Identifying Patterns in Geospatial Data

dc.contributor.advisorZichar, Marianna
dc.contributor.authorSimon, William
dc.contributor.departmentDE--Informatikai Karhu_HU
dc.date.accessioned2021-04-22T14:59:25Z
dc.date.available2021-04-22T14:59:25Z
dc.date.created2021
dc.description.abstractThis thesis discusses the integration between GIS and Data Science. It tries to implement GWR (geographically weighted regression), a geospatial type of regression, through creating a Python plugin that works with QGIS application. The purpose of this work is to use the possible integration between GIS software and data analysis programming languages to implement spatial analysis methods such as GWR. In the beginning of the thesis, some information and background is presented. Afterwards, the GWR method is explained in details. Thereafter, some case studies are discussed, which include two geographical datasets on which GWR could be applied. In the implementation section, the process of creating the plugin is summarized, and the execution results on the datasets are illustrated. Finally, some notes and observations were discussed about the results, along with some future work that can be done for possible improvement.hu_HU
dc.description.courseComputer Science MSchu_HU
dc.description.degreeMSc/MAhu_HU
dc.format.extent54hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/306915
dc.language.isoenhu_HU
dc.subjectData Sciencehu_HU
dc.subjectSpatial Datahu_HU
dc.subjectGIShu_HU
dc.subjectPythonhu_HU
dc.subjectQGIShu_HU
dc.subject.dspaceDEENK Témalista::Informatika::Geoinformatikahu_HU
dc.subject.dspaceDEENK Témalista::Informatika::Információtechnológiahu_HU
dc.subject.dspaceDEENK Témalista::Informatika::Számítógéptudományhu_HU
dc.titleIdentifying Patterns in Geospatial Datahu_HU
Fájlok
Gyűjtemények