. The study employs a DenseNet121 architecture, pre-trained on ImageNet, to classify 14 thoracic pathologies. Results indicate that the model struggles with class imbalance and achieves only moderate performance, with AUC scores ranging from 0.50 to 0.62. Training for 5 epochs prioritized sensitivity, while 11 epochs improved specificity but at the cost of recall. The findings highlight challenges in accurately diagnosing rare conditions and underscore the need for techniques like advanced augmentation or ensemble methods to enhance performance.
dc.description.courseGazdaságinformatikus
dc.description.degreeBSc/BA
dc.format.extent64
dc.identifier.urihttps://hdl.handle.net/2437/394978
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectMachine Learning, Deep Learning, CNN, Chest X Ray, DenseNet121, ImageNet, Thoracic Pathotologies
dc.subject.dspaceInformatics
dc.titleMedical Image Processing with Deep Learning
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
2.94 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények