Analysis of Sensor Fusion Techniques in Robot Localization

dc.contributor.advisorOniga, István
dc.contributor.authorHamama, Yaseen
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2024-02-01T21:25:08Z
dc.date.available2024-02-01T21:25:08Z
dc.date.created2023-11-28
dc.description.abstractThis thesis explores the application of sensor fusion techniques for outdoor localization in autonomous vehicles, with a focus on Kalman filter variations and their optimization for car robots. It examines various algorithms and sensor combinations through experiments in a simulated environment, using the Gazebo simulator and the Robotic Operation System (ROS) framework. The study emphasizes addressing GPS signal loss in challenging environments like urban tunnels, proposing solutions for maintaining accurate location estimates. Additionally, it includes the development of software tools for visualization and data analysis within ROS, and considers hardware compatibility for future physical implementation.
dc.description.courseMérnökinformatikus
dc.description.degreeMSc/MA
dc.format.extent64
dc.identifier.urihttps://hdl.handle.net/2437/365951
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectSensor fusion
dc.subjectLocalization
dc.subjectRobotic Operating System (ROS)
dc.subject.dspaceDEENK Témalista::Informatika
dc.titleAnalysis of Sensor Fusion Techniques in Robot Localization
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
Thesis.pdf
Méret:
2.8 MB
Formátum:
Adobe Portable Document Format
Leírás:
Thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények