Notes on the representational possibilities of projective quadrics in four dimensions

dc.contributor.authorBácsó, Sándor
dc.contributor.authorSzilasi, Zoltán
dc.date.accessioned2024-09-04T09:45:24Z
dc.date.available2024-09-04T09:45:24Z
dc.date.issued2006-06-01
dc.description.abstractThe paper deals with hyper-quadrics in the real projective 4-space. According to [1] there exist 11 types of hypersurfaces of 2nd order, which can be represented by 'projective normal forms' with respect to a polar simplex as coordinate frame. By interpreting this frame as a Cartesian frame in the (projectively extended) Euclidean 4-space one will receive sort of Euclidean standard types of hyper-quadrics resp., hypersurfaces of 2nd order: the sphere as representative of hyper-ellipsoids, equilateral hyper-hyperboloids, and hyper-cones of revolution. It seems to be worthwhile to visualize the "typical" projective hyper-quadrics by means of descriptive geometry in the (projectively extended) Euclidean 4-space using Maurin's method [4] or the classical (skew) axonometric mapping of that 4-space into an image plane.en
dc.formatapplication/pdf
dc.identifier.citationTeaching Mathematics and Computer Science, Vol. 4 No. 1 (2006) , 167-177
dc.identifier.doihttps://doi.org/10.5485/TMCS.2006.0114
dc.identifier.eissn2676-8364
dc.identifier.issn1589-7389
dc.identifier.issue1
dc.identifier.jatitleTeach. Math. Comp. Sci.
dc.identifier.jtitleTeaching Mathematics and Computer Science
dc.identifier.urihttps://hdl.handle.net/2437/379576
dc.identifier.volume4
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/tmcs/article/view/14766
dc.rights.accessOpen Access
dc.rights.ownerSándor Bácsó and Zoltán Szilasi
dc.subjectprojective quadricsen
dc.subjectEuclidean and projective spacesen
dc.subjectMaurin’s projectionen
dc.subjectaxonometryen
dc.titleNotes on the representational possibilities of projective quadrics in four dimensionsen
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
PDF
Méret:
187.5 KB
Formátum:
Adobe Portable Document Format